JP2015141197A - Method for recovering molten fuel in nuclear reactor - Google Patents
Method for recovering molten fuel in nuclear reactor Download PDFInfo
- Publication number
- JP2015141197A JP2015141197A JP2014030037A JP2014030037A JP2015141197A JP 2015141197 A JP2015141197 A JP 2015141197A JP 2014030037 A JP2014030037 A JP 2014030037A JP 2014030037 A JP2014030037 A JP 2014030037A JP 2015141197 A JP2015141197 A JP 2015141197A
- Authority
- JP
- Japan
- Prior art keywords
- fuel debris
- ice
- water
- pressure
- liquid nitrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
Abstract
Description
本発明は、原子炉において溶融した燃料の回収工法と回収装置に関する。The present invention relates to a recovery method and a recovery device for fuel melted in a nuclear reactor.
2011年3月11日東日本大震災により福島第一原発1号機から3号機まで炉心溶融した。
廃炉措置の第一段として溶融した燃料を回収することが急務となっている。現在、抜本的な工法が見いだされていない。On March 11, 2011, the Fukushima Daiichi nuclear power plant from
There is an urgent need to recover the molten fuel as the first step in decommissioning measures. At present, no drastic construction method has been found.
気中あるいは水中で溶融した燃料を回収する装置は研究レベルで進んでいるものの局部的であり、過程も断片的であり漏れを完全に留めていない為に除染してもすぐに汚染してしまい、隔離から回収までに至る全体を捉えた工法がない。現在、技術研究組合国際廃炉研究開発機構からこれらに代わる燃料デブリ撤去工法が公募されている。
Although the device for recovering fuel melted in the air or water is advanced at the research level, it is localized, and the process is fragmented and does not completely keep leaking, so it will contaminate immediately even after decontamination. Therefore, there is no method that captures the entire process from isolation to collection. An alternative method for removing fuel debris from the International Research Institute for Decommissioning of Technology is now open to the public.
炉心溶融した燃料を安全に回収する工法は見当たらない。 There is no method for safely recovering core melted fuel.
本発明は炉心溶融した原子炉格納容器、圧力抑制室の内外に水を流しながら氷粒、液体窒素、ドライアイス、又は冷却空気などの冷媒を充填し漏れた個所を水が凍結し穴を塞ぎ、漏えいあるいは浸水を食い止める。その後に、原子炉圧力容器、ペデスタル床部に溶け落ちた燃料デブリに一定量注水し、その水面を覆うまでを銅入りの氷粒を投下しさらにその上に液体窒素を流し、燃料デブリを銅と氷を凍結した固体中に密封させ、原子炉圧力容器上部に設置された作業床から燃料デブリまでボーリングを行い、そのボーリングした管に内視鏡のような回収装置のプローブを進入させ、プローブ先端から高温高圧蒸気、高温高圧空気又は液体窒素を燃料デブリに噴射し燃料デブリを粉砕し急激に膨張した気体によって粉砕した燃料デブリをプローブ内の圧送管に通し収納容器に回収するものである。 The present invention is a reactor containment vessel in which the core is melted, while water is flowing inside and outside the pressure suppression chamber, water is frozen at the leaked portions filled with refrigerant such as ice particles, liquid nitrogen, dry ice, or cooling air, and the holes are closed. Stop leaking or flooding. After that, a certain amount of water is poured into the fuel debris melted in the reactor pressure vessel and pedestal floor, and ice particles containing copper are dropped until the water surface is covered. And ice are sealed in a frozen solid, bored from the work floor installed at the top of the reactor pressure vessel to the fuel debris, and a probe of a recovery device such as an endoscope is inserted into the bored tube. High-temperature high-pressure steam, high-temperature high-pressure air or liquid nitrogen is injected into the fuel debris from the tip, and the fuel debris is pulverized, and the fuel debris pulverized by the rapidly expanded gas is passed through the pressure feed tube in the probe and collected in the storage container.
