JP2015145524A - Electric anticorrosion construction method, and anode member - Google Patents

Electric anticorrosion construction method, and anode member Download PDF

Info

Publication number
JP2015145524A
JP2015145524A JP2014018572A JP2014018572A JP2015145524A JP 2015145524 A JP2015145524 A JP 2015145524A JP 2014018572 A JP2014018572 A JP 2014018572A JP 2014018572 A JP2014018572 A JP 2014018572A JP 2015145524 A JP2015145524 A JP 2015145524A
Authority
JP
Japan
Prior art keywords
metal material
anode
current
embedded
surface side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014018572A
Other languages
Japanese (ja)
Other versions
JP6372736B2 (en
Inventor
篤志 鹿島
Atsushi Kashima
篤志 鹿島
山本 誠
Makoto Yamamoto
山本  誠
一彰 赤澤
Kazuaki Akazawa
一彰 赤澤
敏和 峰松
Toshikazu Minematsu
敏和 峰松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2014018572A priority Critical patent/JP6372736B2/en
Publication of JP2015145524A publication Critical patent/JP2015145524A/en
Application granted granted Critical
Publication of JP6372736B2 publication Critical patent/JP6372736B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric anticorrosion construction method in which an anticorrosive current can be supplied effectively to each of a metallic material buried on the surface side of a structure and another metallic material buried on the inside of the structure, which inside is deeper than the surface side thereof.SOLUTION: In the electric anticorrosion construction method, a surface side anode part 1a is arranged, which is buried in a surface side metallic material Y1-buried region of the structure X and used for supplying the anticorrosive current to the surface side metallic material Y1, and an inside anode part 1b is arranged, which is buried in an inside metallic material Y2-buried region of the structure X in a state electrically-separated from the surface side anode part 1a and used for supplying the anticorrosive current to the inside metallic material Y2. The surface side anode part 1a is connected electrically to the surface side metallic material Y1 while interposing a surface side current supplying means 2a for supplying a current to the surface side anode part 1a side therebetween. The inside anode part 1b is connected electrically to the inside metallic material Y2 while interposing an inside current supplying means 2b for supplying another current to the inside anode part 1b side therebetween.

Description

本発明は、構造物に埋設された複数の金属材料に対して電気防食を行う電気防食工法および陽極部材に関する。   The present invention relates to an anticorrosion method and an anode member for performing anticorrosion on a plurality of metal materials embedded in a structure.

コンクリート等を用いて形成された構造物に埋設されている鉄筋などの鋼材は、表面に不動態被膜が形成されているため、本来、腐食から保護されている。ところが、斯かる構造物が経時的に劣化したりすることで、構造物の表面に亀裂が生じたり、構造物の内部に間隙が生じたりする場合がある。斯かる場合、亀裂や隙間を通じて、水分や塩素成分が構造物の内部にまで侵入し、鋼材を部分的に腐食する(金属イオンが溶出する)虞がある。   Steel materials such as rebars embedded in structures formed using concrete or the like are inherently protected from corrosion because a passive film is formed on the surface. However, when such a structure deteriorates with time, a crack may be generated on the surface of the structure or a gap may be generated inside the structure. In such a case, there is a possibility that moisture and chlorine components penetrate into the structure through cracks and gaps, and the steel material is partially corroded (metal ions are eluted).

鋼材が部分的に腐食すると、腐食した部分と腐食していない部分とが鋼材に形成され、斯かる部分同士の間に電位差が生じることになる。このような電位差が生じることによって、腐食した部分から腐食していない部分へ向かって鋼材中に腐食電流が流れることになる。そして、このような腐食電流が鋼材中に流れることで、腐食した部分からの金属イオンの溶出が促進され、鋼材の腐食が更に進行する。   When the steel material is partially corroded, a corroded portion and a non-corroded portion are formed in the steel material, and a potential difference is generated between the portions. When such a potential difference occurs, a corrosion current flows in the steel material from the corroded portion toward the non-corroded portion. And since such a corrosion current flows in steel materials, the elution of the metal ion from the corroded part is accelerated | stimulated, and corrosion of steel materials further advances.

上記のようにして生じる鋼材の腐食を防止する方法としては、構造物内の鋼材に対して電流(防食電流)を供給して鋼材に生じる電位差を解消し、鋼材に腐食電流が発生するのを防止する電気防食工法が提案されている。鋼材に対して防食電流を供給する方法としては、チタンなどの素材を用いて形成された陽極材を構造物に設置し、陽極材と鋼材との間に防食電流を継続的に流す方法が知られている。   As a method of preventing the corrosion of the steel material generated as described above, a current (anticorrosion current) is supplied to the steel material in the structure to eliminate the potential difference generated in the steel material, and the corrosion current is generated in the steel material. A cathodic protection method has been proposed. As a method of supplying an anticorrosion current to steel materials, an anode material formed using a material such as titanium is installed in a structure, and a method in which an anticorrosion current is continuously passed between the anode material and the steel material is known. It has been.

構造物に陽極材を設置する方法としては、例えば、構造物の表面の所定領域に面状に陽極材(チタンメッシュ等)を設置する方法や、構造物に陽極材を収容する収容孔を穿孔し、該収容孔に陽極材を挿入した後、収容孔をモルタル等で埋め込むことで、構造物内に陽極材を設置(埋設)する方法が提案されている(特許文献1参照)。特に、構造物の表面側に埋設された鋼材と、該鋼材よりも構造物の内側に埋設された鋼材とが存在している場合には、各鋼材に達するように収容孔を形成し、該収容孔内に陽極材を収容することで、各鋼材の近傍に陽極材を設置し、各鋼材に対して防食電流を供給する方法が採用されている。   As a method of installing the anode material in the structure, for example, a method of installing an anode material (titanium mesh or the like) in a planar shape in a predetermined region of the surface of the structure or a hole for accommodating the anode material in the structure is perforated. And after inserting an anode material in this accommodation hole, the method of installing an anode material in a structure by embedding an accommodation hole with mortar etc. is proposed (refer patent document 1). In particular, when there is a steel material embedded on the surface side of the structure and a steel material embedded inside the structure than the steel material, an accommodation hole is formed so as to reach each steel material, A method of supplying an anticorrosion current to each steel material by installing the anode material in the vicinity of each steel material by accommodating the anode material in the accommodation hole is adopted.

特開2009−179876号公報JP 2009-179876 A

しかしながら、構造物が設置されている環境によっては、構造物の表面側の領域と、該領域よりも内側の領域とで、各領域における防食電流の流れ易さが異なる場合がある。例えば、構造物の表面側の領域は、外部から塩の浸透があるため、構造物の内側の領域よりも塩濃度が高くなって防食電流が流れ易くなる。斯かる場合、防食電流の流れ難い領域(具体的には、内側の領域)に埋設された鋼材へ供給されるべき防食電流が、防食電流の流れ易い領域(具体的には、表面側の領域)に埋設された鋼材側へ流れてしまい、防食電流の流れ難い領域(具体的には、内側の領域)に埋設された鋼材に対して防食電流を効果的に供給することが困難となる。   However, depending on the environment in which the structure is installed, the easiness of the flow of the anticorrosion current in each region may differ between the region on the surface side of the structure and the region inside the region. For example, in the region on the surface side of the structure, since salt penetrates from the outside, the salt concentration becomes higher than the region inside the structure, and the anticorrosion current easily flows. In such a case, the anticorrosion current to be supplied to the steel material embedded in the region where the anticorrosion current hardly flows (specifically, the inner region) is an area where the anticorrosion current easily flows (specifically, the region on the surface side). ) Embedded in the steel material side, and it becomes difficult to effectively supply the anticorrosion current to the steel material embedded in the region where the anticorrosion current hardly flows (specifically, the inner region).

