JP2015147575A - pneumatic tire - Google Patents

pneumatic tire Download PDF

Info

Publication number
JP2015147575A
JP2015147575A JP2015105708A JP2015105708A JP2015147575A JP 2015147575 A JP2015147575 A JP 2015147575A JP 2015105708 A JP2015105708 A JP 2015105708A JP 2015105708 A JP2015105708 A JP 2015105708A JP 2015147575 A JP2015147575 A JP 2015147575A
Authority
JP
Japan
Prior art keywords
groove
narrow groove
air inflow
narrow
inflow portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015105708A
Other languages
Japanese (ja)
Other versions
JP5985005B2 (en
Inventor
裕喜 川上
Hiroki Kawakami
裕喜 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2015105708A priority Critical patent/JP5985005B2/en
Publication of JP2015147575A publication Critical patent/JP2015147575A/en
Application granted granted Critical
Publication of JP5985005B2 publication Critical patent/JP5985005B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0311Patterns comprising tread lugs arranged parallel or oblique to the axis of rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/06Tyres specially adapted for particular applications for heavy duty vehicles
    • B60C2200/065Tyres specially adapted for particular applications for heavy duty vehicles for construction vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pneumatic tire with an enhanced heat radiation effect at a tread part while maintaining rigidity at a land part.SOLUTION: A sipe 10 is formed on a tread surface 1, the sipe 10 extending obliquely with respect to a peripheral direction of a tire, the width W1 of the sipe 10 being smaller than the depth D1 of the sipe 10. At least one end of the sipe 10 is terminated in the land part. An air inflow part 11 opened on the tread surface is formed at least on one side of sipe walls 10c facing the sipe 10's peripheral direction of the tire. A maximum depth D1 of the sipe 10 and a maximum depth D2 of the air inflow part 11 satisfy an expression 1≤D1/D2≤15.

Description

本発明は、トレッド部の放熱効果を向上させた空気入りタイヤに関する。   The present invention relates to a pneumatic tire that improves the heat dissipation effect of a tread portion.

タイヤの負荷転動によってトレッド部が発熱し高温となることで、トレッド部のヒートセパレーション等の様々な故障の原因となる。ここで、トレッド部の温度を低下させるためには、発熱の低減または放熱の向上が必要である。
従来、トレッド部の温度を低下させるため、トレッド部に溝を形成することで、発熱源となるトレッドゴムを除去するとともに、トレッド部の表面積を増加して放熱を高めるという方法が採用されてきた(例えば、特許文献1参照)。
また、トレッド部の放熱効果を高めるために、タイヤ幅方向に延びる細溝に対して、細溝の長手方向と交差する方向に延びる小溝を設け、細溝内を流れる空気の流れに乱れを生じさせる技術も知られている(例えば、特許文献2参照)。
The tread portion generates heat and becomes high temperature due to load rolling of the tire, which causes various failures such as heat separation of the tread portion. Here, in order to reduce the temperature of the tread portion, it is necessary to reduce heat generation or improve heat radiation.
Conventionally, in order to lower the temperature of the tread portion, a method has been adopted in which a groove is formed in the tread portion to remove the tread rubber as a heat source, and the surface area of the tread portion is increased to increase heat dissipation. (For example, refer to Patent Document 1).
In addition, in order to enhance the heat dissipation effect of the tread portion, a small groove extending in the direction intersecting the longitudinal direction of the narrow groove is provided for the narrow groove extending in the tire width direction, and the flow of air flowing in the narrow groove is disturbed. The technique to make is also known (for example, refer patent document 2).

特開2003−205706号公報JP 2003-205706 A 特開2007−230399号公報JP 2007-230399 A

しかしながら、溝幅が細く、タイヤ幅方向に延びる溝には、溝内部に空気の流れが生じ難い。また、温度低下効果をより向上させるためにはさらに溝を増加する必要があるが、溝を増加すると陸部剛性の低下を招き、摩耗性能や操縦安定性能が悪化する原因となる。
それゆえ、本発明の目的は、陸部剛性を確保しつつ、トレッド部の放熱効果を向上させた空気入りタイヤを提供することにある。
However, the groove width is narrow, and the groove extending in the tire width direction is less likely to cause an air flow inside the groove. Further, in order to further improve the temperature lowering effect, it is necessary to further increase the groove. However, if the groove is increased, the rigidity of the land portion is decreased, and the wear performance and the steering stability performance are deteriorated.
Therefore, an object of the present invention is to provide a pneumatic tire in which the heat dissipation effect of the tread portion is improved while securing the land portion rigidity.

本発明は、上記課題を解決するためになされたものであり、本発明の空気入りタイヤは、トレッド踏面に、その延在方向に亘ってタイヤ周方向に対して傾斜した方向に延在し、溝幅が溝深さよりも小さい細溝が形成され、細溝は、両端が陸部内で終端し、細溝のタイヤ周方向に対向する溝壁面の少なくとも一方に、タイヤ周方向に延び、一方の端で前記細溝に連通し、他方の端で終端する、空気流入部が形成され、細溝の最大深さD1と空気流入部の最大深さD2が、5≦D1/D2≦10を満たし、空気流入部は、細溝の長手方向の端部側に形成されてなることを特徴とする。   The present invention has been made to solve the above problems, the pneumatic tire of the present invention extends to the tread surface in a direction inclined with respect to the tire circumferential direction over the extending direction, A narrow groove having a groove width smaller than the groove depth is formed, and the narrow groove ends in the land portion and extends in the tire circumferential direction on at least one of the groove wall surfaces facing the tire circumferential direction of the narrow groove. An air inflow portion is formed which communicates with the narrow groove at the end and terminates at the other end, and the maximum depth D1 of the narrow groove and the maximum depth D2 of the air inflow portion satisfy 5 ≦ D1 / D2 ≦ 10 The air inflow portion is formed on the end side in the longitudinal direction of the narrow groove.

なお、本発明の空気入りタイヤにあっては、空気流入部の深さが、細溝の溝壁面に開口する溝壁開口端で最大となることが好ましく、これによれば、空気流入部から細溝への空気の流入効果を高めてトレッド部の放熱効果をより向上させることができる。   In the pneumatic tire of the present invention, the depth of the air inflow portion is preferably maximized at the groove wall opening end that opens in the groove wall surface of the narrow groove. The effect of inflow of air into the narrow groove can be enhanced to further improve the heat dissipation effect of the tread portion.

また、本発明の空気入りタイヤにあっては、空気流入部の深さが、溝壁開口端に向かって漸増してなることが好ましく、これによれば、空気流入部から細溝への空気の流入効果を高めるとともに陸部体積の無駄な減少を抑制することができる。   In the pneumatic tire of the present invention, it is preferable that the depth of the air inflow portion is gradually increased toward the groove wall opening end, and according to this, the air from the air inflow portion to the narrow groove The inflow effect of the land can be enhanced and a wasteful decrease in the land volume can be suppressed.

また、本発明の空気入りタイヤにあっては、空気流入部が、細溝のタイヤ周方向に対向する溝壁面の両方に形成されていることが好ましく、これによれば、タイヤの回転方向に関わらず、トレッド部の放熱効果を十分向上させることができる。
また、前記空気流入部の細溝の長手方向に沿った長さL2は、前記細溝の長さL1の1/2以下であることが好ましい。
Further, in the pneumatic tire of the present invention, it is preferable that the air inflow portion is formed on both of the groove wall surfaces facing the tire circumferential direction of the narrow groove, and according to this, in the tire rotation direction. Regardless, the heat dissipation effect of the tread portion can be sufficiently improved.
Moreover, it is preferable that the length L2 along the longitudinal direction of the narrow groove of the air inflow portion is ½ or less of the length L1 of the narrow groove.

さらに、本発明の空気入りタイヤにあっては、細溝の一方の溝壁面に形成されている空気流入部の、細溝の長手方向に沿った中心と、細溝の他方の溝壁面に形成されている空気流入部の、細溝の長手方向に沿った中心とは、細溝の長手方向に間隔があいていることが好ましく、これによれば、より確実に細溝に空気を流入させ、トレッド部の放熱効果を向上させることができる。
なお、本明細書では、トレッド踏面に、タイヤ周方向に対して傾斜した方向に延在するとともに、溝幅が溝深さよりも小さい細溝が形成され、前記細溝は、少なくとも一端が陸部内で終端し、前記細溝のタイヤ周方向に対向する溝壁面の少なくとも一方に、トレッド踏面に開口する空気流入部が形成されており、前記細溝の最大深さD1と前記空気流入部の最大深さD2が、
1≦D1/D2≦15
を満たすことを特徴とする空気入りタイヤについても記載する。
かかる空気入りタイヤにあっては、陸部剛性を確保しながらも、トレッド部の放熱効果を向上させることができる。
Furthermore, in the pneumatic tire of the present invention, the air inflow portion formed on one groove wall surface of the narrow groove is formed on the center along the longitudinal direction of the narrow groove and on the other groove wall surface of the narrow groove. The center of the air inflow portion along the longitudinal direction of the narrow groove is preferably spaced apart in the longitudinal direction of the narrow groove. According to this, air can flow into the narrow groove more reliably. The heat dissipation effect of the tread portion can be improved.
In the present specification, a narrow groove extending in a direction inclined with respect to the tire circumferential direction and having a groove width smaller than the groove depth is formed on the tread surface, and at least one end of the narrow groove is in the land portion. And at least one of the groove wall surfaces facing the tire circumferential direction of the narrow groove is formed with an air inflow portion that opens to the tread surface, and the maximum depth D1 of the narrow groove and the maximum of the air inflow portion Depth D2 is
1 ≦ D1 / D2 ≦ 15
A pneumatic tire characterized by satisfying the above is also described.
In such a pneumatic tire, the heat radiation effect of the tread portion can be improved while securing the land portion rigidity.

本発明によれば、陸部剛性を確保しつつ、トレッド部の放熱効果を向上させた空気入りタイヤを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the pneumatic tire which improved the heat dissipation effect of the tread part can be provided, ensuring land part rigidity.

(a)は本発明の一実施形態に係る空気入りタイヤのトレッドパターンの展開図であり、(b)は図1(a)のA−A断面図である。(A) is an expanded view of the tread pattern of the pneumatic tire which concerns on one Embodiment of this invention, (b) is AA sectional drawing of Fig.1 (a). (a)は、陸部に形成した細溝および空気流入部を例示的に示したものであり、(b)は図2(a)のB−B´断面図であり、(c)は図2(a)のC−C´断面図であり、(d)は図2(a)のD−D´断面図であり、(e)は図2(a)のE−E´断面図である。(A) shows the narrow groove and air inflow part which were formed in the land part exemplarily, (b) is a BB 'sectional view of Drawing 2 (a), and (c) is a figure. It is CC 'sectional drawing of 2 (a), (d) is DD' sectional drawing of Fig.2 (a), (e) is EE 'sectional drawing of Fig.2 (a). is there. 本発明の実施例の結果を示すグラフである。It is a graph which shows the result of the Example of this invention.

以下に、図面を参照しつつ、本発明の実施の形態について例示説明する。
図1(a)は、本発明の空気入りタイヤのトレッドパターンの一例を示した展開図である。トレッド踏面1には、タイヤ赤道面CL上に、タイヤ周方向に沿って延びる中央周方向溝2と、中央周方向溝2を挟んでタイヤ周方向に沿って延びる1対の中間周方向溝3と、これらの中間周方向溝3のタイヤ幅方向外側にタイヤ周方向に沿って延びる1対の側方周方向溝4と、タイヤ幅方向に沿って延びるとともに中間周方向溝3および側方周方向溝4に連通する中間幅方向溝5と、タイヤ幅方向に沿って延びるとともに側方周方向溝4に連通しトレッド踏面端TEに延びる側方幅方向溝6と、が形成されている。
中央周方向溝2と中間周方向溝3によって、タイヤ赤道面CLを挟む一対のリブ状中央陸部7が形成されている。中間周方向溝3と側方周方向溝4と中間幅方向溝5とによって、ブロック状中間陸部8が形成されている。側方周方向溝4と側方幅方向溝6とによって、ブロック状側方陸部9が形成されている。なお、図示するトレッドパターンは一例であり、本発明は、リブ基調パターンおよびブロック基調パターン、その他任意のトレッドパターンにも適用可能である。中間幅方向溝5および側方幅方向溝6は、タイヤ幅方向に対して傾斜してもよいし、その溝幅が一定ではなく変化してもよい。また、側方幅方向溝6は、トレッド踏面端TEに連通していなくてもよい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Fig.1 (a) is the expanded view which showed an example of the tread pattern of the pneumatic tire of this invention. The tread tread 1 includes a central circumferential groove 2 extending along the tire circumferential direction on the tire equatorial plane CL, and a pair of intermediate circumferential grooves 3 extending along the tire circumferential direction with the central circumferential groove 2 interposed therebetween. A pair of lateral circumferential grooves 4 extending along the tire circumferential direction on the outer side in the tire width direction of the intermediate circumferential grooves 3, and extending along the tire width direction as well as the intermediate circumferential groove 3 and the lateral circumference An intermediate width direction groove 5 that communicates with the direction groove 4 and a side width direction groove 6 that extends along the tire width direction and that communicates with the side circumferential groove 4 and extends to the tread tread surface end TE are formed.
A pair of rib-shaped central land portions 7 sandwiching the tire equatorial plane CL are formed by the central circumferential groove 2 and the intermediate circumferential groove 3. A block-shaped intermediate land portion 8 is formed by the intermediate circumferential groove 3, the lateral circumferential groove 4, and the intermediate width direction groove 5. A block-shaped side land portion 9 is formed by the side circumferential groove 4 and the side width direction groove 6. Note that the tread pattern shown is an example, and the present invention can be applied to a rib basic pattern, a block basic pattern, and any other tread pattern. The intermediate width direction grooves 5 and the lateral width direction grooves 6 may be inclined with respect to the tire width direction, and the groove widths may vary rather than being constant. Further, the lateral width direction groove 6 may not communicate with the tread tread surface end TE.