事故時の爆発により格納容器は膨大な箇所において亀裂があると想定されそのすべての漏れを食い止める必要があること。 It is assumed that the containment vessel is cracked at an enormous location due to an explosion at the time of the accident, and it is necessary to stop all leaks.
燃料デブリを冷やしている冷却水が放射化しキレツから建屋外の漏れ大量に地中に浸みこみ汚染が拡大していることに抜本的な対策が必要であること。 It is necessary to take drastic measures against the fact that the cooling water that cools fuel debris is activated and leaks from Kiretsu into the ground in large quantities and the pollution is spreading.
原子炉格納容器下部コンクリート内に周囲の地下水が侵入し放射能汚染が拡大していることに対し抜本的な対策が必要なこと。 It is necessary to take drastic measures to prevent the surrounding groundwater from invading into the concrete in the lower part of the reactor containment vessel and increasing radioactive contamination.
燃料デブリを保管中であっても、回収作業中であっても燃料デブリから放出されている気体、液体、及び固体の放射能の流出を食い止め、環境中に放出しないこと。 Regardless of whether fuel debris is being stored or being recovered, the release of gas, liquid, and solid radioactivity released from fuel debris must be prevented and not released into the environment.
物理的にも放射線に対しても作業員の安全を図ること。 Ensure safety for workers both physically and against radiation.
燃料デブリを臨界させず安全に回収すること Safe recovery of fuel debris without criticality
亀裂ができ漏れが発生している原子炉格納容器、圧力抑制室には水を流しながら氷粒、液体窒素、ドライアイス、又は冷却空気などの冷媒を充填する。 The reactor containment vessel and the pressure suppression chamber that are cracked and leaked are filled with a coolant such as ice particles, liquid nitrogen, dry ice, or cooling air while flowing water.
燃料デブリが溜まっている原子炉圧力容器及びペデスタルには、注水し,その領域の半分程度まで水位を上げ、銅を混ぜ、水よりも比重を高くし液体窒素で冷却した氷粒をその水面に覆いつくすまで投下する。 Water is poured into the reactor pressure vessel and pedestal where fuel debris is accumulated, the water level is raised to about half of the area, copper is mixed, and ice particles cooled with liquid nitrogen with a higher specific gravity than water are cooled on the water surface. Drop until covered.
液体窒素を注入し水と銅を凍結させる。この時液体窒素から気化した窒素はフィルターを通し放射能を除去し大気に放出する。 Inject liquid nitrogen to freeze water and copper. At this time, nitrogen vaporized from liquid nitrogen passes through a filter to remove radioactivity and release it to the atmosphere.
固体中に保存された燃料デブリを内視鏡のようなプローブ先端の噴射ノズルから高温蒸気、高温空気、液体窒素を燃料デブリに噴射する。 High-temperature vapor, high-temperature air, and liquid nitrogen are injected into the fuel debris from the injection nozzle at the tip of the probe such as an endoscope for the fuel debris stored in the solid.
原子炉格納容器及び原子炉圧力容器内から漏れている冷却水や原子炉格納容器の下部のコンクリートが凍結し、燃料デブリから放出されている気体、液体、及び固体の放射能の流出が止まり、原子炉格納容器下部コンクリート内に周囲から侵入する地下水を阻止する。環境中に放出されていた放射能の放出がほとんどなくなる。 Cooling water leaking from the reactor containment vessel and reactor pressure vessel and the concrete below the containment vessel freeze, and the outflow of gas, liquid and solid radioactivity released from the fuel debris stops. Prevent underground water from entering the concrete in the lower part of the containment vessel. The release of radioactivity released into the environment is almost eliminated.
氷粒はそのままでは水より軽い為水面に浮かぶが、製作時に銅粉や銃弾型中空銅材を含ませ比重を水より大きくし水底に沈ませ、燃料デブリに直接接するようにする。 Ice grains float on the water surface because they are lighter than water, but contain copper powder and bullet-shaped hollow copper material at the time of manufacture, make the specific gravity larger than water, sink to the bottom of the water, and make direct contact with fuel debris.
液体窒素は銅と氷を凍結させ、さらに間接的に燃料デブリを冷却する。この冷却方法は3層構造となっており、第一層は燃料デブリに接し冷却水を浸した銅粉の層であり、第二層はその上部に銅粉を含んだ氷粒を配置し、第三層は液体窒素を流す構造となっている。銅と氷が形成する固体の中に燃料デブリを閉じ込めており、それらの物質を通して液体窒素が外から冷却するので液体窒素が急激に加熱されることはなく気化しても気体が急膨張することなく放射性物質も拡散することもなく安全に燃料デブリを保管できる。
これらの層で下から配置される銅、水、氷、液体窒素の比重が9、1、0.9、0.8と順番に軽くなっていることから、長時間経過しても層の逆転はなく安定して冷却が行える。
各層の状態は予想される。
第一層については燃料デブリとの境界面は燃料デブリからの崩壊熱の為に膜沸騰の状態であり、層の中央部は銅粉が密集し銅粉間の空間に水の気体と液体が混ざった状態である。燃料デブリの境界面は水の蒸発がするので最大100℃程度と予想される。
この時接している銅も100℃程度になり、銅の持つ材料特性上、銅はこの時延性が働き、燃料デブリに密着するようになりさらに熱効率が上がる。
第二層については第一層との境界で蒸気の凝縮と氷の液化が平衡しており、層中央部は銅粉と水が凍結している状態である。温度分布は氷なので下部が0℃、液体窒素と接している上部が約−200℃となりその間の温度は比例していると予想される。
第三層については第二層との境界で液体窒素が気化、膜沸騰しており、層中央部は液体窒素が流れている状態である。温度は約−200℃である。Liquid nitrogen freezes copper and ice and indirectly cools fuel debris. This cooling method has a three-layer structure, the first layer is a layer of copper powder in contact with fuel debris and soaked in cooling water, the second layer is arranged with ice particles containing copper powder on the top, The third layer has a structure for flowing liquid nitrogen. The fuel debris is confined in the solid formed by copper and ice, and the liquid nitrogen is cooled from the outside through these substances, so the liquid nitrogen will not be heated suddenly and the gas will expand rapidly even if it vaporizes. Fuel debris can be stored safely without any radioactive material spreading.
In these layers, the specific gravity of copper, water, ice, and liquid nitrogen placed from below gradually decreases to 9, 1, 0.9, and 0.8 in order. Cooling can be performed stably.
The state of each layer is expected.
In the first layer, the boundary with the fuel debris is in the state of film boiling due to the decay heat from the fuel debris, and in the center of the layer, the copper powder is concentrated and the water gas and liquid are in the space between the copper powders. It is in a mixed state. The boundary surface of the fuel debris is expected to be about 100 ° C. at maximum because water evaporates.
At this time, the copper that is in contact also becomes about 100 ° C., and due to the material properties of copper, the copper is ductile at this time and comes into close contact with the fuel debris, further increasing the thermal efficiency.
In the second layer, vapor condensation and ice liquefaction are balanced at the boundary with the first layer, and the copper powder and water are frozen in the center of the layer. Since the temperature distribution is ice, the lower part is 0 ° C., the upper part in contact with liquid nitrogen is about −200 ° C., and the temperature between them is expected to be proportional.
In the third layer, liquid nitrogen is vaporized and film boiled at the boundary with the second layer, and liquid nitrogen is flowing in the center of the layer. The temperature is about -200 ° C.
現状、福島で炉心溶融した原子炉はいずれも直径約4.8mのペデスタル床部に脱落した燃料デブリから約100KWの崩壊熱が発生している。氷粉に熱伝導の高い銅を入れると氷層の熱伝導が高くなり氷と銅の凍結した層の厚さが約70cmと試算され、圧力殻といえる層が形成され、燃料デブリ回収時に発生する高温高圧の環境下であっても安定した構造となる。 At present, all reactors melted at the core in Fukushima generate about 100 KW of decay heat from the fuel debris that has fallen onto the pedestal floor with a diameter of about 4.8 m. When copper with high thermal conductivity is put into ice powder, the thermal conductivity of the ice layer is increased, and the thickness of the frozen layer of ice and copper is estimated to be about 70 cm, forming a layer that can be called a pressure shell, which occurs when fuel debris is recovered The structure is stable even in a high temperature and high pressure environment.
現状、福島で炉心溶融した原子炉はいずれも燃料デブリを冷却するために毎時4t以上の冷却水が使われ、そのかなりの部分が建屋に放出されている。
この工法では液体窒素が固定した銅、氷を通して間接的に燃料デブリを冷却しているので、冷却水が不要となる。液体窒素も間接的に冷却しているので気化した窒素に含まれる汚染は少なく、あっても窒素はフィルターを通し放射能を除去され、大気に放出される。格納容器下のコンクリートに侵入していた地下水も凍結され放射能汚染の拡大を阻止している。これらのことから環境に放出された放射能がほとんどなくなる。At present, all reactors melted at the core in Fukushima use 4 t / h or more of cooling water to cool the fuel debris, and a significant part of it is discharged into the building.
In this construction method, fuel debris is indirectly cooled through copper and ice fixed with liquid nitrogen, so that no cooling water is required. Since liquid nitrogen is also indirectly cooled, there is little pollution contained in the vaporized nitrogen, and even if nitrogen is passed through the filter, the radioactivity is removed and released to the atmosphere. The groundwater that had entered the concrete under the containment was also frozen, preventing the spread of radioactive contamination. For these reasons, almost no radioactivity is released into the environment.
高温高圧水、高温高圧空気、または液体窒素を固体中に保存された燃料デブリに噴射し粉砕する。粉砕の過程は以下の八通りが想定される。
第一に、燃料デブリは高温高圧の噴射力に直接打撃を受ける。
第二に、燃料デブリは核燃料、ジルカイド、コンクリート、鉄材など様々な物質から構成されそれらの物質は温度膨張率が大きく異なる。冷却した燃料デブリに高温蒸気や高温空気を与えること300℃から500℃の温度差が生まれ、互いの物質に熱膨張差から燃料デブリ内で最大1000N/mm2となりほとんどの材料強度を上回る熱応力が発生し物質単位で離反する。
第三に、燃料デブリは溶融時に発生した水素,ガス性FPにより空隙が多数存在していることが知られている。十分に冷却されるとこの空隙の中に水が浸透する。一部は氷になっている。高温高圧蒸気又は高温高圧空気を受けると空隙にあった水あるいは氷が一気に蒸発し空隙内に急激に圧力が高まり空隙の境界を破壊し燃料デブリは内部から破壊される。
第四に、回りの氷も解けて発生した水蒸気や氷片が、気中に舞い上がった燃料デブリに衝突を繰り返し細分化される。
第五に、舞い上がった燃料デブリは氷の壁面に繰り返し衝突することでより細かくなる。
第六に、氷粉に含ませていた銅粉が高温高圧水または高温高圧空気に曝されると、空間に飛び出し、ブラストとなって燃料デブリに衝突する。
第七に、氷粒に含めていた銃弾型中空銅材が高温高圧水または高温高圧空気に曝されると周囲の氷が解け、銃弾型中空鉄材が空間に飛び出し、重みで紡錘面が下向きに転じ、内部の氷が蒸発すると推進力を得て、燃料デブリに正に銃弾のように衝突をする。
第八に、氷の中の空間が大きくなり冷却効果や燃料デブリの回収効果が薄れると、プローブ噴射ノズルから低温高圧水を注入し、燃料デブリ内に水を浸透させたあとプローブ噴射から液体窒素を注入し燃料デブリは凍結し、その際、燃料デブリは急激に収縮することから、温度応力が発生し内部に亀裂が発生し崩壊し易くなる。その後第一から第七の過程を繰り返す。High-temperature high-pressure water, high-temperature high-pressure air, or liquid nitrogen is injected and pulverized into fuel debris stored in a solid. The following eight types of pulverization processes are assumed.
First, fuel debris is directly hit by high temperature and high pressure injection forces.
Secondly, fuel debris is composed of various materials such as nuclear fuel, zircaide, concrete, and iron materials, and these materials have greatly different temperature expansion coefficients. Applying high-temperature steam or high-temperature air to cooled fuel debris A temperature difference of 300 ° C to 500 ° C is created, and the thermal stress that exceeds the strength of most materials reaches a maximum of 1000 N / mm 2 in the fuel debris due to the difference in thermal expansion of each substance Occurs and separates in units of substances.
Thirdly, it is known that fuel debris has many voids due to hydrogen and gaseous FP generated during melting. When sufficiently cooled, water penetrates into this gap. Some are ice. When high-temperature high-pressure steam or high-temperature high-pressure air is received, water or ice in the gap evaporates all at once, the pressure rapidly increases in the gap, destroys the boundary of the gap, and the fuel debris is destroyed from the inside.
Fourthly, water vapor and ice pieces generated by melting surrounding ice are repeatedly subdivided into fuel debris that has risen in the air.
Fifth, the soaring fuel debris becomes finer by repeatedly colliding with the ice wall.
Sixth, when the copper powder contained in the ice powder is exposed to high-temperature high-pressure water or high-temperature high-pressure air, it jumps into the space and becomes blast and collides with fuel debris.
Seventh, when the bullet-type hollow copper material included in the ice particles is exposed to high-temperature and high-pressure water or high-temperature and high-pressure air, the surrounding ice melts, the bullet-type hollow iron material jumps into the space, and the spindle surface faces downward due to the weight. When the ice inside turns, it gains propulsion and collides with the fuel debris just like a bullet.
Eighth, if the space in the ice becomes larger and the cooling effect or fuel debris recovery effect diminishes, low-temperature high-pressure water is injected from the probe injection nozzle, water is infiltrated into the fuel debris, and then liquid nitrogen is injected from the probe injection. The fuel debris freezes and the fuel debris rapidly contracts at this time, so that a temperature stress is generated, and cracks are easily generated and easily collapse. Then repeat steps 1-7.
粉砕された燃料デブリは膨張した気体によってプローブ内の圧送管を通じ、収納容器に保管される。 The pulverized fuel debris is stored in the storage container by the expanded gas through the pressure feeding tube in the probe.
高温高圧水または高温高圧空気を曝されると燃料デブリを覆っていた銅と氷は高温となり、氷は蒸発し空間ができ、銅粉は残りスポンジ状になるが、高温高圧に耐え形状を維持する。 When exposed to high-temperature high-pressure water or high-temperature high-pressure air, the copper and ice that covered the fuel debris will become hot, the ice will evaporate to form a space, and the copper powder will remain sponge-like, but it will withstand the high temperature and high pressure and maintain its shape. To do.
現状、福島で炉心溶融した原子炉は燃料デブリの発熱量は約100kwと想定されている。液体窒素から冷やされてできる氷の厚さは約70cmと推定される。この層の平均比重は6とすると、この層の放射線の遮蔽効果は水の4mに相当し燃料デブリから出る放射線を大幅で低減させ、原子炉容器上部の操作床で作業者に対して被ばく量を低減することができる。 At present, the reactor core melted in Fukushima is expected to generate about 100 kW of fuel debris. The thickness of ice formed by cooling from liquid nitrogen is estimated to be about 70 cm. If the average specific gravity of this layer is 6, the radiation shielding effect of this layer is equivalent to 4m of water, greatly reducing the radiation emitted from the fuel debris, and the amount of exposure to workers on the operation floor above the reactor vessel Can be reduced.
燃料デブリは粉砕され少量ずつ細管内を圧送され、臨界質量に達しない為に臨界しない。 The fuel debris is pulverized and pumped in small capillaries little by little and is not critical because it does not reach the critical mass.