そこで、本発明は、構造物の表面側に埋設された金属材料と、該金属材料よりも構造物の内側に埋設された金属材料とのそれぞれに対して効果的に防食電流を供給することができる電気防食工法および陽極部材を提供することを課題とする。   Therefore, the present invention can effectively supply the anticorrosion current to each of the metal material embedded on the surface side of the structure and the metal material embedded inside the structure than the metal material. It is an object of the present invention to provide a cathodic protection method and an anode member.

本発明に係る電気防食工法は、構造物に埋設された複数の金属材料のうち、構造物の表面側の領域に埋設された表面側金属材料と表面側金属材料よりも構造物の内側の領域に埋設された内側金属材料とのそれぞれに対して電気防食を行う電気防食工法であって、前記構造物における表面側金属材料が埋設される領域に埋設されて表面側金属材料に対して防食電流を供給する表面側陽極部と、構造物における内側金属材料が埋設される領域に表面側陽極部から電気的に分離された状態で埋設されて内側金属材料に対して防食電流を供給する内側陽極部とを備え、表面側金属材料と表面側陽極部とは、表面側陽極部側へ電流を供給する表面側電流供給手段を介して電気的に連結され、内側金属材料と内側陽極部とは、内側陽極部側へ電流を供給する内側電流供給手段を介して電気的に連結されることを特徴とする。   The cathodic protection method according to the present invention includes a surface-side metal material embedded in a region on the surface side of a structure and a region inside the structure relative to the surface-side metal material among a plurality of metal materials embedded in the structure. An anti-corrosion method for performing anti-corrosion with respect to each of the inner metal material embedded in the surface, wherein the surface-side metal material is embedded in a region where the surface-side metal material in the structure is embedded, and the anti-corrosion current is applied to the surface-side metal material. A surface-side anode portion for supplying the inner metal material, and an inner anode for supplying a corrosion-proof current to the inner metal material embedded in a state where the inner metal material is buried in the structure in a state of being electrically separated from the surface-side anode portion The surface side metal material and the surface side anode part are electrically connected via a surface side current supply means for supplying current to the surface side anode part side, and the inner metal material and the inner anode part are Supply current to the inner anode side Characterized in that it is electrically connected via the inner current supply means.

斯かる構成によれば、表面側陽極部と表面側金属材料とは、表面側電流供給手段を介して電気的に連結され、内側陽極材部と内側金属材料とは、内側電流供給手段を介して電気的に連結されることで、表面側金属材料へ防食電流を供給可能な回路と、内側金属材料へ防食電流を供給可能な回路とが別個に形成される。これにより、表面側金属材料に対しては、表面側電流供給手段を調節することで、表面側陽極部から最適な防食電流を供給することができると共に、内側金属材料に対しては、内側電流供給手段を調節することによって内側陽極部から最適な防食電流を供給することができる。   According to such a configuration, the surface-side anode portion and the surface-side metal material are electrically connected via the surface-side current supply means, and the inner anode material portion and the inner metal material are connected via the inner current supply means. By being electrically connected to each other, a circuit capable of supplying the anticorrosion current to the surface side metal material and a circuit capable of supplying the anticorrosion current to the inner metal material are separately formed. As a result, by adjusting the surface side current supply means for the surface side metal material, it is possible to supply the optimum anticorrosion current from the surface side anode part, and for the inner side metal material, the inner side current By adjusting the supply means, an optimum anticorrosion current can be supplied from the inner anode part.

このため、構造物内における表面側金属材料の周囲の環境(構造物の表面側の領域の環境)と、構造物内における内側金属材料の周囲の環境(構造物の内側の領域の環境)とが防食電流の流れ易さの点で異なる環境であっても、各電流供給手段を調節することで、各環境に適した防食電流を供給することができる。これにより、表面側金属材料と内側金属材料とのそれぞれに対して効果的に防食電流を供給することができる。   For this reason, the environment around the surface-side metal material in the structure (environment in the region on the surface side of the structure), and the environment around the inner metal material in the structure (environment in the region inside the structure) However, even in an environment where the anticorrosion current flows easily, an anticorrosion current suitable for each environment can be supplied by adjusting each current supply means. Thereby, anticorrosion current can be effectively supplied to each of the surface side metal material and the inner side metal material.

前記構造物の表面から表面側金属材料および内側金属材料が埋設される各領域に亘って連続的に形成される一つの孔内に、前記表面側陽極部および内側陽極部が収容された後、該孔が埋め込まれることで、前記表面側陽極部および内側陽極部が構造物に埋設されることが好ましい。   After the surface side anode part and the inner side anode part are accommodated in one hole continuously formed from the surface of the structure to each region where the surface side metal material and the inner side metal material are embedded, It is preferable that the surface side anode part and the inner anode part are embedded in the structure by embedding the holes.

斯かる構成によれば、構造物に形成される一つの孔内に表面側陽極部および内側陽極部を収容することで、表面側陽極部および内側陽極部を構造物に埋設することが可能である。このため、複数の孔を形成して表面側陽極部および内側陽極部のそれぞれを収容する場合よりも表面側陽極部および内側陽極部の埋設を効率的に行うことができる。これにより、既存の構造物に表面側陽極部および内側陽極部を埋設する作業を迅速に行うことができる。   According to such a configuration, the surface side anode part and the inner anode part can be embedded in the structure by accommodating the surface side anode part and the inner anode part in one hole formed in the structure. is there. For this reason, the embedding of the surface side anode part and the inner side anode part can be performed more efficiently than the case where a plurality of holes are formed to accommodate each of the surface side anode part and the inner side anode part. Thereby, the operation | work which embeds a surface side anode part and an inner side anode part in the existing structure can be performed rapidly.

本発明に係る陽極部材は、上記に記載の電気防食工法における表面側陽極部および内側陽極部を備える陽極部材であって、前記表面側陽極部は、表面側電流供給手段を介して表面側金属材料と電気的に連結可能に構成され、前記内側陽極部は、内側電流供給手段を介して内側金属材料と電気的に連結可能に構成されることを特徴とする。   The anode member according to the present invention is an anode member comprising a surface side anode part and an inner side anode part in the above-described cathodic protection method, wherein the surface side anode part is a surface side metal via a surface side current supply means. The inner anode part is configured to be electrically connectable to the inner metal material through the inner current supply means.

斯かる構成によれば、表面側陽極部と表面側金属材料とが表面側電流供給手段を介して電気的に連結可能であり、内側陽極材部と内側金属材料とが内側電流供給手段を介して電気的に連結可能であるため、表面側金属材料へ防食電流を供給可能な回路と、内側金属材料へ防食電流を供給可能な回路とが別個に形成される。これにより、表面側金属材料に対しては、表面側電流供給手段を調節することで、表面側陽極部から最適な防食電流を供給することができると共に、内側金属材料に対しては、内側電流供給手段を調節することによって内側陽極部から最適な防食電流を供給することができる。   According to such a configuration, the surface-side anode portion and the surface-side metal material can be electrically connected via the surface-side current supply means, and the inner anode material portion and the inner metal material can be connected via the inner current supply means. Therefore, the circuit capable of supplying the anticorrosion current to the surface side metal material and the circuit capable of supplying the anticorrosion current to the inner metal material are separately formed. As a result, by adjusting the surface side current supply means for the surface side metal material, it is possible to supply the optimum anticorrosion current from the surface side anode part, and for the inner side metal material, the inner side current By adjusting the supply means, an optimum anticorrosion current can be supplied from the inner anode part.

このため、構造物内における表面側金属材料の周囲の環境(構造物の表面側の領域の環境)と、構造物内における内側金属材料の周囲の環境(構造物の内側の領域の環境)とが防食電流の流れ易さの点で異なる環境であっても、各電流供給手段を調節することで、各環境に適した防食電流を供給することができる。これにより、表面側金属材料と内側金属材料とのそれぞれに対して効果的に防食電流を供給することができる。   For this reason, the environment around the surface-side metal material in the structure (environment in the region on the surface side of the structure), and the environment around the inner metal material in the structure (environment in the region inside the structure) However, even in an environment where the anticorrosion current flows easily, an anticorrosion current suitable for each environment can be supplied by adjusting each current supply means. Thereby, anticorrosion current can be effectively supplied to each of the surface side metal material and the inner side metal material.

以上のように、本発明によれば、構造物の表面側に埋設された金属材料と、該金属材料よりも構造物の内側に埋設された金属材料とのそれぞれに対して効果的に防食電流を供給することができる。   As described above, according to the present invention, the anticorrosion current can be effectively applied to each of the metal material embedded on the surface side of the structure and the metal material embedded on the inner side of the structure than the metal material. Can be supplied.

本発明の第一実施形態に係る電気防食工法を示した概略図。Schematic which showed the cathodic protection method which concerns on 1st embodiment of this invention. 本発明の第二実施形態に係る電気防食工法を示した概略図。Schematic which showed the cathodic protection method which concerns on 2nd embodiment of this invention.

<第一実施形態>
本発明の第一実施形態について、図1を用いて説明する。
<First embodiment>
A first embodiment of the present invention will be described with reference to FIG.

本実施形態に係る電気防食工法は、図1に示すように、構造物X(具体的には、コンクリート構造物)に埋設された複数の金属材料(具体的には、鋼材)Yのうち、構造物Xの表面側の領域に埋設された表面側金属材料Y1と、表面側金属材料Y1よりも構造物Xの内側の領域に埋設された内側金属材料Y2とのそれぞれに対して電気防食を行うものである。   As shown in FIG. 1, the cathodic protection method according to the present embodiment includes a plurality of metal materials (specifically, steel materials) Y embedded in a structure X (specifically, a concrete structure), Electrocorrosion protection is applied to each of the surface-side metal material Y1 embedded in the region on the surface side of the structure X and the inner metal material Y2 embedded in the region inside the structure X with respect to the surface-side metal material Y1. Is what you do.

構造物X内における表面側金属材料Y1が埋設される領域(以下、表面側領域とも記す)は、内側金属材料Y2が埋設される領域(以下、内側領域とも記す)よりも防食電流が流れ易くなる場合がある。例えば、構造物Xがコンクリート構造物である場合、塩と接触し易い環境(海岸周辺など)に設置されると、表面側領域には、塩が浸透し易いため、内側領域よりも表面側領域の方が塩濃度が高くなる。具体的には、コンクリート構造物における表面側領域の塩濃度としては、特に限定されるものではないが、1.2kg/m3 以上となることが考えられる。一方、コンクリート構造物における内側領域の塩濃度としては、特に限定されるものではないが、1.2kg/m3 未満となることが考えられる。 In the structure X, the region where the surface-side metal material Y1 is embedded (hereinafter also referred to as the surface-side region) flows more easily than the region where the inner metal material Y2 is embedded (hereinafter also referred to as the inner region). There is a case. For example, when the structure X is a concrete structure, if the structure X is installed in an environment (such as a coastal area) that easily comes into contact with the salt, the surface side region is more likely to penetrate into the surface side region. The salt concentration becomes higher. Specifically, the salt concentration of the surface side region in the concrete structure is not particularly limited, but may be 1.2 kg / m 3 or more. On the other hand, the salt concentration in the inner region of the concrete structure is not particularly limited, but is considered to be less than 1.2 kg / m 3 .

また、表面側金属材料Y1は、構造物Xの表面から3cm以上10cm以下の領域に埋設されることが好ましく、7cm以上10cm以下の領域に埋設されることがより好ましい。また、内側金属材料Y2は、構造物Xの表面から13cm以上20cm以下の領域に埋設されることが好ましく、17cm以上25cm以下の領域に埋設されることがより好ましい。   Further, the surface side metal material Y1 is preferably embedded in a region of 3 cm to 10 cm from the surface of the structure X, and more preferably embedded in a region of 7 cm to 10 cm. The inner metal material Y2 is preferably embedded in a region of 13 cm or more and 20 cm or less from the surface of the structure X, and more preferably embedded in a region of 17 cm or more and 25 cm or less.

なお、本実施形態では、構造物X内には、表面側金属材料Y1と内側金属材料Y2とを電気的に連結する(具体的には、複数箇所で連結する)金属材料連結手段Zが埋設される。具体的には、金属材料連結手段Zは、表面側金属材料Y1および内側金属材料Y2と接触した状態で構造物Xに埋設される金属材料(以下、連結金属材料とも記す)で構成される。これにより、表面側金属材料Y1と内側金属材料Y2とが連結金属材料Zによって電気的に連結される。   In the present embodiment, the structure X is embedded with metal material connecting means Z for electrically connecting the surface-side metal material Y1 and the inner metal material Y2 (specifically, connecting at a plurality of locations). Is done. Specifically, the metal material connecting means Z is composed of a metal material (hereinafter also referred to as a connected metal material) embedded in the structure X in contact with the surface-side metal material Y1 and the inner metal material Y2. Thereby, the surface side metal material Y1 and the inner side metal material Y2 are electrically connected by the connection metal material Z.

また、構造物X内には、表面側金属材料Y1に対して防食電流を供給する表面側陽極部1a(具体的には、複数の表面側陽極部1a)と、内側金属材料Y2に対して防食電流を供給する内側陽極部1b(具体的には、複数の内側陽極部1b)とが電気的に分離された状態で埋設される。本実施形態では、表面側陽極部1aおよび内側陽極部1bは、チタンメッシュやチタン板等の陽極材から構成される。   Further, in the structure X, a surface side anode part 1a (specifically, a plurality of surface side anode parts 1a) for supplying a corrosion-proof current to the surface side metal material Y1, and an inner side metal material Y2 are provided. The inner anode part 1b (specifically, a plurality of inner anode parts 1b) that supplies the anticorrosion current is embedded in an electrically separated state. In this embodiment, the surface side anode part 1a and the inner side anode part 1b are comprised from anode materials, such as a titanium mesh and a titanium plate.

そして、表面側陽極部(以下、表面側陽極材とも記す)1aは、表面側金属材料Y1が埋設される表面側領域に埋設され、内側陽極部(以下、内側陽極材とも記す)1bは、内側金属材料Y2が埋設される内側領域に埋設される。換言すれば、表面側陽極材1aと内側陽極材1bとは、構造物Xの深さ方向(具体的には、構造物Xの表面から構造物X内の中心部に向かう方向)の異なる位置に埋設される。具体的には、表面側陽極材1aと内側陽極材1bとは、構造物Xの深さ方向に間隔を空けて(具体的には、表面側陽極材1aと内側陽極材1bとが短絡しない程度の間隔を空けて)配置される。つまり、表面側陽極材1aと内側陽極材1bとは、電気的に分離された状態で配置される。表面側陽極材1aと内側陽極材1bとの間隔としては、例えば、構造物Xの深さ方向に0.1cm以上であることが好ましく、1cm以上であることがより好ましい。   And the surface side anode part (hereinafter also referred to as surface side anode material) 1a is embedded in the surface side region where the surface side metal material Y1 is embedded, and the inner side anode part (hereinafter also referred to as inner side anode material) 1b is The inner metal material Y2 is embedded in the inner region. In other words, the surface-side anode material 1a and the inner anode material 1b have different positions in the depth direction of the structure X (specifically, the direction from the surface of the structure X toward the center in the structure X). Buried in Specifically, the surface-side anode material 1a and the inner anode material 1b are spaced apart in the depth direction of the structure X (specifically, the surface-side anode material 1a and the inner anode material 1b are not short-circuited). Arranged at a certain interval). That is, the surface side anode material 1a and the inner side anode material 1b are arranged in an electrically separated state. As a space | interval of the surface side anode material 1a and the inner side anode material 1b, it is preferable that it is 0.1 cm or more in the depth direction of the structure X, for example, and it is more preferable that it is 1 cm or more.

表面側陽極材1aおよび内側陽極材1bを構造物X内に埋設する方法としては、特に限定されるものではなく、例えば、構造物Xを形成する際に、各金属材料Y1,Y2と共に構造物X内に各陽極材1a,1bが埋設されてもよい。又は、構造物Xの表面から表面側金属材料Y1および内側金属材料Y2が埋設される各領域に亘って連続的に形成される一つの孔(図示せず)内に、表面側陽極部1aおよび内側陽極部1bが収容された後、該孔が埋め込まれることで、表面側陽極部1aおよび内側陽極部1bが構造物Xに埋設されてもよい。このように、構造物Xに形成される一つの孔内に表面側陽極部1aおよび内側陽極部1bを収容することで、表面側陽極部1aおよび内側陽極部1bを構造物Xに埋設することが可能である。このため、複数の孔を形成して表面側陽極部1aおよび内側陽極部1bのそれぞれを収容する場合よりも表面側陽極部1aおよび内側陽極部1bの埋設を効率的に行うことができる。これにより、既存の構造物Xに表面側陽極部1aおよび内側陽極部1bを埋設する作業を迅速に行うことができる。   The method for embedding the surface-side anode material 1a and the inner anode material 1b in the structure X is not particularly limited. For example, when the structure X is formed, the structure is formed together with the metal materials Y1 and Y2. Each anode material 1a, 1b may be embedded in X. Alternatively, in one hole (not shown) continuously formed from the surface of the structure X to each region where the surface-side metal material Y1 and the inner metal material Y2 are embedded, the surface-side anode portion 1a and After the inner anode portion 1b is accommodated, the surface-side anode portion 1a and the inner anode portion 1b may be embedded in the structure X by embedding the holes. Thus, by embedding the surface-side anode portion 1a and the inner anode portion 1b in one hole formed in the structure X, the surface-side anode portion 1a and the inner anode portion 1b are embedded in the structure X. Is possible. For this reason, embedding of the surface side anode part 1a and the inner side anode part 1b can be performed more efficiently than the case where a plurality of holes are formed and each of the surface side anode part 1a and the inner side anode part 1b is accommodated. Thereby, the operation | work which embed | buries the surface side anode part 1a and the inner side anode part 1b in the existing structure X can be performed rapidly.

そして、表面側陽極材1aと表面側金属材料Y1とは、表面側陽極材1a側に電流を供給する表面側電流供給手段2aを介して電気的に連結され、内側陽極材1bと内側金属材料Y2とは、内側陽極材1b側に電流を供給する内側電流供給手段2bを介して電気的に連結される。   And the surface side anode material 1a and the surface side metal material Y1 are electrically connected via the surface side current supply means 2a which supplies an electric current to the surface side anode material 1a side, and the inner side anode material 1b and the inner side metal material Y2 is electrically connected to the inner anode material 1b through an inner current supply means 2b that supplies a current.

表面側陽極材1aと表面側電流供給手段2aとの電気的な連結、および、内側陽極材1bと内側電流供給手段2bとの電気的な連結には、導線Lが用いられる。該導線Lは、表面が絶縁性を有する素材を用いて形成され、内部を電流が流れるように構成される。また、本実施形態では、複数の表面側陽極材1aが一の表面側電流供給手段2aと電気的に連結され、複数の内側陽極材1bが一の内側電流供給手段2bと電気的に連結(具体的には、導線Lを介して連結)される。   A conductive wire L is used for electrical connection between the surface-side anode material 1a and the surface-side current supply means 2a and electrical connection between the inner anode material 1b and the inner current supply means 2b. The conducting wire L is formed using a material whose surface is insulative, and is configured such that a current flows through the inside thereof. Moreover, in this embodiment, the some surface side anode material 1a is electrically connected with the one surface side current supply means 2a, and the some inner side anode material 1b is electrically connected with the one inner side current supply means 2b ( Specifically, they are connected via a conducting wire L).

また、本実施形態では、表面側電流供給手段2aおよび内側電流供給手段2bは、導線Lを介して表面側金属材料Y1(具体的には、導線連結部3a,3b)に電気的に連結される。これにより、内側陽極材1bと内側金属材料Y2とは、表面側金属材料Y1および連結金属材料Zを介して電気的に連結された状態となる。   In the present embodiment, the surface-side current supply means 2a and the inner-side current supply means 2b are electrically connected to the surface-side metal material Y1 (specifically, the conductor connection portions 3a and 3b) via the conductor L. The Thereby, the inner side anode material 1b and the inner side metal material Y2 will be in the state electrically connected via the surface side metal material Y1 and the connection metal material Z.

上記のようにして構成される電気防食工法では、表面側陽極材1aと表面側金属材料Y1と表面側電流供給手段2aとが電気的に連結された一の回路が形成されると共に、内側陽極材1bと内側金属材料Y2と内側電流供給手段2bとが表面側金属材料Y1および連結金属材料Zを介して電気的に連結された他の回路が形成される。つまり、表面側金属材料Y1へ防食電流を供給する回路と、内側金属材料Y2へ防食電流を供給する回路とが別個に形成される。   In the cathodic protection method constructed as described above, one circuit is formed in which the surface-side anode material 1a, the surface-side metal material Y1 and the surface-side current supply means 2a are electrically connected, and the inner anode Another circuit is formed in which the material 1b, the inner metal material Y2, and the inner current supply means 2b are electrically connected through the surface-side metal material Y1 and the connecting metal material Z. That is, a circuit that supplies the anticorrosion current to the surface-side metal material Y1 and a circuit that supplies the anticorrosion current to the inner metal material Y2 are formed separately.

そして、表面側電流供給手段2aから表面側陽極材1a側へ電流を供給することで、表面側陽極材1aから表面側金属材料Y1へ防食電流を供給することが可能となる。これにより、表面側金属材料Y1に部分的な電位差が生じるのが防止され(又は、部分的に生じた電位差が解消され)、表面側金属材料Y1の腐食の進行が防止される。一方、内側電流供給手段2bから内側陽極材1b側へ電流を供給することで、内側陽極材1bから内側金属材料Y2へ防食電流を供給することが可能となる。これにより、内側金属材料Y2に部分的な電位差が生じるのが防止される(又は、部分的に生じた電位差が解消される)ため、内側金属材料Y2の腐食の進行が防止される。   And by supplying a current from the surface side current supply means 2a to the surface side anode material 1a side, it becomes possible to supply the anticorrosion current from the surface side anode material 1a to the surface side metal material Y1. Thereby, a partial potential difference is prevented from occurring in the surface-side metal material Y1 (or the partially generated potential difference is eliminated), and the progress of corrosion of the surface-side metal material Y1 is prevented. On the other hand, by supplying a current from the inner current supply means 2b to the inner anode material 1b side, it becomes possible to supply an anticorrosion current from the inner anode material 1b to the inner metal material Y2. This prevents a partial potential difference from occurring in the inner metal material Y2 (or eliminates the partially generated potential difference), thereby preventing the corrosion of the inner metal material Y2.

<第二実施形態>
次に、本発明の第二実施形態について、図2を用いて説明する。第二実施形態に係る電気防食工法は、第一実施形態に係る電気防食工法と比較すると、主に、表面側金属材料Y1および内側金属材料Y2へ防食電流を供給する陽極の構成が異なるものである。従って、以下では、第一実施形態と異なる点を中心に説明し、同一の構成に対しては同一の符号を付すこととして説明を省略する。
<Second embodiment>
Next, a second embodiment of the present invention will be described with reference to FIG. The cathodic protection method according to the second embodiment is mainly different from the cathodic protection method according to the first embodiment in the configuration of the anode that supplies the anticorrosion current to the surface side metal material Y1 and the inner side metal material Y2. is there. Therefore, below, it demonstrates centering on a different point from 1st embodiment, and abbreviate | omits description by attaching | subjecting the same code | symbol to the same structure.

本実施形態の電気防食工法では、表面側金属材料Y1および内側金属材料Y2の両方に対して個別に防食電流を供給可能に構成された陽極部材4を備える。該陽極部材4は、表面側金属材料Y1に対して防食電流を供給する表面側陽極部4aと、内側金属材料Y2に対して防食電流を供給する内側陽極部4bとを備える。具体的には、陽極部材4は、構造物Xに埋設される埋設部4cと、構造物Xに埋設されない非埋設部4dとを備える。そして、埋設部4cには、チタンメッシュやチタン板等の陽極材から構成される表面側陽極部4aおよび内側陽極部4bが形成され、表面側陽極部4aおよび内側陽極部4bと非埋設部4dとの間に絶縁性の素材で形成された絶縁部4eが形成される。本実施形態では、陽極材の一部が絶縁性の素材で被覆されることで、絶縁部4eが形成され、陽極材における絶縁性の素材で被覆されていない部位によって表面側陽極部4aおよび内側陽極部4bが形成される。   The cathodic protection method of the present embodiment includes an anode member 4 configured to be able to individually supply a corrosion protection current to both the surface-side metal material Y1 and the inner metal material Y2. The anode member 4 includes a surface-side anode portion 4a that supplies a corrosion-proof current to the surface-side metal material Y1, and an inner anode portion 4b that supplies a corrosion-proof current to the inner metal material Y2. Specifically, the anode member 4 includes an embedded portion 4 c embedded in the structure X and a non-embedded portion 4 d that is not embedded in the structure X. The embedded portion 4c is formed with a surface side anode portion 4a and an inner anode portion 4b made of an anode material such as a titanium mesh or a titanium plate, and the surface side anode portion 4a, the inner anode portion 4b and the non-embedded portion 4d. An insulating portion 4e made of an insulating material is formed between the two. In this embodiment, a part of the anode material is covered with an insulating material, so that an insulating portion 4e is formed, and the surface side anode portion 4a and the inner side are formed by a portion of the anode material that is not covered with the insulating material. Anode portion 4b is formed.

また、表面側陽極部4a(又は、内側陽極部4b)は、内側陽極部4b(又は、表面側陽極部4a)から離間した位置に形成される。本実施形態では、表面側陽極部4aと内側陽極部4bとが一方向(構造物Xの深さ方向)に沿って離間した位置に形成される。これにより、表面側陽極部4aと内側陽極部4bとの間には、絶縁部4eが位置することになる。つまり、表面側陽極部4aと内側陽極部4bとが電気的に分離した状態になる。   Moreover, the surface side anode part 4a (or inner side anode part 4b) is formed in the position spaced apart from the inner side anode part 4b (or surface side anode part 4a). In the present embodiment, the front surface side anode portion 4a and the inner side anode portion 4b are formed at positions separated along one direction (the depth direction of the structure X). Thereby, the insulating part 4e is located between the surface side anode part 4a and the inner side anode part 4b. That is, the surface-side anode portion 4a and the inner anode portion 4b are electrically separated.

そして、上記のような陽極部材4の埋設部4c(本実施形態では、複数の陽極部材4の各埋設部4c)が構造物Xに埋設されることで、構造物X内に表面側陽極部4aおよび内側陽極部4bが埋設される。具体的には、表面側陽極部4aは、表面側金属材料Y1が埋設される表面側領域に埋設され、内側陽極部4bは、内側金属材料Y2が埋設される内側領域に埋設される。換言すれば、表面側陽極部4aと内側陽極部4bとは、構造物Xの深さ方向の異なる位置に埋設される。この際、表面側陽極部4aと内側陽極部4bとは、構造物Xの深さ方向に間隔を空けて(具体的には、表面側陽極部4aと内側陽極部4bとが短絡しない程度の間隔を空けて)配置される。例えば、表面側陽極部4aと内側陽極部4bとは、構造物Xの深さ方向に0.1cm以上の間隔を空けて配置されることが好ましく、1cm以上の間隔を空けて配置されることがより好ましい。   And the embedding part 4c (in this embodiment, each embedding part 4c of the some anode member 4) of the above anode members 4 is embed | buried in the structure X, The surface side anode part in the structure X 4a and the inner anode part 4b are embedded. Specifically, the surface-side anode portion 4a is embedded in a surface-side region where the surface-side metal material Y1 is embedded, and the inner anode portion 4b is embedded in an inner region where the inner-side metal material Y2 is embedded. In other words, the surface-side anode portion 4a and the inner anode portion 4b are embedded at different positions in the depth direction of the structure X. At this time, the surface-side anode portion 4a and the inner anode portion 4b are spaced apart in the depth direction of the structure X (specifically, the surface-side anode portion 4a and the inner anode portion 4b are not short-circuited). Placed at intervals). For example, the surface side anode part 4a and the inner side anode part 4b are preferably arranged with an interval of 0.1 cm or more in the depth direction of the structure X, and are arranged with an interval of 1 cm or more. Is more preferable.

埋設部4c(具体的には、表面側陽極部4aおよび内側陽極部4b)を構造物X内に埋設する方法としては、特に限定されるものではなく、例えば、構造物Xを形成する際に、各金属材料Y1,Y2と共に構造物X内に埋設部4cが埋設されてもよい。又は、構造物Xの表面から表面側金属材料Y1および内側金属材料Y2が埋設される各領域に亘って連続的に形成される一つの孔内に、埋設部4c(具体的には、表面側陽極部1aおよび内側陽極部1b)が収容された後、該孔が埋め込まれることで、埋設部4c(具体的には、表面側陽極部1aおよび内側陽極部1b)が構造物Xに埋設されてもよい。   A method of embedding the embedded portion 4c (specifically, the surface side anode portion 4a and the inner side anode portion 4b) in the structure X is not particularly limited. For example, when forming the structure X The embedded portion 4c may be embedded in the structure X together with the metal materials Y1 and Y2. Alternatively, in one hole formed continuously from the surface of the structure X to each region where the surface-side metal material Y1 and the inner metal material Y2 are embedded, the embedded portion 4c (specifically, the surface side After the anode portion 1a and the inner anode portion 1b) are accommodated, the buried portion 4c (specifically, the surface-side anode portion 1a and the inner anode portion 1b) is buried in the structure X by embedding the holes. May be.

そして、表面側陽極部4aは、表面側金属材料Y1と電気的に連結可能に構成され、内側陽極部4bは、内側金属材料Y2と電気的に連結可能に構成される。具体的には、表面側陽極部4aを構成する陽極材と表面側金属材料Y1とは、表面側陽極部4a側に電流を供給する表面側電流供給手段2aを介して電気的に連結可能に構成され、内側陽極部4bを構成する陽極材と内側金属材料Y2とは、内側陽極部4b側に電流を供給する内側電流供給手段2bを介して電気的に連結可能に構成される。   And the surface side anode part 4a is comprised so that electrical connection with the surface side metal material Y1 is possible, and the inner side anode part 4b is comprised so that electrical connection with the inner side metal material Y2 is possible. Specifically, the anode material constituting the surface-side anode portion 4a and the surface-side metal material Y1 can be electrically connected via the surface-side current supply means 2a that supplies current to the surface-side anode portion 4a side. The anode material constituting the inner anode part 4b and the inner metal material Y2 are configured to be electrically connectable via inner current supply means 2b for supplying current to the inner anode part 4b side.

表面側陽極部4aを構成する陽極材と表面側電流供給手段2aとの電気的な連結、および、内側陽極部4bを構成する陽極材と内側電流供給手段2bとの電気的な連結には、導線Lが用いられる。また、本実施形態では、複数の表面側陽極部4aを構成する陽極材が一の表面側電流供給手段2aと電気的に連結され、複数の内側陽極部4bを構成する陽極材が一の内側電流供給手段2bと電気的に連結される。   For the electrical connection between the anode material constituting the surface-side anode part 4a and the surface-side current supply means 2a, and the electrical connection between the anode material constituting the inner anode part 4b and the inside current supply means 2b, A conducting wire L is used. In the present embodiment, the anode material constituting the plurality of surface-side anode portions 4a is electrically connected to the one surface-side current supply means 2a, and the anode material constituting the plurality of inner-side anode portions 4b is located on the inner side. It is electrically connected to the current supply means 2b.

また、本実施形態では、表面側電流供給手段2aおよび内側電流供給手段2bは、導線Lを介して表面側金属材料Y1(具体的には、導線連結部3a,3b)に電気的に連結される。これにより、内側金属材料Y2と内側陽極部4bを構成する陽極材とは、表面側金属材料Y1および連結金属材料Zを介して電気的に連結された状態となる。   In the present embodiment, the surface-side current supply means 2a and the inner-side current supply means 2b are electrically connected to the surface-side metal material Y1 (specifically, the conductor connection portions 3a and 3b) via the conductor L. The Thus, the inner metal material Y2 and the anode material constituting the inner anode portion 4b are electrically connected via the surface-side metal material Y1 and the connection metal material Z.

上記のようにして構成される電気防食工法では、表面側陽極部4aと表面側金属材料Y1と表面側電流供給手段2aとが電気的に連結された一の回路が形成されると共に、内側陽極部4bと内側金属材料Y2と内側電流供給手段2bとが表面側金属材料Y1および連結金属材料Zを介して電気的に連結された他の回路が形成される。つまり、表面側金属材料Y1へ防食電流を供給する回路と、内側金属材料Y2へ防食電流を供給する回路とが別個に形成される。   In the cathodic protection method configured as described above, one circuit is formed in which the surface-side anode portion 4a, the surface-side metal material Y1 and the surface-side current supply means 2a are electrically connected, and the inner anode Another circuit is formed in which the portion 4b, the inner metal material Y2, and the inner current supply means 2b are electrically connected via the surface-side metal material Y1 and the connecting metal material Z. That is, a circuit that supplies the anticorrosion current to the surface-side metal material Y1 and a circuit that supplies the anticorrosion current to the inner metal material Y2 are formed separately.

そして、表面側電流供給手段2aから表面側陽極部4a側へ電流を供給することで、表面側陽極部4aから表面側金属材料Y1へ防食電流を供給することが可能となる。これにより、表面側金属材料Y1に部分的な電位差が生じるのが防止され(又は、部分的に生じた電位差が解消され)、表面側金属材料Y1の腐食の進行が防止される。一方、内側電流供給手段2bから内側陽極部4b側へ電流を供給することで、内側陽極部4bから内側金属材料Y2へ防食電流を供給することが可能となる。これにより、内側金属材料Y2に部分的な電位差が生じるのが防止される(又は、部分的に生じた電位差が解消される)ため、内側金属材料Y2の腐食の進行が防止される。   And it becomes possible by supplying a current from the surface side current supply means 2a to the surface side anode part 4a side to supply an anticorrosion current from the surface side anode part 4a to the surface side metal material Y1. Thereby, a partial potential difference is prevented from occurring in the surface-side metal material Y1 (or the partially generated potential difference is eliminated), and the progress of corrosion of the surface-side metal material Y1 is prevented. On the other hand, by supplying a current from the inner current supply means 2b to the inner anode part 4b side, it becomes possible to supply an anticorrosion current from the inner anode part 4b to the inner metal material Y2. This prevents a partial potential difference from occurring in the inner metal material Y2 (or eliminates the partially generated potential difference), thereby preventing the corrosion of the inner metal material Y2.

以上のように、本発明に係る電気防食工法では、構造物の表面側に埋設された金属材料と、該金属材料よりも構造物の内側に埋設された金属材料とのそれぞれに対して効果的に防食電流を供給することができる。   As described above, the cathodic protection method according to the present invention is more effective for each of the metal material embedded on the surface side of the structure and the metal material embedded inside the structure than the metal material. Can be supplied with a corrosion-proof current.

即ち、表面側金属材料Y1と表面側陽極材1a(表面側陽極部4a)とは、表面側電流供給手段2aを介して電気的に連結され、内側金属材料Y2と内側陽極材1b(内側陽極部4b)とは、内側電流供給手段2bを介して電気的に連結されることで、表面側金属材料Y1へ防食電流を供給可能な回路と、内側金属材料Y2へ防食電流を供給可能な回路とが別個に形成される。これにより、表面側金属材料Y1に対しては、表面側電流供給手段2aを調節することで、表面側陽極材1a(表面側陽極部4a)から最適な防食電流を供給することができると共に、内側金属材料Y2に対しては、内側電流供給手段2bを調節することによって内側陽極材1b(内側陽極部4b)から最適な防食電流を供給することができる。   That is, the surface-side metal material Y1 and the surface-side anode material 1a (surface-side anode portion 4a) are electrically connected via the surface-side current supply means 2a, and the inner metal material Y2 and the inner anode material 1b (the inner anode material 1a). The part 4b) is a circuit that can be electrically connected via the inner current supply means 2b to supply the anticorrosion current to the surface side metal material Y1, and a circuit that can supply the anticorrosion current to the inner metal material Y2. And are formed separately. Thereby, for the surface side metal material Y1, by adjusting the surface side current supply means 2a, it is possible to supply the optimum anticorrosion current from the surface side anode material 1a (surface side anode part 4a), and The inner metal material Y2 can be supplied with an optimum anticorrosion current from the inner anode material 1b (inner anode portion 4b) by adjusting the inner current supply means 2b.

このため、構造物X内における表面側金属材料Y1の周囲の環境(構造物Xの表面側の領域の環境)と、構造物X内における内側金属材料Y2の周囲の環境(構造物Xの内側の領域の環境)とが防食電流の流れ易さの点で異なる環境であっても、各電流供給手段2a,2bを調節することで、各環境に適した防食電流を供給することができる。これにより、表面側金属材料Y1と内側金属材料Y2とのそれぞれに対して効果的に防食電流を供給することができる。   For this reason, the environment around the surface-side metal material Y1 in the structure X (environment in the region on the surface side of the structure X) and the environment around the inner metal material Y2 in the structure X (inside the structure X) Even in an environment where the anticorrosive current flows in an environment that is different from that of the region (2), the anticorrosive current suitable for each environment can be supplied by adjusting the current supply means 2a and 2b. Thereby, anticorrosion current can be effectively supplied to each of the surface-side metal material Y1 and the inner metal material Y2.

また、表面側金属材料Y1と内側金属材料Y2とが金属材料連結手段Zで電気的に連結されるため、内側電流供給手段2bが表面側金属材料Y1に導線Lを介して電気的に連結されても、表面側金属材料Y1および金属材料連結手段を介して、内側金属材料Y2と内側電流供給手段2bとが電気的に連結されることになる。これにより、構造物Xに対する内側電流供給手段2bの取り付けを容易に行うことができる。   Further, since the surface-side metal material Y1 and the inner metal material Y2 are electrically connected by the metal material connecting means Z, the inner current supply means 2b is electrically connected to the surface-side metal material Y1 via the conductor L. However, the inner metal material Y2 and the inner current supply means 2b are electrically connected through the surface side metal material Y1 and the metal material connecting means. Thereby, attachment of the inner side current supply means 2b with respect to the structure X can be performed easily.

具体的には、内側金属材料Y2は、構造物Xの表面側の領域よりも内側に埋設されているため、構造物Xの外側から内側電流供給手段2bを連結し難くなっている。しかしながら、上述のように、内側電流供給手段2bを表面側金属材料Y1に連結しても、内側電流供給手段2bと内側金属材料Y2とが電気的に連結されるため、構造物Xに対する内側電流供給手段2bの取り付けを容易に行うことができる。   Specifically, since the inner metal material Y2 is embedded inside the region on the surface side of the structure X, it is difficult to connect the inner current supply means 2b from the outside of the structure X. However, as described above, even if the inner current supply means 2b is connected to the surface-side metal material Y1, the inner current supply means 2b and the inner metal material Y2 are electrically connected. The supply means 2b can be easily attached.

なお、本発明に係る電気防食工法は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。また、上記した複数の実施形態の構成や方法等を任意に採用して組み合わせてもよく(1つの実施形態に係る構成や方法等を他の実施形態に係る構成や方法等に適用してもよく)、さらに、下記する各種の変更例に係る構成や方法等を任意に選択して、上記した実施形態に係る構成や方法等に採用してもよいことは勿論である。   In addition, the cathodic protection method according to the present invention is not limited to the above embodiment, and various modifications can be made without departing from the gist of the present invention. Further, the configurations and methods of the plurality of embodiments described above may be arbitrarily adopted and combined (even if the configurations and methods according to one embodiment are applied to the configurations and methods according to other embodiments). Of course, it is of course possible to arbitrarily select configurations, methods, and the like according to various modifications described below and employ them in the configurations, methods, and the like according to the above-described embodiments.

例えば、上記実施形態では、表面側電流供給手段2aおよび内側電流供給手段2bが表面側金属材料Y1に電気的に連結されているが、これに限定されるものではなく、例えば、内側電流供給手段2bが内側金属材料Y2に電気的に連結されてもよい。斯かる場合には、表面側金属材料Y1と内側金属材料Y2とが連結金属材料Zによって連結されることなく表面側金属材料Y1へ防食電流を供給する回路と、内側金属材料Y2へ防食電流を供給する回路とが別個に形成される。   For example, in the above embodiment, the surface-side current supply unit 2a and the inner-side current supply unit 2b are electrically connected to the surface-side metal material Y1, but the present invention is not limited to this. For example, the inner-side current supply unit 2b may be electrically connected to the inner metal material Y2. In such a case, the surface side metal material Y1 and the inner metal material Y2 are not connected by the connection metal material Z, and the circuit supplies a corrosion current to the surface side metal material Y1, and the inner metal material Y2 is supplied with the anticorrosion current. The circuit to be supplied is formed separately.

また、表面側陽極部1a,4aおよび内側陽極部1b,4bを構造物Xに埋設する際には、構造物Xを穿孔して収容孔を形成し、一の収容孔に表面側陽極部1a,4aおよび内側陽極部1b,4bを収容して収容孔を埋め込んでもよい。又は、収容孔を複数形成し、一の収容孔に表面側陽極部1a,4aのみを収容し、他の収容孔に内側陽極部1b,4bのみを収容するように構成してもよい。   Further, when embedding the surface-side anode portions 1a, 4a and the inner anode portions 1b, 4b in the structure X, the structure X is perforated to form accommodation holes, and the surface-side anode portion 1a is formed in one accommodation hole. , 4a and inner anode portions 1b, 4b may be accommodated to embed the accommodation holes. Alternatively, a plurality of housing holes may be formed so that only the surface-side anode portions 1a and 4a are housed in one housing hole and only the inner anode portions 1b and 4b are housed in the other housing holes.

1a…表面側陽極材、1b…内側陽極材、2a…表面側電流供給手段、2b…内側電流供給手段、4…陽極部材、4a…表面側陽極部、4b…内側陽極部、4c…埋設部、4d…非埋設部、4e…絶縁部、L…導線、X…構造物、Y1…表面側金属材料、Y2…内側金属材料、Z…金属材料連結手段   DESCRIPTION OF SYMBOLS 1a ... Surface side anode material, 1b ... Inner anode material, 2a ... Surface side current supply means, 2b ... Inner current supply means, 4 ... Anode member, 4a ... Surface side anode part, 4b ... Inner anode part, 4c ... Embedded part 4d: Non-buried portion, 4e: Insulating portion, L: Conductor, X: Structure, Y1: Surface side metal material, Y2: Inner metal material, Z ... Metal material connecting means

Claims (3)

構造物に埋設された複数の金属材料のうち、構造物の表面側の領域に埋設された表面側金属材料と表面側金属材料よりも構造物の内側の領域に埋設された内側金属材料とのそれぞれに対して電気防食を行う電気防食工法であって、
前記構造物における表面側金属材料が埋設される領域に埋設されて表面側金属材料に対して防食電流を供給する表面側陽極部と、構造物における内側金属材料が埋設される領域に表面側陽極部から電気的に分離された状態で埋設されて内側金属材料に対して防食電流を供給する内側陽極部とを備え、
表面側金属材料と表面側陽極部とは、表面側陽極部側へ電流を供給する表面側電流供給手段を介して電気的に連結され、内側金属材料と内側陽極部とは、内側陽極部側へ電流を供給する内側電流供給手段を介して電気的に連結されることを特徴とする電気防食工法。
Of the plurality of metal materials embedded in the structure, the surface-side metal material embedded in the region on the surface side of the structure and the inner metal material embedded in the region inside the structure with respect to the surface-side metal material An anti-corrosion method for performing anti-corrosion on each of them,
A surface-side anode portion that is embedded in a region where the surface-side metal material in the structure is embedded and supplies a corrosion-proof current to the surface-side metal material, and a surface-side anode in a region where the inner metal material is embedded in the structure An inner anode portion that is embedded in a state electrically separated from the portion and supplies an anticorrosion current to the inner metal material,
The surface-side metal material and the surface-side anode part are electrically connected via surface-side current supply means for supplying current to the surface-side anode part side, and the inner metal material and the inner anode part are on the inner anode part side. An electrical corrosion protection method characterized by being electrically connected through an inner current supply means for supplying current to
前記構造物の表面から表面側金属材料および内側金属材料が埋設される各領域に亘って連続的に形成される一つの孔内に、前記表面側陽極部および内側陽極部が収容された後、該孔が埋め込まれることで、前記表面側陽極部および内側陽極部が構造物に埋設されることを特徴とする請求項1に記載の電気防食工法。   After the surface side anode part and the inner side anode part are accommodated in one hole continuously formed from the surface of the structure to each region where the surface side metal material and the inner side metal material are embedded, The cathodic protection method according to claim 1, wherein the surface side anode part and the inner side anode part are embedded in the structure by embedding the holes. 請求項1又は2に記載の電気防食工法における表面側陽極部および内側陽極部を備える陽極部材であって、
前記表面側陽極部は、表面側電流供給手段を介して表面側金属材料と電気的に連結可能に構成され、前記内側陽極部は、内側電流供給手段を介して内側金属材料と電気的に連結可能に構成されることを特徴とする陽極部材。
An anode member comprising a surface side anode part and an inner side anode part in the cathodic protection method according to claim 1 or 2,
The surface-side anode portion is configured to be electrically connectable to a surface-side metal material via a surface-side current supply means, and the inner anode portion is electrically connected to an inner metal material via an inner current supply means. An anode member characterized by being configured.
JP2014018572A 2014-02-03 2014-02-03 Cathodic protection method and anode member Active JP6372736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014018572A JP6372736B2 (en) 2014-02-03 2014-02-03 Cathodic protection method and anode member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014018572A JP6372736B2 (en) 2014-02-03 2014-02-03 Cathodic protection method and anode member

Publications (2)

Publication Number Publication Date
JP2015145524A true JP2015145524A (en) 2015-08-13
JP6372736B2 JP6372736B2 (en) 2018-08-15

Family

ID=53889898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014018572A Active JP6372736B2 (en) 2014-02-03 2014-02-03 Cathodic protection method and anode member

Country Status (1)

Country Link
JP (1) JP6372736B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020147771A (en) * 2019-03-11 2020-09-17 株式会社ナカボーテック Electrical connection structure and electrical connection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57150472U (en) * 1981-03-17 1982-09-21
JPH0726389A (en) * 1993-11-15 1995-01-27 Nippon Boshoku Kogyo Kk Method for executing electric corrosion protection for underground installation piping passing through reinforced concrete construction
JPH07331467A (en) * 1994-06-10 1995-12-19 Nakabootec:Kk Electrolytic protection method of reinforcing bar in concrete
JPH11248086A (en) * 1998-03-02 1999-09-14 Osaka Gas Co Ltd Anti-corrossion management system for draw-in piping to building and method for anti-corrosion management
JP2001226786A (en) * 2000-02-09 2001-08-21 Nakabohtec Corrosion Protecting Co Ltd Constant-potential automatic-control electric corrosion inhibiting system and device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57150472U (en) * 1981-03-17 1982-09-21
JPH0726389A (en) * 1993-11-15 1995-01-27 Nippon Boshoku Kogyo Kk Method for executing electric corrosion protection for underground installation piping passing through reinforced concrete construction
JPH07331467A (en) * 1994-06-10 1995-12-19 Nakabootec:Kk Electrolytic protection method of reinforcing bar in concrete
JPH11248086A (en) * 1998-03-02 1999-09-14 Osaka Gas Co Ltd Anti-corrossion management system for draw-in piping to building and method for anti-corrosion management
JP2001226786A (en) * 2000-02-09 2001-08-21 Nakabohtec Corrosion Protecting Co Ltd Constant-potential automatic-control electric corrosion inhibiting system and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020147771A (en) * 2019-03-11 2020-09-17 株式会社ナカボーテック Electrical connection structure and electrical connection method
JP7049286B2 (en) 2019-03-11 2022-04-06 株式会社ナカボーテック Electrical connection structure and electrical connection method

Also Published As

Publication number Publication date
JP6372736B2 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
US11519077B2 (en) Galvanic anode and method of corrosion protection
AU2012377744B2 (en) Method for the galvanic protection of a reinforced concrete structure
US8211289B2 (en) Sacrificial anode and treatment of concrete
GB2468982A (en) Corrosion control method and apparatus for reinforcing steel in concrete structures
KR20190050553A (en) Carbon fiber textile reinforcing member with anodic metal line, and repair and reinforcement method of concrete structure using the same
JP6372736B2 (en) Cathodic protection method and anode member
ATE507868T1 (en) METHOD FOR FORMING ELECTRICALLY ACTIVE SURFACES OF MEDICAL ELECTRICAL CABLES
MA34716B1 (en) METHOD FOR PROTECTING ELECTRIC POLES AND GALVANIZED ANCHORS AGAINST GALVANIC CORROSION
JP6640573B2 (en) Galvanic anode unit and anticorrosion structure of concrete structure using it
JP2012067360A (en) Method for fitting electric corrosion-preventive electrode to concrete structure and concrete structure
JP2008057016A (en) Electrolytic protection structure of reinforced concrete structure
JP2006206953A (en) Method for installing anode for electric corrosion protection
JP6734589B2 (en) Electrocorrosion method
JP4968645B2 (en) Terminal mounting structure for corrosion protection of concrete structures
US10181706B2 (en) Methods for removal of components of a subsea oilfield facility
JP6353733B2 (en) Spacer member having anti-corrosion function for steel in concrete and installation method thereof
JP6696381B2 (en) Cathodic protection device for steel surface
FI123989B (en) Electrode and method for electrochemical protection of concrete structures
CA2966265C (en) Preventing corrosion in a greenhouse
JP5644186B2 (en) Electrocorrosion protection electrode and concrete structure construction method
US10718109B2 (en) Preventing corrosion in a greenhouse
KR101692406B1 (en) Method for preventing corrision of ground heat exchange system using cathodic protection method
JP6575908B2 (en) PC steel corrosion inhibition structure of prestressed concrete structure
JP2009179876A (en) Method for cathodically protecting end of existing pc girder
KR101857264B1 (en) Tubular anode for using electric corrosion protection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180517

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180705

R150 Certificate of patent or registration of utility model

Ref document number: 6372736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150