リブ状中央陸部7には、タイヤ周方向に対して傾斜した方向に延在する細溝10が形成されている。細溝10は、一端10aがリブ状中央陸部7内で終端し、他端10bが中央周方向溝2に開口している。図1(b)に示すように、A−A断面において細溝10の溝幅W1は、溝深さD1より小さい(狭い)。図示例では、溝幅W1は、タイヤ周方向幅としている。
また、細溝10のタイヤ周方向に対向する溝壁面10cの一方に、トレッド踏面1に開口する空気流入部11が形成されている。細溝10の最大深さD1と空気流入部11の最大深さD2が、1≦D1/D2≦15を満たしている。空気流入部11は、トレッド踏面1と溝壁面10cで形成される角部12を、細溝10の長手方向の少なくとも一部で切り欠くことにより形成されている。
The rib-shaped central land portion 7 is formed with a narrow groove 10 extending in a direction inclined with respect to the tire circumferential direction. The narrow groove 10 has one end 10 a terminating in the rib-shaped central land portion 7 and the other end 10 b opening in the central circumferential groove 2. As shown in FIG. 1B, the groove width W1 of the narrow groove 10 is smaller (narrower) than the groove depth D1 in the AA cross section. In the illustrated example, the groove width W1 is the width in the tire circumferential direction.
An air inflow portion 11 that opens to the tread surface 1 is formed on one of the groove wall surfaces 10c of the narrow groove 10 facing the tire circumferential direction. The maximum depth D1 of the narrow groove 10 and the maximum depth D2 of the air inflow portion 11 satisfy 1 ≦ D1 / D2 ≦ 15. The air inflow portion 11 is formed by cutting out a corner portion 12 formed by the tread surface 1 and the groove wall surface 10 c at least at a part in the longitudinal direction of the narrow groove 10.

なお、図示する細溝10の配置は一例であり、本発明の細溝10は、リブ状中央陸部7の他、ブロック状中間陸部8およびブロック状側方陸部9に設けることもできる。また、細溝10は、タイヤ周方向に対して任意の角度θ(0<θ≦90°)で傾斜しているものとすることができ、さらに、複数の細溝10は、互いに平行に形成されていなくてもよい。図示例で細溝10は、その一端10aがリブ状中央陸部7内で終端し他端10bが中央周方向溝2に開口しているが、細溝は少なくともその長手方向の一端が陸部内で終端していればよく、その長手方向の両端が陸部内で終端していることが、陸部の剛性を確保する観点では好ましい。
また、図示する空気流入部11の位置および形状は、一例であり、本発明の空気流入部11は、細溝10のタイヤ周方向に対向する溝壁面10cの少なくとも一方に形成されていればよく、その限りにおいて、細溝10の溝壁面10cに対して、任意の位置に任意の形状で配置することができる。空気流入部11のトレッド踏面におけるトレッド展開図の平面形状としては、一組の対辺が細溝10の溝壁面10cと平行で、もう一組の対辺がタイヤ周方向に平行な平行四辺形の他、一組の対辺が細溝10の溝壁面10cと平行で、もう一組の対辺がタイヤ周方向に対して傾斜した平行四辺形とすることもできる。また、空気流入部11は、トレッド踏面から見た場合の平面形状が、台形、半円形、三角形等であってもよい。
In addition, arrangement | positioning of the illustrated narrow groove 10 is an example, and the narrow groove 10 of this invention can also be provided in the block-shaped intermediate land part 8 and the block-shaped side land part 9 besides the rib-shaped center land part 7. FIG. . The narrow grooves 10 can be inclined at an arbitrary angle θ (0 <θ ≦ 90 °) with respect to the tire circumferential direction, and the plurality of narrow grooves 10 are formed in parallel to each other. It does not have to be. In the illustrated example, the narrow groove 10 has one end 10a that terminates in the rib-shaped central land portion 7 and the other end 10b that opens in the central circumferential groove 2. However, the narrow groove has at least one longitudinal end in the land portion. It is preferable that both ends in the longitudinal direction are terminated in the land portion from the viewpoint of securing the rigidity of the land portion.
Moreover, the position and shape of the air inflow part 11 to show in figure are examples, and the air inflow part 11 of this invention should just be formed in at least one of the groove | channel wall surfaces 10c which oppose the tire circumferential direction of the narrow groove 10. FIG. As long as that is the case, it can be arranged in an arbitrary shape at an arbitrary position with respect to the groove wall surface 10c of the narrow groove 10. The planar shape of the tread development view on the tread surface of the air inflow portion 11 is a parallelogram in which one set of opposite sides is parallel to the groove wall surface 10c of the narrow groove 10 and the other set of opposite sides is parallel to the tire circumferential direction. A pair of opposite sides may be parallelograms parallel to the groove wall surface 10c of the narrow groove 10, and another set of opposite sides may be inclined with respect to the tire circumferential direction. Further, the air inflow portion 11 may have a trapezoidal shape, a semicircular shape, a triangular shape, or the like when viewed from the tread surface.

