JP2015141075A - Method for forming standard test piece for ultrasonic flaw detection of weld zone of laser welded steel tube - Google Patents

Method for forming standard test piece for ultrasonic flaw detection of weld zone of laser welded steel tube Download PDF

Info

Publication number
JP2015141075A
JP2015141075A JP2014013296A JP2014013296A JP2015141075A JP 2015141075 A JP2015141075 A JP 2015141075A JP 2014013296 A JP2014013296 A JP 2014013296A JP 2014013296 A JP2014013296 A JP 2014013296A JP 2015141075 A JP2015141075 A JP 2015141075A
Authority
JP
Japan
Prior art keywords
laser
welded steel
flaw detection
test piece
ultrasonic flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014013296A
Other languages
Japanese (ja)
Inventor
慎也 桐生
Shinya Kiryu
慎也 桐生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014013296A priority Critical patent/JP2015141075A/en
Publication of JP2015141075A publication Critical patent/JP2015141075A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming a standard test piece for sampling test data required for evaluating the weld zone of a laser welded steel tube, such as adjustment of a measuring range and flaw detection sensitivity in an ultrasonic flaw detection test targeting the weld zone, especially, a method for forming a standard test piece suitable for the detection of a porosity-like defect.SOLUTION: When a standard test piece used for an ultrasonic flaw detection test of the weld zone of a laser welded steel tube is subjected to bead-on plate welding by a laser or a carbon dioxide gas laser used for the weld zone of the laser welded steel tube on a surface of a tabular member consisting of the same material as the laser welded steel tube, the bead-on plate welding is performed by changing only a shielding gas flow rate 2.5-5 times out of laser welding conditions of the weld zone without changing the other laser welding conditions.

Description

本発明は、レーザ溶接鋼管の溶接部を対象とする超音波探傷試験で測定範囲の調整や探傷感度の調整など、溶接部の評価に必要な試験データを採取するための標準試験片の作製方法であって、特にポロシティ状欠陥の検出に好適なものに関する。   The present invention relates to a method for producing a standard test piece for collecting test data necessary for evaluation of a welded part such as adjustment of a measurement range and adjustment of flaw detection sensitivity in an ultrasonic flaw detection test for a welded part of a laser welded steel pipe. In particular, the present invention relates to a material suitable for detecting porosity defects.

レーザ溶接によりオープンパイプのエッジ部を溶接するレーザ溶接鋼管は、溶融メタル内に合金元素が偏析しやすい電縫溶接鋼管と比較して、熱エネルギーを高密度に集中できるため、溶融メタルにおける酸化物生成の防止や、溶接部低温靭性、耐食性において優れていることが多く、その適用範囲が拡大している。   Laser welded steel pipes that weld the edge of open pipes by laser welding can concentrate heat energy at a higher density than ERW welded steel pipes, where alloying elements easily segregate in the molten metal. In many cases, it is excellent in prevention of formation, low temperature toughness of welded parts, and corrosion resistance, and its application range is expanded.

レーザ溶接鋼管の製造方法に関しては、溶接部の品質向上の観点から種々の提案がなされている。例えば、特許文献1には、レーザ溶接鋼管の製造において、溶接効率を低下させることなく良好な品質の溶接部を得るため、鋼管をオープンパイプに成形し、2本のレーザビームをエッジ部の右側と左側に、鋼管の表面におけるレーザビーム中心点間隔などが特定値となるようにそれぞれ照射することが記載されている。   Various proposals have been made regarding a method for manufacturing a laser welded steel pipe from the viewpoint of improving the quality of a welded portion. For example, in Patent Document 1, in the production of a laser welded steel pipe, in order to obtain a welded part of good quality without reducing the welding efficiency, the steel pipe is formed into an open pipe, and two laser beams are placed on the right side of the edge part. On the left side, it is described that the irradiation is performed so that the distance between the laser beam center points on the surface of the steel pipe becomes a specific value.

特許文献2には、アンダーカットやアンダーフィルが発生しやすいというレーザ溶接において、ジャストフォーカスでのスポット径が0.3mmを超える2本のレーザビームをエッジ部に沿って溶接進行方向の前後となるように照射する際、先行レーザビームと後行レーザビームの入射角度や中心点間隔を特定値に規定することが記載されている。   In Patent Document 2, in laser welding in which undercut and underfill are likely to occur, two laser beams having a spot diameter of just over 0.3 mm in front and rear are arranged along the edge portion in the welding progress direction. In such a case, it is described that the incident angle and the center point interval of the preceding laser beam and the succeeding laser beam are defined as specific values.

また、特許文献3には、スポット径が直径0.3mmを超える2本以上のレーザビームを先行レーザビームと後行レーザビームとに分類し、先行レーザビームを後行レーザビームよりも溶接線方向に先行させ、かつ先行レーザビームと後行レーザビームの鋼板内における中心線間隔を1mm以上として溶接線方向に配列してレーザ溶接を行うことが記載されている。   In Patent Document 3, two or more laser beams having a spot diameter exceeding 0.3 mm are classified into a preceding laser beam and a following laser beam, and the preceding laser beam is welded in a direction of the welding line more than the following laser beam. And the laser welding is performed by arranging the preceding laser beam and the succeeding laser beam in the direction of the welding line with a center line interval of 1 mm or more in the steel plate.

特開2012−187590号公報JP 2012-187590 A 特開2012−213798号公報JP 2012-213798 A 特開2011−224655号公報JP2011-224655A

しかしながら、レーザ溶接鋼管は、素材となるコイルが全長100〜400m程度において幅が数mm〜数十mm程度に変動することが一般的で、造管中に溶接部が開先(エッジ部)に対して位置ずれし、溶接欠陥が生じやすいため、製造した全数について溶接部の超音波探傷試験を行った後に出荷されている。   However, the laser welded steel pipe generally has a width of about several mm to several tens mm when the coil as a raw material has a total length of about 100 to 400 m, and the welded portion becomes a groove (edge) during pipe making. On the other hand, since the position is shifted and a weld defect is likely to occur, all the manufactured parts are shipped after an ultrasonic flaw detection test of the welded part.

しかし、超音波探傷試験は、得られる欠陥エコーのエコー高さが、欠陥部分で反射される超音波の音圧に比例し、欠陥が大きいほどエコー高さは高くなるが、探傷感度等が異なると同じ寸法の欠陥を探傷してもエコー高さに違いが生じるなど、検出精度の向上には、
熟練を要する。
However, in the ultrasonic flaw detection test, the echo height of the obtained defect echo is proportional to the sound pressure of the ultrasonic wave reflected by the defective portion, and the larger the defect, the higher the echo height, but the flaw detection sensitivity and the like are different. In order to improve detection accuracy, such as the difference in echo height even if flaws with the same dimensions as flaws are detected,
Requires skill.

超音波探傷装置の性能評価は、JISZ3060で、予め決められた寸法や形状を有する基準欠陥に超音波を照射し、基準欠陥からの反射エコーのエコー高さによって行うことが規定されているが、欠陥エコーのエコー高さと欠陥寸法との関係が明らかにされていないと、製品規格毎に規定されている許容欠陥寸法に対する合否が判定できない。   Although the performance evaluation of the ultrasonic flaw detector is JISZ3060, it is stipulated that the reference defect having a predetermined size and shape is irradiated with ultrasonic waves and is performed by the echo height of the reflected echo from the reference defect. If the relationship between the echo height of the defect echo and the defect size is not clarified, it cannot be judged whether the product is acceptable for the allowable defect size defined for each product standard.

特に、ステンレス鋼を素材とするレーザ溶接鋼管の場合、ポロシティ状欠陥は溶接部の耐食性を劣化させるため、欠陥エコーのエコー高さから欠陥寸法を正確に把握することが必要であるが、両者の関係は十分把握されておらず、従来は、安全側となるように処理されていた。   In particular, in the case of laser welded steel pipes made of stainless steel, porosity-like defects degrade the corrosion resistance of the weld, so it is necessary to accurately determine the defect dimensions from the echo height of the defect echo. The relationship has not been fully understood, and conventionally it has been processed to be on the safe side.

そこで、本発明は、超音波探傷試験で用いる標準試験片であって、レーザ溶接鋼管の溶接部超音波探傷試験において欠陥エコーのエコー高さから欠陥寸法が推定できるように、種々の寸法のポロシティ状欠陥を備えた標準試験片の作製方法を提案することを目的とする。   Therefore, the present invention is a standard test piece used in the ultrasonic flaw detection test, and the porosity of various dimensions can be estimated from the echo height of the defect echo in the ultrasonic flaw detection test of the welded portion of the laser welded steel pipe. The purpose of this study is to propose a method for producing a standard test piece having a defect.

本発明の課題の解決は以下の手段で達成可能である。
1.レーザ溶接鋼管溶接部の超音波探傷試験で用いる標準試験片の作製方法であって、
前記レーザ溶接鋼管と同じ素材からなる板状部材の表面に、前記溶接部のレーザ溶接条件のうちシールドガス流量のみを2.5〜5倍に変更して、その他のレーザ溶接条件は変更せずにビードオンプレート溶接することを特徴とするレーザ溶接鋼管溶接部の超音波探傷用標準試験片の作製方法。
2.レーザ溶接鋼管溶接部の超音波探傷試験で用いる標準試験片の作製方法であって、
前記レーザ溶接鋼管と同じ素材からなる板状部材の表面に、炭酸ガスレーザでビードオンプレート溶接する際、前記ビードオンプレート溶接を前記溶接部のレーザ溶接条件のうちシールドガス流量のみを2.5〜5倍に変更して、その他のレーザ溶接条件は変更せずに行うことを特徴とするレーザ溶接鋼管溶接部の超音波探傷用標準試験片の作製方法。
3.前記ビードオンプレート溶接が鋼板を貫通する溶接とならないように前記レーザ溶接条件において溶接速度を調整することを特徴とする1または2に記載のレーザ溶接鋼管溶接部の超音波探傷用標準試験片の作製方法。
4.前記素材がステンレス鋼であることを特徴とする1乃至3のいずれか一つに記載のレーザ溶接鋼管溶接部の超音波探傷用標準試験片の作製方法。
The solution of the problem of the present invention can be achieved by the following means.
1. A method for producing a standard test piece used in an ultrasonic flaw detection test of a laser welded steel pipe weld,
On the surface of the plate-like member made of the same material as the laser welded steel pipe, only the shield gas flow rate is changed to 2.5 to 5 times out of the laser welding conditions of the welded portion, and other laser welding conditions are not changed. A method for producing a standard test piece for ultrasonic flaw detection in a welded part of a laser welded steel pipe, characterized by bead-on-plate welding.
2. A method for producing a standard test piece used in an ultrasonic flaw detection test of a laser welded steel pipe weld,
When bead-on-plate welding is performed with a carbon dioxide laser on the surface of a plate-like member made of the same material as the laser-welded steel pipe, the bead-on-plate welding is performed with a shield gas flow rate of 2.5 to 2.5 of the laser welding conditions of the weld. A method for producing a standard test piece for ultrasonic flaw detection of a welded portion of a laser welded steel pipe, characterized in that it is changed to 5 times and other laser welding conditions are not changed.
3. The standard test piece for ultrasonic flaw detection of a laser welded steel pipe welded portion according to 1 or 2, wherein the welding speed is adjusted under the laser welding conditions so that the bead-on-plate welding does not result in welding penetrating the steel plate. Manufacturing method.
4). The method for producing a standard test piece for ultrasonic flaw detection of a laser welded steel pipe welded portion according to any one of claims 1 to 3, wherein the material is stainless steel.

本発明によれば、標準試験片の任意の場所に、直径50−400μm程度のポロシティ欠陥を再現性よく発生させることが可能で、ポロシティ状欠陥を検出する際の探傷感度の設定と、欠陥エコーのエコー高さとポロシティ状欠陥寸法の関係が容易に把握でき、産業上極めて有用である。   According to the present invention, it is possible to generate a porosity defect having a diameter of about 50 to 400 μm with an excellent reproducibility at an arbitrary location on a standard test piece, setting of a flaw detection sensitivity when detecting a porosity-like defect, and a defect echo The relationship between the echo height and the porosity-like defect size can be easily grasped, which is extremely useful in industry.

ビードオンプレート溶接を行った板状部材のX線透過試験結果を模式的に示す図。The figure which shows typically the X-ray-penetration test result of the plate-shaped member which performed bead-on-plate welding. 図1に示した板状部材のビードオンプレート溶接部の溶接線直角方向のマクロ断面を模式的に示す図。The figure which shows typically the macro cross section of the bead on-plate welding part of the plate-shaped member shown in FIG.

本発明では、基準欠陥として種々の寸法のポロシティ状欠陥を備えた標準試験片(JISZ2345:2000)が得られるように、板状部材をレーザ溶接する。レーザ溶接は、超音波探傷試験で対象とするレーザ溶接鋼管のレーザ溶接条件のうち、シールドガスの流量、レーザの種類を変更して、ビードオンプレート溶接により行う。板状部材はレーザ溶接鋼管と同じ素材とし、標準試験片(JISZ2345:2000)が採取可能な寸法とする。   In the present invention, the plate-like member is laser welded so that standard test pieces (JISZ2345: 2000) having porosity-like defects of various dimensions as reference defects can be obtained. Laser welding is performed by bead-on-plate welding while changing the flow rate of the shielding gas and the type of laser among the laser welding conditions of the laser welded steel pipe to be subjected to the ultrasonic flaw detection test. The plate-like member is made of the same material as the laser welded steel pipe, and has a dimension that allows a standard test piece (JISZ2345: 2000) to be collected.

シールドガス流量を調整して板状部材にビードオンプレート溶接を行う場合、超音波探傷試験で対象とするレーザ溶接鋼管のレーザ溶接条件のうち、シールドガス流量を2.5〜5倍に変更する。   When performing bead-on-plate welding on a plate-shaped member by adjusting the shield gas flow rate, the shield gas flow rate is changed to 2.5 to 5 times of the laser welding conditions of the laser welded steel pipe to be subjected to the ultrasonic flaw detection test. .

レーザ溶接においてポロシティ状欠陥は、溶融池内に巻き込まれたシールドガスが溶融池の凝固の際に、気泡となって生成すると考えられている。シールドガス流量を健全な溶接部が得られるものより多くすると、レーザ溶接の溶融池とシールドガスとの相互作用が増加してポロシティ状欠陥が連続的に発生する。   In laser welding, it is considered that porosity defects are generated as bubbles when the shielding gas entrained in the molten pool solidifies the molten pool. When the flow rate of the shield gas is increased from that which can obtain a sound weld, the interaction between the weld pool of the laser welding and the shield gas is increased, and porosity defects are continuously generated.

本発明では、シールドガス流量を、超音波探傷試験で対象とするレーザ溶接鋼管のレーザ溶接条件の2.5〜5倍に変更して板状部材にビードオンプレート溶接を行う。2.5倍未満の流量の場合は、ポロシティ状欠陥が発生せず、5倍を超えると、シールドガス流が乱れて空気の巻き込みなどによるポロシティ状欠陥以外の欠陥が発生するため、2.5〜5倍とする。   In the present invention, the shield gas flow rate is changed to 2.5 to 5 times the laser welding condition of the laser welded steel pipe targeted in the ultrasonic flaw detection test, and bead-on-plate welding is performed on the plate-like member. If the flow rate is less than 2.5 times, porosity defects do not occur, and if it exceeds 5 times, the shielding gas flow is disturbed and defects other than porosity defects due to air entrainment occur. ~ 5 times.

また、炭酸ガスレーザは、YAGレーザ、ファイバーレーザなどの、一般的な産業用レーザ装置と比較して、溶接中のプラズマ発生量が多くてシールドガスとの相互作用が大きくポロシティ状欠陥を発生しやすいため、シールドガス流量の増大と適宜組み合わせてビードオンプレート溶接を行うことが望ましい。   Also, the carbon dioxide laser has a larger amount of plasma generated during welding and has a larger interaction with the shielding gas than the general industrial laser devices such as YAG laser and fiber laser, and easily generates porosity defects. Therefore, it is desirable to perform bead-on-plate welding in combination with an increase in the shielding gas flow rate as appropriate.

なお、ビードオンプレート溶接を行う際のレーザ溶接条件は、利用するレーザの種類、シールドガス流量を除いて、超音波探傷試験を行うレーザ溶接鋼管で用いるレーザ溶接条件とする。   The laser welding conditions for performing bead-on-plate welding are the laser welding conditions used for a laser welded steel pipe that performs an ultrasonic flaw detection test, except for the type of laser used and the shielding gas flow rate.

但し、レーザ溶接鋼管のレーザ溶接は、板厚方向にキーホールが貫通するキーホール溶接であるが、ポロシティ状欠陥の発生には不利なため、キーホールの深さが板厚未満となるように溶接速度を調整するとポロシティ状欠陥の発生状態の調整が容易となって望ましい。キーホールの深さが板厚未満になると、キーホール内に巻き込まれたガスが滞留してポロシティ状欠陥が発生しやすくなる。   However, laser welding of laser welded steel pipe is keyhole welding in which the keyhole penetrates in the plate thickness direction, but it is disadvantageous for the occurrence of porosity defects so that the keyhole depth is less than the plate thickness. Adjustment of the welding speed is desirable because it facilitates adjustment of the state of occurrence of porosity defects. When the depth of the keyhole is less than the plate thickness, the gas entrained in the keyhole is retained and porosity defects are likely to occur.

図1に、表1に示す条件のうち、溶接速度は2.0m/min、シールドガス流量を50〜100L/minと連続的に変化させてビードオンプレート溶接を行った板状部材1のX線透過試験結果の模式図を、図2に板状部材1のビードオンプレート溶接部2の溶接線直角方向のマクロ断面の模式図を示す。板状部材1の素材はステンレス鋼とする。シールドガス流量は図1の左端から右端に向けて50〜100L/minと変化させた。図1、2の模式図はビードオンプレート溶接が板状部材1を貫通する溶接とならないように行った場合を示している。   In FIG. 1, among the conditions shown in Table 1, X of the plate-like member 1 subjected to bead-on-plate welding by continuously changing the welding speed to 2.0 m / min and the shield gas flow rate from 50 to 100 L / min. FIG. 2 shows a schematic diagram of a macroscopic cross section of the bead-on-plate welded portion 2 of the plate-like member 1 in the direction perpendicular to the weld line. The material of the plate member 1 is stainless steel. The shield gas flow rate was changed from 50 to 100 L / min from the left end to the right end in FIG. The schematic views of FIGS. 1 and 2 show a case where the bead-on-plate welding is performed so as not to penetrate the plate-like member 1.

模式的に図示したように、種々の寸法のポロシティ状欠陥3が発生している。X線透過試験によれば、ボロシティの欠陥サイズは50−400μmで、本発明により作製される標準試験片は、ポロシティ状欠陥3を検出する際の探傷感度の設定と、欠陥エコーのエコー高さとポロシティ状欠陥寸法の関係が把握できるように、種々の寸法のポロシティ状欠陥3を備えている。   As schematically shown, porosity defects 3 having various dimensions are generated. According to the X-ray transmission test, the defect size of borocity is 50-400 μm, and the standard test piece produced according to the present invention has a flaw detection sensitivity setting when detecting the porosity-like defect 3 and the echo height of the defect echo. In order to understand the relationship between the porosity-like defect dimensions, the porosity-like defects 3 having various dimensions are provided.

Figure 2015141075
Figure 2015141075

1 板状部材
2 ビードオンプレート溶接部
3 ポロシティ状欠陥
1 Plate-like member 2 Bead-on-plate weld 3 Porosity-like defect

Claims (4)

レーザ溶接鋼管溶接部の超音波探傷試験で用いる標準試験片の作製方法であって、
前記レーザ溶接鋼管と同じ素材からなる板状部材の表面に、前記溶接部のレーザ溶接条件のうちシールドガス流量のみを2.5〜5倍に変更して、その他のレーザ溶接条件は変更せずにビードオンプレート溶接することを特徴とするレーザ溶接鋼管溶接部の超音波探傷用標準試験片の作製方法。
A method for producing a standard test piece used in an ultrasonic flaw detection test of a laser welded steel pipe weld,
On the surface of the plate-like member made of the same material as the laser welded steel pipe, only the shield gas flow rate is changed to 2.5 to 5 times out of the laser welding conditions of the welded portion, and other laser welding conditions are not changed. A method for producing a standard test piece for ultrasonic flaw detection in a welded part of a laser welded steel pipe, characterized by bead-on-plate welding.
レーザ溶接鋼管溶接部の超音波探傷試験で用いる標準試験片の作製方法であって、
前記レーザ溶接鋼管と同じ素材からなる板状部材の表面に、炭酸ガスレーザでビードオンプレート溶接する際、前記ビードオンプレート溶接を前記溶接部のレーザ溶接条件のうちシールドガス流量のみを2.5〜5倍に変更して、その他のレーザ溶接条件は変更せずに行うことを特徴とするレーザ溶接鋼管溶接部の超音波探傷用標準試験片の作製方法。
A method for producing a standard test piece used in an ultrasonic flaw detection test of a laser welded steel pipe weld,
When bead-on-plate welding is performed with a carbon dioxide laser on the surface of a plate-like member made of the same material as the laser-welded steel pipe, the bead-on-plate welding is performed with a shield gas flow rate of 2.5 to 2.5 of the laser welding conditions of the weld. A method for producing a standard test piece for ultrasonic flaw detection of a welded portion of a laser welded steel pipe, characterized in that it is changed to 5 times and other laser welding conditions are not changed.
前記ビードオンプレート溶接が板状部材を貫通する溶接とならないように前記レーザ溶接条件において溶接速度を調整することを特徴とする請求項1または2に記載のレーザ溶接鋼管溶接部の超音波探傷用標準試験片の作製方法。   3. The ultrasonic flaw detection of a laser welded steel pipe welded portion according to claim 1, wherein the welding speed is adjusted under the laser welding conditions so that the bead-on-plate welding is not welding that penetrates a plate-like member. Standard test piece production method. 前記素材がステンレス鋼であることを特徴とする請求項1乃至3のいずれか一つに記載のレーザ溶接鋼管溶接部の超音波探傷用標準試験片の作製方法。   4. The method for producing a standard test piece for ultrasonic flaw detection of a laser welded steel pipe welded portion according to claim 1, wherein the material is stainless steel. 5.
JP2014013296A 2014-01-28 2014-01-28 Method for forming standard test piece for ultrasonic flaw detection of weld zone of laser welded steel tube Pending JP2015141075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014013296A JP2015141075A (en) 2014-01-28 2014-01-28 Method for forming standard test piece for ultrasonic flaw detection of weld zone of laser welded steel tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014013296A JP2015141075A (en) 2014-01-28 2014-01-28 Method for forming standard test piece for ultrasonic flaw detection of weld zone of laser welded steel tube

Publications (1)

Publication Number Publication Date
JP2015141075A true JP2015141075A (en) 2015-08-03

Family

ID=53771523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014013296A Pending JP2015141075A (en) 2014-01-28 2014-01-28 Method for forming standard test piece for ultrasonic flaw detection of weld zone of laser welded steel tube

Country Status (1)

Country Link
JP (1) JP2015141075A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106093212A (en) * 2016-06-08 2016-11-09 北京隆盛泰科石油管科技有限公司 Automatically the reference block detected for sheet material electromagnetic acoustic and method for designing thereof
CN106956058A (en) * 2017-05-05 2017-07-18 抚顺中油检测工程有限公司 A kind of preparation method with human weld's gas hole defect test plate (panel)
CN107894463A (en) * 2017-12-28 2018-04-10 中国石油天然气集团公司管材研究所 The reference block of ERW steel pipe seam electromagnetic acoustic automatic detections and design method
CN108760898A (en) * 2018-04-27 2018-11-06 中国石油天然气集团公司管材研究所 Composite bimetal pipe girth joint ultrasound examination reference block and its design method
CN109507297A (en) * 2018-12-11 2019-03-22 中航复合材料有限责任公司 A kind of method of determining compound material ultrasound-sound emission detection depth of defect
CN110405383A (en) * 2019-06-25 2019-11-05 上海展湾信息科技有限公司 Weld blowhole real-time detection method and system for robot welding technique
CN110879157A (en) * 2019-09-29 2020-03-13 宝鸡石油机械有限责任公司 Sampling method for evaluating welding process of round bar full penetration joint

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58125376A (en) * 1982-01-19 1983-07-26 Mitsubishi Heavy Ind Ltd Gas shielded welding torch
JPS62102152A (en) * 1985-10-29 1987-05-12 Nuclear Fuel Co Ltd Ultrasonic flaw inspection method
JPH01223342A (en) * 1988-03-03 1989-09-06 Kawasaki Heavy Ind Ltd Manufacture of reference test object for non-destructive inspection
JPH02299794A (en) * 1989-05-12 1990-12-12 Kobe Steel Ltd Method for remelting metallic surface
JPH06155056A (en) * 1992-11-17 1994-06-03 Hitachi Ltd Method and device for controlling laser beam welding
JPH0735729A (en) * 1993-07-22 1995-02-07 Sumitomo Metal Ind Ltd Ultrasonic flaw detector at welded part
JP3694979B2 (en) * 1996-06-05 2005-09-14 Jfeスチール株式会社 Laser welding method
JP2010029938A (en) * 2008-06-23 2010-02-12 Jfe Steel Corp Method for manufacturing laser-welded steel pipe
JP2013166160A (en) * 2012-02-14 2013-08-29 Sankyu Inc Shielding gas jetting method in laser welding

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58125376A (en) * 1982-01-19 1983-07-26 Mitsubishi Heavy Ind Ltd Gas shielded welding torch
JPS62102152A (en) * 1985-10-29 1987-05-12 Nuclear Fuel Co Ltd Ultrasonic flaw inspection method
JPH01223342A (en) * 1988-03-03 1989-09-06 Kawasaki Heavy Ind Ltd Manufacture of reference test object for non-destructive inspection
JPH02299794A (en) * 1989-05-12 1990-12-12 Kobe Steel Ltd Method for remelting metallic surface
JPH06155056A (en) * 1992-11-17 1994-06-03 Hitachi Ltd Method and device for controlling laser beam welding
JPH0735729A (en) * 1993-07-22 1995-02-07 Sumitomo Metal Ind Ltd Ultrasonic flaw detector at welded part
JP3694979B2 (en) * 1996-06-05 2005-09-14 Jfeスチール株式会社 Laser welding method
JP2010029938A (en) * 2008-06-23 2010-02-12 Jfe Steel Corp Method for manufacturing laser-welded steel pipe
JP2013166160A (en) * 2012-02-14 2013-08-29 Sankyu Inc Shielding gas jetting method in laser welding

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106093212A (en) * 2016-06-08 2016-11-09 北京隆盛泰科石油管科技有限公司 Automatically the reference block detected for sheet material electromagnetic acoustic and method for designing thereof
CN106093212B (en) * 2016-06-08 2019-01-18 北京隆盛泰科石油管科技有限公司 The reference block and its design method detected automatically for plate electromagnetic acoustic
CN106956058A (en) * 2017-05-05 2017-07-18 抚顺中油检测工程有限公司 A kind of preparation method with human weld's gas hole defect test plate (panel)
CN107894463A (en) * 2017-12-28 2018-04-10 中国石油天然气集团公司管材研究所 The reference block of ERW steel pipe seam electromagnetic acoustic automatic detections and design method
CN107894463B (en) * 2017-12-28 2023-12-08 中国石油天然气集团有限公司 Reference block for electromagnetic ultrasonic automatic detection of ERW steel pipe weld joint and design method
CN108760898A (en) * 2018-04-27 2018-11-06 中国石油天然气集团公司管材研究所 Composite bimetal pipe girth joint ultrasound examination reference block and its design method
CN108760898B (en) * 2018-04-27 2023-12-08 中国石油天然气集团有限公司 Reference block for ultrasonic detection of bimetal composite pipe girth weld and design method thereof
CN109507297A (en) * 2018-12-11 2019-03-22 中航复合材料有限责任公司 A kind of method of determining compound material ultrasound-sound emission detection depth of defect
CN110405383A (en) * 2019-06-25 2019-11-05 上海展湾信息科技有限公司 Weld blowhole real-time detection method and system for robot welding technique
CN110879157A (en) * 2019-09-29 2020-03-13 宝鸡石油机械有限责任公司 Sampling method for evaluating welding process of round bar full penetration joint

Similar Documents

Publication Publication Date Title
JP2015141075A (en) Method for forming standard test piece for ultrasonic flaw detection of weld zone of laser welded steel tube
Bharath et al. Optimization of 316 stainless steel weld joint characteristics using Taguchi technique
Dongxia et al. Optimization of weld bead geometry in laser welding with filler wire process using Taguchi’s approach
Zhang et al. Residual stress, micro-hardness and tensile properties of ANSI 304 stainless steel thick sheet by fiber laser welding
Farrokhi et al. Fiber laser welding of direct-quenched ultrahigh strength steels: evaluation of hardness, tensile strength, and toughness properties at subzero temperatures
JP6155183B2 (en) Narrow groove laser welding method
JP2014205182A (en) Inspection device for welding part and inspection method thereof
US20210325344A1 (en) Non-destructive method for inspecting welded aluminum plate
Prasad et al. Study on weld quality characteristics of micro plasma arc welded austenitic stainless steels
Kishore et al. Analysis of defects in gas shielded arc welding of AISI1040 steel using Taguchi method
Pal et al. Multisensor-based monitoring of weld deposition and plate distortion for various torch angles in pulsed MIG welding
Habibzadeh Boukani et al. Case study on the integrity and nondestructive inspection of flux-cored arc welded joints of Francis turbine runners
Meško et al. The effect of selected technological parameters of laser cutting on the cut surface roughness
Kumar et al. Influence of welding current on the mechanical property of 3 mm thick commercial 1050 aluminium butt joint weld by AC-TIG welding method
Węglowski et al. Influence of cutting technology on properties of the cut edges
Addamani et al. Assessment of weld bead performance for pulsed gas metal arc welding (P-GMAW) using acoustic emission (AE) and machine vision (MV) signals through NDT methods for SS 304 material
JP2006175514A (en) Electric resistance welded tube having reduced defect in weld zone and its production method
CN208795700U (en) A kind of composite weld ultrasonic wave adjustment test block
TWI654312B (en) Laser welded steel and manufacturing method thereof
Makwana et al. Optimization of process parameter for tensile strength and hardness of SS 304 by TIG welding
CN104842085B (en) Simulation and experiment method for high-temperature alloy thin-wall pipe surface air hole detects
JP5504360B2 (en) Welding failure detection method and welding failure detection device
Khan et al. Meeting weld quality criteria when laser welding Ni-based alloy 718
Ghosh et al. Experimental investigation of TIG welding of austenitic stainless steel with change in composition of filler material
Naidu et al. Distortion Control for Dissimilar Welding of SS321 to Hastelloy C-276 with CO 2 Laser Beam Butt Joints Using Taguchi Methods.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161108