JP2015140635A - Rigid frame having wide flat beam, and building using the same - Google Patents

Rigid frame having wide flat beam, and building using the same Download PDF

Info

Publication number
JP2015140635A
JP2015140635A JP2014015841A JP2014015841A JP2015140635A JP 2015140635 A JP2015140635 A JP 2015140635A JP 2014015841 A JP2014015841 A JP 2014015841A JP 2014015841 A JP2014015841 A JP 2014015841A JP 2015140635 A JP2015140635 A JP 2015140635A
Authority
JP
Japan
Prior art keywords
column
wide flat
flat beam
width
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014015841A
Other languages
Japanese (ja)
Other versions
JP6243238B2 (en
Inventor
貴弘 入江
Takahiro Irie
貴弘 入江
章郎 中岡
Akio Nakaoka
章郎 中岡
聡太郎 榊田
Sotaro Sakakida
聡太郎 榊田
延明 平田
Nobuaki Hirata
延明 平田
重行 室
Shigeyuki Muro
重行 室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Haseko Corp
Original Assignee
Haseko Corp
Hasegawa Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haseko Corp, Hasegawa Komuten Co Ltd filed Critical Haseko Corp
Priority to JP2014015841A priority Critical patent/JP6243238B2/en
Publication of JP2015140635A publication Critical patent/JP2015140635A/en
Application granted granted Critical
Publication of JP6243238B2 publication Critical patent/JP6243238B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a rigid frame having a wide flat beam, which facilitates calculation of bending strength of the wide flat beam and which can easily increase bending ultimate strength of the beam by reinforcing a joint between the beam and a column, and a building using the same.SOLUTION: A rigid frame having a wide flat beam 10 comprises a column 1 and a beam 2 of reinforced concrete construction, and a beam width Bb of the beam 2 is greater than a column width Bc of the column 1. A yield hinge of the wide flat beam 10 is set on the opposed side of the adjacent column 1. Bending ultimate strength of the wide flat beam 10 is calculated by being reduced on the basis of a difference Ba between the beam width Bb and the column width Bc.

Description

本発明は、幅広扁平梁を有するラーメン架構とこれを用いた建物に関する。   The present invention relates to a rigid frame having wide flat beams and a building using the same.

梁が柱に剛結合されている構造をラーメン架構(又はラーメン構造)という。ラーメン架構では、地震等で水平力が作用する場合、梁と柱の接合部分に最大曲げモーメントが作用し、この部分で破損する可能性がある。そこで、鉄筋コンクリート造(RC)のラーメン架構では、安全上、梁と柱の接合部分(梁の端面)の梁主筋が降伏した場合でも建物が崩壊しないように設計する必要がある。
以下、梁と柱の接合部分における梁の降伏面を「降伏ヒンジ」と呼び、降伏ヒンジにおいて安全上期待される最大曲げモーメントを「梁の曲げ終局強度」と呼ぶ。
A structure in which the beam is rigidly connected to the column is called a ramen frame (or a ramen structure). In the case of a rigid frame, when a horizontal force is applied due to an earthquake or the like, the maximum bending moment acts on the joint between the beam and the column, and there is a possibility that this part will be damaged. Therefore, it is necessary to design the reinforced concrete (RC) rigid frame so that the building does not collapse even if the beam reinforcement at the joint between the beam and the column (the end face of the beam) yields.
Hereinafter, the yield surface of the beam at the joint between the beam and the column is referred to as a “yield hinge”, and the maximum bending moment expected for safety in the yield hinge is referred to as “the ultimate bending strength of the beam”.

梁と柱とからなるラーメン架構を有するマンション等の集合住宅において、各階の梁の高さを維持したまま開口部の高さを大きくするために、扁平梁を用いることが提案されている(例えば、特許文献1、2)。   It has been proposed to use flat beams to increase the height of the opening while maintaining the height of the beams on each floor in apartment buildings such as condominiums with a ramen frame consisting of beams and columns (for example, Patent Documents 1 and 2).

特許文献1の「バルコニー」は、梁幅が柱の柱幅より大きく、かつ梁せいが梁幅の1/2以下の扁平梁を用い、扁平梁の上面をバルコニーの床面とするものである。
特許文献2の「住戸ユニット」は、住戸の梁部のうち、戸外に面して立設された柱部間に架設される梁部の少なくとも1つを扁平梁とするものである。
The “balcony” of Patent Document 1 uses a flat beam whose beam width is larger than the column width of the column and whose beam length is ½ or less of the beam width, and the upper surface of the flat beam is the floor surface of the balcony. .
The “dwelling unit” of Patent Document 2 is a flat beam in which at least one of the beam portions erected between the column portions standing facing the outside of the beam portions of the dwelling unit.

特許第4754506号公報Japanese Patent No. 4754506 特開2012−7406号公報JP 2012-7406 A

特許文献1の扁平梁は、梁の梁幅が柱の柱幅より大きい扁平梁である。以下、かかる扁平梁を「幅広扁平梁」と呼ぶ。幅広扁平梁を用いるラーメン架構は、所定の階高において通常のラーメン架構よりも梁下寸法を大きく取ることができ、開口部を広くできる利点がある。   The flat beam of Patent Document 1 is a flat beam in which the beam width of the beam is larger than the column width of the column. Hereinafter, such a flat beam is referred to as a “wide flat beam”. A ramen frame using a wide flat beam has an advantage that it can take a larger dimension under the beam than a normal frame frame at a predetermined floor height and can widen the opening.

一方、ラーメン架構では、梁と柱の接合部に、地震時等に大きな曲げモーメントが発生する。そのため、幅広扁平梁であっても、梁と柱の接合部は十分な強度を有する必要がある。しかし、幅広扁平梁は、梁せいが通常の梁より小さいため、柱と幅広扁平梁の接合部の強度を確保することが難しい問題点がある。   On the other hand, in a rigid frame, a large bending moment is generated at the joint between a beam and a column during an earthquake. Therefore, even if it is a wide flat beam, the joint part of a beam and a column needs to have sufficient intensity | strength. However, the wide flat beam has a problem that it is difficult to ensure the strength of the joint between the column and the wide flat beam because the beam is smaller than a normal beam.

特許文献1では、柱と幅広扁平梁との接合部に柱と一体の跳ね出し部を設けている。この跳ね出し部は、幅広扁平梁の軸方向および軸方向と直角な方向に突出し、かつ柱から跳ね出し部にかけてその耐力が幅広扁平梁端部の耐力に比べて十分大きくなるように補強されている。
この構成により、幅広扁平梁の接合端部をその梁幅に亘ってほぼ均等に支持するとともに、補強された幅広扁平梁の軸方向の跳ね出し部により幅広扁平梁の支持スパンを実質的に短くすることができる。このように、支持スパンを実質的に短くすることを「ヒンジリロケーション」と呼ぶ。ヒンジリロケーションにより、梁下寸法を大きく取ることができ、かつ梁への応力負担を軽減できる利点がある。
In patent document 1, the protrusion part integrated with the pillar is provided in the junction part of a pillar and a wide flat beam. This protruding part protrudes in the axial direction of the wide flat beam and in a direction perpendicular to the axial direction, and is reinforced so that its proof strength is sufficiently larger from the column to the protruding part than the proof strength of the wide flat beam end. Yes.
With this configuration, the joint end portion of the wide flat beam is supported substantially evenly over the width of the beam, and the support span of the wide flat beam is substantially shortened by the protruding portion in the axial direction of the reinforced wide flat beam. can do. Thus, making the support span substantially shorter is referred to as “hinge relocation”. Hinge relocation has the advantage that the size under the beam can be increased and the stress burden on the beam can be reduced.

しかし、特許文献1の手段は、柱から跳ね出し部にかけてその耐力が幅広扁平梁端部の耐力に比べ十分大きくなるように補強するものであるから、跳ね出し部に大量の補強鉄筋が必要となり、場合によっては、跳ね出し部の配筋施工が困難になるという問題点があった。   However, since the means of Patent Document 1 reinforces the proof strength from the pillar to the protruding portion to be sufficiently larger than the proof strength of the wide flat beam end portion, a large amount of reinforcing bars are required at the protruding portion. In some cases, there is a problem that it is difficult to perform the bar arrangement of the protruding portion.

一方、ヒンジリロケーションを適用しない場合、支持スパンは隣接する柱の間隔であり、地震時等に梁と柱の接合部に発生する曲げモーメントは大きい。そのため梁と柱の接合部を補強して許容できる曲げモーメントを高くする必要がある。
しかし、幅広扁平梁の曲げ強度の計算は非常に複雑であり、かつ、曲げ強度の計算方法として確立された方法がなかった。
On the other hand, when hinge relocation is not applied, the support span is the interval between adjacent columns, and the bending moment generated at the joint between the beam and the column during an earthquake or the like is large. Therefore, it is necessary to increase the allowable bending moment by reinforcing the joint between the beam and the column.
However, the calculation of bending strength of wide flat beams is very complicated, and there has been no established method for calculating bending strength.

また、幅広扁平梁を建物(例えばマンションのバルコニー等)に用いる場合、排水管等を通す縦貫通孔を幅広扁平梁に設けることが望まれる場合がある。
しかし、特許文献1のように、跳ね出し部を扁平梁の軸方向および軸方向と直角な方向に突出させた場合、跳ね出し部に縦貫通孔を設けることは、跳ね出し部の配筋施工により非常に困難であり、実質的に不可能であった。
Further, when a wide flat beam is used in a building (for example, a balcony of an apartment), it may be desired to provide the wide flat beam with a vertical through hole through which a drain pipe or the like passes.
However, as in Patent Document 1, when the protruding portion is protruded in the axial direction of the flat beam and in the direction perpendicular to the axial direction, the vertical through hole is provided in the protruding portion. It was very difficult and practically impossible.

本発明は、これらの問題点を解決するために創案されたものである。すなわち本発明の目的は、幅広扁平梁の曲げ強度の計算が容易であり、梁と柱の接合部を補強して梁の曲げ終局強度を容易に高めることができる幅広扁平梁を有するラーメン架構とこれを用いた建物を提供することにある。   The present invention has been developed to solve these problems. That is, an object of the present invention is to easily calculate the bending strength of a wide flat beam, and to reinforce the joint between the beam and the column to easily increase the bending ultimate strength of the beam. It is to provide a building using this.

本発明によれば、鉄筋コンクリート造の柱と梁からなり、梁の梁幅が柱の柱幅より大きい幅広扁平梁を有するラーメン架構であって、
前記幅広扁平梁の降伏ヒンジが、隣接する柱の対向側面に設定されており、
前記幅広扁平梁の曲げ終局強度Mが、梁幅と柱幅との差Baに基づき低減されて算出される、ことを特徴とする幅広扁平梁を有するラーメン架構が提供される。
According to the present invention, it is a rigid frame having a flat beam composed of a reinforced concrete column and a beam, the beam width of the beam being larger than the column width of the column,
The yielding hinge of the wide flat beam is set on the opposite side of an adjacent column;
There is provided a rigid frame having a wide flat beam, wherein the bending ultimate strength M of the wide flat beam is calculated based on a difference Ba between the beam width and the column width.

前記幅広扁平梁の曲げ終局強度Mは、梁幅と柱幅との差Baと柱幅Bcとの比Ba/Bcに基づく低減係数γにより算出される。   The bending ultimate strength M of the wide flat beam is calculated by a reduction factor γ based on the ratio Ba / Bc between the difference Ba between the beam width and the column width and the column width Bc.

梁の梁幅が柱の柱幅より小さい通常扁平梁の曲げ終局強度Muが、
Mu=0.9・at・σy・dで求められ、ここでatは引張主筋断面積、σyは主筋降伏強度、dは梁の梁せいであり、
前記低減係数γは、γ=1.0−μ・Ba/Bcで求められ、ここでμは0.1以上、0.3以下の正定数であり、
前記幅広扁平梁の曲げ終局強度Mは、前記通常扁平梁の曲げ終局強度Muと前記低減係数γとの積で求められる。
The bending ultimate strength Mu of a normal flat beam in which the beam width of the beam is smaller than the column width of the column is
Mu = 0.9 · at · σy · d, where at is the tensile main bar cross-sectional area, σy is the main bar yield strength, and d is the beam's fault.
The reduction coefficient γ is obtained by γ = 1.0−μ · Ba / Bc, where μ is a positive constant of 0.1 or more and 0.3 or less,
The bending ultimate strength M of the wide flat beam is obtained by the product of the bending ultimate strength Mu of the normal flat beam and the reduction factor γ.

前記幅広扁平梁は、柱の片側のみに梁があるト字形であり、
前記柱内に位置する梁主筋の外側最端部に機械的に固定された機械式定着具と、
前記梁主筋の端部の定着性を高めるキャップ筋と、を有する。
The wide flat beam is a toroid having a beam only on one side of the column,
A mechanical fixing device mechanically fixed to the outermost end of the beam main bar located in the column;
And a cap bar that enhances fixability at the end of the beam main bar.

前記幅広扁平梁は、柱の両側に梁がある十字形であり、
前記柱の前面又は後面に位置する前記幅広扁平梁のはみ出し部を上下に貫通する縦貫通孔と、
前記縦貫通孔を囲み前記柱内まで延びるU字形の貫通孔補強筋と、を有する。
The wide flat beam has a cross shape with beams on both sides of the column,
A vertical through hole penetrating up and down the protruding portion of the wide flat beam located on the front or rear surface of the column;
A U-shaped through-hole reinforcing bar that surrounds the vertical through-hole and extends into the pillar.

また本発明によれば、建物の桁方向に少なくとも2構面以上の鉄筋コンクリートの柱と梁からなるラーメン架構を有する建物であって、
少なくとも1構面に上述したラーメン架構を有する、ことを特徴とするラーメン架構を用いた建物が提供される。
Moreover, according to the present invention, the building has a rigid frame composed of columns and beams of reinforced concrete with at least two structural surfaces in the direction of the girder of the building,
There is provided a building using a ramen frame characterized by having the above-described ramen frame on at least one surface.

建物の妻側にバルコニーを設け、該バルコニーの前記幅広扁平梁のない位置に垂直避難口を設ける、ことが好ましい。   It is preferable that a balcony is provided on the wife side of the building, and a vertical evacuation port is provided at a position without the wide flat beam on the balcony.

上記本発明によれば、幅広扁平梁の降伏ヒンジが、隣接する柱の対向側面に設定されているので、大量の補強鉄筋が必要な跳ね出し部を設ける必要がなく、配筋施工が容易になる。
また、幅広扁平梁の曲げ終局強度Mが、梁幅と柱幅との差Baに基づき低減されて算出されるので、隣接する柱の対向側面に降伏ヒンジを設定したにも関わらず、幅広扁平梁と柱の接合部の強度計算が容易にできる。
According to the present invention, since the yield hinge of the wide flat beam is set on the opposite side surface of the adjacent column, there is no need to provide a protruding portion that requires a large amount of reinforcing bars, and the bar arrangement work is easy. Become.
In addition, since the ultimate bending strength M of the wide flat beam is calculated based on the difference Ba between the beam width and the column width, the wide flat beam is formed despite the fact that a yield hinge is set on the opposite side of the adjacent column. The strength of the joint between the beam and column can be easily calculated.

従って、幅広扁平梁と柱の接合部の強度計算が容易であり、幅広扁平梁と柱の接合部を補強して幅広扁平梁の曲げ終局強度Mを容易に高めることができる。   Therefore, it is easy to calculate the strength of the joint between the wide flat beam and the column, and the bending ultimate strength M of the wide flat beam can be easily increased by reinforcing the joint between the wide flat beam and the column.

通常の梁の断面図の模式図である。It is a schematic diagram of a cross-sectional view of a normal beam. 本発明が対象とする幅広扁平梁の説明図である。It is explanatory drawing of the wide flat beam which this invention makes object. 通常扁平梁と幅広扁平梁の模式的斜視図である。It is a typical perspective view of a normal flat beam and a wide flat beam. 試験結果を示す図である。It is a figure which shows a test result. 本発明による幅広扁平梁の第1実施形態図である。It is 1st Embodiment figure of the wide flat beam by this invention. 本発明による幅広扁平梁の第2実施形態図である。It is 2nd Embodiment figure of the wide flat beam by this invention. 本発明のラーメン架構を用いた建物の断面側面図である。It is a section side view of the building using the frame frame of the present invention. 本発明による建物の平面図である。It is a top view of the building by this invention. 図2の幅広扁平梁の側面断面図である。It is side surface sectional drawing of the wide flat beam of FIG.

以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.

図1は、通常の梁2の断面図の模式図である。この図は、鉄筋コンクリート造(RC)の柱1と梁2からなるラーメン架構における柱1と梁2の接合部分(隣接する柱1の対向側面)の断面を示している。
この図において、3は梁主筋、4はコンクリートである。梁2に曲げモーメントが作用する場合、梁主筋3は、図に示すように、引張応力が作用する位置(上端付近と下端付近)に配筋される。
FIG. 1 is a schematic diagram of a cross-sectional view of a normal beam 2. This figure shows a cross section of a joint portion (opposite side face of the adjacent column 1) of the column 1 and the beam 2 in a rigid frame structure composed of a reinforced concrete (RC) column 1 and a beam 2.
In this figure, 3 is a beam main reinforcement and 4 is concrete. When a bending moment acts on the beam 2, the beam main reinforcement 3 is arranged at positions where tensile stress acts (near the upper end and near the lower end) as shown in the figure.

図1に示した通常の梁2に対して、日本建築学会「鉄筋コンクリート構造計算規準・同解説2010」(165ページ)は、鉄筋コンクリート部材の「降伏曲げモーメントMy」の算定式を、式(1)で規定している。
My=0.9・at・σy・d・・・(1)
また同様に、「2007年版建築物の構造関係技術基準解説書」(623ページ)は、「はりの曲げ終局強度Mu」の算定式を、式(2)で規定している。
Mu=0.9・at・σy・d・・・(2)
ここで、atは引張主筋断面積、σyは主筋降伏強度、dは梁2の梁せいである。なお、引張主筋断面積atは、引張応力が作用する位置に配筋された梁主筋3の総断面積である。
式(1)(2)は、実質的に同一の式である。また、この式は、梁2の梁幅Bbが柱1の柱幅Bcより小さい通常の扁平梁(以下、「通常扁平梁」と呼ぶ)にも適用することができる。
For the ordinary beam 2 shown in FIG. 1, the Architectural Institute of Japan “Reinforced Concrete Structure Calculation Standards / Comment 2010” (page 165) uses the formula (1) to calculate the “yield bending moment My” of reinforced concrete members. Stipulated in
My = 0.9 · at · σy · d (1)
Similarly, the “2007 Structure-Related Technical Standards Manual for Buildings” (page 623) defines the formula for calculating the ultimate bending strength Mu of a beam by equation (2).
Mu = 0.9 · at · σy · d (2)
Here, at is a tensile main bar cross-sectional area, σy is a main bar yield strength, and d is a beam fault of the beam 2. The tensile main bar cross-sectional area at is the total cross-sectional area of the beam main bar 3 arranged at the position where the tensile stress acts.
Expressions (1) and (2) are substantially the same expressions. This equation can also be applied to a normal flat beam in which the beam width Bb of the beam 2 is smaller than the column width Bc of the column 1 (hereinafter referred to as “normal flat beam”).

図2は、本発明が対象とする幅広扁平梁10の説明図である。
本発明において、「幅広扁平梁」とは、図に示すように、梁2の梁幅Bbが柱1の柱幅Bcより大きい扁平梁を意味する。
この図において、Baは梁幅Bbと柱幅Bcとの差、dは梁2の梁せいである。以下、梁幅Bbと柱幅Bcとの差Ba=Bb−Bcを「はみ出し幅」と呼ぶ。なお、柱の両側に張出部がある場合は、大きい方の出幅をはみ出し幅とする。
FIG. 2 is an explanatory diagram of the wide flat beam 10 targeted by the present invention.
In the present invention, the “wide flat beam” means a flat beam in which the beam width Bb of the beam 2 is larger than the column width Bc of the column 1 as shown in the figure.
In this figure, Ba is the difference between the beam width Bb and the column width Bc, and d is the beam fault of the beam 2. Hereinafter, the difference Ba = Bb−Bc between the beam width Bb and the column width Bc is referred to as “extrusion width”. If there are overhangs on both sides of the column, the larger protruding width is the protruding width.

上述した式(2)によって求められる梁2の曲げ終局強度Muは、梁幅Bbが柱幅Bcよりも小さい通常扁平梁を有するラーメン架構に適用されるものである。そのため、梁2の梁幅Bbを柱1の柱幅Bcよりも大きい幅広扁平梁10の場合には、梁主筋の一部が柱外に張り出すため、柱内の梁主筋よりも応力分担が低下するため、梁2(幅広扁平梁10)の曲げ終局強度Mを式(2)よりも低く見積もる必要がある。   The ultimate bending strength Mu of the beam 2 obtained by the above equation (2) is applied to a rigid frame having a normal flat beam in which the beam width Bb is smaller than the column width Bc. Therefore, in the case of the wide flat beam 10 in which the beam width Bb of the beam 2 is larger than the column width Bc of the column 1, a part of the beam main bar protrudes outside the column, so that the stress sharing is greater than the beam main bar in the column. Therefore, it is necessary to estimate the ultimate bending strength M of the beam 2 (the wide flat beam 10) lower than the formula (2).

図9は、図2の幅広扁平梁10の側面断面図である。この図において、A部は上述した式(2)で評価できる部分、B部は式(2)よりも小さく見積もる必要がある部分を示している。
本発明が対象とするラーメン架構は、鉄筋コンクリート造の柱1と梁2からなり、梁2の梁幅Bbが柱1の柱幅Bcより大きい幅広扁平梁10を有する。
また、幅広扁平梁10の降伏ヒンジが、隣接する柱1の対向側面に設定されている。
さらに、幅広扁平梁10の曲げ終局強度Mが、梁幅Bbと柱幅Bcとの差Baに基づき低減されて算出される。
FIG. 9 is a side sectional view of the wide flat beam 10 of FIG. In this figure, part A shows a part that can be evaluated by the above-described formula (2), and part B shows a part that needs to be estimated smaller than formula (2).
The frame structure to which the present invention is applied is composed of a reinforced concrete column 1 and a beam 2, and has a wide flat beam 10 in which the beam width Bb of the beam 2 is larger than the column width Bc of the column 1.
Further, the yield hinge of the wide flat beam 10 is set on the opposite side surface of the adjacent column 1.
Further, the ultimate bending strength M of the wide flat beam 10 is calculated based on the difference Ba between the beam width Bb and the column width Bc.

すなわち、図9のとおり、柱1内に梁主筋3が納まるA部の梁2の曲げ終局強度は、従来の通りの式(2)で求めることができる。しかし、柱1から張出したB部の梁2の曲げ終局強度は、従来の式(2)で求める値よりも低く見積もる必要があり、そのための軽減が必要となる。
何故、柱1から張出したB部に梁主筋3がある梁2の曲げ終局強度は、従来の式(2)で求める値よりも低く見積もる必要があるかという根拠は、後述する実施例において、R=1/50程度の変形において、柱内部を通る梁主筋3は全て降伏し、柱1から張出る梁主筋3も一部は降伏することが確認されたことに基づく。
以下、詳細に説明する。
That is, as shown in FIG. 9, the ultimate bending strength of the beam 2 in the portion A where the beam main reinforcing bar 3 is accommodated in the column 1 can be obtained by the conventional formula (2). However, it is necessary to estimate the ultimate bending strength of the beam 2 extending from the column 1 lower than the value obtained by the conventional equation (2), and it is necessary to reduce it.
The reason why the bending ultimate strength of the beam 2 having the beam main reinforcement 3 in the portion B projecting from the column 1 needs to be estimated lower than the value obtained by the conventional equation (2) is as follows. It is based on the fact that in the deformation of about R = 1/50, it is confirmed that all the beam main bars 3 passing through the inside of the column yield, and some of the beam main bars 3 protruding from the column 1 also yield.
Details will be described below.

梁2の曲げ終局強度の算出は建物の設計上、重要である。すなわち、梁2の曲げ終局強度よりも小さい力であれば、梁主筋3は降伏しないため、梁2の曲げ終局強度が高ければ高いほど、柱1と梁2の剛性が高く、建物は頑丈だといえる。
そこで、梁2の曲げ終局強度とは、梁主筋3が降伏する強度であるため、幅広扁平梁10において、まずどれくらいの力で梁主筋が降伏するかを実験で確かめる必要がある。
梁2にR=1/50程度の変形が生じるだけの力を加えると梁主筋3が降伏し、この力が梁2の曲げ終局強度である。梁2の曲げ終局強度は、式(2)で求められる力であり、梁2にR=1/50程度の変形が生じる。また後述する実験の結果、柱内部を通る梁主筋3は全て降伏し、柱1から張出る梁主筋3も一部は降伏することが確認された。
なお、式(2)で求められる力よりも小さい場合は、梁2にR=1/50の変形は生じず、梁主筋3も降伏しないといえる。
Calculation of the ultimate bending strength of the beam 2 is important in the design of the building. That is, if the force is less than the ultimate bending strength of the beam 2, the beam main bar 3 will not yield. Therefore, the higher the ultimate bending strength of the beam 2, the higher the rigidity of the column 1 and the beam 2, and the stronger the building. It can be said.
Therefore, since the ultimate bending strength of the beam 2 is the strength at which the beam main bar 3 yields, in the wide flat beam 10, it is necessary to first confirm by experiment how much the beam main bar yields.
When a force sufficient to cause deformation of about R = 1/50 is applied to the beam 2, the beam main bar 3 yields, and this force is the ultimate bending strength of the beam 2. The ultimate bending strength of the beam 2 is a force obtained by the equation (2), and the beam 2 is deformed by about R = 1/50. Moreover, as a result of the experiment described later, it was confirmed that all the beam reinforcement 3 passing through the inside of the column yielded, and part of the beam reinforcement 3 protruding from the column 1 also yielded.
In addition, when it is smaller than the force calculated | required by Formula (2), it can be said that the deformation | transformation of R = 1/50 does not arise in the beam 2, and the beam main reinforcement 3 does not yield.

問題は、何故、柱1から張出る梁主筋3の一部、具体的には、柱1から張出した梁2の先端部分の梁主筋3は降伏しなかったかであるが、この理由は、柱1から張出した部分(B部)は、もともと柱1との接合力が弱いためといえる。
すなわち、柱1から張出した部分(B部)は、柱1との結合力が弱く、梁2に曲げの力を加えても柱1から張出した部分の梁はねじれて曲がる角度が小さく、その部分の梁主筋3は降伏点に達しなかったからである。
図9から分かるとおり、柱1から張出した梁部分は、柱1との接合力が弱いと想像できる。それを実験的に確認したといえる。
そして、梁2の曲げ終局強度が高ければ高いほど、柱1と梁2の剛性が高く、建物は頑丈であり、そのためにはどんどん梁主筋3の量を増やしていけばいいわけだが、上述のとおり柱1から張出した部分の梁2については、柱1と梁2の接合力が弱く、ラーメン構造としては、梁主筋3が多い割に柱1と梁2の剛性が低いため、その分、梁2の曲げ終局強度は、その主筋の量に対して低く見積もる必要が生じる。
The problem is why a part of the beam main bar 3 protruding from the column 1, specifically, the beam main bar 3 at the tip of the beam 2 protruding from the column 1 did not yield. It can be said that the portion protruding from 1 (B portion) originally has a weak bonding force with the column 1.
That is, the portion protruding from the column 1 (B portion) has a weak coupling force with the column 1, and even if a bending force is applied to the beam 2, the beam protruding from the column 1 is twisted and bent at a small angle. This is because the main part 3 of the beam did not reach the yield point.
As can be seen from FIG. 9, it can be imagined that the beam portion protruding from the column 1 has a weak bonding force with the column 1. It can be said that it was confirmed experimentally.
And the higher the ultimate bending strength of the beam 2 is, the higher the rigidity of the pillar 1 and the beam 2 and the stronger the building. For that purpose, the amount of beam main reinforcement 3 should be increased more and more, as described above. As for the beam 2 extending from the column 1, the joining force between the column 1 and the beam 2 is weak and the rigidity of the column 1 and the beam 2 is low for the ramen structure although the beam main reinforcement 3 is large. The ultimate bending strength of 2 needs to be estimated to be lower than the amount of the main reinforcement.

具体的には、図9では、上下に梁主筋3がそれぞれ7本で計14本の梁主筋3がある。そのうち、柱1の中に納まる梁主筋3が8本あり、さらに張出した梁2に梁主筋3を6本増やしたので、その梁主筋3の断面積合計をatとした場合、式(2)で梁2の曲げ終局強度が求められるかというと、柱1から張出した部分は、上述のとおり強度を低く見積もる必要があるため、何らかの強度軽減が必要となる。   Specifically, in FIG. 9, there are 14 beam main bars 3 in total, with seven beam main bars 3 above and below. Among them, there are 8 beam reinforcements 3 that can be stored in the column 1, and 6 beam reinforcements 3 are added to the extended beam 2. When the total cross-sectional area of the beam reinforcement 3 is at, the formula (2) As for whether the ultimate bending strength of the beam 2 is required, it is necessary to estimate the strength of the portion protruding from the column 1 low as described above, and therefore some strength reduction is required.

そのため、後述の例では、曲げ終局強度Mを後述する式(3)、すなわち、γ・0.9・at・σy・dとしているが、0.9・(γ・at)・σy・d、あるいは0.9・(γ・at・σy)・d、と考えることもできる。
すなわち、後述する式(4)では、γ=1.0−μ・Ba/Bcとしているが、例えば、γ=1.0−β・Baとして、新たにβという係数でγを設定し算出してもよい。あるいは、0.9・at・σy・d−δとし、δ=λ・0.9・at・σy・d、λ=1.0−ε・Baでもよい。
いずれにしても、実験の結果から、上述のとおり梁2が柱1から張出したBa分だけ曲げ終局強度を低く見積もる必要があり、梁幅と柱幅との差Baに基づいて低減する必要がある。
Therefore, in the example described later, the bending ultimate strength M is expressed by the following formula (3), that is, γ · 0.9 · at · σy · d, but 0.9 · (γ · at) · σy · d, Alternatively, 0.9 · (γ · at · σy) · d can be considered.
That is, in equation (4) described later, γ = 1.0−μ · Ba / Bc, but, for example, γ = 1.0−β · Ba, and a new γ is set and calculated with a coefficient of β. May be. Alternatively, 0.9 · at · σy · d−δ may be set, and δ = λ · 0.9 · at · σy · d and λ = 1.0−ε · Ba may be used.
In any case, from the results of the experiment, it is necessary to estimate the ultimate bending strength by the amount Ba that the beam 2 protrudes from the column 1 as described above, and it is necessary to reduce it based on the difference Ba between the beam width and the column width. is there.

図3は、式(2)が適用できる通常の扁平梁(通常扁平梁9)と、本発明が対象とする幅広扁平梁10の模式的斜視図である。この図において、(A)は通常扁平梁9であり、柱1の両側に梁2がある十字形であって、柱芯と梁芯が一致している。
これに対し、(B)〜(E)は本発明が対象とする幅広扁平梁10である。このうち(B)は(A)と同様に十字形であって、柱芯と梁芯が一致している幅広扁平梁10である(以下、「十字振分け」と呼ぶ)。また、(C)は、(A)と同様に十字形であるが、柱芯と梁芯がずれている幅広扁平梁10である(以下、「十字片寄せ」と呼ぶ)。
さらに、(D)は、柱1の片側のみに梁2があるト字形で、柱芯と梁芯が一致している幅広扁平梁10である(以下「ト字振分け」と呼ぶ)。(E)は、ト字形で、柱芯と梁芯がずれている幅広扁平梁10である(以下「ト字片寄せ」と呼ぶ)。
FIG. 3 is a schematic perspective view of a normal flat beam (normal flat beam 9) to which the formula (2) can be applied and a wide flat beam 10 targeted by the present invention. In this figure, (A) is a normal flat beam 9, which has a cross shape with beams 2 on both sides of the column 1, and the column core and the beam core coincide.
On the other hand, (B)-(E) are the wide flat beams 10 which this invention makes object. Among these, (B) is a cross-shaped flat beam 10 similar to (A), in which the column core and the beam core coincide with each other (hereinafter referred to as “cross-distribution”). Further, (C) is a wide flat beam 10 having a cross shape similar to (A), but the column core and the beam core are deviated (hereinafter referred to as “cross-shifting”).
Further, (D) is a wide flat beam 10 having a beam 2 on only one side of the column 1 and the column core and the beam core coincide with each other (hereinafter referred to as “T-shaped distribution”). (E) is a wide flat beam 10 having a toroidal shape in which the column core and the beam core are displaced (hereinafter, referred to as “t-justified”).

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

本発明の発明者らは、図3に示した各扁平梁(A)〜(E)に相当する試験体を製作し、実際の梁2の曲げ終局強度を計測した。   The inventors of the present invention manufactured a test body corresponding to each of the flat beams (A) to (E) shown in FIG. 3 and measured the actual bending ultimate strength of the beam 2.

試験体に地震で想定される荷重を加え、梁主筋3が降伏する(梁主筋3が引張りに対する抵抗力を失い、塑性変形領域に入る)までの強度が「梁の曲げ終局強度」である。
R=1/50rad程度の変形において、柱内部を通る梁主筋は全て降伏し、柱から張出る梁主筋も一部は降伏することが確認された。
The strength until the beam main bar 3 yields (the beam main bar 3 loses its resistance to tension and enters the plastic deformation region) is the “beam bending ultimate strength”.
In the deformation of about R = 1/50 rad, it was confirmed that all beam main bars passing through the inside of the column yielded, and some beam main bars protruding from the column also yielded.

以下、この試験で得られた幅広扁平梁10の曲げ終局強度Mtを、「実験値Mt」と呼び、後述する計算による幅広扁平梁10の曲げ終局強度Mを、「計算値M」と呼ぶ。   Hereinafter, the bending ultimate strength Mt of the wide flat beam 10 obtained in this test will be referred to as “experimental value Mt”, and the bending ultimate strength M of the wide flat beam 10 obtained by calculation described later will be referred to as “calculated value M”.

(試験結果)
図4は、本試験の試験結果を示す図である。この図において、横軸は梁幅Bbと柱幅Bcとの差Ba(はみ出し幅Ba)と柱幅Bcとの比Ba/Bcである。また、縦軸は本試験で得られた実験値Mtと計算値Mとの比Mt/Mである。
また、図中の各記号は図3に対応し、Aは通常扁平梁、Bは十字振分け、Cは十字片寄せ、Dはト字振分け、Eはト字片寄せである。さらに添字「1」は学会論文等で示されている試験結果であり、「2」は本試験による試験結果である。
(Test results)
FIG. 4 shows the test results of this test. In this figure, the horizontal axis is the ratio Ba / Bc between the difference Ba (protrusion width Ba) between the beam width Bb and the column width Bc and the column width Bc. The vertical axis represents the ratio Mt / M between the experimental value Mt obtained in this test and the calculated value M.
Also, each symbol in the figure corresponds to FIG. 3, A is a normal flat beam, B is a cross-distribution, C is a cross-cut, D is a cross-shaped, and E is a cross-cut. Further, the subscript “1” is a test result shown in a conference paper or the like, and “2” is a test result by this test.

図4において、計算による幅広扁平梁10の曲げ終局強度M(計算値M)は、以下の式(3)(4)で計算している。
M=γ・0.9・at・σy・d=γ・Mu・・・(3)
γ=1.0−μ・Ba/Bc・・・(4)
ここでγは低減係数、μは定数である。定数μは、この例では0.2とした。
In FIG. 4, the bending ultimate strength M (calculated value M) of the wide flat beam 10 by calculation is calculated by the following formulas (3) and (4).
M = γ · 0.9 · at · σy · d = γ · Mu (3)
γ = 1.0−μ · Ba / Bc (4)
Here, γ is a reduction coefficient, and μ is a constant. The constant μ is 0.2 in this example.

図4から、定数μを0.2とすると、実験値Mtと計算値Mとの比Mt/Mは、Ba/Bcが0から1.1までの範囲で、1から1.5の範囲にすべて収まっており、実験値Mtが計算値Mよりすべて1〜1.5倍であることがわかる。
また、式(3)(4)から、定数μを0.2より大きくすると、低減係数γが小さくなり、計算値Mは実験値Mtよりもさらに小さくなる。従って、μを0.2以上として0.2よりも大きくすると、実際の強度(実験値Mt)は計算値Mよりもさらに大きくなることから、上述の計算値Mを用いた設計はより安全側の設計となることがわかる。
From FIG. 4, when the constant μ is 0.2, the ratio Mt / M between the experimental value Mt and the calculated value M is in the range of Ba / Bc from 0 to 1.1 and from 1 to 1.5. It can be seen that all the values are within the range, and the experimental values Mt are all 1 to 1.5 times the calculated values M.
Further, from the formulas (3) and (4), when the constant μ is larger than 0.2, the reduction coefficient γ is decreased, and the calculated value M is further smaller than the experimental value Mt. Accordingly, when μ is set to 0.2 or more and is larger than 0.2, the actual strength (experimental value Mt) becomes larger than the calculated value M. Therefore, the design using the calculated value M is more secure. It turns out that it becomes the design of.

また、図4において、実線で示す直線は、Ba/Bc=1.0、Mt/M=1.1の点を通っている。この直線は式(2)における梁の曲げ終局強度Muに相当する仮定することができ、この場合、Mu/M=1.1・・・(5)となる。
式(5)(3)から、低減係数γ=M/Mu=1/1.1=0.909であり、式(4)から定数μは約0.10となる。すなわち、定数μが0.10の場合にも、上述の計算値Mを用いた設計は式(2)による梁の曲げ終局強度Muより安全側の設計となることがわかる。
従って、定数μは、0.1以上、0.3以下であることが好ましく、特に0.2以上であるのが好ましい。
In FIG. 4, a straight line indicated by a solid line passes through points Ba / Bc = 1.0 and Mt / M = 1.1. This straight line can be assumed to correspond to the ultimate bending strength Mu of the beam in equation (2), and in this case, Mu / M = 1.1 (5).
From Expressions (5) and (3), the reduction coefficient γ = M / Mu = 1 / 1.1 = 0.909, and from Expression (4), the constant μ is about 0.10. That is, even when the constant μ is 0.10, the design using the calculated value M described above is a safer design than the ultimate bending strength Mu of the beam according to the equation (2).
Accordingly, the constant μ is preferably 0.1 or more and 0.3 or less, and particularly preferably 0.2 or more.

本発明は上述した試験結果に基づく、新たな知見に基づくものである。
すなわち、本発明のラーメン架構は、鉄筋コンクリート造の柱1と梁2からなり、梁2の梁幅Bbが柱1の柱幅Bcより大きい幅広扁平梁10を有している。また、本発明では、梁2の降伏ヒンジが、隣接する柱1の対向側面に設定されている。また、幅広扁平梁10の曲げ終局強度Mが、はみ出し幅Baと柱幅Bcとの比Ba/Bcに基づく低減係数γにより算出される。
The present invention is based on new findings based on the test results described above.
That is, the frame structure of the present invention includes a reinforced concrete column 1 and a beam 2, and has a wide flat beam 10 in which the beam width Bb of the beam 2 is larger than the column width Bc of the column 1. In the present invention, the yield hinge of the beam 2 is set on the opposite side surface of the adjacent column 1. Further, the ultimate bending strength M of the wide flat beam 10 is calculated by a reduction factor γ based on the ratio Ba / Bc between the protruding width Ba and the column width Bc.

また上述したように、本発明では、梁2の梁幅Bbが柱1の柱幅Bcより小さい通常扁平梁9の曲げ終局強度Muが、Mu=0.9・at・σy・dの式(2)で求められる。
また、低減係数γは、γ=1.0−μ・Ba/Bcの式(4)で求められる。ここでμは0.1以上、0.3以下の正定数である。
さらに、幅広扁平梁10の曲げ終局強度Mは、通常扁平梁9の曲げ終局強度Muと低減係数γとの積で求められる。
Further, as described above, in the present invention, the ultimate bending strength Mu of the normal flat beam 9 in which the beam width Bb of the beam 2 is smaller than the column width Bc of the column 1 is Mu = 0.9 · at · σy · d ( 2).
Further, the reduction coefficient γ is obtained by the equation (4) where γ = 1.0−μ · Ba / Bc. Here, μ is a positive constant between 0.1 and 0.3.
Further, the bending ultimate strength M of the wide flat beam 10 is usually obtained by the product of the bending ultimate strength Mu of the flat beam 9 and the reduction factor γ.

上述したように、本発明では、梁2の降伏ヒンジを柱1の側面(隣接する柱1の対向側面)に設定することで、大量の補強鉄筋を必要とする柱1からの跳ね出し部をなくし、梁2(幅広扁平梁10)の配筋施工を簡易化した。また、この結果、補強鉄筋の減少による梁2の曲げ終局強度の低下を、1.0以下の正数である低減係数γを導入し、通常扁平梁9の曲げ終局強度Muに低減係数γをかけることにより計算することで、建物20の耐震性能を確保するものとした。   As described above, in the present invention, by setting the yield hinge of the beam 2 to the side surface of the column 1 (opposite side surface of the adjacent column 1), the protruding portion from the column 1 that requires a large amount of reinforcing bars is provided. Eliminating and simplifying the bar arrangement of beam 2 (wide flat beam 10). Further, as a result, a reduction in the ultimate bending strength of the beam 2 due to the reduction of the reinforcing reinforcing bars is introduced, and a reduction factor γ which is a positive number of 1.0 or less is introduced, and a reduction factor γ is normally added to the bending ultimate strength Mu of the flat beam 9. The seismic performance of the building 20 was ensured by calculating by applying.

すなわち通常扁平梁9の曲げ終局強度Muに対し、どの程度低く見積もるかは、従来は複雑な計算が必要になる。これに対し、本発明の発明者らは低減係数γを導入し、通常扁平梁9の曲げ終局強度Muと低減係数γの積として容易かつ単純に見積もることができることを見出した。
これにより、幅広扁平梁10であっても、梁2(幅広扁平梁10)の降伏ヒンジを柱1の側面に設定した場合の耐震性能を、より簡易にかつ正確に計算することができ、通常扁平梁9の配筋施工を簡易化できるものとなった。
That is, conventionally, a complicated calculation is required to determine how low the bending ultimate strength Mu of the flat beam 9 is to be estimated. In contrast, the inventors of the present invention have introduced a reduction factor γ and found that it can be easily and simply estimated as the product of the bending ultimate strength Mu of the normal flat beam 9 and the reduction factor γ.
Thereby, even if it is the wide flat beam 10, the earthquake resistance performance when the yield hinge of the beam 2 (wide flat beam 10) is set to the side surface of the column 1 can be calculated more easily and accurately. It became possible to simplify the bar installation work of the flat beam 9.

図5は、本発明による幅広扁平梁10の第1実施形態図である。
この図において、(A)は平面図、(B)は(A)のB−B断面図である。この例は、幅広扁平梁10が、柱1の片側のみに梁2があるト字形(図3参照)である場合を示している。
FIG. 5 is a first embodiment of the wide flat beam 10 according to the present invention.
In this figure, (A) is a plan view, and (B) is a sectional view taken along line BB of (A). This example shows a case where the wide flat beam 10 has a toroidal shape (see FIG. 3) in which the beam 2 is provided only on one side of the column 1.

図5(A)に示すように、本発明の幅広扁平梁10は、複数の機械式定着具12と複数のキャップ筋13を有する。
複数の機械式定着具12は、柱1内に位置する各梁主筋3の外側最端部(図で左端)に機械的に固定され、梁主筋3の引張抵抗を高める機能を有する。
複数のキャップ筋13は、幅広扁平梁10内の端部(図で左端部)に埋設されたコの字形の配筋であり、梁主筋端部の定着性を高める機能を有する。
As shown in FIG. 5A, the wide flat beam 10 of the present invention has a plurality of mechanical fixing tools 12 and a plurality of cap bars 13.
The plurality of mechanical fixing tools 12 are mechanically fixed to the outermost end (left end in the figure) of each beam main bar 3 located in the column 1 and have a function of increasing the tensile resistance of the beam main bar 3.
The plurality of cap bars 13 are U-shaped bars embedded in the end portion (left end portion in the figure) in the wide flat beam 10 and have a function of improving the fixing property of the end portion of the main beam bar.

さらにこの例では、図5(B)に示すように、柱1の前面(図で左側、又は後面)に位置する幅広扁平梁10のはみ出し部11に埋設されたコ形補強筋14と、梁主筋3の位置を拘束する複数の拘束筋15と、を有する。   Further, in this example, as shown in FIG. 5 (B), a U-shaped reinforcing bar 14 embedded in the protruding portion 11 of the wide flat beam 10 positioned on the front surface (left side or rear surface in the drawing) of the column 1 and the beam A plurality of constraining muscles 15 for constraining the position of the main muscle 3.

上述した構成により、幅広扁平梁10が、柱1の片側のみに梁2があるト字形であっても、柱1の両側に梁2がある十字形(図3参照)と同等の曲げ終局強度を維持できることが、上述した試験により確認された。   With the configuration described above, even if the wide flat beam 10 is a toroidal shape with the beam 2 on only one side of the column 1, the ultimate bending strength equivalent to the cross shape with the beam 2 on both sides of the column 1 (see FIG. 3). It was confirmed by the test described above that the above can be maintained.

すなわち、幅広扁平梁10の降伏ヒンジを柱1の側面に設定したことで、柱1の近傍の補強鉄筋を軽減できるが、柱1からはみ出したはみ出し部11の梁主筋3の定着力は低下する。その傾向は、幅広扁平梁10の最端部で顕著である。そのため、本発明では、幅広扁平梁10における梁主筋3の外側最端部を機械式定着具12による機械式定着とするとともに、コの字形のキャップ筋13を幅広扁平梁10の最端部の横側から挿入している。これにより、幅広扁平梁10の端部の拘束力を高め、梁主筋端部の定着力を高めることができる。   That is, by setting the yield hinge of the wide flat beam 10 on the side surface of the column 1, the reinforcing reinforcing bars in the vicinity of the column 1 can be reduced, but the fixing force of the beam main bar 3 of the protruding portion 11 protruding from the column 1 is reduced. . This tendency is remarkable at the extreme end of the wide flat beam 10. Therefore, in the present invention, the outermost end portion of the beam main bar 3 in the wide flat beam 10 is mechanically fixed by the mechanical fixing device 12, and the U-shaped cap bar 13 is connected to the end portion of the wide flat beam 10. Inserted from the side. Thereby, the restraining force of the edge part of the wide flat beam 10 can be raised, and the fixing force of the beam main bar edge part can be raised.

図6は、本発明による幅広扁平梁10の第2実施形態図である。
この図において、(A)は平面図、(B)は(A)のB−B断面図である。この例は、幅広扁平梁10が、柱1の両側に梁2がある十字形(図3参照)である場合を示している。
FIG. 6 is a second embodiment of the wide flat beam 10 according to the present invention.
In this figure, (A) is a plan view, and (B) is a sectional view taken along line BB of (A). In this example, the wide flat beam 10 has a cross shape (see FIG. 3) in which the beam 2 is on both sides of the column 1.

図6(A)に示すように、本発明の幅広扁平梁10は、縦貫通孔16と貫通孔補強筋17を有する。   As shown in FIG. 6 (A), the wide flat beam 10 of the present invention has a vertical through hole 16 and a through hole reinforcing bar 17.

縦貫通孔16は、柱1の前面又は後面に位置する幅広扁平梁10のはみ出し部11を上下に貫通する。縦貫通孔16の位置は、柱1の張出部の柱側面から、d/2以内、かつ柱1の前面からd/2以内であるのがよい。ここでdは梁の梁せいである。
また、縦貫通孔16の直径は、柱せいの0.15倍以下、かつ200mm以下であるのがよい。なお縦貫通孔16は、この例では1つであるが、中心間隔を十分隔てる限りで2以上であってもよい。
The vertical through hole 16 vertically penetrates the protruding portion 11 of the wide flat beam 10 located on the front surface or the rear surface of the column 1. The position of the vertical through hole 16 is preferably within d / 2 from the column side surface of the projecting portion of the column 1 and within d / 2 from the front surface of the column 1. Here, d is the beam's fault.
Moreover, the diameter of the vertical through-hole 16 is good to be 0.15 times or less of a pillar, and 200 mm or less. The number of vertical through holes 16 is one in this example, but may be two or more as long as the center interval is sufficiently separated.

貫通孔補強筋17は、U字形であり、縦貫通孔16を囲み、柱1内まで延びるように配筋する。
さらにこの例では、図6(B)に示すように、柱1の前面(図で左側、又は後面)に位置する幅広扁平梁10のはみ出し部11に埋設されたコ形補強筋18と、梁主筋3の位置を拘束する複数の拘束筋15とを有する。
The through-hole reinforcing bar 17 is U-shaped, and is arranged so as to surround the vertical through-hole 16 and extend into the column 1.
Furthermore, in this example, as shown in FIG. 6 (B), a U-shaped reinforcing bar 18 embedded in the protruding portion 11 of the wide flat beam 10 located on the front surface (left side or rear surface in the drawing) of the column 1 and the beam And a plurality of restraining muscles 15 for restraining the position of the main muscle 3.

上述した構成により、柱1の両側に梁2がある十字形の幅広扁平梁10において、梁2の曲げ終局強度を維持したままで、幅広扁平梁10のはみ出し部11を上下に貫通する縦貫通孔16を設けることができることが、上述した試験により確認された。   With the above-described configuration, in the cross-shaped wide flat beam 10 having the beam 2 on both sides of the column 1, the vertical penetration that vertically penetrates the protruding portion 11 of the wide flat beam 10 while maintaining the ultimate bending strength of the beam 2. It was confirmed by the test described above that the holes 16 can be provided.

すなわち、特許文献1のように、柱1から跳ね出し部にかけてその耐力が扁平梁端部の耐力に比べ十分大きくなるように補強する場合、跳ね出し部に大量の補強鉄筋が必要となり、場合によっては、跳ね出し部の配筋施工が困難になるという問題がある。
また、この場合、一方で、柱1の側面に雨どいなどの設備配管の貫通が必要になった場合、配筋が邪魔で縦貫通孔を設けられないといった問題もあった。
本発明では、幅広扁平梁10の降伏ヒンジを柱1の側面に設定したことで、柱1の近傍の補強鉄筋を軽減でき、梁2の主筋およびスタラップの間に設備配管用の縦貫通孔16を形成できる。
また、縦貫通孔16を囲み柱1内まで延びるようにU字形の貫通孔補強筋17を配筋することで、縦貫通孔16による幅広扁平梁10の耐力低下を防止することができる。
That is, as in Patent Document 1, when reinforcing from the column 1 to the protruding portion so that the proof strength is sufficiently larger than the proof strength of the flat beam end, a large amount of reinforcing bars are required in the protruding portion. However, there is a problem that it is difficult to perform the bar arrangement at the protruding portion.
Also, in this case, on the other hand, when it is necessary to penetrate the facility piping such as a gutter on the side surface of the pillar 1, there is a problem that the vertical penetration hole cannot be provided due to the bar arrangement.
In the present invention, since the yield hinge of the wide flat beam 10 is set on the side surface of the column 1, the reinforcing reinforcing bars near the column 1 can be reduced, and the vertical through-hole 16 for equipment piping is provided between the main bar and the stirrup of the beam 2. Can be formed.
Further, by arranging the U-shaped through-hole reinforcing bar 17 so as to surround the vertical through-hole 16 and extend into the column 1, it is possible to prevent a decrease in the proof stress of the wide flat beam 10 by the vertical through-hole 16.

図7は、上述した本発明のラーメン架構を用いた建物20の断面側面図である。
本発明による建物20は、マンション等の集合住宅であり、建物20の桁方向(図で左右方向)に少なくとも2構面以上の鉄筋コンクリートの柱1と梁2からなるラーメン架構を有する。
また、この建物20は、少なくとも1構面に上述した本発明のラーメン架構を有する。
FIG. 7 is a cross-sectional side view of a building 20 using the above-described frame frame of the present invention.
The building 20 according to the present invention is an apartment house such as an apartment, and has a frame structure composed of reinforced concrete columns 1 and beams 2 having at least two planes in the girder direction (left and right in the drawing) of the building 20.
Further, the building 20 has the above-described ramen frame of the present invention on at least one surface.

この構成により、各階の梁2の高さを維持したまま開口高さを大きくすることができる。   With this configuration, it is possible to increase the opening height while maintaining the height of the beam 2 on each floor.

図8は、本発明による建物20の平面図である。
この例において、建物20の妻側(図で右側)にバルコニー22を設け、このバルコニー22の幅広扁平梁10(破線で示す)のない位置に垂直避難口24を設けている。垂直避難口24は、人が通れる大きさ、例えば650mm×650mm以上であるのがよい。
この構成により、幅広扁平梁10を有する建物20であっても、垂直避難口24を設けることができる。
FIG. 8 is a plan view of a building 20 according to the present invention.
In this example, a balcony 22 is provided on the wife side (right side in the figure) of the building 20, and a vertical evacuation port 24 is provided on the balcony 22 where the wide flat beam 10 (shown by a broken line) is not provided. The vertical evacuation port 24 is preferably large enough to allow people to pass, for example, 650 mm × 650 mm or more.
With this configuration, the vertical evacuation port 24 can be provided even in the building 20 having the wide flat beam 10.

上述したように、本発明によれば、幅広扁平梁10の降伏ヒンジが、隣接する柱1の対向側面に設定されているので、大量の補強鉄筋が必要な跳ね出し部を設ける必要がなく、配筋施工が容易になる。
また、幅広扁平梁10の曲げ終局強度Mが、はみ出し幅Baに基づき低減されて算出される。従って、隣接する柱1の対向側面に降伏ヒンジを設定したにも関わらず、幅広扁平梁10と柱1の接合部の強度計算が容易にできる。
As described above, according to the present invention, since the yield hinge of the wide flat beam 10 is set on the opposite side surface of the adjacent column 1, there is no need to provide a protruding portion that requires a large amount of reinforcing bars, Reinforcement construction becomes easy.
Further, the ultimate bending strength M of the wide flat beam 10 is calculated based on the protrusion width Ba. Therefore, it is possible to easily calculate the strength of the joint between the wide flat beam 10 and the column 1, although the yield hinge is set on the opposite side surface of the adjacent column 1.

従って、幅広扁平梁10と柱1の接合部の強度計算が容易であり、幅広扁平梁10と柱1の接合部を補強して幅広扁平梁10の曲げ終局強度Mを容易に高めることができる。   Therefore, it is easy to calculate the strength of the joint between the wide flat beam 10 and the column 1 and the bending ultimate strength M of the wide flat beam 10 can be easily increased by reinforcing the joint between the wide flat beam 10 and the column 1. .

なお、本発明は上述した実施形態に限定されず、本発明の要旨を逸脱しない限りで種々に変更できることは勿論である。   In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously, unless it deviates from the summary of this invention.

at 引張主筋断面積、σy 主筋降伏強度、d 梁せい、Ba はみ出し幅、
Bb 梁幅、Bc 柱幅、Mu 通常扁平梁の曲げ終局強度、
Mt 幅広扁平梁の曲げ終局強度(実験値)、M 幅広扁平梁の曲げ終局強度(計算値)、
γ 低減係数、μ 定数、1 柱、2 梁、3 梁主筋、4 コンクリート、
9 通常扁平梁、10 幅広扁平梁、11 はみ出し部、12 機械式定着具、
13 キャップ筋、14 コ形補強筋、15 拘束筋、16 縦貫通孔、
17 貫通孔補強筋、18 コ形補強筋、20 建物、22 バルコニー、
24 垂直避難口
at tension main bar cross-sectional area, σy main bar yield strength, d beam, Ba protrusion width,
Bb Beam width, Bc Column width, Mu Normal ultimate bending strength of flat beam,
Mt Ultimate bending strength of wide flat beams (experimental value), M Ultimate bending strength of wide flat beams (calculated value),
γ reduction factor, μ constant, 1 column, 2 beams, 3 beam main bars, 4 concrete,
9 Normal flat beam, 10 wide flat beam, 11 protruding part, 12 mechanical fixing device,
13 cap bars, 14 U-shaped reinforcement bars, 15 restraint bars, 16 longitudinal through holes,
17 Reinforcing bar reinforcement, 18 U-shaped reinforcement, 20 Building, 22 Balcony,
24 Vertical exit

Claims (7)

鉄筋コンクリート造の柱と梁からなり、梁の梁幅が柱の柱幅より大きい幅広扁平梁を有するラーメン架構であって、
前記幅広扁平梁の降伏ヒンジが、隣接する柱の対向側面に設定されており、
前記幅広扁平梁の曲げ終局強度Mが、梁幅と柱幅との差Baに基づき低減されて算出される、ことを特徴とする幅広扁平梁を有するラーメン架構。
The frame is composed of reinforced concrete columns and beams, and has a wide flat beam whose beam width is larger than the column width of the columns,
The yielding hinge of the wide flat beam is set on the opposite side of an adjacent column;
A frame structure having a wide flat beam, wherein the bending ultimate strength M of the wide flat beam is calculated based on a difference Ba between the beam width and the column width.
前記幅広扁平梁の曲げ終局強度Mは、梁幅と柱幅との差Baと柱幅Bcとの比Ba/Bcに基づく低減係数γにより算出される、ことを特徴とする請求項1に記載の幅広扁平梁を有するラーメン架構。   The bending ultimate strength M of the wide flat beam is calculated by a reduction factor γ based on a ratio Ba / Bc between a difference Ba between a beam width and a column width and a column width Bc. Ramen frame with wide flat beams. 梁の梁幅が柱の柱幅より小さい通常扁平梁の曲げ終局強度Muが、
Mu=0.9・at・σy・dで求められ、ここでatは引張主筋断面積、σyは主筋降伏強度、dは梁の梁せいであり、
前記低減係数γは、γ=1.0−μ・Ba/Bcで求められ、ここでμは0.1以上、0.3以下の正定数であり、
前記幅広扁平梁の曲げ終局強度Mは、前記通常扁平梁の曲げ終局強度Muと前記低減係数γとの積で求められる、ことを特徴とする請求項2に記載の幅広扁平梁を有するラーメン架構。
The bending ultimate strength Mu of a normal flat beam in which the beam width of the beam is smaller than the column width of the column is
Mu = 0.9 · at · σy · d, where at is the tensile main bar cross-sectional area, σy is the main bar yield strength, and d is the beam's fault.
The reduction coefficient γ is obtained by γ = 1.0−μ · Ba / Bc, where μ is a positive constant of 0.1 or more and 0.3 or less,
The rigid frame structure having a wide flat beam according to claim 2, wherein the bending ultimate strength M of the wide flat beam is obtained by a product of the bending ultimate strength Mu of the normal flat beam and the reduction factor γ. .
前記幅広扁平梁は、柱の片側のみに梁があるト字形であり、
前記柱内に位置する梁主筋の外側最端部に機械的に固定された機械式定着具と、
前記梁主筋の端部の定着性を高めるキャップ筋と、を有する、ことを特徴とする請求項2に記載の幅広扁平梁を有するラーメン架構。
The wide flat beam is a toroid having a beam only on one side of the column,
A mechanical fixing device mechanically fixed to the outermost end of the beam main bar located in the column;
The frame frame having a wide flat beam according to claim 2, further comprising a cap bar that enhances fixability of an end portion of the beam main bar.
前記幅広扁平梁は、柱の両側に梁がある十字形であり、
前記柱の前面又は後面に位置する前記幅広扁平梁のはみ出し部を上下に貫通する縦貫通孔と、
前記縦貫通孔を囲み前記柱内まで延びるU字形の貫通孔補強筋と、を有する、ことを特徴とする請求項2に記載の幅広扁平梁を有するラーメン架構。
The wide flat beam has a cross shape with beams on both sides of the column,
A vertical through hole penetrating up and down the protruding portion of the wide flat beam located on the front or rear surface of the column;
The frame structure having a wide flat beam according to claim 2, further comprising a U-shaped through-hole reinforcing bar surrounding the vertical through-hole and extending into the column.
建物の桁方向に少なくとも2構面以上の鉄筋コンクリートの柱と梁からなるラーメン架構を有する建物であって、
少なくとも1構面に請求項1乃至5のいずれか一項のラーメン架構を有する、ことを特徴とするラーメン架構を用いた建物。
A building having a rigid frame composed of columns and beams of reinforced concrete with at least two frames in the direction of the beam of the building,
A building using a ramen frame characterized by having the ramen frame according to any one of claims 1 to 5 on at least one frame.
建物の妻側にバルコニーを設け、該バルコニーの前記幅広扁平梁のない位置に垂直避難口を設ける、ことを特徴とする請求項6に記載のラーメン架構を用いた建物。   The building using a ramen frame according to claim 6, wherein a balcony is provided on the wife side of the building, and a vertical evacuation port is provided at a position without the wide flat beam on the balcony.
JP2014015841A 2014-01-30 2014-01-30 Ramen frames with wide flat beams and buildings using them Active JP6243238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014015841A JP6243238B2 (en) 2014-01-30 2014-01-30 Ramen frames with wide flat beams and buildings using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014015841A JP6243238B2 (en) 2014-01-30 2014-01-30 Ramen frames with wide flat beams and buildings using them

Publications (2)

Publication Number Publication Date
JP2015140635A true JP2015140635A (en) 2015-08-03
JP6243238B2 JP6243238B2 (en) 2017-12-06

Family

ID=53771183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014015841A Active JP6243238B2 (en) 2014-01-30 2014-01-30 Ramen frames with wide flat beams and buildings using them

Country Status (1)

Country Link
JP (1) JP6243238B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7381306B2 (en) 2019-11-26 2023-11-15 株式会社奥村組 Column beam joint structure
JP7381307B2 (en) 2019-11-26 2023-11-15 株式会社奥村組 Column beam joint structure
JP7384645B2 (en) 2019-11-26 2023-11-21 株式会社奥村組 How to calculate the strength at the joint between a column and a flat beam

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1508325A (en) * 1923-10-20 1924-09-09 Henderson Corp Concrete building construction
JP2015061961A (en) * 2013-09-21 2015-04-02 株式会社安藤・間 Method for calculating flexural strength of flat beam, and bar arrangement structure for flat beam

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1508325A (en) * 1923-10-20 1924-09-09 Henderson Corp Concrete building construction
JP2015061961A (en) * 2013-09-21 2015-04-02 株式会社安藤・間 Method for calculating flexural strength of flat beam, and bar arrangement structure for flat beam

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7381306B2 (en) 2019-11-26 2023-11-15 株式会社奥村組 Column beam joint structure
JP7381307B2 (en) 2019-11-26 2023-11-15 株式会社奥村組 Column beam joint structure
JP7384645B2 (en) 2019-11-26 2023-11-21 株式会社奥村組 How to calculate the strength at the joint between a column and a flat beam

Also Published As

Publication number Publication date
JP6243238B2 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
JP6243238B2 (en) Ramen frames with wide flat beams and buildings using them
US10208493B1 (en) Column reinforcing structure using V-shaped tie bars
JP6227452B2 (en) Wall pillar structure
JP6181369B2 (en) Reinforcement bracket and reinforced concrete perforated beam provided with the reinforcement bracket
JP4105191B2 (en) Column and beam frame
JP6646206B2 (en) Joint structure of RC members
TWI570308B (en) Steel structutre for reinforced concrete wall panel and method thereof
WO2014182262A1 (en) Beams, columns and beam-column joints structural elements innovation
KR101124820B1 (en) Combination Structure
JP6479352B2 (en) Hybrid beam
JP6573111B2 (en) Beam-column joint structure
JP5939707B2 (en) Reinforcement structure for beam-column joints
JP5083808B2 (en) Concrete earthquake-resistant wall floor structure
JP2009144500A (en) Shearing reinforcement structure for column-beam joint part of uppermost story
JP6999294B2 (en) Joining method and structure of precast concrete members
JP6019710B2 (en) Seismic reinforcement structure and method for existing buildings
JP5435697B2 (en) Beam-column joint structure
JP6357303B2 (en) Reinforced concrete wall
JP2014231726A (en) Column-beam structure
JP6568388B2 (en) Design method of reinforced concrete structure and reinforced concrete structure
JP6681709B2 (en) Stiffening structure of steel beams
JP6591255B2 (en) Double bar arrangement of reinforced concrete foundation beams
KR20200065965A (en) Shear wall structure
JP6862096B2 (en) Variable cross-section beam structure
JP2012188870A (en) Steel concrete composite column

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171109

R150 Certificate of patent or registration of utility model

Ref document number: 6243238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250