図1は燃料デブリ5を回収している状況を示している全体イメージ図である。原子炉格納容器2、圧力抑制室4に水8や液体窒素9を本工法で設置するペデスタル冷却管11や圧力抑制室冷却管13を通じて原子炉格納容器2、圧力抑制室4から漏れている冷却水や原子炉格納容器2の下部のコンクリートを凍結し、燃料デブリ5から放出されている気体、液体、及び固体の放射能の流出を食い止め、原子炉格納容器2の下部コンクリート内に侵入している地下水を食い止める。液体窒素9から気化した窒素10は窒素排気管12を排出されフィルターを通し放射能を除去され、大気に放出される。環境中への汚染物質放出はほとんどなくなる.
燃料デブリ5は液体窒素5から30銅31氷を通じて間設的に冷却される。詳細は図2で解説する。
燃料デブリ5が固体中に隔離保存されると、 回収作業に取り掛かれる。原子炉格納容器蓋7と原子炉圧力容器蓋6を解放し、水を張り、凍らせ原子炉圧力容器上部蓋遮蔽用氷14を作りさらに気密性を保つためにその上部に作業用床鉄板15を設置する。その鉄板には回収装置及び掘削用ドリル向け管台16が複数設置され、回収及び掘削のときでも安定して放射能に対して防護する。
作業用床鉄板が敷設されると燃料デブリ5に向けて掘削用ドリル17を用いて掘削する。
掘削すると、ボーリング孔18を設置する。このボーリング孔を通して回収装置19のプローブを挿入する。回収装置19は図3で解説する。燃料デブリ5は回収装置19で回収され、
燃料デブリ5は燃料デブリ収納容器21に収納され、圧送した気体はフィルター22を通して放射性物質を除去し大気に開放される。FIG. 1 is an overall image diagram showing a state in which the
The
When the
When the working floor iron plate is laid, the
When excavating, a
The
図2は燃料デブリ5の冷却方法を示している。ペデスタル3内にペデスタル内冷却管11から注水し,その領域の半分程度まで水位を上げ、銅を混ぜ、水よりも比重を高くしかつ液体窒素で冷却した銅入り氷粒をその水面に覆いつくすまで投下する。銅入り氷粒は燃料デブリに到達する。その後、液体窒素を注入し銅と水を冷却し凍結させる。
銅と水蒸気と水の混合層23と銅と氷の混合層24と液体窒素の層25の3層が形成され燃料デブリ5が冷却保存される。FIG. 2 shows a method for cooling the
Three layers of a
図3は回収装置の先端部を示している。固体中に保存された燃料デブリを内視鏡のようなプローブ先端から高温蒸気、高温空気、液体窒素を燃料デブリに噴射し燃料デブリを粉砕し自らの膨張圧力によってプローブ内の圧送管に通し燃料デブリを原子炉圧力容器上部に配置した収納容器に回収するものである。噴射ノズル26から高温高圧水、高温高圧空気、液体窒素が放出される。TVカメラ27を配置し遠隔監視する。線量計28を装着する、粉砕された燃料デブリは膨張した気体により圧送管29を通して回収される。 FIG. 3 shows the tip of the recovery device. Fuel debris stored in solids is injected from the probe tip like an endoscope into the fuel debris by high temperature steam, high temperature air, and liquid nitrogen, and the fuel debris is crushed. The debris is collected in a storage container arranged at the top of the reactor pressure vessel. High-temperature high-pressure water, high-temperature high-pressure air, and liquid nitrogen are discharged from the
高温の危険物の除去や熱交換の効率向上にこの発明は利用可能である。 The present invention can be used to remove high-temperature hazardous materials and improve the efficiency of heat exchange.
1.原子炉圧力容器
2.原子炉格納容器
3.ペデスタル
4.圧力抑制室
5.燃料デブリ
6.原子炉圧力容器蓋
7.原子炉格納容器蓋
8.水
9.液体窒素
10.窒素
11.ペデスタル冷却管
12.窒素排気管
13.圧力抑制室冷却管
14.原子炉圧力容器上部遮蔽用氷
15.作業用床鉄板
16.回収装置及び掘削用ドリル向け管台
17.掘削用ドリル
18.ボーリング孔
19.回収装置
20.回収装置先端部
21.燃料デブリ収納容器
22.フィルター
23.銅と水蒸気と水の混合層
24.銅と氷の混合層
25.液体窒素の層
26.噴射ノズル
27.TVカメラ
28.線量計
29.圧送管
30.銅
31.氷1. 1.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014030037A JP6446607B2 (en) | 2014-01-30 | 2014-01-30 | Recovery method of fuel melted in nuclear reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014030037A JP6446607B2 (en) | 2014-01-30 | 2014-01-30 | Recovery method of fuel melted in nuclear reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015141197A true JP2015141197A (en) | 2015-08-03 |
JP6446607B2 JP6446607B2 (en) | 2018-12-26 |
Family
ID=53771627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014030037A Active JP6446607B2 (en) | 2014-01-30 | 2014-01-30 | Recovery method of fuel melted in nuclear reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6446607B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017067744A (en) * | 2015-09-30 | 2017-04-06 | 森重 晴雄 | Method for sealing cracks of reactor vessel and reactor containment vessel by using water vapor in air |
US20170154691A1 (en) * | 2015-02-23 | 2017-06-01 | Harold James Willard, JR. | Post-meltdown nuclear power plant recovery system |
JP6452780B1 (en) * | 2017-10-12 | 2019-01-16 | 一般社団法人Nb研究所 | Method for collecting fuel debris |
JP2019027955A (en) * | 2017-07-31 | 2019-02-21 | 三菱重工業株式会社 | Nuclear facility, dry ice supplying device, and method for suppressing radioactive material |
JP2022190639A (en) * | 2021-06-14 | 2022-12-26 | 晴雄 森重 | Fuel debris recovery method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60396A (en) * | 1983-06-17 | 1985-01-05 | 三機工業株式会社 | Method of disposing nuclear reactor by utilizing frost shattering |
JPH09273143A (en) * | 1996-04-05 | 1997-10-21 | Kyushu Electric Power Co Inc | Base rock excavation method |
EP0947996A1 (en) * | 1998-03-31 | 1999-10-06 | Siempelkamp Guss- und Anlagentechnik Holding GmbH & Co. | Catching storage for molten core |
JP2009257918A (en) * | 2008-04-16 | 2009-11-05 | Toshiba Corp | Cooling device for molten corium |
JP2011232211A (en) * | 2010-04-28 | 2011-11-17 | Toshiba Corp | Cooling structure and its formation method |
JP2013002869A (en) * | 2011-06-14 | 2013-01-07 | Yoshiaki Nagaura | Method and apparatus for repairing water leak damaged portion in reactor container of nuclear power plant |
JP2013195309A (en) * | 2012-03-21 | 2013-09-30 | Hitachi Chemical Co Ltd | Molten fuel takeout device |
JP2014029319A (en) * | 2012-06-28 | 2014-02-13 | Hitachi-Ge Nuclear Energy Ltd | Method of processing damaged or molten nuclear fuel |
-
2014
- 2014-01-30 JP JP2014030037A patent/JP6446607B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60396A (en) * | 1983-06-17 | 1985-01-05 | 三機工業株式会社 | Method of disposing nuclear reactor by utilizing frost shattering |
JPH09273143A (en) * | 1996-04-05 | 1997-10-21 | Kyushu Electric Power Co Inc | Base rock excavation method |
EP0947996A1 (en) * | 1998-03-31 | 1999-10-06 | Siempelkamp Guss- und Anlagentechnik Holding GmbH & Co. | Catching storage for molten core |
JP2009257918A (en) * | 2008-04-16 | 2009-11-05 | Toshiba Corp | Cooling device for molten corium |
JP2011232211A (en) * | 2010-04-28 | 2011-11-17 | Toshiba Corp | Cooling structure and its formation method |
JP2013002869A (en) * | 2011-06-14 | 2013-01-07 | Yoshiaki Nagaura | Method and apparatus for repairing water leak damaged portion in reactor container of nuclear power plant |
JP2013195309A (en) * | 2012-03-21 | 2013-09-30 | Hitachi Chemical Co Ltd | Molten fuel takeout device |
JP2014029319A (en) * | 2012-06-28 | 2014-02-13 | Hitachi-Ge Nuclear Energy Ltd | Method of processing damaged or molten nuclear fuel |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170154691A1 (en) * | 2015-02-23 | 2017-06-01 | Harold James Willard, JR. | Post-meltdown nuclear power plant recovery system |
JP2017067744A (en) * | 2015-09-30 | 2017-04-06 | 森重 晴雄 | Method for sealing cracks of reactor vessel and reactor containment vessel by using water vapor in air |
JP2019027955A (en) * | 2017-07-31 | 2019-02-21 | 三菱重工業株式会社 | Nuclear facility, dry ice supplying device, and method for suppressing radioactive material |
JP6452780B1 (en) * | 2017-10-12 | 2019-01-16 | 一般社団法人Nb研究所 | Method for collecting fuel debris |
JP2019074325A (en) * | 2017-10-12 | 2019-05-16 | 一般社団法人Nb研究所 | Collection method of fuel debris |
JP2022190639A (en) * | 2021-06-14 | 2022-12-26 | 晴雄 森重 | Fuel debris recovery method |
Also Published As
Publication number | Publication date |
---|---|
JP6446607B2 (en) | 2018-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6446607B2 (en) | Recovery method of fuel melted in nuclear reactor | |
RU2489758C1 (en) | Reactor containment and nuclear power plant that applies it | |
JP3118489B2 (en) | Reactor with equipment for recovery of core after accidental meltdown of reactor | |
CN107251152B (en) | The cooling and closed system of nuclear reactor fusant | |
RU2518066C2 (en) | Nuclear reactor with liquid-metal cooling and method of drainage heat from it | |
CN105427900B (en) | Reactor fusant out-pile gaseous-waste holdup system after a kind of major accident | |
JP6340700B2 (en) | Emergency precooling system and method for nuclear fuel and reactor | |
CN105551539B (en) | A kind of reactor fusant out-pile gaseous-waste holdup system | |
KR101752215B1 (en) | Melted core catcher for fragmentation. | |
JP6129646B2 (en) | Method for carrying out fuel debris in boiling water nuclear power plant | |
JP6446608B2 (en) | Ice disk sealed fuel debris recovery method | |
Na et al. | One-dimensional ex-vessel coolability analysis of debris beds formed in OPR1000 pre-flooded reactor cavity | |
CN104051032B (en) | Underground nuclear power station spentnuclear fuel pond is passive continues cooling system | |
RU2606381C1 (en) | Nuclear reactor heavy accident differential localisation system with breaking reactor floor and large surface area trap | |
WO2019190367A1 (en) | A safety system of a nuclear reactor for stabilization of ex-vessel core melt during a severe accident | |
KR20150069421A (en) | a system for reducing steam and hydrogen exploision at LOCA(loos-Of-Coolant Accident) | |
RU2600552C1 (en) | Method and device for nuclear reactor core melt localizing | |
JP3196318U (en) | Reactor decommissioning support facility | |
JP2017009568A (en) | Ice solidification type fuel debris boring and recovering method | |
US20170154691A1 (en) | Post-meltdown nuclear power plant recovery system | |
KR101278196B1 (en) | Apparatus with vertical hole for treating a melted fuel rod of nuclear reactor | |
Snell et al. | Chernobyl: A Canadian Perspective | |
RU2175152C2 (en) | Method and device for confinement of nuclear- reactor molten core | |
JP6655224B2 (en) | A method to seal off the cracks in the reactor vessel and containment vessel using water vapor in the air | |
EP3945531B1 (en) | Reactor and safety method for reactor in the event of core meltdown |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170122 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171016 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171024 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171221 Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180807 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180924 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181106 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6446607 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |