JP2015143173A - Light-emitting device mounting ceramic substrate and light-emitting apparatus - Google Patents

Light-emitting device mounting ceramic substrate and light-emitting apparatus Download PDF

Info

Publication number
JP2015143173A
JP2015143173A JP2014169970A JP2014169970A JP2015143173A JP 2015143173 A JP2015143173 A JP 2015143173A JP 2014169970 A JP2014169970 A JP 2014169970A JP 2014169970 A JP2014169970 A JP 2014169970A JP 2015143173 A JP2015143173 A JP 2015143173A
Authority
JP
Japan
Prior art keywords
crystal particles
zirconia
light
alumina
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014169970A
Other languages
Japanese (ja)
Inventor
克仁 森
Katsuhito Mori
克仁 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2014169970A priority Critical patent/JP2015143173A/en
Publication of JP2015143173A publication Critical patent/JP2015143173A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • H01L2924/15155Shape the die mounting substrate comprising a recess for hosting the device the shape of the recess being other than a cuboid
    • H01L2924/15156Side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15313Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a land array, e.g. LGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting device mounting ceramic substrate and a light-emitting apparatus having a high light reflectance in a near-ultraviolet light region.SOLUTION: The light-emitting device mounting ceramic substrate A comprises an alumina crystal particle 1-based ceramic sintered body including zirconia crystal particles 3. The alumina crystal particles 1 have nearly parallel opposite faces. The alumina crystal particles 1 including the zirconia crystal particles 3 exist 60% or more by number percentage in the ceramic sintered body. The zirconia crystal particles 3 are mixed crystals of monoclinic zirconia with at least one of tetragonal zirconia and cubic zirconia.

Description

本発明は、発光素子搭載用セラミック基体および発光装置に関する。   The present invention relates to a ceramic substrate for mounting a light emitting element and a light emitting device.

近年、発光素子を発光素子搭載用基板に搭載した発光装置は、高輝度化および白色化に対する改良が図られ、携帯電話や大型の液晶テレビ等のバックライトとして利用されている。その中で、従来の発光素子搭載用基体に用いられてきた合成樹脂に比べて、高反射性を有するだけでなく、耐熱性や耐久性に優れ、長期間紫外線に曝されても劣化しないという理由から、発光素子搭載用基板としてセラミック焼結体が注目されている。   In recent years, a light-emitting device in which a light-emitting element is mounted on a light-emitting element mounting substrate has been improved for high luminance and whitening, and is used as a backlight for a mobile phone, a large-sized liquid crystal television, and the like. Among them, it not only has high reflectivity compared to synthetic resins that have been used for conventional light-emitting element mounting substrates, but also has excellent heat resistance and durability, and does not deteriorate even when exposed to ultraviolet rays for a long time. For this reason, ceramic sintered bodies have attracted attention as light emitting element mounting substrates.

例えば、特許文献1には、アルミナを主成分とするセラミック焼結体からなる発光素子搭載用セラミック基板が開示されている。   For example, Patent Document 1 discloses a ceramic substrate for mounting a light emitting element, which is made of a ceramic sintered body mainly composed of alumina.

特開2012−67008号公報JP 2012-67008 A

しかしながら、特許文献1に開示されたアルミナを主成分とするセラミック焼結体により構成される発光素子搭載用セラミック基体は、近紫外光領域における光の反射率が低いという問題を有していた。   However, the ceramic substrate for mounting a light emitting element constituted by a ceramic sintered body mainly composed of alumina disclosed in Patent Document 1 has a problem that the reflectance of light in the near ultraviolet light region is low.

従って、本発明は、近紫外光領域における光の反射率の高い発光素子搭載用セラミック基体および発光装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a ceramic substrate for mounting a light emitting element and a light emitting device having a high reflectance of light in the near ultraviolet light region.

本発明の発光素子搭載用セラミック基体は、アルミナ結晶粒子を主体とし、ジルコニア結晶粒子を内包しているアルミナ結晶粒子を有するセラミック焼結体からなることを特徴とする。   The ceramic substrate for mounting a light emitting element of the present invention is characterized by comprising a ceramic sintered body having alumina crystal particles mainly containing alumina crystal particles and containing zirconia crystal particles.

本発明の発光装置は、前記の発光素子搭載用セラミック基体からなる基板上に発光素子を備えていることを特徴とする。   The light-emitting device of the present invention is characterized in that a light-emitting element is provided on a substrate made of the above-described ceramic substrate for mounting a light-emitting element.

本発明によれば、近紫外光領域における光の反射率の高い発光素子搭載用セラミック基体および発光装置を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the ceramic base | substrate and light-emitting device for light emitting element mounting with the high reflectance of the light in a near ultraviolet light area | region can be obtained.

(a)は、本実施形態の発光素子搭載用セラミック基体を部分的に拡大した断面模式図であり、(b)は、従来の発光素子搭載用セラミック基体を部分的に拡大した断面模式図である。(A) is the cross-sectional schematic diagram which expanded partially the ceramic base | substrate for light emitting element mounting of this embodiment, (b) is the cross-sectional schematic diagram which expanded the conventional ceramic base | substrate for light emitting element mounting partially. is there. 本発明の発光装置の一実施形態を模式的に示す断面図であり、(a)は、発光素子搭載用セラミック基体が平板状の基板である発光装置、(b)は、平板状の基板の表面に発光素子搭載用セラミック基体からなる枠体を設けた発光装置である。It is sectional drawing which shows typically one Embodiment of the light-emitting device of this invention, (a) is the light-emitting device whose ceramic base for light emitting element mounting is a flat substrate, (b) is a flat substrate. This is a light-emitting device having a surface made of a ceramic substrate for mounting light-emitting elements on the surface. 実施例において作製した試料No.1および試料No.6の試料についての反射率の測定結果である。Sample No. produced in the Examples 1 and sample no. It is the measurement result of the reflectance about 6 samples.

図1(a)は、本実施形態の発光素子搭載用セラミック基体を部分的に拡大した断面模式図であり、(b)は、従来の発光素子搭載用セラミック基体を部分的に拡大した断面模式図である。   FIG. 1A is a schematic cross-sectional view in which the light-emitting element mounting ceramic substrate of the present embodiment is partially enlarged, and FIG. 1B is a cross-sectional schematic diagram in which a conventional light-emitting element mounting ceramic substrate is partially expanded. FIG.

本実施形態の発光素子搭載用セラミック基体Aは、アルミナ結晶粒子1を主体とするセラミック焼結体からなるものであり、ジルコニア結晶粒子3が内包されているアルミナ結晶粒子1を含むものである。このような構成の発光素子搭載用セラミック基体Aによれば、近紫外領域(波長:360〜400nm)における光の反射率を高めることができる。   The light emitting element mounting ceramic substrate A of the present embodiment is made of a ceramic sintered body mainly composed of alumina crystal particles 1 and includes alumina crystal particles 1 in which zirconia crystal particles 3 are encapsulated. According to the ceramic substrate A for mounting a light emitting element having such a configuration, the reflectance of light in the near ultraviolet region (wavelength: 360 to 400 nm) can be increased.

アルミナは、通常、結晶構造が三方晶系コランダム型構造であり、格子定数が、a=0.47〜0.48nm、c=0.128〜0.132nmの範囲を有するものである。一方、ジルコニアは温度領域により3種類の結晶構造を持つものであり、単斜晶系、正方晶系および立方晶系となるものであるが、格子定数は、例えば、立方晶系の場合、a=0.500〜0.520nmである。   Alumina usually has a trigonal corundum type crystal structure and a lattice constant of a = 0.47 to 0.48 nm and c = 0.128 to 0.132 nm. On the other hand, zirconia has three types of crystal structures depending on the temperature region, and is monoclinic, tetragonal, or cubic, but the lattice constant is, for example, a cubic = 0.500 to 0.520 nm.

このように結晶構造および格子定数が大きく異なるアルミナ結晶粒子1とジルコニア結晶粒子3とを、ジルコニア結晶粒子3がアルミナ結晶粒子1の内部に包含されるように複合させた場合には、両結晶粒子の元々の屈折率の違いによる影響に加えて、ジルコニア結晶粒子3の周囲のアルミナ結晶粒子1内に転位などにより結晶格子が変形している領域が形成される。これにより光の反射率が変化しやすくなるものと考えられる。   When the alumina crystal particles 1 and the zirconia crystal particles 3 having greatly different crystal structures and lattice constants are combined so that the zirconia crystal particles 3 are included in the alumina crystal particles 1, both crystal particles In addition to the influence of the difference in refractive index, a region in which the crystal lattice is deformed due to dislocations is formed in the alumina crystal particles 1 around the zirconia crystal particles 3. As a result, it is considered that the reflectance of light easily changes.

ここで、アルミナ結晶粒子1を主体とするとは、リートベルト解析による測定でアルミナの含有量が85質量%以上であるものをいう。この場合、アルミナ結晶粒子1は結晶構造が維持される限り、酸化アルミニウムとは異なる他の金属酸化物(例えば、Si,アルカリ土類金属元素、希土類元素など)が固溶していても良い。   Here, “mainly composed of the alumina crystal particles 1” means that the alumina content is 85% by mass or more as measured by Rietveld analysis. In this case, as long as the crystal structure of the alumina crystal particles 1 is maintained, other metal oxides (for example, Si, alkaline earth metal elements, rare earth elements, etc.) different from aluminum oxide may be dissolved.

ジルコニア結晶粒子3とは、ジルコニア(ZrO)を主成分とする結晶粒子のことを言うが、上記した単斜晶系、正方晶系および立方晶系の3つの結晶構造を示すものであれば、わずかに安定化材などの成分が固溶していているものも含まれる意味である。なお、発光素子搭載用セラミック基体A中に含まれるジルコニア結晶粒子3の割合としてはリートベルト解析による測定で1〜10質量%であることが望ましい。この場合、残部はおおよそアルミナ結晶粒子1の含有量となる。 The zirconia crystal particle 3 refers to a crystal particle mainly composed of zirconia (ZrO 2 ), as long as it exhibits the above three crystal structures of monoclinic system, tetragonal system and cubic system. It also means that a component in which a component such as a stabilizing material is slightly dissolved is included. The ratio of the zirconia crystal particles 3 contained in the light emitting element mounting ceramic substrate A is preferably 1 to 10% by mass as measured by Rietveld analysis. In this case, the balance is approximately the content of the alumina crystal particles 1.

