JP4729705B2 - Method for producing translucent alumina sintered body and method for producing optical filter - Google Patents

Method for producing translucent alumina sintered body and method for producing optical filter Download PDF

Info

Publication number
JP4729705B2
JP4729705B2 JP2006001308A JP2006001308A JP4729705B2 JP 4729705 B2 JP4729705 B2 JP 4729705B2 JP 2006001308 A JP2006001308 A JP 2006001308A JP 2006001308 A JP2006001308 A JP 2006001308A JP 4729705 B2 JP4729705 B2 JP 4729705B2
Authority
JP
Japan
Prior art keywords
sintered body
alumina sintered
mno
translucent alumina
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006001308A
Other languages
Japanese (ja)
Other versions
JP2007182348A (en
Inventor
正明 長島
元造 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tottori University
Original Assignee
Tottori University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tottori University filed Critical Tottori University
Priority to JP2006001308A priority Critical patent/JP4729705B2/en
Publication of JP2007182348A publication Critical patent/JP2007182348A/en
Application granted granted Critical
Publication of JP4729705B2 publication Critical patent/JP4729705B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、透光性を有する透光性アルミナ焼結体とそれを用いた光フィルタに関する。   The present invention relates to a translucent alumina sintered body having translucency and an optical filter using the same.

アルミナ焼結体は、機械的強度、電気絶縁性、耐熱耐食性に優れた材料であり、従来から幅広く用いられている。また、それらの優れた特性に加えさらに透光性を有するアルミナ焼結体は、高圧ナトリウムランプ用発光管やメタルハライドランプ等の高輝度放電灯(HID)等に用いられている。   Alumina sintered bodies are materials having excellent mechanical strength, electrical insulation, and heat and corrosion resistance, and have been widely used. In addition to these excellent characteristics, an alumina sintered body having translucency is used for high-intensity discharge lamps (HID) such as arc tubes for high-pressure sodium lamps and metal halide lamps.

従来、透光性アルミナ焼結体としては、MgOの添加(特許文献1)したものが一般的に用いられており、MgOの他にLa2O3及びY2O3を添加して粒界相を形成し、結晶粒子を均一にすることにより透光性を改善すること(特許文献2)等も報告されている。
米国特許3026,210 特公昭57−37554号
Conventionally, as the light-transmitting alumina sintered body, one having MgO added (Patent Document 1) is generally used. In addition to MgO, La2O3 and Y2O3 are added to form a grain boundary phase, and crystal It has also been reported to improve translucency by making particles uniform (Patent Document 2).
US Patent 3026,210 Japanese Patent Publication No.57-37554

しかしながら、従来の透光性アルミナ焼結体は、1600℃以上の比較的高温で焼成する必要があり、かつ水素中又は真空中で焼成することが必要であることから、安価に製造することが困難であるという問題があった。
また、従来の透光性アルミナ焼結体は、高圧ナトリウムランプ用発光管等の限られた用途のみに使用されていた。
However, since the conventional translucent alumina sintered body needs to be fired at a relatively high temperature of 1600 ° C. or higher and needs to be fired in hydrogen or vacuum, it can be manufactured at low cost. There was a problem that it was difficult.
Moreover, the conventional translucent alumina sintered body has been used only for limited applications such as arc tubes for high-pressure sodium lamps.

そこで、本発明は、比較的低温で焼成することが可能で安価に製造できる透光性アルミナ焼結体の製造方法を提供することを第1の目的とする。
また、本発明は、光フィルタの製造方法を提供することを第2の目的とする。
Accordingly, a first object of the present invention is to provide a method for producing a translucent alumina sintered body that can be fired at a relatively low temperature and can be produced at low cost.
Moreover, this invention makes it the 2nd objective to provide the manufacturing method of an optical filter .