以下、本発明の作用を説明する。
タイヤが転動すると、タイヤの周囲にはタイヤの回転方向とは反対方向に風(空気)が流れる。この風を、トレッド踏面1に形成した溝に取り込むことにより、トレッド部が放熱され、トレッド部の温度が低下する。トレッド踏面1に幅広の溝を形成すると、溝内に風を取り込むことはできるが、陸部剛性が低下して、摩耗性能や操縦安定性能が悪化する。一方、陸部剛性が低下しない程度の幅狭の溝を形成しただけであると、溝内に風を取り込むことができない。すなわち、風の大部分は、トレッド踏面1に形成された細溝10内には取り込まれず、風の一部のみが細溝10内に取り込まれる。しかし、細溝10内に取り込まれた風も、細溝10の溝底まで到達することはなく、細溝10の浅い部分を通過して細溝10から流出されてしまう。それゆえ、トレッド部の温度を低下させる効果は低い。
そこで、細溝10の風上側の溝壁面10cに空気流入部11を形成することにより、すなわち、空気流入部11を形成した溝壁面10c側が風上側となるようにタイヤを車両に装着して使用することにより、風の大部分を細溝10内に取り込むとともに、細溝10内に取り込んだ風を溝底付近まで到達させることができる。なお、細溝10内に取り込まれた風は、風下側の端部から流出する。また、細溝10は、一端10aがリブ状中央陸部7内で終端しているため、例えば両端が中央周方向溝2(と中間周方向溝3)に開口している場合と比較して陸部剛性を高く維持することができる。
Hereinafter, the operation of the present invention will be described.
When the tire rolls, wind (air) flows around the tire in a direction opposite to the rotation direction of the tire. By taking this wind into the groove formed in the tread surface 1, the tread portion is dissipated and the temperature of the tread portion decreases. When a wide groove is formed on the tread surface 1, wind can be taken into the groove, but the rigidity of the land portion is lowered, and the wear performance and the steering stability performance are deteriorated. On the other hand, if only a narrow groove that does not lower the land rigidity is formed, wind cannot be taken into the groove. That is, most of the wind is not taken into the narrow groove 10 formed in the tread surface 1, and only a part of the wind is taken into the narrow groove 10. However, the wind taken into the narrow groove 10 does not reach the groove bottom of the narrow groove 10, passes through the shallow portion of the narrow groove 10, and flows out of the narrow groove 10. Therefore, the effect of lowering the temperature of the tread portion is low.
Therefore, by forming the air inflow portion 11 in the groove wall surface 10c on the windward side of the narrow groove 10, that is, using the tire mounted on the vehicle so that the groove wall surface 10c side where the air inflow portion 11 is formed becomes the windward side. As a result, most of the wind can be taken into the narrow groove 10 and the wind taken into the narrow groove 10 can reach the vicinity of the groove bottom. The wind taken into the narrow groove 10 flows out from the end portion on the leeward side. Further, since the narrow groove 10 has one end 10a terminating in the rib-shaped central land portion 7, for example, compared with a case where both ends are open to the central circumferential groove 2 (and the intermediate circumferential groove 3). The land rigidity can be kept high.

そして、細溝10の最大深さD1と空気流入部11の最大深さD2が、1≦D1/D2≦15を満たすように細溝10および空気流入部11を形成することにより、適切な陸部剛性を確保しながらも、トレッド部の放熱効果を向上させることができる。特に、大型化に伴ってトレッド部の発熱が問題となり易い、トラック、バス、建設車両用等の大型タイヤにおいて、本発明は顕著な効果を発揮する。また建設車両用の空気入りタイヤでは、タイヤの車両側(路面と接している接地面と反対側)が車両に覆われず露出しているため、本発明の効果がさらに顕著に現れる。なお、上記のD1/D2が、1未満であると、陸部の体積が過度に減少して陸部剛性が十分に得られない虞があり、15を超えると、風を取り込む効果が低下し、放熱効果が十分に得られない虞がある。さらに、陸部剛性と放熱効果の観点から、より好適には、5≦D1/D2≦10であることが望ましい。   The narrow groove 10 and the air inflow portion 11 are formed so that the maximum depth D1 of the narrow groove 10 and the maximum depth D2 of the air inflow portion 11 satisfy 1 ≦ D1 / D2 ≦ 15. The heat dissipation effect of the tread portion can be improved while ensuring the rigidity of the portion. In particular, the present invention exhibits a remarkable effect in large tires for trucks, buses, construction vehicles, etc., in which heat generation at the tread portion is likely to be a problem as the size increases. Moreover, in the pneumatic tire for construction vehicles, since the vehicle side of the tire (the side opposite to the ground contact surface in contact with the road surface) is exposed without being covered by the vehicle, the effect of the present invention is more remarkable. In addition, when said D1 / D2 is less than 1, the volume of a land part reduces too much and there exists a possibility that land part rigidity may not fully be acquired, and when it exceeds 15, the effect of taking in a wind will fall. There is a possibility that a sufficient heat dissipation effect cannot be obtained. Furthermore, it is more preferable that 5 ≦ D1 / D2 ≦ 10 from the viewpoint of land portion rigidity and heat dissipation effect.

空気流入部11の深さは、細溝10の溝壁面10cに開口する溝壁開口端11aで最大となることが好ましく、これによれば、開口が大きくなり細溝10内に空気が流入し易くなる。また、空気流入部11の細溝の長手方向と垂直な断面における側面形状としては、空気流入部11の深さが細溝10の溝壁開口端11aから遠い側の端から、細溝10の溝壁面10cに開口する溝壁開口端11aに向かって漸増することが好ましく、これによれば、風の流入効果を高めるとともに、陸部体積の無駄な減少を抑制して陸部剛性の低下を抑制することができる。ただし、空気流入部11の底面は、平面とすることもできるし、曲面とすることもできる。また、空気流入部11の深さが、溝壁開口端11aに向かって階段状に増加してもよいし、空気流入部11の深さが一定であってもよい。   The depth of the air inflow portion 11 is preferably maximized at the groove wall opening end 11 a that opens to the groove wall surface 10 c of the narrow groove 10. According to this, the opening becomes large and air flows into the narrow groove 10. It becomes easy. In addition, as a side surface shape in a cross section perpendicular to the longitudinal direction of the narrow groove of the air inflow portion 11, the depth of the air inflow portion 11 is from the end far from the groove wall opening end 11 a of the narrow groove 10. It is preferable to gradually increase toward the groove wall opening end 11a that opens to the groove wall surface 10c. According to this, the inflow effect of the wind is enhanced, and a wasteful decrease in the land volume is suppressed, thereby reducing the land rigidity. Can be suppressed. However, the bottom surface of the air inflow portion 11 can be a flat surface or a curved surface. Moreover, the depth of the air inflow part 11 may increase stepwise toward the groove wall opening end 11a, or the depth of the air inflow part 11 may be constant.