図1(b)には、従来の発光素子搭載用セラミック基体を部分的に拡大した断面模式図を示しているが、ジルコニア結晶粒子3を有しないアルミナ質セラミック焼結体からなる発光素子搭載用セラミック基体の場合には、近紫外光領域における光の反射率が低いものとなる。   FIG. 1B shows a schematic cross-sectional view in which a conventional ceramic substrate for mounting a light emitting device is partially enlarged. For mounting a light emitting device made of an alumina ceramic sintered body having no zirconia crystal particles 3. In the case of a ceramic substrate, the reflectance of light in the near ultraviolet region is low.

また、ジルコニア結晶粒子3がアルミナ結晶粒子1の粒界に存在するような結晶組織の場合には、両結晶粒子1、3間に屈折率の違いはあるものの、ジルコニア結晶粒子3が粒界に存在することにより発光素子搭載用セラミック基体Aの表面にジルコニア結晶粒子3が存在することから、そのジルコニア結晶粒子3の色彩が濃く反映されるため、近紫外光領域における光の反射率が低いものとなる。   Further, when the crystal structure is such that the zirconia crystal particles 3 are present at the grain boundaries of the alumina crystal particles 1, the zirconia crystal particles 3 are at the grain boundaries although there is a difference in refractive index between the crystal particles 1 and 3. Since the presence of the zirconia crystal particles 3 on the surface of the ceramic substrate A for mounting the light emitting element reflects the color of the zirconia crystal particles 3 deeply, the light reflectance in the near ultraviolet region is low. It becomes.

本実施形態の発光素子搭載用セラミック基体Aでは、ジルコニア結晶粒子3を内包するアルミナ結晶粒子1の個数割合が、当該発光素子搭載用セラミック基体Aの断面における単位面積内に認められるアルミナ結晶粒子1の総数を100%としたときに60%以上であることが望ましい。これにより近紫外光領域における光の反射率をさらに高めることが
可能になる。この場合、ジルコニア結晶粒子3はアルミナ結晶粒子1のほぼ中央部に存在していることが望ましい。
In the light emitting element mounting ceramic substrate A of the present embodiment, the alumina crystal particles 1 in which the number ratio of the alumina crystal particles 1 including the zirconia crystal particles 3 is recognized within the unit area in the cross section of the light emitting element mounting ceramic substrate A. When the total number is 100%, it is preferably 60% or more. As a result, the reflectance of light in the near ultraviolet region can be further increased. In this case, it is desirable that the zirconia crystal particles 3 are present at substantially the center of the alumina crystal particles 1.

また、本実施形態の発光素子搭載用セラミック基体Aでは、アルミナ結晶粒子1は、その形状がほぼ平行な対向面を有しているものであることが望ましい。ここで、ほぼ平行とは、アルミナ結晶粒子1の対向する平坦な面が平行な状態から10°以内の範囲で傾斜しているものも含まれる意味である。アルミナ結晶粒子1の形状として丸くなっているものではなく、アルミナ結晶粒子1を断面視したときの形状が細長状であるような、いわゆる対向する面が平坦でかつ面同士がほぼ平行なものである。このような形状のアルミナ結晶粒子1は対向する平坦な表面を有するものとなり、光の反射する面の面積が大きくなる。その結果、近紫外光領域における光の反射率を大きくすることができる。   In the light emitting element mounting ceramic substrate A of the present embodiment, it is desirable that the alumina crystal particles 1 have opposing surfaces whose shapes are substantially parallel. Here, “substantially parallel” means that the opposed flat surfaces of the alumina crystal particles 1 are inclined within a range of 10 ° or less from the parallel state. The shape of the alumina crystal particle 1 is not round, but the shape when the alumina crystal particle 1 is viewed in cross section is elongated, so-called opposed surfaces are flat and the surfaces are almost parallel. is there. The alumina crystal particles 1 having such a shape have opposing flat surfaces, and the area of the light reflecting surface is increased. As a result, the reflectance of light in the near ultraviolet light region can be increased.

この場合、アルミナ結晶粒子1は、発光素子搭載用セラミック基体Aの断面での最長径が10μm以上40μm以下、最短径が5μm以上10μm以下であることが望ましい。このとき、ジルコニア結晶粒子3のサイズ(最大径)は1〜5μmであることが望ましい。また、アルミナ結晶粒子1の平均粒径をD1、ジルコニア結晶粒子3の平均粒径をD2としたときの比D2/D1が0.09〜0.19であることが望ましい。ここで、アルミナ結晶粒子1およびジルコニア結晶粒子3の平均粒径は、発光素子搭載用セラミック基体Aの断面において、アルミナ結晶粒子1が20〜30個含まれる円を描き、円内および円周にかかった結晶粒子を選択し、アルミナ結晶粒子1およびこれに内包されているジルコニア結晶粒子3のそれぞれの輪郭を画像処理し、結晶粒子の面積を求め、同じ面積を持つ円に置き換えたときの直径を算出することによって求める。   In this case, the alumina crystal particles 1 desirably have a longest diameter of 10 to 40 μm and a shortest diameter of 5 to 10 μm in the cross section of the ceramic substrate A for mounting light emitting elements. At this time, the size (maximum diameter) of the zirconia crystal particles 3 is desirably 1 to 5 μm. The ratio D2 / D1 is preferably 0.09 to 0.19, where the average particle diameter of the alumina crystal particles 1 is D1 and the average particle diameter of the zirconia crystal particles 3 is D2. Here, the average particle diameters of the alumina crystal particles 1 and the zirconia crystal particles 3 are drawn in a circle including 20 to 30 alumina crystal particles 1 in the cross section of the ceramic substrate A for mounting a light emitting element, and within and around the circle. The selected crystal particles are selected, the contours of the alumina crystal particles 1 and the zirconia crystal particles 3 contained therein are image-processed, the area of the crystal particles is obtained, and the diameter when replaced with a circle having the same area Is obtained by calculating.

また、本実施形態の発光素子搭載用セラミック基体Aを構成するジルコニア結晶粒子3は、単斜晶ジルコニアと正方晶ジルコニアとの2相の混晶、単斜晶ジルコニアと立方晶ジルコニアとの2相の混晶、単斜晶ジルコニア、正方晶ジルコニアおよび立方晶ジルコニアの3相の混晶のうちのいずれかであることが望ましい。ジルコニア結晶粒子3がどのような結晶系を有するかの判定は、セラミック焼結体を粉砕した試料のX線回折パターンから求める。   In addition, the zirconia crystal particles 3 constituting the ceramic substrate A for mounting a light emitting element of the present embodiment are a two-phase mixed crystal of monoclinic zirconia and tetragonal zirconia, two phases of monoclinic zirconia and cubic zirconia. It is desirable that the mixed crystal be any one of three-phase mixed crystals of monoclinic zirconia, tetragonal zirconia, and cubic zirconia. The determination of what crystal system the zirconia crystal particles 3 have is obtained from the X-ray diffraction pattern of a sample obtained by pulverizing a ceramic sintered body.

図2は、本発明の発光装置Bの一実施形態を模式的に示す断面図であり、(a)は、発光素子搭載用セラミック基体Aが平板状の基板8である発光装置、(b)は、平板状の基板8の表面に発光素子搭載用セラミック基体Aからなる枠体9を設けた発光装置である。   FIG. 2 is a cross-sectional view schematically showing an embodiment of the light-emitting device B of the present invention, where (a) is a light-emitting device in which the light-emitting element mounting ceramic substrate A is a flat substrate 8; Is a light emitting device in which a frame body 9 made of a ceramic substrate A for mounting light emitting elements is provided on the surface of a flat substrate 8.

本実施形態の発光装置Bは、上記の発光素子搭載用セラミック基体Aからなる基板8の表面および/または内部に導体5を形成し、この導体5の表面に発光素子7を搭載したものである。この発光装置Bは、基板8が、上述したように、アルミナ結晶粒子を主体とするセラミック焼結体中にジルコニア結晶粒子3を内包するアルミナ結晶粒子1を有するものであるため、アルミナ結晶粒子1とジルコニア結晶粒子3との間で屈折率の差が大きくなり、近紫外光領域における光の反射率を高めることができる。   In the light emitting device B of the present embodiment, the conductor 5 is formed on the surface and / or inside of the substrate 8 made of the ceramic substrate A for mounting the light emitting element, and the light emitting element 7 is mounted on the surface of the conductor 5. . In the light emitting device B, as described above, since the substrate 8 includes the alumina crystal particles 1 including the zirconia crystal particles 3 in the ceramic sintered body mainly composed of the alumina crystal particles, the alumina crystal particles 1 And the difference in refractive index between the zirconia crystal particles 3 and the reflectance of light in the near ultraviolet region can be increased.

なお、発光装置Bが、図2(b)に示されるように、その表面に発光素子搭載用セラミック基体Aからなる基板8と同材質の枠体9を備えたものであると、反射した光を一定の方向に集光させることが可能となり、より発光強度の高い発光装置を得ることができる。この場合、発光素子搭載用セラミック基体Aからなる基板および枠体9のうちの少なくとも一方を本実施形態の発光素子搭載用セラミック基体Aによって形成しても同様の効果を得ることができる。   As shown in FIG. 2B, when the light emitting device B is provided with a frame body 9 made of the same material as the substrate 8 made of the light emitting element mounting ceramic base A, the reflected light Can be condensed in a certain direction, and a light emitting device with higher emission intensity can be obtained. In this case, the same effect can be obtained even if at least one of the substrate made of the light emitting element mounting ceramic substrate A and the frame 9 is formed by the light emitting element mounting ceramic substrate A of the present embodiment.

次に、本実施形態の発光素子搭載用セラミック基体Aの製造方法について説明する。まず、原料粉末として、アルミナ粉末およびジルコニア粉末を準備する。アルミナ粉末の平
均粒径は1〜2μm、ジルコニア粉末の平均粒径は0.5〜1μmであるものが良い。また、必要に応じて焼結助剤を添加しても良く、焼結助剤としては、SiO、アルカリ土類元素(Ca、Mg、Sr、Ba)の酸化物が好ましい。
Next, a manufacturing method of the light emitting element mounting ceramic substrate A of the present embodiment will be described. First, alumina powder and zirconia powder are prepared as raw material powders. The average particle diameter of the alumina powder is preferably 1 to 2 μm, and the average particle diameter of the zirconia powder is preferably 0.5 to 1 μm. Also, may be added sintering aids as needed, as a sintering aid, SiO 2, oxides of alkaline earth elements (Ca, Mg, Sr, Ba ) are preferred.

次に、アルミナ粉末およびジルコニア粉末を有機ビヒクルとともにボールミルなどの攪拌混合機を用いて混合粉体を調製し、所定の形状に成形した後、1500〜1700℃の温度で焼成する。これにより本実施形態の発光素子搭載用セラミック基体Aを得ることができる。   Next, alumina powder and zirconia powder are mixed with an organic vehicle using a stirrer such as a ball mill to form a mixed powder, formed into a predetermined shape, and then fired at a temperature of 1500 to 1700 ° C. Thereby, the ceramic substrate A for mounting a light emitting element of the present embodiment can be obtained.

これは、上記した平均粒径の関係を持つアルミナ粉末とジルコニア粉末とを、アルミナ粉末100質量部に対してジルコニア粉末1〜10質量部の範囲で添加し、アルミナの粒成長を促すように焼成を行うことによりジルコニア結晶粒子3がアルミナ結晶粒子1に包含されるような結晶組織のセラミック焼結体が得られるからである。   This is because the alumina powder and zirconia powder having the above average particle size relationship are added in the range of 1 to 10 parts by mass of zirconia powder with respect to 100 parts by mass of alumina powder, and fired to promote the grain growth of alumina. This is because a ceramic sintered body having a crystal structure in which the zirconia crystal particles 3 are included in the alumina crystal particles 1 can be obtained by performing the above.

つまり、本実施形態の発光素子搭載用セラミック基体Aを構成するセラミック焼結体は、焼結助剤として、SiO、アルカリ土類元素(Ca、Mg、Sr、Ba)の酸化物の組合せにおいて、安定な液相を形成する組成を用いる。これにより高温で焼成した場合にも、焼結助剤から生じる結晶相が生成し難いことから、主原料であるアルミナ粉末同士が液相を介して接触しやくなり、これによりアルミナ結晶粒子1の粒成長が促進され、ジルコニア結晶粒子3を内包するアルミナ結晶粒子1が形成されやくなると考えられる。この場合、アルカリ土類元素の少なくとも2つの元素(成分)の組成が等モルに近い組成となるように焼結助剤の組成を調整するのが良い。また、このような焼結助剤を用いることにより、アルミナ結晶粒子1は、その形状がほぼ平行な対向面を有するものとなる。 That is, the ceramic sintered body constituting the light emitting element mounting ceramic substrate A of the present embodiment is a combination of oxides of SiO 2 and alkaline earth elements (Ca, Mg, Sr, Ba) as a sintering aid. A composition that forms a stable liquid phase is used. Thereby, even when baked at a high temperature, it is difficult to form a crystal phase generated from the sintering aid, so that the alumina powder as the main raw material is easily brought into contact with each other through the liquid phase. It is considered that the grain growth is promoted and the alumina crystal particles 1 including the zirconia crystal particles 3 are easily formed. In this case, it is preferable to adjust the composition of the sintering aid so that the composition of at least two elements (components) of the alkaline earth element is a composition close to equimolar. Further, by using such a sintering aid, the alumina crystal particles 1 have opposing surfaces whose shapes are substantially parallel.

なお、ジルコニア粉末の添加量が1質量部未満であると、アルミナ結晶粒子1の粒成長が抑制され、ジルコニア結晶粒子3がアルミナ結晶粒子1のほぼ中央領域(アルミナ結晶粒子1の周縁から平均粒径の約10%の厚み分だけ入り込んだ領域)に取り込まれ難くなる。ジルコニア粉末の添加量がアルミナ粉末100質量部に対して10質量部より多くなると、添加する有機ビヒクルの量にも因るが、緻密な成形体を形成することが困難となる。なお、発光素子搭載用セラミック基体Aの表面や内部に導体を形成する場合には、導体となる金属の種類に応じて焼成雰囲気の酸素濃度を変化させる。例えば、導体としてタングステン(W)やモリブデン(Mo)を用いるときには、水素−窒素の混合ガスを用いる。   If the amount of the zirconia powder added is less than 1 part by mass, the grain growth of the alumina crystal particles 1 is suppressed, and the zirconia crystal particles 3 are in the substantially central region of the alumina crystal particles 1 (average grains from the periphery of the alumina crystal particles 1). It is difficult to be taken into a region where the thickness is about 10% of the diameter. When the amount of zirconia powder added is more than 10 parts by mass with respect to 100 parts by mass of alumina powder, it becomes difficult to form a dense molded body, although it depends on the amount of organic vehicle to be added. In addition, when forming a conductor on the surface or inside of the ceramic substrate A for mounting light emitting elements, the oxygen concentration in the firing atmosphere is changed according to the type of metal used as the conductor. For example, when tungsten (W) or molybdenum (Mo) is used as the conductor, a hydrogen-nitrogen mixed gas is used.

まず、平均粒径が1.6μmのアルミナ粉末(αアルミナ:純度99.8質量%)、平均粒径が0.8μmのジルコニア粉末(純度99.8質量%)、酸化珪素(SiO)、酸化カルシウム(CaO)および酸化マグネシウム(MgO)を準備した。アルミナ粉末およびジルコニア粉末の混合粉末を100質量部としたときに、酸化珪素(SiO)を4質量部、酸化カルシウム(CaO)を0.5質量部、酸化マグネシウム(MgO)を0.5質量部添加して混合粉末を調製した。アルミナ粉末とジルコニア粉末との混合割合は表1に示した。なお、焼成後の発光素子搭載用セラミック基体に含まれるジルコニア結晶粒子の割合は調合組成にほぼ一致するものであった。 First, alumina powder having an average particle diameter of 1.6 μm (α alumina: purity 99.8 mass%), zirconia powder having an average particle diameter of 0.8 μm (purity 99.8 mass%), silicon oxide (SiO 2 ), Calcium oxide (CaO) and magnesium oxide (MgO) were prepared. When the mixed powder of alumina powder and zirconia powder is 100 parts by mass, 4 parts by mass of silicon oxide (SiO 2 ), 0.5 parts by mass of calcium oxide (CaO), and 0.5 parts by mass of magnesium oxide (MgO) Part of the mixture was added to prepare a mixed powder. The mixing ratio of alumina powder and zirconia powder is shown in Table 1. In addition, the ratio of the zirconia crystal particle contained in the ceramic substrate for mounting light emitting elements after firing almost coincided with the prepared composition.

次に、混合粉末にアクリル樹脂の成形用バインダを添加し、高純度のアルミナボールを用いたミルによりスラリーを調製し、ドクターブレード法により平均厚みが200μmのセラミックグリーンシートを作製した後、このセラミックグリーンシートを金型を用いて製品形状の寸法に加工した。   Next, an acrylic resin molding binder is added to the mixed powder, a slurry is prepared by a mill using high-purity alumina balls, and a ceramic green sheet having an average thickness of 200 μm is prepared by a doctor blade method. The green sheet was processed into a product shape using a mold.

次に、この製品形状の成形体を焼結させるために、プッシャー式トンネル炉にて、昇温
速度が約150℃/h、最高温度が1570〜1590℃、最高温度での保持時間が2時間となる条件にて焼成を行ない、縦、横、厚みが、それぞれ60mm、50mm、0.4mmの発光素子搭載用セラミックス基体の試料を作製した。得られた発光素子搭載用セラミックス基体はアルキメデス法による測定でいずれも気孔率が1%以下であり緻密な焼結体となっていた。
Next, in order to sinter the molded product of this product shape, the temperature rising rate is about 150 ° C./h, the maximum temperature is 1570 to 1590 ° C., and the holding time at the maximum temperature is 2 hours in a pusher type tunnel furnace. Baking was performed under the conditions as described above, and a sample of a ceramic substrate for mounting a light-emitting element having a length, width, and thickness of 60 mm, 50 mm, and 0.4 mm, respectively, was produced. The obtained ceramic substrate for mounting light-emitting elements was a dense sintered body with a porosity of 1% or less as measured by Archimedes method.

次に、得られた発光素子搭載用セラミックス基体の試料について、結晶組織、結晶粒子の平均粒径および反射率の測定を以下の方法で行なった。   Next, with respect to the obtained sample of the ceramic substrate for mounting a light emitting element, the crystal structure, the average particle diameter of the crystal particles, and the reflectance were measured by the following method.

発光素子搭載用セラミックス基体の結晶組織は、各試料の表面を表面から約20μmの深さまで鏡面研磨加工し、元素分析器を備えた走査型電子顕微鏡を用いて評価した。   The crystal structure of the ceramic substrate for mounting the light emitting element was evaluated using a scanning electron microscope equipped with an element analyzer after mirror polishing the surface of each sample to a depth of about 20 μm from the surface.

アルミナ結晶粒子およびジルコニア結晶粒子の平均粒径は、発光素子搭載用セラミック基体の断面において、アルミナ結晶粒子またはジルコニア結晶粒子が約20個含まれる円を描き、円内および円周にかかった結晶粒子を選択し、アルミナ結晶粒子またはジルコニア結晶粒子のそれぞれの輪郭を画像処理し、結晶粒子の面積を求め、同じ面積を持つ円に置き換えたときの直径を算出することによって求めた。   The average particle size of the alumina crystal particles and the zirconia crystal particles is such that a circle containing about 20 alumina crystal particles or zirconia crystal particles is drawn in the cross section of the ceramic substrate for mounting the light emitting element, and the crystal particles are applied in and around the circle. Was selected, image processing was performed on the contour of each of the alumina crystal particles or zirconia crystal particles, the area of the crystal particles was determined, and the diameter when the circle was replaced with a circle having the same area was calculated.

反射率測定用の試料のサイズは縦、横、厚みが、それぞれ30mm、30mm、0.25mmとした。作製した反射率測定用基板の反射率を分光測色計(コニカミノルタ製CM−3700d)を用いて波長360〜500nmの範囲にて測定した。表1には、360nm、380nmおよび450nmでの反射率を載せた。   The sample size for reflectivity measurement was 30 mm, 30 mm, and 0.25 mm in length, width, and thickness, respectively. The reflectance of the produced reflectance measurement substrate was measured in the wavelength range of 360 to 500 nm using a spectrocolorimeter (CM-3700d manufactured by Konica Minolta). Table 1 lists the reflectivity at 360 nm, 380 nm, and 450 nm.

セラミック焼結体中に存在するアルミナ結晶粒子のうち、ジルコニア結晶粒子を内包するアルミナ結晶粒子1の個数割合は、発光素子搭載用セラミック基体を切断した個片の断面を走査型電子顕微鏡により撮影し、得られた結晶組織の写真から結晶粒子の個数を数えることによって求めた。単位面積としては、アルミナ結晶粒子の総数が50個入る領域とした。   Among the alumina crystal particles present in the ceramic sintered body, the number ratio of the alumina crystal particles 1 including the zirconia crystal particles is obtained by photographing a cross section of a piece obtained by cutting a ceramic substrate for mounting a light emitting element with a scanning electron microscope. It was determined by counting the number of crystal grains from the photograph of the obtained crystal structure. The unit area was a region where the total number of alumina crystal particles was 50.

また、発光素子搭載用セラミック基体の一部を粉砕した試料のX線回折パターンからアルミナ(104面)に対するジルコニアのX線回折強度を測定し、ジルコニアの結晶系毎に含有割合を求めた。このとき、正方晶ジルコニアと立方晶ジルコニアについては、ピークが重なった状態の回折強度とした。表1に示した、アルミナ(104)面に対する各結晶系のジルコニアの回折強度は、アルミナ(104)面を1としたときの値である。   Further, the X-ray diffraction intensity of zirconia with respect to alumina (104 surface) was measured from the X-ray diffraction pattern of a sample obtained by pulverizing a part of the ceramic substrate for mounting light emitting elements, and the content ratio was determined for each zirconia crystal system. At this time, for tetragonal zirconia and cubic zirconia, the diffraction intensity was in a state where peaks overlapped. The diffraction intensity of each crystal zirconia with respect to the alumina (104) surface shown in Table 1 is a value when the alumina (104) surface is 1.

比較例として、ジルコニア粉末を添加しなかった試料(試料No.1)と平均粒径がアルミナ粉末よりも大きいジルコニア粉末(平均粒径2μm)を用いて同様に作製した試料(試料No.2)を作製し、評価した。試料No.2の試料ではジルコニア結晶粒子がアルミナ結晶粒子の粒界に存在していることを確認した。   As a comparative example, a sample (sample No. 2) prepared in the same manner using a sample (sample No. 1) to which zirconia powder was not added and a zirconia powder (average particle size 2 μm) whose average particle size is larger than that of alumina powder. Were made and evaluated. Sample No. In sample 2, it was confirmed that zirconia crystal particles were present at the grain boundaries of the alumina crystal particles.

Figure 2015143173
Figure 2015143173

図3に、一例として、試料No.1および試料No.6の試料についての反射率の測定結果を示した。表1の結果から明らかなように、試料No.3〜8では、波長360nmにおける反射率がいずれも67%以上、波長380nmにおける反射率が72%以上であった。これらの試料では、アルミナ結晶粒子中にジルコニア結晶粒子が包含されている結晶組織を成すものであった。また、試料No.3〜8は、セラミック焼結体中に含まれるジルコニア結晶粒子が単斜晶ジルコニアとともに、正方晶ジルコニアおよび立方晶ジルコ
ニアのうちの少なくとも一方を含む混晶であった。
As an example, FIG. 1 and sample no. The reflectance measurement results for the sample 6 were shown. As is clear from the results in Table 1, sample No. 3 to 8, the reflectance at a wavelength of 360 nm was 67% or more, and the reflectance at a wavelength of 380 nm was 72% or more. These samples had a crystal structure in which the zirconia crystal particles were included in the alumina crystal particles. Sample No. Nos. 3 to 8 were mixed crystals in which the zirconia crystal particles contained in the ceramic sintered body contained monoclinic zirconia and at least one of tetragonal zirconia and cubic zirconia.

この中で、ジルコニア結晶粒子を内包するアルミナ結晶粒子の個数割合が60%(50個中30個)以上である試料No.6〜8では、波長360nmにおける光の反射率が70%以上であった。   Among them, the sample No. 2 in which the number ratio of the alumina crystal particles including the zirconia crystal particles is 60% (30 out of 50) or more. In 6-8, the reflectance of light in wavelength 360nm was 70% or more.

これに対し、ジルコニア粉末を添加しなかった試料(試料No.1)およびジルコニア結晶粒子がアルミナ結晶粒子の粒界に存在する結晶組織を有する試料No.2は、ともに、波長380nm以下での反射率が67%と低かった。   On the other hand, a sample (sample No. 1) to which zirconia powder was not added and a sample No. 1 having a crystal structure in which zirconia crystal particles exist at the grain boundaries of alumina crystal particles. In both cases, the reflectance at a wavelength of 380 nm or less was as low as 67%.

A・・・・・発光素子搭載用セラミック基体
B・・・・・発光装置
1・・・・・アルミナ結晶粒子
3・・・・・ジルコニア結晶粒子
5・・・・・導体
7・・・・・発光素子
8・・・・・基板
9・・・・・枠体
A ... Ceramic substrate for mounting light emitting element B ... Light emitting device 1 ... Alumina crystal particle 3 ... Zirconia crystal particle 5 ... Conductor 7 ...・ Light emitting element 8... Substrate 9.

Claims (5)

アルミナ結晶粒子を主体とし、ジルコニア結晶粒子を内包しているアルミナ結晶粒子を有するセラミック焼結体からなることを特徴とする発光素子搭載用セラミック基体。   A ceramic substrate for mounting a light emitting element, comprising a ceramic sintered body having alumina crystal particles mainly containing alumina crystal particles and containing zirconia crystal particles. 前記アルミナ結晶粒子は、ほぼ平行な対向面を有していることを特徴とする請求項1に記載の発光素子搭載用セラミック基体。   2. The ceramic substrate for mounting a light emitting element according to claim 1, wherein the alumina crystal particles have substantially parallel facing surfaces. 前記ジルコニア結晶粒子を内包しているアルミナ結晶粒子が、前記セラミック焼結体中に個数割合で60%以上存在していることを特徴とする請求項1または2に記載の発光素子搭載用セラミック基体。   3. The ceramic substrate for mounting a light emitting element according to claim 1, wherein the alumina crystal particles enclosing the zirconia crystal particles are present in the ceramic sintered body in a number ratio of 60% or more. . 前記ジルコニア結晶粒子は、単斜晶ジルコニアと、正方晶ジルコニアおよび立方晶ジルコニアの少なくとも一方との混晶であることを特徴とする請求項1乃至3のうちいずれかに記載の発光素子搭載用セラミック基体。   The ceramic for mounting a light emitting element according to any one of claims 1 to 3, wherein the zirconia crystal particles are a mixed crystal of monoclinic zirconia and at least one of tetragonal zirconia and cubic zirconia. Substrate. 請求項1乃至4のうちいずれかに記載の発光素子搭載用セラミック基体からなる基板上に発光素子を備えていることを特徴とする発光装置。   A light emitting device comprising a light emitting element on a substrate made of the ceramic substrate for mounting a light emitting element according to claim 1.
JP2014169970A 2013-12-26 2014-08-23 Light-emitting device mounting ceramic substrate and light-emitting apparatus Pending JP2015143173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014169970A JP2015143173A (en) 2013-12-26 2014-08-23 Light-emitting device mounting ceramic substrate and light-emitting apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013269423 2013-12-26
JP2013269423 2013-12-26
JP2014169970A JP2015143173A (en) 2013-12-26 2014-08-23 Light-emitting device mounting ceramic substrate and light-emitting apparatus

Publications (1)

Publication Number Publication Date
JP2015143173A true JP2015143173A (en) 2015-08-06

Family

ID=53888521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014169970A Pending JP2015143173A (en) 2013-12-26 2014-08-23 Light-emitting device mounting ceramic substrate and light-emitting apparatus

Country Status (1)

Country Link
JP (1) JP2015143173A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222674A (en) * 2010-04-07 2011-11-04 Kyoritsu Elex Co Ltd Method for manufacturing reflector
JP2011241131A (en) * 2010-05-20 2011-12-01 Sumitomo Metal Electronics Devices Inc Ceramic sintered body, light-reflecting article, and package for storing light-emitting element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222674A (en) * 2010-04-07 2011-11-04 Kyoritsu Elex Co Ltd Method for manufacturing reflector
JP2011241131A (en) * 2010-05-20 2011-12-01 Sumitomo Metal Electronics Devices Inc Ceramic sintered body, light-reflecting article, and package for storing light-emitting element

Similar Documents

Publication Publication Date Title
JP5083211B2 (en) Composite for light conversion, light emitting device using the same, and color tone control method
KR102376825B1 (en) Alumina sintered body and ground substrate for optical element
JP2010024278A (en) Phosphor ceramic plate and light-emitting element using it
US20190309223A1 (en) Ceramic complex, light source for projector, and method for producing ceramic complex
JP6034484B2 (en) Light emitting element mounting substrate and light emitting element module
JP6449963B2 (en) Light wavelength conversion member and light emitting device
TW200914392A (en) Spinel sintered body, method for producing the same, transparent substrate, and liquid crystal projector
JP2017075086A (en) Red zirconia sintered body and method for producing the same
CN109863224B (en) Nitride phosphor particle-dispersed sialon ceramic, method for producing same, and fluorescent member
JP6589723B2 (en) Fluorescent material and method for producing the same
KR102229730B1 (en) Optical wavelength conversion member and light emitting device
JP2020090424A (en) Ceramic composite, light emitting divice using the same, and method for producing the same
JP2016176988A (en) Low reflection member
JP6646658B2 (en) Alumina sintered body and base substrate for optical element
JP6882335B2 (en) Ceramic composition
JP6852463B2 (en) Fluorescent lens and light emitting device
JP6684192B2 (en) Light emitting element mounting substrate, light emitting element mounting circuit board, light emitting element module, and method for manufacturing light emitting element mounting substrate
US11014855B2 (en) Transparent AlN sintered body and method for producing the same
JP7140968B2 (en) CERAMIC COMPOSITE, LIGHT SOURCE FOR PROJECTOR, AND METHOD FOR MANUFACTURING CERAMIC COMPOSITE
JP2015143173A (en) Light-emitting device mounting ceramic substrate and light-emitting apparatus
JP4729705B2 (en) Method for producing translucent alumina sintered body and method for producing optical filter
JP7089175B2 (en) Ceramic complex, light emitting device using it, and method for manufacturing ceramic complex
JP7094183B2 (en) Ceramic complex and its manufacturing method
Takahashi et al. Transparent Y-α SiAlON: Ce3+ Ceramics Fabricated by Low-Temperature Liquid Phase Sintering Technique
TWI771599B (en) Optical wavelength conversion member and light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180828