以上の第1の目的を達成するために、本発明に係る透光性アルミナ焼結体の製造方法は、アルミナ粉末に、酸化マンガン(MnO)を0.01wt%〜0.4wt%の範囲で混合して成形してなる成形体を、1400℃以下の温度で焼成することを含むことを特徴とする。
この本発明に係る光性アルミナ焼結体の製造方法によれば、大気雰囲気中でかつ従来の透光性アルミナ焼結体より低温で焼成して製造することが可能である。
In order to achieve the first object described above, a method for producing a translucent alumina sintered body according to the present invention includes manganese oxide (MnO) in an alumina powder in a range of 0.01 wt% to 0.4 wt%. It is characterized by including baking the molded object formed by mixing at the temperature of 1400 degrees C or less .
According to the method of manufacturing the translucent alumina sintered body according to the present invention, it is possible to produce by firing at a lower temperature than in the and conventional translucent alumina sintered body air atmosphere.

また、上記第2の目的を達成するために、本発明に係る光フィルタの製造方法は、アルミナ粉末に、酸化マンガン(MnO)を0.01wt%〜0.4wt%の範囲で混合して成形してなる成形体を、1400℃以下の温度で焼成して透光性アルミナ焼結体を製造し、該焼結体を特定の阻止帯域の光の透過を阻止し、前記阻止帯域より長い波長の光と前記阻止帯域より短い波長の光を透過させる光フィルタに用いることを特徴とする。 In order to achieve the second object, an optical filter manufacturing method according to the present invention is formed by mixing alumina powder with manganese oxide (MnO) in a range of 0.01 wt% to 0.4 wt%. The formed body is fired at a temperature of 1400 ° C. or less to produce a translucent alumina sintered body, the sintered body is blocked from transmitting light in a specific stop band, and has a wavelength longer than the stop band. And an optical filter that transmits light having a wavelength shorter than the stop band .

以上のように構成された本発明に係る透光性アルミナ焼結体の製造方法は、大気雰囲気中でかつ比較的低温で焼成することができるので、安価に製造できる。
また、本発明に係る製造方法により作製された透光性アルミナ焼結体は、光の透過率が波長依存性を有しているので、光管以外の用途に使用し得る。
Since the method for producing a translucent alumina sintered body according to the present invention configured as described above can be fired in an air atmosphere at a relatively low temperature, it can be produced at a low cost.
Further, the present invention in the production method translucent alumina sintered body produced by, since the light transmittance has a wavelength dependency, can be used in applications other than light emission tube.

以下、図面を参照しながら、本発明に係る実施の形態について説明する。
本実施の形態の透光性アルミナ焼結体は、マンガンを含むアルミナにより構成されており、高い透光性を有している。
すなわち、本発明は、本発明者等による鋭意研究の結果、アルミナにMnを含む例えば酸化マンガン(MnO)を添加して焼成することにより透光性を有する透光性アルミナ焼結体が得られることを見出して、完成するに至ったものである。
Embodiments according to the present invention will be described below with reference to the drawings.
The translucent alumina sintered body of the present embodiment is made of alumina containing manganese and has high translucency.
That is, as a result of intensive studies by the present inventors, the present invention provides a translucent alumina sintered body having translucency by adding, for example, manganese oxide (MnO) containing Mn to alumina and firing. I found out and completed it.

具体的には、アルミナ粉末に、酸化マンガン(MnO)を、例えば、0.01wt%〜0.4wt%の範囲で添加して混合した後、成形して焼成する。このように、酸化マンガン(MnO)を添加すると、大気中においてかつ1600℃以下の比較的低温で焼結させても良好な透光性を有する透光性アルミナ焼結体が得られ、以下のような効果を有する。る。   Specifically, manganese oxide (MnO) is added to alumina powder in a range of 0.01 wt% to 0.4 wt%, for example, and then mixed and then molded and fired. Thus, by adding manganese oxide (MnO), a translucent alumina sintered body having good translucency can be obtained even in the atmosphere and sintered at a relatively low temperature of 1600 ° C. or less. It has the following effects. The

第1に、特別な雰囲気にすることなく、1600℃以下という比較的低温で焼成することができるので、高価な炉が必要でなく、安価に製造することができる。
また、本発明によれば、さらに、1400℃以下というより低温で焼成することができることから、異常結晶粒成長を抑えることができることは言うまでもなく、焼結後の結晶粒径を小さくできるので、機械的強度を高くできる。
さらに、Mnが添加された透光性アルミナ焼結体は、透光性が波長によって変化する波長依存性を有しており、例えば、特定の波長の光を除去したり、特定の波長の光を通過させるフィルタ等の新たな用途に適用し得る。
First, since it can be fired at a relatively low temperature of 1600 ° C. or less without using a special atmosphere, an expensive furnace is not required, and it can be manufactured at low cost.
In addition, according to the present invention, since it can be fired at a lower temperature of 1400 ° C. or lower, it is needless to say that abnormal crystal grain growth can be suppressed. Can increase the mechanical strength.
Furthermore, the translucent alumina sintered body to which Mn is added has a wavelength dependency in which the translucency changes depending on the wavelength. For example, light having a specific wavelength can be removed or light having a specific wavelength can be removed. It can be applied to new uses such as a filter that allows the filter to pass through.

実施例1として、酸化マンガン(MnO)の添加量が異なる6種類のアルミナ焼結体を作製してそれぞれ透過率を評価した。
各試料における酸化マンガン(MnO)の添加量、焼成温度及び焼成時間は以下の表1のようにした。
As Example 1, six types of alumina sintered bodies having different amounts of addition of manganese oxide (MnO) were produced and the transmittance was evaluated.
The amount of manganese oxide (MnO) added to each sample, the firing temperature, and the firing time were as shown in Table 1 below.

表1

Figure 0004729705
Table 1
Figure 0004729705

また、本実施例1では、以下のようなステップで、それぞれ厚さ0.5mmの試料を作製した。
1.秤量
最初に、アルミナ粉体と酸化マンガンとを表1の割合になるように秤量する。
尚、実施例1では、原料として、平均粒径0.2μm、純度99.99%のアルミナ粉体と、純度99.9%の酸化マンガンを用いた。
Further, in Example 1, samples each having a thickness of 0.5 mm were manufactured by the following steps.
1. Weighing First, the alumina powder and manganese oxide are weighed so as to have the ratio shown in Table 1.
In Example 1, alumina powder having an average particle diameter of 0.2 μm and a purity of 99.99% and manganese oxide having a purity of 99.9% were used as raw materials.

2.混合粉砕
秤量されたアルミナ粉体と酸化マンガンとをボールミルを用いてエタノール中で24時間混合粉砕した。
3.脱水・乾燥
混合粉砕された原料を脱水後乾燥する。
2. Mixing and grinding The weighed alumina powder and manganese oxide were mixed and ground in ethanol using a ball mill for 24 hours.
3. Dehydration and drying The mixed and ground material is dehydrated and dried.

4.成形
乾燥後の粉体を、20MPaで加圧成形した後、200MPaの圧力で2分間、冷間等方加圧成形(CIP)した。
5.焼成
表1に示す条件で焼成した。昇温スピード及び冷却スピードは、400℃/1時間とした。
6.切断・研磨
焼成体を切断後、厚さが0.5mmになるまで表面研磨を行った。
4). Molding The powder after drying was pressure-molded at 20 MPa and then cold isostatically pressed (CIP) at 200 MPa for 2 minutes.
5. Firing Firing was performed under the conditions shown in Table 1. The temperature raising speed and the cooling speed were 400 ° C./1 hour.
6). Cutting and polishing After cutting the fired body, surface polishing was performed until the thickness became 0.5 mm.

以上のようにして作製した試料1〜6の光透過率を図1のグラフに示す。図1に示すように、試料1〜6は、それぞれMnOの添加量に応じた透過性を示し、いずれの試料においても選択透過性が確認された。   The light transmittance of samples 1 to 6 produced as described above is shown in the graph of FIG. As shown in FIG. 1, Samples 1 to 6 each showed permeability according to the amount of MnO added, and selective permeability was confirmed in any sample.

例えば、MnOを0.4wt%添加した試料6は、600nm以上の波長の光を透過させるが、550nm以下の波長の光はほとんど透過させないことがわかる。
また、例えば、MnOを0.1wt%添加した試料4は、500nmを中心とするある範囲(例えば、MnOを0.2wt%添加したものでは±50nm、例えば、MnOを0.05wt%添加したものでは±20nm、)の波長の光を阻止し、その阻止帯域の両側の光は透過する。
For example, it can be seen that Sample 6 to which 0.4 wt% of MnO is added transmits light having a wavelength of 600 nm or more, but hardly transmits light having a wavelength of 550 nm or less.
In addition, for example, sample 4 to which 0.1 wt% of MnO is added has a certain range centered on 500 nm (for example, ± 50 nm for those to which 0.2 wt% of MnO is added, for example, 0.05 wt% of MnO is added) Then, light having a wavelength of ± 20 nm is blocked, and light on both sides of the blocking band is transmitted.

以上の実施例1により、アルミナにMnOを添加して焼成することにより、透光性が得られること、及びその透光性が波長依存性を有することが確認された。   By the above Example 1, it was confirmed that translucency can be obtained by adding MnO to alumina and firing, and that the translucency has wavelength dependency.

実施例2では、異なる焼成条件の5種類の試料7〜11を作製して評価した。
各試料の焼成条件を表2に示す。尚、試料7は、実施例1の試料3と同一の試料である。また、表2に示した条件以外の製造条件は、実施例1の試料と同様である。
In Example 2, five types of samples 7 to 11 having different firing conditions were produced and evaluated.
Table 2 shows the firing conditions for each sample. Sample 7 is the same sample as sample 3 of Example 1. The production conditions other than those shown in Table 2 are the same as those of the sample of Example 1.

表2

Figure 0004729705
Table 2
Figure 0004729705

以上の実施例2により、焼成温度が変わってもほぼ同様の透過性が得られ、光の透過率特性は焼成条件によって大きく変化することはないことが確認された。   According to the above Example 2, it was confirmed that substantially the same transmittance was obtained even when the firing temperature was changed, and the light transmittance characteristics were not greatly changed depending on the firing conditions.

実施例3では、MnOの添加量に対する粒径の変化、焼成温度による粒径の変化を確認した。
具体的には、表3に示す条件で試料12〜21を作製して、平均粒径を評価した。
In Example 3, the change of the particle size with respect to the added amount of MnO and the change of the particle size due to the firing temperature were confirmed.
Specifically, Samples 12 to 21 were produced under the conditions shown in Table 3, and the average particle size was evaluated.

表3

Figure 0004729705
Table 3
Figure 0004729705

評価の結果を図3に示す。図3に示すように、MnOの添加量が0.2wt%以下の部分では、MnOの添加量が増えるにしたがって、粒径は大きくなる傾向にあり、0.2wt%以上においては、MnOの添加量に拘わらずほぼ一定である。
また、いずれのMnO添加量の場合についても焼成温度が高いと粒径が大きくなる。
このように、例えば、MnOを0.01〜0.1wt%に設定し、例えば、1250℃程度の比較的低い温度で焼成することにより、比較的高い透過率を確保しつつ焼結後の結晶粒径を小さくできるので、透光性を有する機械的強度の高い透光性アルミナ焼結体が得られる。
The evaluation results are shown in FIG. As shown in FIG. 3, when the amount of MnO added is 0.2 wt% or less, the particle size tends to increase as the amount of MnO added increases. It is almost constant regardless of the amount.
In addition, in any case of adding MnO, the particle size increases when the firing temperature is high.
Thus, for example, by setting MnO to 0.01 to 0.1 wt% and firing at a relatively low temperature of about 1250 ° C., for example, crystals after sintering while ensuring a relatively high transmittance Since the particle size can be reduced, a translucent alumina sintered body having translucency and high mechanical strength can be obtained.

また、実施例1及び2で示したように、本発明に係る透光性アルミナ焼結体は、Mnの添加量に応じた選択透過性を有しているので、フィルタ等の新たな用途の展開が可能である。   In addition, as shown in Examples 1 and 2, the translucent alumina sintered body according to the present invention has selective permeability according to the amount of Mn added, so that it can be used for new applications such as filters. Deployment is possible.

以上のように、本発明に係る透光性アルミナ焼結体は、高圧ナトリウムランプ用発光管等の用途のみならず、光フィルタなどの他の用途にも使用し得る。   As described above, the translucent alumina sintered body according to the present invention can be used not only for an arc tube for a high pressure sodium lamp but also for other uses such as an optical filter.

本発明に係る実施例1における各試料の光透過率を示すグラフである。It is a graph which shows the light transmittance of each sample in Example 1 which concerns on this invention. 本発明に係る実施例2における各試料の光透過率を示すグラフである。It is a graph which shows the light transmittance of each sample in Example 2 which concerns on this invention. 本発明に係る実施例3における各試料(焼結体)の平均粒径を示すグラフである。It is a graph which shows the average particle diameter of each sample (sintered body) in Example 3 which concerns on this invention.

Claims (2)

アルミナ粉末に、酸化マンガン(MnO)を0.01wt%〜0.4wt%の範囲で混合して成形してなる成形体を、1400℃以下の温度で焼成することを含む透光性アルミナ焼結体の製造方法。   Translucent alumina sintering including firing a molded body obtained by mixing and molding alumina oxide (MnO) in a range of 0.01 wt% to 0.4 wt% at a temperature of 1400 ° C. or lower. Body manufacturing method. アルミナ粉末に、酸化マンガン(MnO)を0.01wt%〜0.4wt%の範囲で混合して成形してなる成形体を、1400℃以下の温度で焼成して透光性アルミナ焼結体を製造し、該焼結体を特定の阻止帯域の光の透過を阻止し、前記阻止帯域より長い波長の光と前記阻止帯域より短い波長の光を透過させる光フィルタに用いることを特徴とする光フィルタの製造方法。 A compact formed by mixing alumina powder with manganese oxide (MnO) in the range of 0.01 wt% to 0.4 wt% is fired at a temperature of 1400 ° C. or lower to obtain a translucent alumina sintered body. A light characterized in that the sintered body is used for an optical filter that blocks transmission of light in a specific stop band and transmits light having a wavelength longer than the stop band and light having a wavelength shorter than the stop band. A method for manufacturing a filter.
JP2006001308A 2006-01-06 2006-01-06 Method for producing translucent alumina sintered body and method for producing optical filter Active JP4729705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006001308A JP4729705B2 (en) 2006-01-06 2006-01-06 Method for producing translucent alumina sintered body and method for producing optical filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006001308A JP4729705B2 (en) 2006-01-06 2006-01-06 Method for producing translucent alumina sintered body and method for producing optical filter

Publications (2)

Publication Number Publication Date
JP2007182348A JP2007182348A (en) 2007-07-19
JP4729705B2 true JP4729705B2 (en) 2011-07-20

Family

ID=38338744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006001308A Active JP4729705B2 (en) 2006-01-06 2006-01-06 Method for producing translucent alumina sintered body and method for producing optical filter

Country Status (1)

Country Link
JP (1) JP4729705B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5458552B2 (en) * 2008-11-18 2014-04-02 東ソー株式会社 Highly tough and translucent colored alumina sintered body, method for producing the same, and use
EP2808313B1 (en) * 2008-11-18 2018-05-02 Tosoh Corporation Colored alumina sintered body of high toughness and high translucency, and its production method and its uses
JP5458553B2 (en) * 2008-11-18 2014-04-02 東ソー株式会社 Highly tough and translucent colored alumina sintered body, method for producing the same, and use

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123861A (en) * 1981-01-22 1982-08-02 Murata Manufacturing Co Light transparent polycrystal alumina composition and manufacture
JPS63231361A (en) * 1987-03-20 1988-09-27 Toshiba Corp Fixing method for toner image
JPH0656514A (en) * 1992-08-10 1994-03-01 Takeshi Masumoto Translucent ceramics and its production
JP2001322867A (en) * 2000-05-09 2001-11-20 Matsushita Electric Ind Co Ltd Translucent sintered compact, as fluorescent tube and discharge lamp using the same
JP2002121066A (en) * 2000-10-10 2002-04-23 Kyocera Corp Alumina-based sintered compact and method of producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123861A (en) * 1981-01-22 1982-08-02 Murata Manufacturing Co Light transparent polycrystal alumina composition and manufacture
JPS63231361A (en) * 1987-03-20 1988-09-27 Toshiba Corp Fixing method for toner image
JPH0656514A (en) * 1992-08-10 1994-03-01 Takeshi Masumoto Translucent ceramics and its production
JP2001322867A (en) * 2000-05-09 2001-11-20 Matsushita Electric Ind Co Ltd Translucent sintered compact, as fluorescent tube and discharge lamp using the same
JP2002121066A (en) * 2000-10-10 2002-04-23 Kyocera Corp Alumina-based sintered compact and method of producing the same

Also Published As

Publication number Publication date
JP2007182348A (en) 2007-07-19

Similar Documents

Publication Publication Date Title
US4098612A (en) Transparent yttria ceramics and method for producing same
Wei Transparent ceramics for lighting
JP5530870B2 (en) Translucent polycrystalline sintered body, method for producing translucent polycrystalline sintered body, and arc tube for high-intensity discharge lamp
JP2005075726A (en) Transparent sintered ceramic material
US20080108496A1 (en) Composition Used to Make a Transparent Ceramic Material and Method of Manufacturing the Same
JP6500172B2 (en) Nitride phosphor particle dispersion type sialon ceramics, fluorescent member
JP4729705B2 (en) Method for producing translucent alumina sintered body and method for producing optical filter
US3834915A (en) Fine grain translucent alumina
JPH06211573A (en) Production of transparent y2o3 sintered compact
JP5019380B2 (en) Translucent yttrium oxide aluminum garnet sintered body and manufacturing method thereof.
US7884550B2 (en) Arc tube composed of yttrium aluminum garnet ceramic material
JP2003112963A (en) Alumina sintered compact, and production method therefor
US5780377A (en) Light-transmissive ceramics and method of manufacturing same
JP3301887B2 (en) Arc tube for metal vapor discharge lamp
JP4806952B2 (en) Translucent ceramics
US20080106010A1 (en) Transparent Ceramic Material and Method of Manufacturing the Same
EP1703534A2 (en) High total transmittance alumina discharge vessels having submicron grain size
JP2009184898A (en) Translucent ceramics
CN114477990B (en) Method for preparing high-density magnesia-alumina spinel ceramic through low-temperature pressureless sintering
KR102063778B1 (en) ZnS CERAMICS FOR INFRARED TRANSMITTANCE AND METHOD OF MANUFACTURING THE SAME
JP2007277034A (en) POLYCRYSTALLINE Al2O3 SINTERED COMPACT AND METHOD OF MANUFACTURING THE SAME
JP2006160595A (en) Translucent ceramic, method of producing the same and discharge vessels
JP2014201485A (en) Dielectric ceramic composition, dielectric ceramic and electronic component
JPH08268751A (en) Yttrium-aluminum-garnet calcined powder and production of yttrium-aluminum-garnet sintered compact using the same
JP2008189493A (en) POLYCRYSTALLINE MgO SINTERED BODY

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070730

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150