なお、細溝10のいずれか一方の溝壁面10cのみに空気流入部11が形成され、且つ、全ての空気流入部11がタイヤ周方向の同一方向側に配置されているような方向性パターンである場合には、空気入りタイヤを車両に装着する際に風上側に空気流入部11が配置されるように、車両に装着することが好ましい。ただし、利便性の観点から、細溝10の対向する溝壁面10cの両方、すなわち、両側の溝壁面10cに空気流入部11を形成することが好ましく、また、いずれか一方の溝壁面10cのみに空気流入部11が形成されている場合にも、風下側の溝壁面10cに空気流入部11を有する細溝10と、風上側の溝壁面10cに空気流入部11を有する細溝10とをそれぞれ形成して非方向性パターンとすることが好ましい。細溝10の両側の溝壁面10cに空気流入部11を形成した場合、風上側の溝壁面10cに形成された空気流入部11から細溝10に空気が流入し、細溝10内を通って風下側の溝壁面10cの端部から抜けるように風の流れが形成される。   Note that the air inflow portion 11 is formed only in one of the groove wall surfaces 10c of the narrow groove 10, and all the air inflow portions 11 are arranged on the same direction side in the tire circumferential direction. In some cases, it is preferable to install the pneumatic tire on the vehicle so that the air inflow portion 11 is disposed on the windward side when the pneumatic tire is mounted on the vehicle. However, from the viewpoint of convenience, it is preferable to form the air inflow portion 11 on both of the opposing groove wall surfaces 10c of the narrow groove 10, that is, on both groove wall surfaces 10c, and only on one of the groove wall surfaces 10c. Even when the air inflow portion 11 is formed, the narrow groove 10 having the air inflow portion 11 on the leeward side groove wall surface 10c and the narrow groove 10 having the air inflow portion 11 on the leeward side groove wall surface 10c, respectively. It is preferable to form a non-directional pattern. When the air inflow portions 11 are formed on the groove wall surfaces 10 c on both sides of the narrow groove 10, air flows into the narrow grooves 10 from the air inflow portion 11 formed on the windward groove wall surface 10 c and passes through the narrow grooves 10. A wind flow is formed so as to escape from the end of the groove wall 10c on the leeward side.

細溝10の両溝壁面10cに、空気流入部11が形成されている場合、空気流入部11同士が細溝の長手方向の位置が一致しないように、細溝10の一方の溝壁面に形成されている空気流入部11の、溝壁面に開口する溝壁開口端11aにおける細溝10の長手方向に沿った中心と、細溝10の他方の溝壁面に形成されている空気流入部11の、溝壁開口端11aにおける細溝10の長手方向に沿った中心は、細溝10の長手方向に間隔があいていることが好ましい。この構成により、風上側の空気流入部11から流入した空気が、風下側の溝壁面10cに衝突し拡散するので、より確実に細溝10内に空気を流入させることが可能となり、放熱効果をより確実に向上させることができる。   When the air inflow portions 11 are formed on both the groove wall surfaces 10c of the narrow groove 10, the air inflow portions 11 are formed on one groove wall surface of the narrow groove 10 so that the longitudinal positions of the narrow grooves do not coincide with each other. Of the air inflow portion 11 formed on the other groove wall surface of the narrow groove 10 and the center along the longitudinal direction of the narrow groove 10 at the groove wall opening end 11a that opens to the groove wall surface. The center along the longitudinal direction of the narrow groove 10 at the groove wall opening end 11 a is preferably spaced apart in the longitudinal direction of the narrow groove 10. With this configuration, air flowing in from the air inflow section 11 on the leeward side collides with the groove wall surface 10c on the leeward side and diffuses, so that it is possible to flow air into the narrow groove 10 more reliably, and a heat dissipation effect is achieved. It can improve more reliably.

また、細溝10は、リブ状中央陸部7の任意の位置に形成することが可能であるが、陸部剛性と放熱効果の観点から、中間周方向溝3から細溝10までのタイヤ幅方向の距離W4が、リブ状中央陸部7のタイヤ幅方向の幅W3に対して5%〜40%の範囲内であることが好ましい。また、空気流入部11による放熱効果向上の観点から、細溝10は、好適には、タイヤ周方向に対して45°以上90°以下の角度で傾斜していることが望ましい。   Further, the narrow groove 10 can be formed at an arbitrary position of the rib-shaped central land portion 7, but from the viewpoint of the land portion rigidity and the heat dissipation effect, the tire width from the intermediate circumferential groove 3 to the narrow groove 10. The distance W4 in the direction is preferably in the range of 5% to 40% with respect to the width W3 of the rib-shaped central land portion 7 in the tire width direction. Further, from the viewpoint of improving the heat dissipation effect by the air inflow portion 11, the narrow groove 10 is preferably inclined at an angle of 45 ° or more and 90 ° or less with respect to the tire circumferential direction.

なお、細溝10の溝幅W1を、溝深さD1より狭く設定したのは、細溝10が深く、幅が狭いほど、風を細溝10内に取り込み難いので、本発明の効果が顕著に発揮されるためである。また、溝幅W1が大きくなるに従って、溝内に風を取り込むことは容易となるが、陸部剛性の確保が困難となる。   Note that the groove width W1 of the narrow groove 10 is set to be narrower than the groove depth D1, because the narrower the groove 10 is, the more difficult it is to take wind into the narrow groove 10, and thus the effect of the present invention is remarkable. It is because it is demonstrated to. Further, as the groove width W1 increases, it becomes easier to take wind into the groove, but it becomes difficult to ensure the rigidity of the land portion.

空気流入部11は、陸部の大きさに対して十分小さくても、細溝10内の風量を大きく増加させることができるので、それに足る空気流入部11を形成しても陸部の体積を大きく低下させることがない。それゆえ、摩耗性能および操縦安定性への影響は無視できるほど小さい。
また、細溝10の長手方向全体にわたる長さの空気流入部11を設けると、細溝10の長手方向全体にわたって均一な風量の風が取り込まれてしまい、この取り込まれた風が細溝10内を流れ難くなり、また細溝10から流出することが妨げられる虞がある。細溝10の両端が溝に開口せずに陸部内で終端している場合、この問題が顕著になる。それゆえ、空気流入部11は、細溝10の長手方向の一部に設けることが好ましい。具体的には、空気流入部11の長さ(細溝10の長手方向に沿った長さ)L2は、5mm以上、細溝10の長手方向の長さL1の1/2以下であることが好ましい。
Even if the air inflow portion 11 is sufficiently small with respect to the size of the land portion, the air volume in the narrow groove 10 can be greatly increased. There is no significant decrease. Therefore, the impact on wear performance and steering stability is negligible.
Further, when the air inflow portion 11 having a length over the entire longitudinal direction of the narrow groove 10 is provided, a wind having a uniform air volume is captured over the entire longitudinal direction of the narrow groove 10. It may be difficult to flow through the narrow groove 10 and may be prevented from flowing out of the narrow groove 10. This problem becomes significant when both ends of the narrow groove 10 terminate in the land without opening into the groove. Therefore, the air inflow portion 11 is preferably provided in a part of the narrow groove 10 in the longitudinal direction. Specifically, the length L2 (the length along the longitudinal direction of the narrow groove 10) L2 of the air inflow portion 11 is 5 mm or more and 1/2 or less of the longitudinal length L1 of the narrow groove 10. preferable.

また、空気流入部11はトレッド部が摩耗するに従って小さくなり、風を取り込む効果、すなわち、放熱性能は低減する。しかし、トレッド部の発熱量もトレッド部の摩耗に従って減少していくため、摩耗後に備えて新品時の空気流入部11を特に大きく設計する必要性は低い。   Moreover, the air inflow part 11 becomes small as the tread part wears, and the effect of taking in the wind, that is, the heat radiation performance is reduced. However, since the amount of heat generated in the tread portion also decreases as the tread portion wears, it is not necessary to design the air inflow portion 11 at the time of a new product particularly large in preparation for wear.

以下、図2(a)〜(e)を参照して、細溝内の風(空気)の流れをさらに詳細に説明する。
図2(a)は、本発明における細溝および空気流入部の変形例として、トレッド踏面に形成されたリブ状陸部27に配置された、細溝20b〜20e、および空気流入部21b〜21eを示したものであり、図2(b)は図2(a)のB−B´断面図、図2(c)は図2(a)のC−C´断面図、図2(d)は図2(a)のD−D´断面図、図2(e)は図2(a)のE−E´断面図をそれぞれ示したものである。リブ状陸部27は、タイヤ周方向に沿って延びる周方向溝23に挟まれ、リブ状陸部27の幅方向中心線と、タイヤ赤道面CLが一致している。また、空気流入部21b〜21eは、(溝壁面に開口する溝壁開口端11aにおける)細溝20b〜20eの長手方向に沿った中心Mが、リブ状陸部27の幅方向中心線上に位置するよう形成されている。図2(b)〜(e)は、矢印によって、細溝20b〜20e内の空気の流れを模式的に表している。
図2(a)に示す細溝20bはタイヤ幅方向に沿って延在し、細溝20c、20d、20eは、タイヤ幅方向に対して傾斜している。また、細溝20b、20cは、両端がリブ状陸部27内で終端している。図示のように、細溝20dは風上側の一端が周方向溝23に開口し、細溝20eは、風下側の一端が周方向溝23に開口し、それぞれ他端がリブ状陸部27内で終端している。
Hereinafter, the flow of air (air) in the narrow groove will be described in more detail with reference to FIGS.
FIG. 2A shows, as a modified example of the narrow groove and the air inflow portion in the present invention, the narrow grooves 20b to 20e and the air inflow portions 21b to 21e arranged on the rib-like land portion 27 formed on the tread surface. 2 (b) is a cross-sectional view taken along the line BB 'in FIG. 2 (a), FIG. 2 (c) is a cross-sectional view taken along the line CC' in FIG. 2 (a), and FIG. 2 (d). Is a sectional view taken along the line DD ′ of FIG. 2 (a), and FIG. 2 (e) is a sectional view taken along the line EE ′ of FIG. 2 (a). The rib-like land portion 27 is sandwiched between circumferential grooves 23 extending along the tire circumferential direction, and the center line in the width direction of the rib-like land portion 27 coincides with the tire equatorial plane CL. In addition, the air inflow portions 21 b to 21 e are located at the center M along the longitudinal direction of the narrow grooves 20 b to 20 e (at the groove wall opening end 11 a that opens to the groove wall surface) on the widthwise center line of the rib-like land portion 27. It is formed to do. 2B to 2E schematically represent the air flow in the narrow grooves 20b to 20e by arrows.
The narrow groove 20b shown in FIG. 2A extends along the tire width direction, and the narrow grooves 20c, 20d, and 20e are inclined with respect to the tire width direction. Further, the narrow grooves 20b and 20c both end in the rib-like land portion 27. As shown in the figure, the narrow groove 20d has one end on the leeward side opened in the circumferential groove 23, and the narrow groove 20e has one end on the leeward side opened in the circumferential groove 23, and the other end in the rib-shaped land portion 27. It ends with.

図2(b)において、空気流入部21bから細溝20bに流入した空気は矢印で示すように溝底に向かってまっすぐに流れるため、空気流入部21bの真下が放熱効果最大領域となる。このような場合には、冷却したい部分のタイヤ幅方向位置に空気流入部21bを設けることが好ましい。
図2(c)において、空気流入部21cから細溝20cに流入した空気は図示のように風下側に曲がりながら溝底に向かって流れるため、空気流入部21cの真下よりも風下側に寄った位置が放熱効果最大領域となる。このような場合には、冷却したい部分のタイヤ幅方向位置よりも風上側に空気流入部21cを設けることが好ましい。
図2(d)の細溝20dにおいては、図2(c)に示す細溝20cと同様に、空気流入部21dの真下よりも風下側に寄った位置が放熱効果最大領域となるが、空気流入部21dから流入した空気と周方向溝23から流入した空気とが衝突することにより、空気が停滞し、放熱効果が得られ難い放熱効果悪化領域が形成される。このような場合には、冷却したい部分のタイヤ幅方向位置よりも風上側に空気流入部21dを設けることが好ましく、放熱効果悪化領域が形成され難くするために、できる限り風上側(すなわち開口側)に空気流入部21dを設けることが好ましい。また、空気流入部11を形成する場合には、周方向溝23から空気が流入しないようにすることが好ましく、例えば、周方向溝23自体の幅を狭くすることや、風下側に開口部を配置すること、細溝をトレッド踏面端に連通させないことが好ましい。
図2(e)の細溝20eにおいては、図2(d)に示す細溝20dと同様に、空気流入部21eの真下よりも風下側に寄った位置が放熱効果最大領域となるが、風下側で開口しているために周方向溝23から空気が流入し難く、図2(d)に示す放熱悪化領域は形成されない。このような場合には、冷却したい部分のタイヤ幅方向位置よりも風上側に空気流入部21eを設けることが好ましい。
以上のような細溝内の空気の流れを考慮して、放熱効果最大領域が放熱を必要とする位置に形成されるように、細溝に対して空気流入部を配置することが望ましい。細溝、空気流入部の位置、形状等が図2以外の場合でも、上記と同様の考察により、最も効果的な空気流入部の位置を推定することができる。
In FIG. 2B, the air flowing into the narrow groove 20b from the air inflow portion 21b flows straight toward the groove bottom as shown by the arrow, so that the region directly below the air inflow portion 21b is the maximum heat dissipation effect region. In such a case, it is preferable to provide the air inflow portion 21b at the position in the tire width direction of the portion to be cooled.
In FIG. 2C, the air that has flowed into the narrow groove 20c from the air inflow portion 21c flows toward the groove bottom while turning to the leeward side as shown in the drawing, so that it is closer to the leeward side than just below the air inflow portion 21c. The position is the maximum heat dissipation effect area. In such a case, it is preferable to provide the air inflow portion 21c on the windward side from the position in the tire width direction of the portion to be cooled.
In the narrow groove 20d in FIG. 2 (d), as in the narrow groove 20c shown in FIG. 2 (c), the position closer to the leeward side than directly below the air inflow portion 21d is the maximum heat dissipation effect region. When the air flowing in from the inflow portion 21d collides with the air flowing in from the circumferential groove 23, the air is stagnated and a heat dissipation effect deterioration region in which it is difficult to obtain a heat dissipation effect is formed. In such a case, it is preferable to provide the air inflow portion 21d on the windward side of the position in the tire width direction of the portion to be cooled, and in order to make it difficult to form the heat dissipation effect deterioration region, the windward side (that is, the opening side) as much as possible. ) Is preferably provided with an air inflow portion 21d. Further, when the air inflow portion 11 is formed, it is preferable that air does not flow in from the circumferential groove 23. For example, the width of the circumferential groove 23 itself is reduced, or an opening is provided on the leeward side. It is preferable that the narrow groove is not communicated with the tread surface end.
In the narrow groove 20e of FIG. 2 (e), as in the narrow groove 20d shown in FIG. 2 (d), the position closer to the leeward side than directly below the air inflow portion 21e is the maximum heat dissipation effect region. Since it is open on the side, it is difficult for air to flow in from the circumferential groove 23, and the heat dissipation deterioration region shown in FIG. 2D is not formed. In such a case, it is preferable to provide the air inflow portion 21e on the windward side from the position in the tire width direction of the portion to be cooled.
In consideration of the air flow in the narrow groove as described above, it is desirable to dispose the air inflow portion with respect to the narrow groove so that the heat radiation effect maximum region is formed at a position where heat radiation is required. Even when the position, shape, etc. of the narrow groove and the air inflow portion are other than those in FIG. 2, the most effective position of the air inflow portion can be estimated by the same consideration as described above.

以下、本発明の実施例について説明する。
図1(a)に示すトレッドパターンを有する超大型ORR(オフ・ザ・ロード・ラジアル)タイヤにおいて、深さの異なる細溝10および空気流入部11を形成して、放熱効果の違いを調べた。実施例1〜4及び比較例1、2のタイヤの細溝10および空気流入部11の最大深さ寸法D1、D2は、表1に示す通りである。なお、細溝10の長手方向はタイヤ周方向に対して90°傾斜しているものとし、細溝10の長手方向の長さL1は1000mm、細溝10の溝幅W1は20mm、空気流入部11の長さL2は50mm、空気流入部11の幅W2は50mmである。
Examples of the present invention will be described below.
In the ultra-large ORR (off-the-road radial) tire having the tread pattern shown in FIG. 1 (a), the narrow groove 10 and the air inflow portion 11 having different depths were formed, and the difference in the heat dissipation effect was examined. . The maximum depth dimensions D1 and D2 of the narrow grooves 10 and the air inflow portions 11 of the tires of Examples 1 to 4 and Comparative Examples 1 and 2 are as shown in Table 1. The longitudinal direction of the narrow groove 10 is inclined by 90 ° with respect to the tire circumferential direction, the longitudinal length L1 of the narrow groove 10 is 1000 mm, the groove width W1 of the narrow groove 10 is 20 mm, and the air inflow portion. The length L2 of 11 is 50 mm, and the width W2 of the air inflow portion 11 is 50 mm.

Figure 2015147575
Figure 2015147575

このタイヤを用いて、時速20kmの主流速度において溝底の熱伝達率を、フィルムヒータを用いて測定した。測定は、各細溝10の空気流入部11直下の溝底点において行った。測定結果を表1および図3のグラフに示す。表1および図3に示すように、細溝10の最大深さD1と空気流入部11の最大深さD2が、1≦D1/D2≦15を満たす場合に放熱効果の向上が顕著であることが分かる。また、試験中及び試験後のタイヤにおいて、陸部の偏摩耗、破損等は見られず、十分な陸部剛性を有している。   Using this tire, the heat transfer coefficient at the groove bottom at a mainstream speed of 20 km / h was measured using a film heater. The measurement was performed at the groove bottom point immediately below the air inflow portion 11 of each narrow groove 10. The measurement results are shown in Table 1 and the graph of FIG. As shown in Table 1 and FIG. 3, when the maximum depth D1 of the narrow groove 10 and the maximum depth D2 of the air inflow portion 11 satisfy 1 ≦ D1 / D2 ≦ 15, the improvement of the heat dissipation effect is remarkable. I understand. Moreover, in the tire during and after the test, the uneven wear and damage of the land portion are not observed, and the land portion has sufficient rigidity.

かくしてこの発明により、陸部剛性を確保しつつ、トレッド部の放熱効果を向上させた空気入りタイヤを提供することが可能となった。   Thus, according to the present invention, it is possible to provide a pneumatic tire in which the land portion rigidity is ensured and the heat dissipation effect of the tread portion is improved.

1:トレッド踏面 2:中央周方向溝 3:中間周方向溝 4:側方周方向溝 5:中間幅方向溝 6:側方幅方向溝 7:リブ状中央陸部 8:ブロック状中間陸部 9:ブロック状側方陸部 10:細溝 10c:細溝の溝壁面 11:空気流入部 11a:空気流入部の溝壁開口端   1: tread surface 2: central circumferential groove 3: intermediate circumferential groove 4: lateral circumferential groove 5: intermediate lateral groove 6: lateral lateral groove 7: rib-shaped central land 8: block-shaped intermediate land 9: Block-shaped side land portion 10: Fine groove 10c: Wall surface of groove of narrow groove 11: Air inflow portion 11a: Open end of groove wall of air inflow portion

Claims (6)

トレッド踏面に、その延在方向に亘ってタイヤ周方向に対して傾斜した方向に延在するとともに、溝幅が溝深さよりも小さい細溝が形成され、
前記細溝は、両端が陸部内で終端し、
前記細溝のタイヤ周方向に対向する溝壁面の少なくとも一方に、タイヤ周方向に延び、一方の端で前記細溝に連通し、他方の端で終端する、空気流入部が形成されており、
前記細溝の最大深さD1と前記空気流入部の最大深さD2が、
5≦D1/D2≦10
を満たし、
前記空気流入部は、前記細溝の長手方向の端部側に形成されてなることを特徴とする空気入りタイヤ。
On the tread surface, a narrow groove extending in the direction inclined with respect to the tire circumferential direction over the extending direction and having a groove width smaller than the groove depth is formed,
The narrow groove terminates in the land at both ends,
An air inflow portion is formed on at least one of the groove wall surfaces facing the tire circumferential direction of the narrow groove, extending in the tire circumferential direction, communicating with the narrow groove at one end, and terminating at the other end,
The maximum depth D1 of the narrow groove and the maximum depth D2 of the air inflow portion are:
5 ≦ D1 / D2 ≦ 10
The filling,
The pneumatic tire according to claim 1, wherein the air inflow portion is formed on an end portion side in the longitudinal direction of the narrow groove.
前記空気流入部の深さが、前記細溝の溝壁面に開口する溝壁開口端で最大となる、請求項1に記載の空気入りタイヤ。   The pneumatic tire according to claim 1, wherein the depth of the air inflow portion is maximized at a groove wall opening end that opens to a groove wall surface of the narrow groove. 前記空気流入部の深さが、前記溝壁開口端に向かって漸増してなる、請求項2に記載の空気入りタイヤ。   The pneumatic tire according to claim 2, wherein the depth of the air inflow portion is gradually increased toward the groove wall opening end. 前記空気流入部が、前記細溝のタイヤ周方向に対向する溝壁面の両方に形成されている、請求項1〜3の何れか一項に記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 3, wherein the air inflow portion is formed on both of the groove wall surfaces facing the tire circumferential direction of the narrow groove. 前記細溝の一方の溝壁面に形成されている前記空気流入部の、前記溝壁面に開口する溝壁開口端における前記細溝の長手方向に沿った中心と、前記細溝の他方の溝壁面に形成されている前記空気流入部の、溝壁開口端における前記細溝の長手方向に沿った中心とは、前記細溝の長手方向に間隔があいている、請求項4に記載の空気入りタイヤ。   The center of the air inflow portion formed on one groove wall surface of the narrow groove along the longitudinal direction of the narrow groove at the groove wall opening end that opens to the groove wall surface, and the other groove wall surface of the narrow groove 5. The air according to claim 4, wherein the air inflow part formed at the center of the narrow groove at the groove wall opening end along the longitudinal direction of the narrow groove is spaced apart in the longitudinal direction of the narrow groove. tire. 前記空気流入部の細溝の長手方向に沿った長さL2は、前記細溝の長さL1の1/2以下である、請求項1〜5の何れか一項に記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 5, wherein a length L2 along a longitudinal direction of the narrow groove of the air inflow portion is ½ or less of a length L1 of the narrow groove.
JP2015105708A 2015-05-25 2015-05-25 Pneumatic tire Expired - Fee Related JP5985005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015105708A JP5985005B2 (en) 2015-05-25 2015-05-25 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015105708A JP5985005B2 (en) 2015-05-25 2015-05-25 Pneumatic tire

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013050297A Division JP5799043B2 (en) 2013-03-13 2013-03-13 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2015147575A true JP2015147575A (en) 2015-08-20
JP5985005B2 JP5985005B2 (en) 2016-09-06

Family

ID=53891318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015105708A Expired - Fee Related JP5985005B2 (en) 2015-05-25 2015-05-25 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP5985005B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596913A (en) * 1991-10-08 1993-04-20 Bridgestone Corp Heavy duty pneumatic tire
JPH0752613A (en) * 1993-08-12 1995-02-28 Yokohama Rubber Co Ltd:The Pneumatic radial tire for heavy load
JP2000264022A (en) * 1999-03-18 2000-09-26 Bridgestone Corp Pneumatic tire
JP2001055017A (en) * 1999-08-18 2001-02-27 Bridgestone Corp Pneumatic tire
JP2003205706A (en) * 2002-01-15 2003-07-22 Bridgestone Corp Pneumatic tire
JP2007191093A (en) * 2006-01-20 2007-08-02 Bridgestone Corp Tire for construction vehicle
JP2007230399A (en) * 2006-03-01 2007-09-13 Bridgestone Corp Pneumatic tire
JP2009227264A (en) * 2008-02-27 2009-10-08 Bridgestone Corp Pneumatic tire
JP2012001154A (en) * 2010-06-18 2012-01-05 Bridgestone Corp Tire
EP2455235A2 (en) * 2010-11-17 2012-05-23 Continental Reifen Deutschland GmbH Run strip profile of a vehicle tyre
JP2012179948A (en) * 2011-02-28 2012-09-20 Bridgestone Corp Radial tire for construction vehicle
WO2013008926A1 (en) * 2011-07-13 2013-01-17 株式会社ブリヂストン Tire

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596913A (en) * 1991-10-08 1993-04-20 Bridgestone Corp Heavy duty pneumatic tire
JPH0752613A (en) * 1993-08-12 1995-02-28 Yokohama Rubber Co Ltd:The Pneumatic radial tire for heavy load
JP2000264022A (en) * 1999-03-18 2000-09-26 Bridgestone Corp Pneumatic tire
JP2001055017A (en) * 1999-08-18 2001-02-27 Bridgestone Corp Pneumatic tire
JP2003205706A (en) * 2002-01-15 2003-07-22 Bridgestone Corp Pneumatic tire
JP2007191093A (en) * 2006-01-20 2007-08-02 Bridgestone Corp Tire for construction vehicle
JP2007230399A (en) * 2006-03-01 2007-09-13 Bridgestone Corp Pneumatic tire
JP2009227264A (en) * 2008-02-27 2009-10-08 Bridgestone Corp Pneumatic tire
US20110005652A1 (en) * 2008-02-27 2011-01-13 Bridgestone Corporation Pneumatic tire
JP2012001154A (en) * 2010-06-18 2012-01-05 Bridgestone Corp Tire
EP2455235A2 (en) * 2010-11-17 2012-05-23 Continental Reifen Deutschland GmbH Run strip profile of a vehicle tyre
JP2012179948A (en) * 2011-02-28 2012-09-20 Bridgestone Corp Radial tire for construction vehicle
WO2013008926A1 (en) * 2011-07-13 2013-01-17 株式会社ブリヂストン Tire

Also Published As

Publication number Publication date
JP5985005B2 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
JP5805123B2 (en) Pneumatic tire
US10500904B2 (en) Tire
JP6467309B2 (en) Pneumatic tire
JP4705684B2 (en) Heavy duty tire
JP5799043B2 (en) Pneumatic tire
JP6055521B1 (en) Pneumatic tire
EP2754567B1 (en) Pneumatic tire
JP5977696B2 (en) Pneumatic tire
JP6558297B2 (en) Pneumatic tire
JP5568657B1 (en) Pneumatic tire
JP2018075929A (en) tire
CN106427402B (en) Pneumatic tire
JP2010064578A (en) Pneumatic tire
JP2013103567A (en) Pneumatic tire
JP5985005B2 (en) Pneumatic tire
JP5798657B1 (en) Pneumatic tire
JP2016128297A (en) Pneumatic tire
JP6029957B2 (en) Pneumatic tire
JP2015042551A (en) Pneumatic tire
JP2019001230A (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160802

R150 Certificate of patent or registration of utility model

Ref document number: 5985005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees