JP2015143711A - vibration characteristic measuring apparatus and vibration characteristic measuring method - Google Patents

vibration characteristic measuring apparatus and vibration characteristic measuring method Download PDF

Info

Publication number
JP2015143711A
JP2015143711A JP2015087770A JP2015087770A JP2015143711A JP 2015143711 A JP2015143711 A JP 2015143711A JP 2015087770 A JP2015087770 A JP 2015087770A JP 2015087770 A JP2015087770 A JP 2015087770A JP 2015143711 A JP2015143711 A JP 2015143711A
Authority
JP
Japan
Prior art keywords
vibration
rotating body
signal
amplitude
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015087770A
Other languages
Japanese (ja)
Other versions
JP6038997B2 (en
Inventor
直彦 ▲高▼橋
直彦 ▲高▼橋
Naohiko Takahashi
三浦 治雄
Haruo Miura
治雄 三浦
一智 柳原
Kazutomo Yanagihara
一智 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2015087770A priority Critical patent/JP6038997B2/en
Publication of JP2015143711A publication Critical patent/JP2015143711A/en
Application granted granted Critical
Publication of JP6038997B2 publication Critical patent/JP6038997B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a vibration characteristic measuring apparatus and a vibration characteristic measuring method capable of vibrating a rotary body without exceeding an allowable value and acquiring high-quality data without increasing energy consumption at a time of measuring vibration characteristics.SOLUTION: A vibration characteristic measuring apparatus 1 comprises: a magnetic bearing 12 supporting a rotary body of a multistage centrifugal compressor; a displacement sensor 13 measuring the amplitude of the rotary body; and an excitation controller 7 outputting an excitation control signal for exciting the rotary body and measuring response characteristics of a vibration of the rotary body to the excitation control signal, the excitation controller 7 including an excitation response analyzer 9, outputting a rotary-body control signal obtained by adding a vibration cancellation signal for cancelling an imbalanced vibration of the rotary body to the excitation control signal at a time of measuring the response characteristics, generating a forced vibration having an amplitude allowable value based on a state of no imbalanced vibration as maximum amplitude, and measuring the response characteristics of the excited rotary body by the excitation response analyzer 9. Furthermore, a vibration characteristic measuring method for the vibration characteristic measuring apparatus 1 is provided.

Description

本発明は、多段遠心圧縮機など、回転機械の回転軸の振動特性を測定する振動特性測定装置と振動特性測定方法に関する。   The present invention relates to a vibration characteristic measuring apparatus and a vibration characteristic measuring method for measuring vibration characteristics of a rotating shaft of a rotary machine such as a multistage centrifugal compressor.

油田、天然ガスプラント、石油化学プラント等に配置されて各種ガスや液体などの被圧縮流体を圧縮する多段遠心圧縮機は、複数段からなる遠心羽根車を回転軸とともに回転させ、遠心力によって被圧縮流体を圧縮する回転機械である。
このような多段遠心圧縮機には、遠心羽根車の各段からの被圧縮流体の漏れを防止するために、回転軸の軸線を中心とする環状のシール部材を含んで構成されるシール機構が備わっている。
多段遠心圧縮機に備わるシール機構では被圧縮流体の漏れ流れによる不安定化力が発生し、この不安定化力が回転軸や遠心羽根車の回転の安定性に影響を与える。つまり、不安定化力が安定化力を上回ると、シールホワールと呼ばれる自励振動が発生する。
Multistage centrifugal compressors that are placed in oil fields, natural gas plants, petrochemical plants, etc. and compress compressed fluids such as various gases and liquids rotate a centrifugal impeller with multiple stages together with a rotating shaft, and are covered by centrifugal force. It is a rotating machine that compresses compressed fluid.
Such a multistage centrifugal compressor has a sealing mechanism including an annular sealing member centering on the axis of the rotating shaft in order to prevent leakage of the fluid to be compressed from each stage of the centrifugal impeller. It is equipped.
In the sealing mechanism provided in the multistage centrifugal compressor, a destabilizing force is generated due to the leakage flow of the fluid to be compressed, and this destabilizing force affects the rotational stability of the rotating shaft and the centrifugal impeller. That is, when the destabilizing force exceeds the stabilizing force, self-excited vibration called seal whirl occurs.

したがって、回転機械は、シール機構に発生する不安定化力に対して充分に大きな安定化力を発生するように設計されることが重要になる。このために、回転軸を含む回転体の振動特性を測定してその特性を把握し、振動特性に基づいて安定性を評価することが必要である。   Therefore, it is important that the rotating machine is designed to generate a sufficiently large stabilizing force against the destabilizing force generated in the seal mechanism. For this purpose, it is necessary to measure the vibration characteristics of the rotating body including the rotating shaft, grasp the characteristics, and evaluate the stability based on the vibration characteristics.

例えば、特許文献1には、軸受部に振動を与え、その振動によって回転軸に生じる振動を解析することによって、運転中の回転機械の振動特性を実測する技術が開示されている。また、非特許文献1には、圧縮機の回転軸の軸端に能動型のラジアル磁気軸受を取り付け、この磁気軸受に励磁電流を供給して回転軸を加振し、回転軸の振動特性を実測する技術が開示されている。   For example, Patent Document 1 discloses a technique for actually measuring the vibration characteristics of a rotating machine during operation by applying vibration to a bearing portion and analyzing vibration generated on a rotating shaft by the vibration. Further, in Non-Patent Document 1, an active radial magnetic bearing is attached to the end of the rotary shaft of the compressor, an excitation current is supplied to the magnetic bearing to vibrate the rotary shaft, and the vibration characteristics of the rotary shaft are determined. A technique for actual measurement is disclosed.

特公平5−5057号公報Japanese Patent Publication No. 5-5057

Pettinato、他2名、「Shop Acceptance Testing of Compressor Rotordynamic St ability and Theoretical Correlation」、第 39回ターボマシナリシンポジウム、テキサス、2011年、31頁〜42頁Pettinato and two others, “Shop Acceptance Testing of Compressor Rotational Stability and Theoretical Correlation”, 39th Turbomachinery Symposium, Texas, pp. 31-42

特許文献1や非特許文献1に記載される技術は、回転している回転軸を加振し、回転軸の振動(振幅と位相)を測定することによって、回転軸の振動特性を測定する技術である。
このように回転軸など回転体の振動特性を測定する場合、ばらつきの少ない高品質なデータを取得するためには、加振振幅が大きいことが好ましい。加振によって振動する回転体の振幅を大きくすることによって、振動を測定するセンサが出力する信号のSN比を向上でき、振幅を示すデータとして高品質なデータを取得できる。
The techniques described in Patent Document 1 and Non-Patent Document 1 are techniques for measuring vibration characteristics of a rotating shaft by exciting a rotating rotating shaft and measuring vibration (amplitude and phase) of the rotating shaft. It is.
Thus, when measuring the vibration characteristics of a rotating body such as a rotating shaft, it is preferable that the excitation amplitude is large in order to obtain high quality data with little variation. By increasing the amplitude of the rotating body that vibrates by excitation, the signal-to-noise ratio of the signal output by the sensor that measures vibration can be improved, and high-quality data can be acquired as data indicating the amplitude.

一方、回転している回転体の振幅が加振によって増大したときに、設計値として決定される許容値を超えた振幅になると、例えば回転体とシール機構が接触してシール機構に備わるシール部材が磨耗するなどの問題が発生する。したがって、回転体に発生する振幅が許容値を超えない範囲で加振する必要がある。
しかしながら、回転機械の回転体は質量の偏りなどによって、通常の回転時にも許容値を超えない振幅の範囲で振動している。したがって、回転中の回転体への加振によって発生させることのできる振動の振幅は、通常の回転時における振動の振幅と許容値のマージンの範囲内に制限される。換言すると、加振によって回転軸に発生できる振動が小さく抑えられることになり、振動を測定するセンサが出力する信号のSN比が悪くなる。そして、この信号に基づいて取得されるデータ(回転軸の振動特性を示すデータ)の品質が低下するという問題がある。
On the other hand, when the amplitude of the rotating rotating body increases due to vibration, if the amplitude exceeds an allowable value determined as a design value, for example, the sealing member provided in the sealing mechanism comes into contact with the rotating body and the sealing mechanism. Problems such as wear. Therefore, it is necessary to vibrate in a range where the amplitude generated in the rotating body does not exceed the allowable value.
However, the rotating body of the rotating machine vibrates in an amplitude range that does not exceed the allowable value even during normal rotation due to mass deviation or the like. Therefore, the amplitude of vibration that can be generated by exciting the rotating body during rotation is limited to a range between the amplitude of vibration during normal rotation and a margin of allowable values. In other words, the vibration that can be generated in the rotating shaft by vibration is suppressed to a small value, and the SN ratio of the signal output from the sensor that measures the vibration is deteriorated. And there exists a problem that the quality of the data (data which shows the vibration characteristic of a rotating shaft) acquired based on this signal falls.

例えば取得したデータの品質が悪い場合、取得するデータ数を大幅に増やして平均化処理することによって、振動解析することが可能である。
しかしながら、平均化処理をするために大量のデータを取得すると、データの取得に時間がかかり工数が増大するという問題がある。また、大量のデータを取得するために回転軸の運転時間や加振する時間が長くなり、エネルギの消費量が増えるという問題もある。
For example, when the quality of acquired data is poor, vibration analysis can be performed by greatly increasing the number of acquired data and performing an averaging process.
However, when a large amount of data is acquired to perform the averaging process, there is a problem that it takes time to acquire the data and man-hours increase. In addition, there is a problem that the operation time of the rotating shaft and the time for vibration are increased in order to acquire a large amount of data, and the amount of energy consumption increases.

そこで、本発明は、振動特性の測定時に、許容値を超えることなく回転体を振動させ、エネルギの消費量を増やすことなく高品質のデータを取得可能な振動特性測定装置および振動特性測定方法を提供することを課題とする。   Therefore, the present invention provides a vibration characteristic measuring apparatus and a vibration characteristic measuring method that can vibrate a rotating body without exceeding an allowable value and obtain high quality data without increasing energy consumption when measuring vibration characteristics. The issue is to provide.

前記課題を解決するため本発明は、回転機械の回転体を非接触支持する磁気軸受と、前記回転体が振動するときの振幅を測定する測定装置と、前記磁気軸受に電流を供給する電流供給装置と、前記回転体を加振するように前記磁気軸受を制御する加振制御信号を出力するとともに、前記測定装置が測定する前記振幅に基づいて、前記加振制御信号に対する前記回転体の振動の前記加振制御信号に対する応答特性を測定する加振制御装置と、を備える振動特性測定装置とする。そして、前記加振制御装置は加振応答分析装置と、釣合せ信号発生装置とを有し、前記応答特性を測定するときに、前記回転体が回転するときに発生する不釣合い振動を前記磁気軸受で解消するための振動解消信号を前記釣合せ信号発生装置で発生させて前記不釣合い振動を解消するとともに、前記振動解消信号を前記加振制御信号に加算した回転体制御信号を出力し、前記不釣合い振動が無い状態を基準とする振幅の許容値を最大振幅とする強制振動を発生させて前記回転体を加振し、加振されている前記回転体の前記応答特性を前記加振応答分析装置で測定することを特徴とする。また、この振動特性測定装置における振動特性測定方法とする。   In order to solve the above problems, the present invention provides a magnetic bearing that supports a rotating body of a rotating machine in a non-contact manner, a measuring device that measures an amplitude when the rotating body vibrates, and a current supply that supplies a current to the magnetic bearing. And a vibration control signal for controlling the magnetic bearing so as to vibrate the rotating body, and vibration of the rotating body with respect to the vibration control signal based on the amplitude measured by the measuring device And a vibration control device that measures a response characteristic to the vibration control signal. The vibration control device includes a vibration response analysis device and a balance signal generation device. When measuring the response characteristics, the vibration control device generates unbalance vibration generated when the rotating body rotates. A vibration elimination signal for elimination by a bearing is generated by the balancing signal generator to eliminate the unbalanced vibration, and a rotating body control signal obtained by adding the vibration elimination signal to the excitation control signal is output. The forced vibration is generated by generating a forced vibration whose maximum amplitude is an allowable amplitude based on a state in which there is no unbalanced vibration, and the response characteristic of the excited rotating body is excited. Measured with a response analyzer. Further, a vibration characteristic measuring method in this vibration characteristic measuring apparatus is used.

本発明によると、振動特性の測定時に、許容値を超えることなく回転体を振動させ、エネルギの消費量を増やすことなく高品質のデータを取得可能な振動特性測定装置および振動特性測定方法を提供できる。
そして、軸受やシール機構の損傷やシール機構の磨耗などの不具合を生じさせることなく振動特性を測定できる。
According to the present invention, a vibration characteristic measuring apparatus and a vibration characteristic measuring method capable of acquiring high-quality data without increasing energy consumption by vibrating a rotating body without exceeding an allowable value when measuring vibration characteristics are provided. it can.
The vibration characteristics can be measured without causing problems such as damage to the bearing and the seal mechanism and wear of the seal mechanism.

(a)は本実施形態に係る振動特性測定装置を取り付けた多段遠心圧縮機を側面から見た概略構成図、(b)は振動特性測定装置の磁気軸受と多段遠心圧縮機の回転軸をAの方向から見た概略図である。(A) is the schematic block diagram which looked at the multistage centrifugal compressor which attached the vibration characteristic measuring apparatus which concerns on this embodiment from the side, (b) is the magnetic bearing of a vibration characteristic measuring apparatus, and the rotating shaft of a multistage centrifugal compressor is A. It is the schematic seen from the direction. (a)は回転軸の不釣合い振動をモデル化した図、(b)は回転軸の振幅と許容値のマージンを説明するための図である。(A) is the figure which modeled the unbalance vibration of a rotating shaft, (b) is a figure for demonstrating the margin of the amplitude and allowable value of a rotating shaft. 振動特性測定装置の機能ブロックを示す図である。It is a figure which shows the functional block of a vibration characteristic measuring apparatus. (a)は従来の振動特性測定装置で加振したときの回転軸のX軸方向の振幅を示す図、(b)は本実施形態に係る振動特性測定装置で加振したときの回転軸のX軸方向の振幅を示す図である。(A) is a figure which shows the amplitude of the X-axis direction of a rotating shaft when vibrating with the conventional vibration characteristic measuring apparatus, (b) is a rotating shaft when vibrating with the vibration characteristic measuring apparatus which concerns on this embodiment. It is a figure which shows the amplitude of a X-axis direction. 回転軸の振幅と許容値のマージンを従来例と本実施形態で比較する図である。It is a figure which compares the amplitude of a rotating shaft, and the margin of an allowable value with a prior art example and this embodiment. 加振信号遮断器を有する加振制御装置を備える振動特性測定装置の機能ブロックを示す図である。It is a figure which shows the functional block of a vibration characteristic measuring apparatus provided with the vibration control apparatus which has a vibration signal circuit breaker.

以下、本発明の実施形態について、適宜図を参照して詳細に説明する。
図1の(a)に示すように、本実施形態に係る振動特性測定装置1は、多段遠心圧縮機50などの回転機械に取り付けられて回転軸51や遠心羽根車53を含む回転体の振動特性を測定可能な装置である。
本実施形態に係る振動特性測定装置1は多段遠心圧縮機50に限定されず、回転軸51などの回転体を有する回転機械(タービン、電動機等)に取り付け可能であるが、以下では多段遠心圧縮機50に取り付けられる一例を説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
As shown in FIG. 1A, the vibration characteristic measuring apparatus 1 according to this embodiment is attached to a rotary machine such as a multistage centrifugal compressor 50 and vibrates a rotary body including a rotary shaft 51 and a centrifugal impeller 53. It is a device that can measure characteristics.
The vibration characteristic measuring apparatus 1 according to the present embodiment is not limited to the multistage centrifugal compressor 50, and can be attached to a rotary machine (turbine, electric motor, etc.) having a rotating body such as the rotary shaft 51. An example attached to the machine 50 will be described.

図1の(a)に示すように構成される多段遠心圧縮機50は、ガスなどの被圧縮流体を、回転軸51とともに回転する遠心羽根車53の遠心力で連続的に圧縮する装置であり、回転軸51は図示しない駆動源(電動機等)によって回転駆動する。   A multistage centrifugal compressor 50 configured as shown in FIG. 1A is a device that continuously compresses a fluid to be compressed, such as gas, by the centrifugal force of a centrifugal impeller 53 that rotates together with a rotating shaft 51. The rotation shaft 51 is rotationally driven by a drive source (such as an electric motor) (not shown).

遠心羽根車53は、回転軸51の軸方向に多段に備わって回転軸51とともに回転し、中心側(回転軸51側)から吸込んだ被圧縮流体を圧縮して遠心力で外周から吐出するように構成されている。   The centrifugal impeller 53 is provided in multiple stages in the axial direction of the rotary shaft 51 and rotates together with the rotary shaft 51 to compress the compressed fluid sucked from the center side (rotary shaft 51 side) and discharge it from the outer periphery with centrifugal force. It is configured.

回転軸51は、複数の軸受部材に回転可能に支持される。例えば、遠心羽根車53を軸方向に挟むように2箇所に備わる軸受部材52a、52bによって回転軸51はラジアル方向に支持される。また、回転軸51をアキシャル方向に支持する軸受部材52cによって、回転軸51の軸方向への変動が規制される。
このように回転軸51は複数の軸受部材52a〜52cによって回転可能に支持されている。
The rotating shaft 51 is rotatably supported by a plurality of bearing members. For example, the rotary shaft 51 is supported in the radial direction by bearing members 52a and 52b provided at two locations so as to sandwich the centrifugal impeller 53 in the axial direction. Further, the bearing member 52c that supports the rotating shaft 51 in the axial direction restricts the variation of the rotating shaft 51 in the axial direction.
Thus, the rotating shaft 51 is rotatably supported by the plurality of bearing members 52a to 52c.

また、遠心羽根車53は、静止体であるハウジング54に収納され、入口部54aから取り込まれる被圧縮流体が多段の遠心羽根車53によって圧縮されて出口部54bから吐出するように構成される。
以下、回転軸51や遠心羽根車53を含み、回転軸51と一体に回転する構造物を総称して「回転体」と記載する場合がある。また、回転体に対して静止している構造物(ハウジング54等)を総称して「静止体」と記載する場合がある。
The centrifugal impeller 53 is housed in a housing 54 that is a stationary body, and the compressed fluid taken in from the inlet portion 54a is compressed by the multistage centrifugal impeller 53 and discharged from the outlet portion 54b.
Hereinafter, structures that include the rotating shaft 51 and the centrifugal impeller 53 and rotate integrally with the rotating shaft 51 may be collectively referred to as “rotating bodies”. In addition, structures (such as the housing 54) that are stationary with respect to the rotating body may be collectively referred to as “stationary bodies”.

このように構成される多段遠心圧縮機50では、ハウジング54の入口部54aから取り込まれた被圧縮流体が遠心羽根車53を通ることなくハウジング54から吐出されると、被圧縮流体が圧縮されない状態で出口部54bから吐出されることになり、多段遠心圧縮機50の圧縮効率が低下する。そこで圧縮効率を向上するため、ハウジング54(静止体)と、回転軸51や遠心羽根車53(回転体)の間隙をシールするように適宜シール機構55が備わっている。   In the multistage centrifugal compressor 50 configured as described above, when the compressed fluid taken in from the inlet portion 54a of the housing 54 is discharged from the housing 54 without passing through the centrifugal impeller 53, the compressed fluid is not compressed. Thus, the gas is discharged from the outlet portion 54b, and the compression efficiency of the multistage centrifugal compressor 50 is reduced. Therefore, in order to improve the compression efficiency, a sealing mechanism 55 is appropriately provided so as to seal the gap between the housing 54 (stationary body) and the rotating shaft 51 or the centrifugal impeller 53 (rotating body).

シール機構55は、例えば、遠心羽根車53の上流段(入口部54a側)から、遠心羽根車53とハウジング54の間隙を通って下流段(出口部54b側)に流れ込むことを防止するために、ハウジング54と遠心羽根車53の間隙をシールするように備わっている。
また、遠心羽根車53の軸方向の両端部には、ハウジング54と回転軸51の間隙をシールするためのシール機構55が備わっている。
The seal mechanism 55 is, for example, for preventing the upstream stage (the inlet part 54a side) of the centrifugal impeller 53 from flowing into the downstream stage (the outlet part 54b side) through the gap between the centrifugal impeller 53 and the housing 54. The gap between the housing 54 and the centrifugal impeller 53 is sealed.
Further, both end portions of the centrifugal impeller 53 in the axial direction are provided with seal mechanisms 55 for sealing the gap between the housing 54 and the rotary shaft 51.

このように適宜備わるシール機構55は、静止体と回転体の間に微小なクリアランスが形成されるように備わるシール部材(図示せず)を有し、被圧縮流体の流れを妨げるように構成される。
また、クリアランスが形成されることによって、例えば静止体に備わるシール機構55のシール部材が回転体と接触することが防止され、シール部材の磨耗が抑制される。
なお、図1には、シール機構55が静止体(ハウジング54)に備わる構成が図示されているが、シール機構55が回転体(回転軸51、遠心羽根車53等)に備わる構成であってもよい。また、シール機構55が、ハウジング54以外の静止体に備わる場合もある。
The sealing mechanism 55 appropriately provided as described above has a sealing member (not shown) provided so that a minute clearance is formed between the stationary body and the rotating body, and is configured to prevent the flow of the fluid to be compressed. The
Further, by forming the clearance, for example, the seal member of the seal mechanism 55 provided in the stationary body is prevented from coming into contact with the rotating body, and wear of the seal member is suppressed.
FIG. 1 shows a configuration in which the seal mechanism 55 is provided in the stationary body (housing 54). However, the seal mechanism 55 is provided in the rotating body (rotary shaft 51, centrifugal impeller 53, etc.). Also good. Further, the sealing mechanism 55 may be provided in a stationary body other than the housing 54.

回転軸51や遠心羽根車53などを含んで構成される回転体は、周方向の質量が均一ではなく回転するときに微小な振動(不釣合い振動)が発生する。
回転体の質量が周方向に均一でない場合、図2の(a)示すように、周方向の1点が質量の集中点(質量集中点G)となるように回転体をモデル化することができる。質量集中点Gを有する回転体が回転すると質量集中点Gには遠心力が作用して外方に引き寄せられ、回転体は質量集中点Gの方に変位する。このような変位が回転体の回転にともなって連続的に発生し、不釣合い振動が発生する。
なお、図2の(a)に示す12X,12Yは、回転軸51を非接触支持するように振動特性測定装置1(図1の(a)参照)に備わる磁気軸受12の電磁石である。
A rotating body configured to include the rotating shaft 51, the centrifugal impeller 53, and the like generates minute vibrations (unbalanced vibrations) when the circumferential mass is not uniform and rotates.
If the mass of the rotating body is not uniform in the circumferential direction, the rotating body can be modeled so that one point in the circumferential direction becomes a mass concentration point (mass concentration point G) as shown in FIG. it can. When the rotating body having the mass concentration point G rotates, centrifugal force acts on the mass concentration point G and is drawn outward, and the rotating body is displaced toward the mass concentration point G. Such displacement continuously occurs as the rotating body rotates, and unbalanced vibration occurs.
2X and 12Y shown in FIG. 2A are electromagnets of the magnetic bearing 12 provided in the vibration characteristic measuring apparatus 1 (see FIG. 1A) so as to support the rotating shaft 51 in a non-contact manner.

このように、回転体には不釣合い振動が発生するため、静止体に備わるシール機構55は不釣合い振動が発生した場合であっても回転体と接触しないようにクリアランスが形成されていることが好ましいが、クリアランスが大きくなると被圧縮流体の流れを妨げるシール性能が低下する。
そこで、回転体の不釣合い振動を常に監視し、その振幅が所定の許容値を超えないように回転体の運転を管理する場合もある。
Thus, since unbalanced vibration occurs in the rotating body, the seal mechanism 55 provided in the stationary body may have a clearance so as not to contact the rotating body even when unbalanced vibration occurs. Although it is preferable, when the clearance is increased, the sealing performance for preventing the flow of the fluid to be compressed is lowered.
Therefore, there is a case where the unbalanced vibration of the rotating body is constantly monitored and the operation of the rotating body is managed so that the amplitude does not exceed a predetermined allowable value.

また、多段遠心圧縮機50(図1の(a)参照)などの回転機械では、回転体の固有振動モードに対する安定性を評価するため、回転体に発生する軸振動の応答特性を振動特性として測定する振動特性測定が必要になる。
回転体の軸振動に対する安定性は、回転体を加振し、それによって引き起こされる回転体の振動の応答特性を測定することによって評価可能である。
このため、回転体の軸振動に対する安定性を評価するときには、回転している回転体を強制的に振動させて、つまり、加振して、そのときの回転体振動の振幅と位相を測定し、入力(回転体に与える振動)に対する出力(回転体の実際の振動)の応答特性を測定することが実施される。
Further, in a rotary machine such as the multistage centrifugal compressor 50 (see FIG. 1A), in order to evaluate the stability of the rotating body against the natural vibration mode, the response characteristic of the shaft vibration generated in the rotating body is used as the vibration characteristic. Vibration characteristic measurement to be measured is required.
The stability of the rotating body against axial vibration can be evaluated by exciting the rotating body and measuring the response characteristics of the vibration of the rotating body caused thereby.
Therefore, when evaluating the stability of the rotating body against axial vibration, the rotating body is forcibly vibrated, that is, vibrated, and the amplitude and phase of the rotating body vibration at that time are measured. The response characteristic of the output (actual vibration of the rotating body) with respect to the input (vibration applied to the rotating body) is measured.

図1の(a)に示すように多段遠心圧縮機50に取り付け可能な、本実施形態に係る振動特性測定装置1は、回転体の軸振動の安定性を評価するために回転体を加振し、さらに、加振された回転体の振動(振幅と位相)を測定し、振動の応答特性を測定する装置である。
このため振動特性測定装置1は、回転軸51を加振する磁気軸受12と回転軸51の振幅(変位)を測定する測定装置(変位センサ13)を含んで構成される。
磁気軸受12は、電磁石12X,12Y(図1の(b)参照)を含んで構成され、図示しないコイルに供給される電流によって発生する磁力で回転軸51を非接触支持することが、軸受としての本来の機能である。
As shown in FIG. 1A, the vibration characteristic measuring apparatus 1 according to this embodiment that can be attached to a multistage centrifugal compressor 50 vibrates the rotating body in order to evaluate the stability of the axial vibration of the rotating body. Furthermore, it is a device that measures vibration (amplitude and phase) of the excited rotating body and measures the response characteristics of the vibration.
Therefore, the vibration characteristic measuring device 1 includes a magnetic bearing 12 that vibrates the rotating shaft 51 and a measuring device (displacement sensor 13) that measures the amplitude (displacement) of the rotating shaft 51.
The magnetic bearing 12 includes electromagnets 12X and 12Y (see FIG. 1B), and supports the rotating shaft 51 in a non-contact manner by a magnetic force generated by a current supplied to a coil (not shown). Is the original function.

図1の(b)に示すように、回転軸51の軸線を法線とする平面上で鉛直上下方向(第2方向とする)にY軸、Y軸と直交する横方向(第1方向とする)にX軸を設定する。この構成によると、X軸の方向(第1方向)は、回転軸51(回転体)の軸線方向と直交する方向であり、Y軸の方向(第2方向)は、回転軸51の軸線方向およびX軸の方向(第1方向)と直交する方向になる。   As shown in FIG. 1B, the Y axis in the vertical vertical direction (second direction) on the plane having the axis of the rotation shaft 51 as the normal line (the first direction and the first direction) Set the X-axis to According to this configuration, the X-axis direction (first direction) is a direction orthogonal to the axial direction of the rotating shaft 51 (rotating body), and the Y-axis direction (second direction) is the axial direction of the rotating shaft 51. And a direction orthogonal to the X-axis direction (first direction).

そして、図1の(b)に示すように、回転軸51の回転中心を原点Oとする座標系において、磁気軸受12は、X軸上で回転軸51を横方向に挟むように電磁石12Xが配置され、Y軸上で回転軸51を上下方向に挟むように電磁石12Yが配置される。そして、電磁石12Xに供給する電流を制御することによって回転軸51と電磁石12Xの間隙を調節でき、電磁石12Yに供給する電流を制御することによって回転軸51と電磁石12Yの間隙を調節できる。
さらに、回転軸51と電磁石12Xの間隙を連続的に調節することによって、回転軸51をX軸方向に振動させることができ、回転軸51と電磁石12Yの間隙を連続的に調節することによって、回転軸51をY軸方向に振動させることができる。このようにして磁気軸受12で回転軸51を加振できる。
As shown in FIG. 1B, in the coordinate system in which the rotation center of the rotation shaft 51 is the origin O, the magnetic bearing 12 includes the electromagnet 12X sandwiching the rotation shaft 51 in the lateral direction on the X axis. The electromagnet 12Y is arranged so as to sandwich the rotary shaft 51 in the vertical direction on the Y axis. The gap between the rotating shaft 51 and the electromagnet 12X can be adjusted by controlling the current supplied to the electromagnet 12X, and the gap between the rotating shaft 51 and the electromagnet 12Y can be adjusted by controlling the current supplied to the electromagnet 12Y.
Further, by continuously adjusting the gap between the rotating shaft 51 and the electromagnet 12X, the rotating shaft 51 can be vibrated in the X-axis direction, and by continuously adjusting the gap between the rotating shaft 51 and the electromagnet 12Y, The rotating shaft 51 can be vibrated in the Y-axis direction. In this way, the rotating shaft 51 can be vibrated by the magnetic bearing 12.

例えば、回転軸51と電磁石12Xの間隙を周期的に調節するように余弦波電流を電磁石12Xに供給し、回転軸51と電磁石12Yの間隙を、回転軸51と電磁石12Xの間隙と同じ周期で位相が90度ずれるように調節する正弦波電流を電磁石12Yに供給すると、軸線を中心として振れ回るように回転軸51を加振できる。   For example, a cosine wave current is supplied to the electromagnet 12X so as to periodically adjust the gap between the rotary shaft 51 and the electromagnet 12X, and the gap between the rotary shaft 51 and the electromagnet 12Y is set at the same cycle as the gap between the rotary shaft 51 and the electromagnet 12X. When a sine wave current that is adjusted so that the phase is shifted by 90 degrees is supplied to the electromagnet 12Y, the rotating shaft 51 can be vibrated so as to swing around the axis.

図1の(a)に示す変位センサ13は、例えば、振動による回転軸51のX軸方向の変位量を測定するX変位センサ13Xと、Y軸方向の変位量を測定するY変位センサ13Yからなり、X軸方向の変位量とY軸方向の変位量によって回転軸51の振動変位が測定される。変位センサ13の種類は限定されるものではないが、例えば、非接触に回転軸51の変位を測定可能な渦電流式のものを利用できる。   The displacement sensor 13 shown in FIG. 1A includes, for example, an X displacement sensor 13X that measures the amount of displacement of the rotating shaft 51 in the X axis direction due to vibration and a Y displacement sensor 13Y that measures the amount of displacement in the Y axis direction. Thus, the vibration displacement of the rotating shaft 51 is measured by the amount of displacement in the X-axis direction and the amount of displacement in the Y-axis direction. The type of the displacement sensor 13 is not limited. For example, an eddy current type sensor capable of measuring the displacement of the rotating shaft 51 in a non-contact manner can be used.

従来、振動特性測定装置1は、回転体が回転しているときに磁気軸受12で回転軸51を加振し、変位センサ13で回転軸51のX軸方向とY軸方向の変位量を測定して回転軸51の振動変位を測定するように構成される。
このとき、回転体は回転しているため前記した不釣合い振動が発生している。したがって、回転軸51を加振すると、不釣合い振動に加えて加振による振動(以下、強制振動と称する)が発生し回転体の振幅が増大する。
前記したように、静止体に備わるシール機構55と回転体の接触を回避するため、回転体の振幅は所定の許容値より小さいことが要求される。したがって、不釣合い振動が発生している回転体には、不釣合い振動による振幅と許容値のマージンに相当する振幅が最大となるような振動が入力可能である。
Conventionally, the vibration characteristic measuring apparatus 1 vibrates the rotating shaft 51 with the magnetic bearing 12 while the rotating body is rotating, and measures the displacement amount of the rotating shaft 51 in the X-axis direction and the Y-axis direction with the displacement sensor 13. Thus, the vibration displacement of the rotating shaft 51 is measured.
At this time, since the rotating body is rotating, the unbalanced vibration described above is generated. Therefore, when the rotating shaft 51 is vibrated, vibration due to vibration (hereinafter referred to as forced vibration) occurs in addition to unbalanced vibration, and the amplitude of the rotating body increases.
As described above, in order to avoid contact between the sealing mechanism 55 provided in the stationary body and the rotating body, the amplitude of the rotating body is required to be smaller than a predetermined allowable value. Therefore, a vibration that maximizes the amplitude corresponding to the margin between the amplitude due to the unbalanced vibration and the allowable value can be input to the rotating body in which the unbalanced vibration is generated.

換言すると、加振による強制振動の大きさが制限される。つまり、図2の(b)に示すように、不釣合い振動V1の振幅を基準とし、強制振動V2の振幅は基準となる振幅から許容値までのマージン(マージン1)の範囲内に抑えることが要求される。
したがって、強制振動による回転軸51の振幅が小さくなり、変位センサ13が出力する、回転軸51の変位を示す信号(変位信号)のSN比が悪くなる。
In other words, the magnitude of forced vibration due to vibration is limited. That is, as shown in FIG. 2B, the amplitude of the unbalanced vibration V1 is used as a reference, and the amplitude of the forced vibration V2 is suppressed within a margin (margin 1) from the reference amplitude to the allowable value. Required.
Therefore, the amplitude of the rotating shaft 51 due to forced vibration is reduced, and the SN ratio of the signal indicating the displacement of the rotating shaft 51 (displacement signal) output from the displacement sensor 13 is deteriorated.

そこで、本実施形態に係る振動特性測定装置1は、回転している回転軸51に振幅の大きな振動を与え、変位センサ13が出力する変位信号のSN比を良好に維持できるように構成されている。
具体的に、振動特性測定装置1は、図3に示すように釣合せ信号発生装置8を備え、回転体の応答特性の測定時に、一時的に不釣合い振動を解消するように構成される。
Therefore, the vibration characteristic measuring apparatus 1 according to the present embodiment is configured so as to give a large amplitude vibration to the rotating rotating shaft 51 and to maintain a good S / N ratio of the displacement signal output from the displacement sensor 13. Yes.
Specifically, the vibration characteristic measuring apparatus 1 includes a balancing signal generator 8 as shown in FIG. 3, and is configured to temporarily cancel the unbalanced vibration when measuring the response characteristics of the rotating body.

釣合せ信号発生装置8は、図2の(a)に示すように質量集中点Gに作用する遠心力を打ち消す力を、磁気軸受12の磁力によって連続して発生させることで、遠心力による質量集中点G側への変位を打ち消して回転体の不釣合い振動を解消する。
このように、本実施形態に係る振動特性測定装置1は、図3に示す釣合せ信号発生装置8で回転体の不釣合い振動を解消する信号を発生し、本実施形態における電流供給装置である電流増幅器11(図3参照)に入力する機能を有する。そして、電流増幅器11は入力された信号(不釣合い振動を解消する信号)を所定のゲインで増幅した電流を磁気軸受12に供給する。
As shown in FIG. 2A, the balancing signal generator 8 continuously generates a force that counteracts the centrifugal force acting on the mass concentration point G by the magnetic force of the magnetic bearing 12. The displacement to the concentrated point G side is canceled to cancel the unbalanced vibration of the rotating body.
As described above, the vibration characteristic measuring apparatus 1 according to the present embodiment is a current supply apparatus according to the present embodiment, which generates a signal for eliminating the unbalanced vibration of the rotating body by the balance signal generator 8 shown in FIG. It has a function of inputting to the current amplifier 11 (see FIG. 3). The current amplifier 11 supplies the magnetic bearing 12 with a current obtained by amplifying the input signal (signal for eliminating unbalanced vibration) with a predetermined gain.

電流増幅器11から磁気軸受12に供給される電流は、入力された信号が所定のゲインで増幅された電流で、入力された信号と同期していることが好ましい。この構成によって、電流増幅器11から電流が供給される磁気軸受12は、電流増幅器11に入力される信号に応じた磁力を発生することができる。
なお、電流供給装置は、入力される信号に応じた磁力を発生させる電流を磁気軸受12に供給可能な装置であれば、入力される信号を増幅した電流を磁気軸受12に供給する電流増幅器11に限定されない。
The current supplied from the current amplifier 11 to the magnetic bearing 12 is preferably a current obtained by amplifying the input signal with a predetermined gain, and is synchronized with the input signal. With this configuration, the magnetic bearing 12 to which current is supplied from the current amplifier 11 can generate a magnetic force according to a signal input to the current amplifier 11.
In addition, if the current supply device is a device capable of supplying the magnetic bearing 12 with a current that generates a magnetic force according to the input signal, the current amplifier 11 supplies a current obtained by amplifying the input signal to the magnetic bearing 12. It is not limited to.

図3に示す釣合せ信号発生装置8は、いわゆる2相発振器を含んで構成され、その発振周波数は、回転体の回転周波数と同期することが必要とされる。そのため、釣合せ信号発生装置8には回転体の回転速度を示す回転パルス信号Rpが入力される。例えば、図示しない回転速度センサが回転軸51に刻まれた回転基準溝を測定した結果を回転パルス信号Rpとして釣合せ信号発生装置8に入力する構成とすればよい。
そして、釣合せ信号発生装置8には、入力される回転パルス信号Rpを基準信号とするフェーズロックドループ回路(PLL回路)が組み込まれ、回転体の回転周波数に同期した正弦波信号と余弦波信号を発振するように構成されている。PLL回路が発振する正弦波信号と余弦波信号は、位相が90度異なる単一周波数の信号である。
The balancing signal generator 8 shown in FIG. 3 includes a so-called two-phase oscillator, and its oscillation frequency is required to be synchronized with the rotation frequency of the rotating body. Therefore, a rotation pulse signal Rp indicating the rotation speed of the rotating body is input to the balancing signal generator 8. For example, the rotation speed sensor (not shown) may measure the rotation reference groove carved on the rotation shaft 51 and input the result to the balancing signal generator 8 as the rotation pulse signal Rp.
The balancing signal generator 8 incorporates a phase-locked loop circuit (PLL circuit) using the input rotation pulse signal Rp as a reference signal, and a sine wave signal and a cosine wave signal synchronized with the rotation frequency of the rotating body. Is configured to oscillate. The sine wave signal and the cosine wave signal oscillated by the PLL circuit are single frequency signals whose phases are different by 90 degrees.

また、図3に示すように、釣合せ信号発生装置8には、不釣合い振動の相殺振幅Amと位相Phがそれぞれ入力される。ここでいう位相Phは、回転体の回転角度と図2の(a)に示す質量集中点Gの回転角度のずれを180度遅らせた位相を示す。つまり、回転体が基準の位置(例えば、回転角度が「0」)にあるときの質量集中点Gの回転角度(図2の(a)にθaで示す)を180度遅らせた角度(図2の(a)にθbで示す)とする。
このように質量集中点Gの回転角度から180度遅らせた位相Phとすることで、質量集中点Gに作用する遠心力を打ち消す方向の力を発生させることができる。
また、相殺振幅Amは、質量集中点Gに作用する遠心力を打ち消す量を示す。
Moreover, as shown in FIG. 3, the counterbalance amplitude Am and phase Ph of the unbalance vibration are input to the counterbalance signal generator 8 respectively. Here, the phase Ph indicates a phase obtained by delaying a shift of the rotation angle of the rotating body from the rotation angle of the mass concentration point G shown in FIG. That is, the rotation angle of the mass concentration point G (indicated by θa in FIG. 2A) when the rotator is at the reference position (for example, the rotation angle is “0”) is delayed by 180 degrees (FIG. 2). (Indicated by θb in (a)).
In this way, by setting the phase Ph delayed by 180 degrees from the rotation angle of the mass concentration point G, a force in a direction to cancel the centrifugal force acting on the mass concentration point G can be generated.
Further, the canceling amplitude Am indicates an amount for canceling the centrifugal force acting on the mass concentration point G.

相殺振幅Amおよび位相Phは、例えば、振動特性測定装置1(図1の(a)参照)の管理者が、多段遠心圧縮機50(図1の(a)参照)の回転体に発生する不釣合い振動を測定することによって取得し、さらに、図示しない入力装置によって入力する値とすればよい。そして、入力された相殺振幅Amおよび位相Phが図示しない記憶部に記憶される構成とすれば、釣合せ信号発生装置8は、必要に応じて相殺振幅Amおよび位相Phを読み出して利用できる。   The canceling amplitude Am and the phase Ph are, for example, not generated by the administrator of the vibration characteristic measuring apparatus 1 (see FIG. 1A) in the rotating body of the multistage centrifugal compressor 50 (see FIG. 1A). What is necessary is just to set it as the value acquired by measuring a balance vibration, and also inputting with an input device which is not illustrated. If the input cancellation amplitude Am and phase Ph are stored in a storage unit (not shown), the balancing signal generator 8 can read and use the cancellation amplitude Am and phase Ph as necessary.

釣合せ信号発生装置8は、PLL回路が発振する余弦波信号と正弦波信号に、相殺振幅Amおよび位相Phを組み合わせ、下式(1a)、(1b)に示すようなX軸方向の発振信号FxとY軸方向の発振信号Fyを、図2の(a)に示すように発生する。
Fx=Am・Cos(Ωt+Ph) (1a)
Fy=Am・Sin(Ωt+Ph) (1b)
なお、Ωは回転体の回転角速度、tは時間を示す。
また、回転角速度Ωは、例えば、入力される回転パルス信号Rpに基づいて算出される値である。
釣合せ信号発生装置8は、このように、振幅がともにAmであって位相が互いに90度ずれた発振信号Fx,Fyを発生する。
このように、釣合せ信号発生装置8は、余弦波成分(Am・Cos(Ωt+Ph))を含んだX軸方向の発振信号Fxと、正弦波成分(Am・Sin(Ωt+Ph))を含んだY軸方向の発振信号Fyを発生する。
The balancing signal generator 8 combines the cosine wave signal and sine wave signal oscillated by the PLL circuit with the cancellation amplitude Am and the phase Ph, and generates an oscillation signal in the X-axis direction as shown in the following equations (1a) and (1b). Fx and the oscillation signal Fy in the Y-axis direction are generated as shown in FIG.
Fx = Am · Cos (Ωt + Ph) (1a)
Fy = Am · Sin (Ωt + Ph) (1b)
Here, Ω represents the rotational angular velocity of the rotating body, and t represents time.
Further, the rotation angular velocity Ω is a value calculated based on, for example, the input rotation pulse signal Rp.
Thus, the balancing signal generator 8 generates the oscillation signals Fx and Fy whose amplitude is both Am and whose phases are shifted from each other by 90 degrees.
Thus, the balancing signal generator 8 includes the oscillation signal Fx in the X-axis direction including the cosine wave component (Am · Cos (Ωt + Ph)) and the Y including the sine wave component (Am · Sin (Ωt + Ph)). An axial oscillation signal Fy is generated.

式(1a)、(1b)に示される発振信号Fx、Fyは釣合せ信号発生装置8から出力され、それぞれ、電流増幅器11のX増幅器11X、Y増幅器11Yに入力される。
X増幅器11Xでは、入力された発振信号Fxを所定のゲインで増幅して電磁石12Xに供給する。また、Y増幅器11Yでは、入力された発振信号Fyを所定のゲイン(例えば、X増幅器11Xのゲインと同等のゲイン)で増幅して電磁石12Yに供給する。X増幅器11X、Y増幅器11Yのゲインは、磁気軸受12の特性や回転体の振動特性に応じ、適宜設定されることが好ましい。
The oscillation signals Fx and Fy shown in the equations (1a) and (1b) are output from the balancing signal generator 8 and input to the X amplifier 11X and the Y amplifier 11Y of the current amplifier 11, respectively.
The X amplifier 11X amplifies the input oscillation signal Fx with a predetermined gain and supplies it to the electromagnet 12X. The Y amplifier 11Y amplifies the input oscillation signal Fy with a predetermined gain (for example, a gain equivalent to the gain of the X amplifier 11X) and supplies the amplified signal to the electromagnet 12Y. The gains of the X amplifier 11X and the Y amplifier 11Y are preferably set as appropriate according to the characteristics of the magnetic bearing 12 and the vibration characteristics of the rotating body.

電磁石12Xおよび電磁石12Yに電流増幅器11(X増幅器11X,Y増幅器11Y)から出力される電流が供給されると、磁気軸受12には、X軸方向とY軸方向に合成された信号(合成発振信号Fz)が増幅された電流が供給されることになる。この合成発振信号Fzは、複素数表記で次式(2)のように示される。
Fz=Fx+jFy=Am・ej(Ωt+Ph) (2)
なお、jは虚数単位を示す。
When a current output from the current amplifier 11 (X amplifier 11X, Y amplifier 11Y) is supplied to the electromagnet 12X and the electromagnet 12Y, a signal (synthetic oscillation) is combined with the magnetic bearing 12 in the X-axis direction and the Y-axis direction. A current obtained by amplifying the signal Fz) is supplied. This synthesized oscillation signal Fz is represented by the following expression (2) in complex number notation.
Fz = Fx + jFy = Am · ej (Ωt + Ph) (2)
J represents an imaginary unit.

式(2)より、合成発振信号Fzは、時間tの経過にともなって複素平面上で半径Amの円形に振れる信号であることがわかる。したがって、磁気軸受12で回転体の周囲に互いに直交するように配置される電磁石12X、12Yが、それぞれ発振信号Fx、Fyに応じた磁力を発生すれば、その合成された磁力は、回転体の回転に同期して、回転体の回転中心を中心とする円形に振れる力となる。   From the equation (2), it can be seen that the combined oscillation signal Fz is a signal that swings in a circle with a radius Am on the complex plane as time t passes. Therefore, if the electromagnets 12X and 12Y arranged so as to be orthogonal to each other around the rotating body in the magnetic bearing 12 generate magnetic forces corresponding to the oscillation signals Fx and Fy, respectively, In synchronism with the rotation, the force swings in a circle around the rotation center of the rotating body.

また、不釣合い振動によって発生し、回転体を変位させる力(以下、不釣合い力と称する)も回転体の回転に同期して回転体の回転中心を中心とする円形に振れる力である。この不釣合い力は、図2の(a)に示す質量集中点Gに作用する遠心力によって発生し、発振信号Fx,Fyの位相Phは、質量集中点Gの回転角度を180度遅らせた角度に相当することから、発振信号Fx,Fyが増幅された余弦波電流や正弦波電流が供給される磁気軸受12で発生する磁力によって、回転体の不釣合い振動を解消できる。
つまり、合成発振信号Fzは、余弦波成分(Am・Cos(Ωt+Ph))をX軸方向の振動を解消する成分、正弦波成分(Am・Sin(Ωt+Ph))をY軸方向の振動を解消する成分とする振動解消信号となる。
釣合せ信号発生装置8は、このように発振信号Fx,Fyを生成し、さらに発振信号Fx,Fyを合成した合成発振信号(振動解消信号)Fzを発生して回転体の不釣合い振動を解消する。
Further, a force generated by unbalanced vibration and displacing the rotating body (hereinafter referred to as unbalanced force) is also a force that swings in a circle centering on the rotation center of the rotating body in synchronization with the rotation of the rotating body. This unbalanced force is generated by the centrifugal force acting on the mass concentration point G shown in FIG. 2A, and the phase Ph of the oscillation signals Fx and Fy is an angle obtained by delaying the rotation angle of the mass concentration point G by 180 degrees. Therefore, the unbalanced vibration of the rotating body can be eliminated by the magnetic force generated in the magnetic bearing 12 to which the cosine wave current and the sine wave current obtained by amplifying the oscillation signals Fx and Fy are supplied.
In other words, the combined oscillation signal Fz eliminates the cosine wave component (Am · Cos (Ωt + Ph)) that eliminates vibration in the X-axis direction and the sine wave component (Am · Sin (Ωt + Ph)) that eliminates vibration in the Y-axis direction. It becomes a vibration elimination signal as a component.
The balancing signal generator 8 generates the oscillation signals Fx and Fy in this way, and further generates a combined oscillation signal (vibration elimination signal) Fz obtained by synthesizing the oscillation signals Fx and Fy to eliminate the unbalanced vibration of the rotating body. To do.

また、振動特性測定装置1は、図3に示すように加振応答分析装置9を備える。加振応答分析装置9は、回転体を加振するための加振信号Ex,Eyを発生する。加振信号Exは回転体をX軸方向に加振する制御信号で、加振信号Eyは回転体をY軸方向に加振する制御信号である。そして、加振信号Ex,Eyの少なくとも一方を成分として含む信号を加振制御信号と称する。
この構成によると、加振信号Exは、回転体をX軸方向に加振する、加振制御信号の成分(第1方向加振成分)となり、加振信号Eyは、回転体をY軸方向に加振する、加振制御信号の成分(第2方向加振成分)となる。
Further, the vibration characteristic measuring apparatus 1 includes an excitation response analyzing apparatus 9 as shown in FIG. The vibration response analyzer 9 generates vibration signals Ex and Ey for vibrating the rotating body. The excitation signal Ex is a control signal for exciting the rotating body in the X-axis direction, and the excitation signal Ey is a control signal for exciting the rotating body in the Y-axis direction. A signal including at least one of the vibration signals Ex and Ey as a component is referred to as a vibration control signal.
According to this configuration, the vibration signal Ex becomes a component of the vibration control signal (first direction vibration component) that vibrates the rotating body in the X-axis direction, and the vibration signal Ey moves the rotating body in the Y-axis direction. Is a component of the vibration control signal (second direction vibration component).

本実施形態に係る加振応答分析装置9は、例えば任意の振幅の正弦波信号を、それぞれX軸方向の加振信号ExおよびY軸方向の加振信号Eyとして周期を変えながら出力し、電流増幅器11のX増幅器11XとY増幅器11Yに、それぞれ入力する。
正弦波信号である加振信号ExがX増幅器11Xで増幅された電流が電磁石12Xに供給されると、回転体はX軸方向に加振される。また、正弦波信号である加振信号EyがY増幅器11Yで増幅された電流が電磁石12Yに供給されると、回転体はY軸方向に加振される。
The vibration response analyzing apparatus 9 according to the present embodiment outputs, for example, a sine wave signal having an arbitrary amplitude as the vibration signal Ex in the X-axis direction and the vibration signal Ey in the Y-axis direction while changing the cycle. The signals are input to the X amplifier 11X and the Y amplifier 11Y of the amplifier 11, respectively.
When the current obtained by amplifying the excitation signal Ex, which is a sine wave signal, by the X amplifier 11X is supplied to the electromagnet 12X, the rotating body is excited in the X-axis direction. When the current obtained by amplifying the excitation signal Ey, which is a sine wave signal, by the Y amplifier 11Y is supplied to the electromagnet 12Y, the rotating body is excited in the Y-axis direction.

また、加振応答分析装置9には、変位センサ13が計測する回転体の変位を示す変位信号が入力される。X変位センサ13Xは、回転体のX軸方向の変位を測定して測定結果をX変位信号Mxとして加振応答分析装置9に入力し、Y変位センサ13Yは、回転体のY軸方向の変位を測定して測定結果をY変位信号Myとして加振応答分析装置9に入力する。   Further, a displacement signal indicating the displacement of the rotating body measured by the displacement sensor 13 is input to the vibration response analyzer 9. The X displacement sensor 13X measures the displacement of the rotating body in the X axis direction and inputs the measurement result as an X displacement signal Mx to the vibration response analyzer 9. The Y displacement sensor 13Y detects the displacement of the rotating body in the Y axis direction. And the measurement result is input to the vibration response analyzer 9 as the Y displacement signal My.

X軸方向の加振信号Exを正弦波信号とする場合、加振応答分析装置9は、時間経過とともに周期を変えながら加振信号Exを出力し、入力されるX変位信号Mxに基づいて回転体のX軸方向の変位をデータとして取得する。そして、加振信号Ex(正弦波信号)に対する回転体のX軸方向の応答特性(周波数特性)を測定する。
同様に、Y軸方向の加振信号Eyを正弦波信号とする場合、加振応答分析装置9は、時間経過とともに周期を変えながら加振信号Eyを出力し、入力されるY変位信号Myに基づいて回転体のY軸方向の変位をデータとして取得する。そして、加振信号Ey(正弦波信号)に対する回転体のY軸方向の応答特性(周波数特性)を測定する。
このようにして加振応答分析装置9は、回転体に対する入力(X軸方向の加振信号Ex、Y軸方向の加振信号Ey)に対する回転体の出力(X変位信号Mx、Y変位信号My)の応答特性を測定する。
When the excitation signal Ex in the X-axis direction is a sine wave signal, the excitation response analyzer 9 outputs the excitation signal Ex while changing the period with time, and rotates based on the input X displacement signal Mx. The displacement of the body in the X-axis direction is acquired as data. Then, the response characteristic (frequency characteristic) in the X-axis direction of the rotating body with respect to the excitation signal Ex (sine wave signal) is measured.
Similarly, when the excitation signal Ey in the Y-axis direction is a sine wave signal, the excitation response analyzer 9 outputs the excitation signal Ey while changing the period with the passage of time, and the input Y displacement signal My Based on this, the displacement in the Y-axis direction of the rotating body is acquired as data. Then, the response characteristic (frequency characteristic) of the rotating body in the Y-axis direction with respect to the excitation signal Ey (sine wave signal) is measured.
In this way, the vibration response analyzing apparatus 9 outputs (the X displacement signal Mx, the Y displacement signal My) of the rotating body with respect to the input to the rotating body (the X-axis direction excitation signal Ex, the Y-axis direction excitation signal Ey). ) Is measured.

例えば、図4の(a)に示すように、X軸方向の応答特性を測定するために加振応答分析装置9が回転体をX軸方向に加振すると、加振している期間(加振実行期間)は、X軸方向の加振信号Exの周期の変化に応じてX軸方向の変位、つまり振幅が変化し、特定の周波数のときに最大振幅となる応答特性が得られる。
しかしながら、加振実行期間においても回転体には不釣合い振動が発生しているため、加振による強制振動の振幅は、不釣合い振動の振幅に重ね合わされた振幅となる。そして、強制振動する回転体の振幅は、加振されていない回転体の振幅より大きくなる。したがって、加振によって回転体に生じさせることのできる振幅は、図2の(b)に示すように(図5に(従来例)として再度示す)、不釣合い振動の振幅と前記した許容値とのマージン1の範囲に制限される。
For example, as shown in FIG. 4A, when the vibration response analyzer 9 vibrates the rotating body in the X-axis direction in order to measure the response characteristics in the X-axis direction, In the vibration execution period), the displacement in the X-axis direction, that is, the amplitude changes according to the change in the period of the excitation signal Ex in the X-axis direction, and a response characteristic having the maximum amplitude at a specific frequency is obtained.
However, since the unbalanced vibration is generated in the rotating body even during the vibration execution period, the amplitude of the forced vibration due to the vibration is an amplitude superimposed on the amplitude of the unbalanced vibration. The amplitude of the rotating body that is forcibly oscillated is larger than the amplitude of the rotating body that is not vibrated. Therefore, the amplitude that can be generated in the rotating body by the vibration is as shown in FIG. 2B (shown again as (conventional example) in FIG. 5), and the amplitude of the unbalanced vibration and the allowable value described above. The margin is limited to a range of 1.

つまり、図5に(従来例)として示すように、不釣合い振動V1の振幅を基準とし、強制振動V2の振幅は基準となる振幅からの増加分として現われる。したがって、強制振動V2の振幅は、基準となる振幅(不釣合い振動V1の振幅)と許容値とのマージン1に相当する振幅に制限される。このことによって、回転体を加振して発生できる振幅が小さくなるように制限される。つまり、強制振動V2の最大振幅が小さくなるように制限され、X変位センサ13Xが最大振幅を測定して出力するX変位信号MxのSN比が悪くなる。そして、加振応答分析装置9が取得するX軸方向の変位のデータの品質が低下する。
同様に、Y軸方向の変位のデータの品質も低下する。
That is, as shown in FIG. 5 (conventional example), the amplitude of the unbalanced vibration V1 appears as a reference, and the amplitude of the forced vibration V2 appears as an increase from the reference amplitude. Therefore, the amplitude of the forced vibration V2 is limited to an amplitude corresponding to a margin 1 between the reference amplitude (the amplitude of the unbalanced vibration V1) and the allowable value. Thus, the amplitude that can be generated by exciting the rotating body is limited. That is, the maximum amplitude of the forced vibration V2 is limited to be small, and the S / N ratio of the X displacement signal Mx output by the X displacement sensor 13X measuring the maximum amplitude is deteriorated. And the quality of the data of the displacement of the X-axis direction which the vibration response analyzer 9 acquires decreases.
Similarly, the quality of the displacement data in the Y-axis direction also decreases.

そこで、振動特性測定装置1(図1の(a)参照)は、図3に示すように、発振信号Fxと加振信号Exを加算し、発振信号Fyと加振信号Eyを加算する加算器7aを備える。そして、本実施形態においては、釣合せ信号発生装置8、加振応答分析装置9、および加算器7aを含んで、振動特性測定装置1の加振制御装置7とする。   Therefore, as shown in FIG. 3, the vibration characteristic measuring apparatus 1 (see FIG. 1A) adds an oscillation signal Fx and an excitation signal Ex, and adds an oscillation signal Fy and an excitation signal Ey. 7a. In the present embodiment, the vibration control device 7 of the vibration characteristic measuring device 1 includes the balance signal generator 8, the vibration response analyzer 9, and the adder 7a.

振動特性測定装置1は、回転体の応答特性を測定するときには、加振制御装置7の加振応答分析装置9で加振制御信号を発生し、さらに釣合せ信号発生装置8で振動解消信号を発生する。そして、加算器7aで、振動解消信号のX軸方向の発振信号Fxと加振制御信号のX軸方向の加振信号Exを加算した加算信号ADDxを生成する。同様に、振動解消信号のY軸方向の発振信号Fyと加振制御信号のY軸方向の加振信号Eyを加算した加算信号ADDyを生成する。
加算信号ADDxはX増幅器11Xに入力され、加算信号ADDxをX増幅器11Xで増幅した電流が磁気軸受12の電磁石12X(図1の(b)参照)に供給される。
また、加算信号ADDyはY増幅器11Yに入力され、加算信号ADDyをY増幅器11Yで増幅した電流が磁気軸受12の電磁石12Y(図1の(b)参照)に供給される。
When measuring the response characteristics of the rotating body, the vibration characteristic measuring device 1 generates an vibration control signal by the vibration response analyzing device 9 of the vibration control device 7, and further generates a vibration cancellation signal by the balancing signal generator 8. Occur. Then, an adder 7a generates an addition signal ADDx obtained by adding the oscillation signal Fx in the X-axis direction of the vibration elimination signal and the excitation signal Ex in the X-axis direction of the excitation control signal. Similarly, an addition signal ADDy is generated by adding the oscillation signal Fy in the Y-axis direction of the vibration elimination signal and the excitation signal Ey in the Y-axis direction of the excitation control signal.
The addition signal ADDx is input to the X amplifier 11X, and a current obtained by amplifying the addition signal ADDx by the X amplifier 11X is supplied to the electromagnet 12X of the magnetic bearing 12 (see FIG. 1B).
The addition signal ADDy is input to the Y amplifier 11Y, and a current obtained by amplifying the addition signal ADDy by the Y amplifier 11Y is supplied to the electromagnet 12Y (see FIG. 1B) of the magnetic bearing 12.

つまり、加振制御装置7からは、振動解消信号(合成発振信号Fz)と加振制御信号が加算された信号(以下、回転体制御信号と称する)が出力される。
この回転体制御信号は、振動解消信号の余弦波成分と、加振制御信号の第1方向加振成分が加算された成分を含む加算信号ADDx、および振動解消信号の正弦波成分と、加振制御信号の第2方向加振成分が加算された成分を含む加算信号ADDyからなる合成信号である。
加算信号ADDxは、X軸方向の発振信号Fxと加振信号Exが加算された信号であり、回転体のX軸方向の発振信号Fxの成分と、X軸方向の加振信号Exの成分を含んだ加算信号になる。
また加算信号ADDyは、Y軸方向の発振信号Fyと加振信号Eyが加算された信号であり、回転体のY軸方向の発振信号Fyの成分と、Y軸方向の加振信号Eyの成分を含んだ加算信号になる。
That is, the vibration control device 7 outputs a signal obtained by adding the vibration elimination signal (synthetic oscillation signal Fz) and the vibration control signal (hereinafter referred to as a rotator control signal).
The rotator control signal includes a cosine wave component of the vibration elimination signal, an addition signal ADDx including a component obtained by adding the first direction excitation component of the oscillation control signal, a sine wave component of the vibration elimination signal, and an excitation It is a synthesized signal composed of an addition signal ADDy including a component obtained by adding the second direction excitation component of the control signal.
The addition signal ADDx is a signal obtained by adding the oscillation signal Fx in the X-axis direction and the excitation signal Ex. The component of the oscillation signal Fx in the X-axis direction of the rotating body and the component of the excitation signal Ex in the X-axis direction are added. The added signal is included.
The addition signal ADDy is a signal obtained by adding the oscillation signal Fy in the Y-axis direction and the excitation signal Ey, and the component of the oscillation signal Fy in the Y-axis direction of the rotating body and the component of the excitation signal Ey in the Y-axis direction. It becomes the addition signal containing.

したがって、加算信号ADDx、ADDyを成分として含む回転体制御信号は、X軸方向の発振信号Fxの成分と、Y軸方向の発振信号Fyの成分と、X軸方向の加振信号Exの成分と、Y軸方向の加振信号Eyの成分を含んだ信号となる。そして、回転体制御信号が電流増幅器11で増幅された電流が磁気軸受12に供給されると、磁気軸受12には、X軸方向の発振信号Fxの成分と、Y軸方向の発振信号Fyの成分と、X軸方向の加振信号Exの成分と、Y軸方向の加振信号Eyの成分と、を含んだ電流が供給される。   Therefore, the rotating body control signal including the addition signals ADDx and ADDy as components includes the component of the oscillation signal Fx in the X-axis direction, the component of the oscillation signal Fy in the Y-axis direction, and the component of the excitation signal Ex in the X-axis direction. , A signal including a component of the excitation signal Ey in the Y-axis direction. When the current obtained by amplifying the rotating body control signal by the current amplifier 11 is supplied to the magnetic bearing 12, the component of the oscillation signal Fx in the X-axis direction and the oscillation signal Fy in the Y-axis direction are supplied to the magnetic bearing 12. A current including a component, a component of the excitation signal Ex in the X-axis direction, and a component of the excitation signal Ey in the Y-axis direction is supplied.

この構成によると、加振実行期間において、磁気軸受12に供給される電流の発振信号Fx、Fyの成分によって回転体の不釣合い振動が解消し、加振信号Ex、Eyの成分によって回転体がX軸方向およびY軸方向に加振される。したがって、図4の(b)に示すように、加振実行期間でX軸方向に不釣合い振動は発生せず、加振による強制振動のみ発生する。そして、回転体のX軸方向の振幅は強制振動の振幅となる。また、図示はしないが、Y軸方向にも不釣合い振動は発生せず、加振による強制振動のみ発生する。そして、回転体のY軸方向の振幅は強制振動の振幅となる。
このことによって、X変位センサ13X(図3参照)は強制振動のX軸方向の振幅のみを測定し、その測定結果をX変位信号Mx(図3参照)として加振応答分析装置9(図3参照)に入力できる。同様にY変位センサ13Y(図3参照)は強制振動のY軸方向の振幅のみを測定し、その測定結果をY変位信号My(図3参照)として加振応答分析装置9(図3参照)に入力できる。
According to this configuration, during the excitation execution period, the unbalanced vibration of the rotating body is eliminated by the components of the oscillation signals Fx and Fy of the current supplied to the magnetic bearing 12, and the rotating body is driven by the components of the excitation signals Ex and Ey. Excitation is performed in the X-axis direction and the Y-axis direction. Accordingly, as shown in FIG. 4B, unbalanced vibration does not occur in the X-axis direction during the vibration execution period, and only forced vibration due to vibration occurs. The amplitude of the rotating body in the X-axis direction is the amplitude of forced vibration. Although not shown, unbalanced vibration does not occur in the Y-axis direction, and only forced vibration due to excitation occurs. The amplitude of the rotating body in the Y-axis direction is the amplitude of forced vibration.
As a result, the X displacement sensor 13X (see FIG. 3) measures only the amplitude of the forced vibration in the X-axis direction, and the measurement result is used as the X displacement signal Mx (see FIG. 3). Reference). Similarly, the Y displacement sensor 13Y (see FIG. 3) measures only the amplitude of the forced vibration in the Y-axis direction, and uses the measurement result as a Y displacement signal My (see FIG. 3) as an excitation response analyzer 9 (see FIG. 3). Can be entered.

つまり、図5に(本実施形態)として示すように、不釣合い振動の振幅が無い状態、換言すると振幅が「0」の状態を基準とすることができ、強制振動V2の振幅は「0」からの増加分として現われる。したがって、強制振動V2の振幅は、「0」と許容値とのマージン(マージン2)に相当する振幅の範囲内であればよく、回転体を加振して発生できる振幅を広げることができる。また、強制振動V2の最大振幅も「0」と許容値とのマージン2に相当する振幅まで広げることができ、X変位センサ13X(図3参照)が最大振幅を測定して出力するX変位信号Mx(図3参照)のSN比を良くすることができる。同様に、Y変位センサ13Y(図3参照)が最大振幅を測定して出力するY変位信号My(図3参照)のSN比を良くすることができる。
そして、加振応答分析装置9が取得するX軸方向の変位のデータ及びY軸方向の変位のデータの品質を向上できる。
That is, as shown in FIG. 5 (this embodiment), a state where there is no amplitude of unbalanced vibration, in other words, a state where the amplitude is “0” can be used as a reference, and the amplitude of the forced vibration V2 is “0”. Appears as an increase from Therefore, the amplitude of the forced vibration V2 only needs to be within an amplitude range corresponding to a margin (margin 2) between “0” and the allowable value, and the amplitude that can be generated by exciting the rotating body can be expanded. Further, the maximum amplitude of the forced vibration V2 can be expanded to an amplitude corresponding to a margin 2 between “0” and an allowable value, and the X displacement signal output by the X displacement sensor 13X (see FIG. 3) measuring the maximum amplitude. The SN ratio of Mx (see FIG. 3) can be improved. Similarly, the SN ratio of the Y displacement signal My (see FIG. 3) output by measuring the maximum amplitude by the Y displacement sensor 13Y (see FIG. 3) can be improved.
The quality of the displacement data in the X-axis direction and the displacement data in the Y-axis direction acquired by the vibration response analyzer 9 can be improved.

なお、振動特性測定装置1は、多段遠心圧縮機50(図1の(a)参照)の回転体のX軸方向の応答特性とY軸方向の応答特性をそれぞれ単独に測定可能な構成とすることもできる。
例えば、X軸方向の応答特性を単独で測定する場合、加振応答分析装置9は、釣合せ信号発生装置8が出力するX軸方向の発振信号Fxと、加振応答分析装置9が出力するX軸方向の加振信号Exを加算した加算信号ADDxをX増幅器11Xに入力する。
さらに、釣合せ信号発生装置8が出力するY軸方向の発振信号FyをY増幅器11Yに入力する。つまり、Y軸方向の加振信号Eyをゼロとする加算信号ADDyをY増幅器11Yに入力する。
このとき、磁気軸受12には、X軸方向の発振信号Fxの成分と、Y軸方向の発振信号Fyの成分と、X軸方向の加振信号Exの成分と、を含んだ電流が供給される。
In addition, the vibration characteristic measuring apparatus 1 is configured to be capable of independently measuring the response characteristic in the X-axis direction and the response characteristic in the Y-axis direction of the rotating body of the multistage centrifugal compressor 50 (see FIG. 1A). You can also
For example, when measuring the response characteristic in the X-axis direction alone, the vibration response analyzer 9 outputs the oscillation signal Fx in the X-axis direction output from the balancing signal generator 8 and the vibration response analyzer 9. An addition signal ADDx obtained by adding the excitation signal Ex in the X-axis direction is input to the X amplifier 11X.
Further, the oscillation signal Fy in the Y-axis direction output from the balancing signal generator 8 is input to the Y amplifier 11Y. That is, the addition signal ADDy that makes the excitation signal Ey in the Y-axis direction zero is input to the Y amplifier 11Y.
At this time, the magnetic bearing 12 is supplied with a current including the component of the oscillation signal Fx in the X-axis direction, the component of the oscillation signal Fy in the Y-axis direction, and the component of the excitation signal Ex in the X-axis direction. The

そして、X変位センサ13X(図3参照)は回転体のX軸方向の変位を測定してX変位信号Mx(図3参照)を加振応答分析装置9(図3参照)に入力する。
回転体は磁気軸受12に供給される電流のX軸方向の発振信号Fxの成分によって、X軸方向の不釣合い振動が解消され、X変位センサ13Xは加振によって振動する回転体の振幅を測定できる。
The X displacement sensor 13X (see FIG. 3) measures the displacement of the rotating body in the X-axis direction and inputs the X displacement signal Mx (see FIG. 3) to the vibration response analyzer 9 (see FIG. 3).
In the rotating body, the unbalanced vibration in the X-axis direction is eliminated by the component of the oscillation signal Fx in the X-axis direction of the current supplied to the magnetic bearing 12, and the X displacement sensor 13X measures the amplitude of the rotating body that vibrates by excitation. it can.

同様に、加振応答分析装置9は、釣合せ信号発生装置8が出力するY軸方向の発振信号Fyと、加振応答分析装置9が出力するY軸方向の加振信号Eyを加算した加算信号ADDyをY増幅器11Yに入力する。さらに、X軸方向の加振信号Exをゼロとする加算信号ADDxをX増幅器11Xに入力する。このようにすると、Y変位センサ13Y(図3参照)で回転体のY軸方向の変位を測定できる。
回転体は磁気軸受12に供給される電流のY軸方向の発振信号Fyの成分によって、Y軸方向の不釣合い振動が解消され、Y変位センサ13Yは加振によって振動する回転体の振幅を測定できる。
このように、回転体のX軸方向の応答特性とY軸方向の応答特性をそれぞれ単独に測定可能な構成であってもよい。
Similarly, the vibration response analyzer 9 adds the Y-axis direction oscillation signal Fy output from the balancing signal generator 8 and the Y-axis direction vibration signal Ey output from the vibration response analyzer 9. The signal ADDy is input to the Y amplifier 11Y. Further, an addition signal ADDx for setting the X-axis direction excitation signal Ex to zero is input to the X amplifier 11X. In this way, the displacement of the rotating body in the Y-axis direction can be measured by the Y displacement sensor 13Y (see FIG. 3).
The rotating body eliminates the unbalanced vibration in the Y-axis direction due to the component of the oscillation signal Fy in the Y-axis direction of the current supplied to the magnetic bearing 12, and the Y displacement sensor 13Y measures the amplitude of the rotating body that vibrates due to the excitation. it can.
Thus, the structure which can each measure the response characteristic of the X-axis direction of a rotary body and the response characteristic of a Y-axis direction independently may be sufficient.

以上のように、本実施形態に係る振動特性測定装置1(図1の(a)参照)は、多段遠心圧縮機50(図1の(a)参照)に備わる回転体(回転軸51(図1の(a)参照)、遠心羽根車53(図1の(a)参照))の応答特性を測定するとき、釣合せ信号発生装置8(図3参照)が発生する発振信号Fx、Fyと、加振応答分析装置9(図3参照)が発生する加振信号Ex,Eyを加算器7a(図3参照)で加算し、X軸方向の発振信号Fxの成分とX軸方向の加振信号Exの成分を含んだ加算信号ADDx(図3参照)、およびY軸方向の発振信号Fyの成分とY軸方向の加振信号Eyの成分を含んだ加算信号ADDy(図3参照)を生成する。
加算信号ADDx,ADDyは、加振制御装置7(図3参照)からの出力信号として電流増幅器11(X増幅器11X(図3参照),Y増幅器11Y(図3参照))に入力される。
X増幅器11Xは、加算信号ADDxを増幅した電流を磁気軸受12の電磁石12X(図3参照)に供給し、Y増幅器11Yは、加算信号ADDyを増幅した電流を磁気軸受12の電磁石12Y(図3参照)に供給する。
As described above, the vibration characteristic measuring apparatus 1 (see FIG. 1A) according to the present embodiment includes a rotating body (rotating shaft 51 (see FIG. 1A)) provided in the multistage centrifugal compressor 50 (see FIG. 1A). 1 (see (a) of FIG. 1), when measuring the response characteristics of the centrifugal impeller 53 (see (a) of FIG. 1)), the oscillation signals Fx and Fy generated by the balancing signal generator 8 (see FIG. 3) Then, the excitation signals Ex and Ey generated by the excitation response analyzer 9 (see FIG. 3) are added by the adder 7a (see FIG. 3), and the component of the oscillation signal Fx in the X-axis direction and the excitation in the X-axis direction are added. An addition signal ADDx (see FIG. 3) including the component of the signal Ex, and an addition signal ADDy (see FIG. 3) including the component of the oscillation signal Fy in the Y-axis direction and the component of the excitation signal Ey in the Y-axis direction are generated. To do.
The addition signals ADDx and ADDy are input to the current amplifier 11 (X amplifier 11X (see FIG. 3), Y amplifier 11Y (see FIG. 3)) as an output signal from the vibration control device 7 (see FIG. 3).
The X amplifier 11X supplies the current obtained by amplifying the addition signal ADDx to the electromagnet 12X (see FIG. 3) of the magnetic bearing 12, and the Y amplifier 11Y supplies the current obtained by amplifying the addition signal ADDy to the electromagnet 12Y (FIG. 3). Supply).

回転体は、電磁石12X(図3参照)に供給される電流に含まれるX軸方向の発振信号Fxの成分と、電磁石12Y(図3参照)に供給される電流に含まれるY軸方向の発振信号Fyの成分によって、不釣合い振動が解消する。また、電磁石12Xに供給される電流に含まれるX軸方向の加振信号Exの成分と、電磁石12Yに供給される電流に含まれるY軸方向の加振信号Eyの成分によって加振される。   The rotating body includes the component of the oscillation signal Fx in the X-axis direction included in the current supplied to the electromagnet 12X (see FIG. 3) and the oscillation in the Y-axis direction included in the current supplied to the electromagnet 12Y (see FIG. 3). The unbalanced vibration is eliminated by the component of the signal Fy. Further, vibration is performed by the component of the X-axis direction excitation signal Ex included in the current supplied to the electromagnet 12X and the component of the Y-axis direction excitation signal Ey included in the current supplied to the electromagnet 12Y.

この構成によって、振動特性測定装置1(図1の(a)参照)が、多段遠心圧縮機50(図1の(a)参照)に備わる回転体の応答特性を測定するとき、回転体の不釣合い振動を解消することができる。このことによって、加振による強制振動の振幅の許容範囲を広げることができ、変位センサ13(X変位センサ13X(図3参照)、Y変位センサ13Y(図3参照))が出力するX変位信号MxとY変位信号MyのSN比を良くすることができる。そして、加振応答分析装置9(図3参照)は、X軸方向の変位に関する高品質のデータとY軸方向の変位に関する高品質のデータを取得できる。   With this configuration, when the vibration characteristic measuring apparatus 1 (see FIG. 1A) measures the response characteristics of the rotating body provided in the multistage centrifugal compressor 50 (see FIG. 1A), the vibration characteristics of the rotating body are not detected. Balance vibration can be eliminated. As a result, the allowable range of the amplitude of forced vibration due to vibration can be expanded, and the X displacement signal output by the displacement sensor 13 (X displacement sensor 13X (see FIG. 3), Y displacement sensor 13Y (see FIG. 3)). The SN ratio of Mx and Y displacement signal My can be improved. And the vibration response analyzer 9 (refer FIG. 3) can acquire the high quality data regarding the displacement of a X-axis direction, and the high quality data regarding the displacement of a Y-axis direction.

さらに、取得するデータの品質が高く、数少ないデータで回転体の応答特性を評価することができるため、データの取得に要する時間を短くできる。ひいては、データの取得に要する工数を削減することができ、エネルギの消費量を減らすことができる。   Furthermore, since the quality of data to be acquired is high and the response characteristics of the rotating body can be evaluated with a small number of data, the time required for data acquisition can be shortened. As a result, man-hours required for data acquisition can be reduced, and energy consumption can be reduced.

なお、加振信号Ex,Eyとしては、前記した正弦波信号のほか、ランダム信号やパルス信号なども考えられる。
加振応答分析装置9が、正弦波信号以外の信号を加振信号として発生する場合も、その加振信号の成分(第1方向加振成分、第2方向加振成分)に発振信号の成分(余弦波成分、正弦波成分)を加算した回転体制御信号を電流増幅器11(図3参照)で増幅した電流を磁気軸受12(図3参照)に供給する構成とすればよい。
Note that, as the excitation signals Ex and Ey, in addition to the above-described sine wave signal, a random signal, a pulse signal, or the like can be considered.
Even when the vibration response analyzing device 9 generates a signal other than a sine wave signal as a vibration signal, the vibration signal component (first direction vibration component, second direction vibration component) is included in the vibration signal component. What is necessary is just to set it as the structure which supplies the electric current which amplified the rotating body control signal which added (cosine wave component, sine wave component) with the current amplifier 11 (refer FIG. 3) to the magnetic bearing 12 (refer FIG. 3).

また、回転体の安定性を評価するために、回転体の振動波形を分析してシステムパラメータを同定する方法もある。例えば、固有振動数の振動を回転体に発生させる周波数の正弦波成分を含む加振信号で回転体を加振し、さらに、回転体が共振状態にあるときに加振信号を瞬時に遮断したときの自由振動波形によってシステムパラメータを同定することが可能である(システム同定の詳細については、例えば、「MATLABによる制御のためのシステム同定(1996年 足立修一著 東京電機大学出版局)」参照)。   In addition, in order to evaluate the stability of the rotating body, there is also a method of identifying system parameters by analyzing the vibration waveform of the rotating body. For example, the rotating body is vibrated with an excitation signal including a sine wave component of a frequency that causes the vibration of the natural frequency in the rotating body, and the excitation signal is instantaneously cut off when the rotating body is in a resonance state. System parameters can be identified by the free vibration waveform of the time (for example, refer to “System identification for control by MATLAB (Shuichi Adachi, Tokyo Denki University Press)”) .

このようにシステムパラメータを同定する方法の場合にも、固有振動数の振動を回転体に発生させる加振信号に発振信号を加算した回転体制御信号を電流増幅器11(図3参照)で増幅した電流を磁気軸受12(図3参照)に供給する構成とすればよい。さらに、加振信号を遮断した後は回転体が自由振動している間、発振信号Fx、Fyを電流増幅器11で増幅した電流を磁気軸受12に供給する構成とすれば、変位センサ13(図3参照)は、自由振動している回転体の変位を、不釣合い振動の影響を受けることなく測定できる。   In the case of the method for identifying the system parameters as described above, the rotating body control signal obtained by adding the oscillation signal to the excitation signal for generating the vibration of the natural frequency in the rotating body is amplified by the current amplifier 11 (see FIG. 3). What is necessary is just to set it as the structure which supplies an electric current to the magnetic bearing 12 (refer FIG. 3). Furthermore, if the configuration is such that the current obtained by amplifying the oscillation signals Fx and Fy by the current amplifier 11 is supplied to the magnetic bearing 12 while the rotating body is freely vibrating after the excitation signal is cut off, the displacement sensor 13 (FIG. 3) can measure the displacement of a rotating body that is freely vibrating without being affected by unbalanced vibration.

なお、振動特性測定装置1の設計変更例として、例えば、図6に示すように、加算器7aから出力される加算信号ADDx、ADDyの出力を遮断する加振信号遮断器10を有する加振制御装置7を備える構成であってもよい。
加振信号遮断器10には、X変位センサ13Xが出力するX変位信号MxとY変位センサ13Yが出力するY変位信号Myが入力される。
そして加振信号遮断器10は、X変位信号Mxに基づいて算出される回転体のX軸方向の変位、またはY変位信号Myに基づいて算出される回転体のY軸方向の変位の少なくとも一方が所定の閾値を超えたときに、加算信号ADDx、ADDyの信号の出力を遮断するように構成される。
As an example of a design change of the vibration characteristic measuring apparatus 1, for example, as shown in FIG. 6, an excitation control having an excitation signal circuit breaker 10 that blocks output of the addition signals ADDx and ADDy output from the adder 7a. The structure provided with the apparatus 7 may be sufficient.
The vibration signal breaker 10 receives the X displacement signal Mx output from the X displacement sensor 13X and the Y displacement signal My output from the Y displacement sensor 13Y.
The vibration signal breaker 10 is at least one of the displacement in the X-axis direction of the rotating body calculated based on the X-displacement signal Mx or the displacement in the Y-axis direction of the rotating body calculated based on the Y-displacement signal My. Is configured to block the output of the addition signals ADDx and ADDy when the value exceeds a predetermined threshold.

この構成によると、例えば、加算信号ADDx、ADDyの加振信号Ex,Eyの成分による加振によって、X軸方向の変位、またはY軸方向の変位が所定の閾値を超えたとき、すなわち、回転体の振幅が許容値をこえたときに、加算信号ADDx、ADDyが電流増幅器11で増幅された電流の、磁気軸受12への供給が遮断される。したがって、回転体に発生している、許容値を超えた振幅での振動を収束させることができ、例えば、シール機構55(図1の(a)参照)が損傷することを防止できる。   According to this configuration, for example, when the displacement in the X-axis direction or the displacement in the Y-axis direction exceeds a predetermined threshold due to the excitation by the components of the excitation signals Ex and Ey of the addition signals ADDx and ADDy, that is, the rotation When the body amplitude exceeds the allowable value, the supply of the current obtained by amplifying the addition signals ADDx and ADDy by the current amplifier 11 to the magnetic bearing 12 is cut off. Therefore, it is possible to converge vibration with an amplitude exceeding the allowable value generated in the rotating body, and for example, it is possible to prevent the seal mechanism 55 (see FIG. 1A) from being damaged.

なお、図示はしないが、加振信号遮断器10を、加振応答分析装置9と加算器7aの間に配置する構成とすれば、回転体の振幅が許容値を超えたときに加振応答分析装置9が出力する加振信号Ex,Eyの加算器7aへの入力を遮断できる。したがって、加振制御装置7から発振信号Fx、Fyのみが出力され、発振信号Fx、Fyを電流増幅器11で増幅した電流が磁気軸受12に供給される。
この構成によると、回転体に発生している、許容値を超えた振幅での振動をより速やかに収束させることができる。
Although not shown, if the vibration signal breaker 10 is arranged between the vibration response analyzer 9 and the adder 7a, the vibration response when the amplitude of the rotating body exceeds the allowable value. The input of the excitation signals Ex and Ey output from the analyzer 9 to the adder 7a can be cut off. Therefore, only the oscillation signals Fx and Fy are output from the vibration control device 7, and the current obtained by amplifying the oscillation signals Fx and Fy by the current amplifier 11 is supplied to the magnetic bearing 12.
According to this configuration, it is possible to more quickly converge the vibration with the amplitude exceeding the allowable value generated in the rotating body.

1 振動特性測定装置
7 加振制御装置
8 釣合せ信号発生装置
9 加振応答分析装置
10 加振信号遮断器
11 電流増幅器(電流供給装置)
12 磁気軸受
13 変位センサ(測定装置)
50 多段遠心圧縮機(回転機械)
51 回転軸(回転体)
52a,52b,52c 軸受部材
53 遠心羽根車(回転体)
54 ハウジング(静止体)
55 シール機構
ADDx,ADDy 加算信号(回転体制御信号)
Ex,Ey 加振信号(加振制御信号)
Fx,Fy 発振信号
Fz 振動解消信号
DESCRIPTION OF SYMBOLS 1 Vibration characteristic measuring apparatus 7 Excitation control apparatus 8 Balance signal generator 9 Excitation response analyzer 10 Excitation signal breaker 11 Current amplifier (current supply apparatus)
12 Magnetic bearing 13 Displacement sensor (measuring device)
50 Multistage centrifugal compressor (rotary machine)
51 Rotating shaft (Rotating body)
52a, 52b, 52c Bearing member 53 Centrifugal impeller (rotating body)
54 Housing (stationary body)
55 Seal mechanism ADDx, ADDy addition signal (rotary body control signal)
Ex, Ey Excitation signal (Excitation control signal)
Fx, Fy oscillation signal Fz vibration cancellation signal

Claims (3)

回転機械の回転体を非接触支持する磁気軸受と、
前記回転体が振動するときの振幅を測定する測定装置と、
前記磁気軸受に電流を供給する電流供給装置と、
前記回転体を加振するように前記磁気軸受を制御する加振制御信号を出力するとともに、前記測定装置が測定する前記振幅に基づいて、前記加振制御信号に対する前記回転体の振動の前記加振制御信号に対する応答特性を測定する加振制御装置と、を備える振動特性測定装置であって、
前記加振制御装置は加振応答分析装置と、釣合せ信号発生装置とを有し、前記応答特性を測定するときに、
前記回転体が回転するときに発生する不釣合い振動を前記磁気軸受で解消するための振動解消信号を前記釣合せ信号発生装置で発生させて前記不釣合い振動を解消するとともに、前記振動解消信号を前記加振制御信号に加算した回転体制御信号を出力し、前記不釣合い振動が無い状態を基準とする振幅の許容値を最大振幅とする強制振動を発生させて前記回転体を加振し、
加振されている前記回転体の前記応答特性を前記加振応答分析装置で測定することを特徴とする振動特性測定装置。
A magnetic bearing that supports the rotating body of the rotating machine in a non-contact manner;
A measuring device for measuring an amplitude when the rotating body vibrates;
A current supply device for supplying a current to the magnetic bearing;
An excitation control signal for controlling the magnetic bearing to vibrate the rotating body is output, and the vibration of the rotating body is applied to the excitation control signal based on the amplitude measured by the measuring device. A vibration control device for measuring a response characteristic to a vibration control signal,
The vibration control device has a vibration response analysis device and a balancing signal generator, and when measuring the response characteristics,
The balance signal generator generates a vibration cancellation signal for canceling the unbalanced vibration generated when the rotating body rotates by the magnetic bearing, and cancels the unbalanced vibration. A rotating body control signal added to the excitation control signal is output, and the rotating body is vibrated by generating a forced vibration having a maximum amplitude based on an allowable value based on the state without the unbalanced vibration,
A vibration characteristic measuring apparatus, wherein the response characteristic of the rotating body being vibrated is measured by the vibration response analyzer.
前記回転機械が多段遠心圧縮機であって、
前記許容値は、前記多段遠心圧縮機の静止体に備わるシール機構と前記回転体とが前記不釣合い振動で接触しないように設けられていることを特徴とする請求項1に記載の振動特性測定装置。
The rotating machine is a multi-stage centrifugal compressor,
2. The vibration characteristic measurement according to claim 1, wherein the allowable value is provided so that a seal mechanism provided in a stationary body of the multistage centrifugal compressor and the rotating body do not contact with each other due to the unbalanced vibration. apparatus.
回転機械の回転体を非接触支持する磁気軸受と、
前記回転体が振動するときの振幅を測定する測定装置と、
前記回転体を加振するように前記磁気軸受を制御する加振制御信号を出力する加振応答分析装置および前記回転体が回転するときに発生する不釣合い振動を解消する振動解消信号を出力する釣合せ信号発生装置を有するとともに、前記測定装置が測定する前記振幅に基づいて、前記回転体の振動の前記加振制御信号に対する応答特性を測定する加振制御装置と、を備える振動特性測定装置における振動特性測定方法であって、
前記応答特性を測定するときに、前記振動解消信号を前記釣合せ信号発生装置で発生させて前記不釣合い振動を解消するステップと、
前記加振制御信号に前記振動解消信号を加算して、前記不釣合い振動が無い状態を基準とする振幅の許容値を最大振幅とする強制振動を発生させて前記回転体を加振し、加振されている前記回転体の前記応答特性を前記加振応答分析装置で測定するステップと、
を有することを特徴とする振動特性測定方法。
A magnetic bearing that supports the rotating body of the rotating machine in a non-contact manner;
A measuring device for measuring an amplitude when the rotating body vibrates;
An excitation response analyzer for outputting an excitation control signal for controlling the magnetic bearing so as to vibrate the rotating body, and a vibration canceling signal for eliminating unbalanced vibration that occurs when the rotating body rotates. And a vibration control device that includes a balance signal generator and a vibration control device that measures a response characteristic of the vibration of the rotating body to the vibration control signal based on the amplitude measured by the measurement device. A vibration characteristic measuring method in
When measuring the response characteristic, generating the vibration cancellation signal in the balancing signal generator to eliminate the unbalanced vibration;
The vibration cancellation signal is added to the vibration control signal to generate a forced vibration having a maximum amplitude based on a state where there is no unbalanced vibration, and the rotating body is vibrated to be excited. Measuring the response characteristics of the rotating body being vibrated with the vibration response analyzer;
A vibration characteristic measuring method characterized by comprising:
JP2015087770A 2015-04-22 2015-04-22 Vibration characteristic measuring apparatus and vibration characteristic measuring method Expired - Fee Related JP6038997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015087770A JP6038997B2 (en) 2015-04-22 2015-04-22 Vibration characteristic measuring apparatus and vibration characteristic measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015087770A JP6038997B2 (en) 2015-04-22 2015-04-22 Vibration characteristic measuring apparatus and vibration characteristic measuring method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011101422A Division JP5827492B2 (en) 2011-04-28 2011-04-28 Vibration characteristic measuring apparatus and vibration characteristic measuring method

Publications (2)

Publication Number Publication Date
JP2015143711A true JP2015143711A (en) 2015-08-06
JP6038997B2 JP6038997B2 (en) 2016-12-07

Family

ID=53888812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015087770A Expired - Fee Related JP6038997B2 (en) 2015-04-22 2015-04-22 Vibration characteristic measuring apparatus and vibration characteristic measuring method

Country Status (1)

Country Link
JP (1) JP6038997B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112556830A (en) * 2020-11-27 2021-03-26 杭州大路实业有限公司 Vibration test device and method for low-vibration motor under load working condition
CN116577716A (en) * 2023-07-06 2023-08-11 西安高压电器研究院股份有限公司 Current sensor vibration characteristic testing method, related equipment and related system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429693A (en) * 1987-07-23 1989-01-31 Mitsubishi Heavy Ind Ltd Centrifugal compressor
JPH05288219A (en) * 1992-04-09 1993-11-02 Ebara Corp Magnetic bearing device
JPH09144756A (en) * 1995-11-24 1997-06-03 Hitachi Ltd Controller for magnetic bearing
JP2002071532A (en) * 2000-08-30 2002-03-08 Ebara Corp Reaction measuring device for mechanical element
JP2006152994A (en) * 2004-12-01 2006-06-15 Mitsubishi Heavy Ind Ltd Centrifugal compressor
JP2010164186A (en) * 2009-01-19 2010-07-29 Ihi Corp Magnetic bearing control device and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429693A (en) * 1987-07-23 1989-01-31 Mitsubishi Heavy Ind Ltd Centrifugal compressor
EP0301285A1 (en) * 1987-07-23 1989-02-01 Mitsubishi Jukogyo Kabushiki Kaisha Centrifugal compressor
JPH05288219A (en) * 1992-04-09 1993-11-02 Ebara Corp Magnetic bearing device
JPH09144756A (en) * 1995-11-24 1997-06-03 Hitachi Ltd Controller for magnetic bearing
JP2002071532A (en) * 2000-08-30 2002-03-08 Ebara Corp Reaction measuring device for mechanical element
JP2006152994A (en) * 2004-12-01 2006-06-15 Mitsubishi Heavy Ind Ltd Centrifugal compressor
JP2010164186A (en) * 2009-01-19 2010-07-29 Ihi Corp Magnetic bearing control device and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016006174; 江口真人 他2名: '磁気軸受搭載シール動特性測定装置の開発' 機械力学・計測制御講演論文集 Dynamics and Design Conference 2000 CD-ROM論文集 , 2000, 411 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112556830A (en) * 2020-11-27 2021-03-26 杭州大路实业有限公司 Vibration test device and method for low-vibration motor under load working condition
CN112556830B (en) * 2020-11-27 2022-09-23 杭州大路实业有限公司 Vibration test device and method for low-vibration motor under load working condition
CN116577716A (en) * 2023-07-06 2023-08-11 西安高压电器研究院股份有限公司 Current sensor vibration characteristic testing method, related equipment and related system
CN116577716B (en) * 2023-07-06 2023-10-20 西安高压电器研究院股份有限公司 Current sensor vibration characteristic testing method, related equipment and related system

Also Published As

Publication number Publication date
JP6038997B2 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
JP5827492B2 (en) Vibration characteristic measuring apparatus and vibration characteristic measuring method
US7252000B2 (en) Method and machine for rotor imbalance determination
WO2007007333A2 (en) System and method for active detection of asymmetry in rotating structures
JP2012251486A (en) Magnetic levitation vacuum pump, whirling estimation method, rotor balance inspection method, and method for adjusting magnetic bearing control gain
JP6038997B2 (en) Vibration characteristic measuring apparatus and vibration characteristic measuring method
Li et al. Investigations on the rotordynamic coefficients of pocket damper seals using the multi-frequency, one-dimensional, whirling orbit model and RANS solutions
US10571361B2 (en) Inducing and monitoring a vibratory response in a component
Zhang et al. Surge detection approach for magnetically suspended centrifugal compressors using adaptive frequency estimator
Silvestri et al. Theoretical and experimental investigation on rotor dynamic behavior of bladeless turbine for innovative cycles
Wang et al. Optimal phase compensation control and experimental study of flexible rotor supported by magnetic bearing
Salvat et al. Two-dimensional modeling of shaft precessional motions induced by blade/casing unilateral contact in aircraft engines
Shao et al. Active fast vibration control of rotating machinery via a novel electromagnetic actuator
Barabas et al. Identification of Coupled Natural Frequencies in a Rotor-Stator Test-Rig for Different Gas Properties
Algule et al. Experimental study of unbalance in shaft rotor system using vibration signature analysis
JP6811134B2 (en) Wing abnormality detection device, wing abnormality detection system, rotary mechanical system and wing abnormality detection method
Kalista A proposal of the methodology for dynamic force coefficients identification of labyrinth seal with use of active magnetic bearings
JP2002071532A (en) Reaction measuring device for mechanical element
Shen et al. Effect of the seal force on nonlinear dynamics and stability of the rotor-bearing-seal system
JP6524011B2 (en) Vibration diagnostic apparatus and vibration diagnostic method
KR20160029206A (en) Vibration exciter in the horizontal and vertical and rotational direction
CN204575249U (en) A kind of fast adjuster of enclosure space internal rotor amount of unbalance
Williams et al. Causes of Subsynchronous Vibration in Integrally Geared Compressors
Gunter Understanding amplitude and phase in rotating machinery
Saito et al. Trial of applying the unbalance vibration compensator to axial position of the rotor with AMB
CN102410240B (en) Dynamic balance method of magnetic molecular pump

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160420

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161102

R150 Certificate of patent or registration of utility model

Ref document number: 6038997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees