JP2015139320A - Method for recovery from accident in power distribution system, device and method of estimating actual load and width of power distribution system, and program - Google Patents

Method for recovery from accident in power distribution system, device and method of estimating actual load and width of power distribution system, and program Download PDF

Info

Publication number
JP2015139320A
JP2015139320A JP2014010501A JP2014010501A JP2015139320A JP 2015139320 A JP2015139320 A JP 2015139320A JP 2014010501 A JP2014010501 A JP 2014010501A JP 2014010501 A JP2014010501 A JP 2014010501A JP 2015139320 A JP2015139320 A JP 2015139320A
Authority
JP
Japan
Prior art keywords
power
load
estimated
accident
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014010501A
Other languages
Japanese (ja)
Other versions
JP6387617B2 (en
Inventor
飯坂 達也
Tatsuya Iizaka
達也 飯坂
直人 石橋
Naoto Ishibashi
直人 石橋
浩一郎 吉見
Koichiro Yoshimi
浩一郎 吉見
康久 金澤
Yasuhisa Kanazawa
康久 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2014010501A priority Critical patent/JP6387617B2/en
Publication of JP2015139320A publication Critical patent/JP2015139320A/en
Application granted granted Critical
Publication of JP6387617B2 publication Critical patent/JP6387617B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable an estimation device to accurately recognize an output of a distributed power supply for each section and an active power consumed by a load, and to enable the estimation device to control only a section switch in consideration of its state to perform recovery from an accident.SOLUTION: Input processing of input data is performed, and the input processed data is stored (S1). Next, an accident section determination unit determines an accident section (S2). An output of a distributed power supply immediately before an accident, and a power consumed by a load are estimated (S3). The estimation at this step is performed by using a scatter diagram, a regression expression, or any one of the regression expression and independent component analysis. Widths of estimation values of the estimated output of the distributed power supply and the estimated power consumed by the load are calculated (S4). Then, processing for recovery from an accident is performed (S5). For the processing for recovery from an accident, the estimation device controls only a section switch to perform accident recovery for only the power consumption estimation value of the load, with a limit of the maximum allowable capacity of a power distribution system.

Description

本発明は、分散電源が連系した電力系統において、系統における事故時に系統を復旧させるための事故復旧方法、並びに、該事故復旧を確実に行うための配電系統における実負荷とその幅を推定する装置、方法、プログラムに関する。   The present invention relates to an accident recovery method for restoring a system in the event of an accident in the system, and an actual load and a width of the distribution system for reliably performing the accident restoration in a power system in which distributed power sources are connected. The present invention relates to an apparatus, a method, and a program.

近年、配電系統に、多くの分散電源(例えば、太陽光発電装置(PV:Photo Voltaic generation),風力発電装置,燃料電池など)が導入されている。配電系統の適切な運用、特に事故復旧時の運用のためには、区間ごとの分散電源(例.太陽光発電装置)の出力と負荷が消費する有効電力を正確に把握し、その状態を考慮して事故復旧する必要がある。本明細書では、分散電源としてその代表例である太陽光発電装置(PV)を用いる場合について専ら説明するが、太陽光発電装置(PV)のみに限定されるものではない。なお、“区間”は、配電系統に事故が起こった場合にその周辺から電力を融通して事故復旧を行いやすくするために配電系統の要所に設けられる区分開閉器で区切られている電力接続域を意味するものである。   In recent years, many distributed power sources (for example, PV (Photo Voltaic generation), wind power generators, fuel cells, etc.) have been introduced into the distribution system. For the proper operation of the power distribution system, especially in the event of an accident recovery, accurately grasp the output of the distributed power source (eg, photovoltaic power generator) and the active power consumed by the load for each section, and consider its state It is necessary to recover from the accident. In this specification, a case where a solar power generation device (PV) as a representative example is used as a distributed power source will be described exclusively, but the present invention is not limited to only a solar power generation device (PV). In addition, “section” is a power connection that is separated by a section switch provided at the main point of the distribution system in order to make it easier to recover from an accident if an accident occurs in the distribution system. It means an area.

従来の配電系統では、太陽光発電装置(PV)が含まれていなかったため、
計測した電力=負荷の消費する電力
の関係がなりたっていた。
In the conventional power distribution system, the PV system (PV) was not included,
The relationship of measured power = power consumed by the load was found.

そのため、従来の配電系統における事故復旧技術は、事故直前に計測した電力をまかなうだけの電力を融通するもの、つまり計測した電力をその周囲から融通して事故復旧させるものであった。   For this reason, the conventional accident recovery technique in the distribution system is to use the power enough to cover the power measured immediately before the accident, that is, to recover the accident by using the measured power from its surroundings.

しかし、分散電源(例.太陽光発電装置)が大量導入された配電系統では、このような技術が使えない。例えば、負荷の消費する電力が100kW、分散電源の出力量が100kWの場合、計測される電力は0Wになる。事故がおきると分散電源は系統から解列し出力が0kWになる。事故復旧に必要な電力は、100kWになるが、事故直前に計測した電力は0Wであるので、従来技術で融通しようとすると融通電力が不足することになる。   However, such a technology cannot be used in a distribution system in which a large number of distributed power sources (eg, photovoltaic power generation devices) are introduced. For example, when the power consumed by the load is 100 kW and the output amount of the distributed power supply is 100 kW, the measured power is 0 W. When an accident occurs, the distributed power supply is disconnected from the system and the output becomes 0 kW. The electric power required for the accident recovery is 100 kW, but the electric power measured immediately before the accident is 0 W. Therefore, if the conventional technology tries to make it compatible, the electric power will be insufficient.

分散電源を考慮して事故復旧を図る従来の技術を開示した文献の幾つかを以下に例示する。すなわち、
下記特許文献1には、区分開閉器と分散電源を監視制御する配電制御装置を設けておき、配電制御装置が区分開閉器を操作するだけでなく、分散電源のオン/オフを制御して、負荷の合計が配電線の許容容量を超えないように制御する事故復旧方法が開示されている。
Some of the documents disclosing the prior art for recovering from an accident in consideration of a distributed power source are exemplified below. That is,
In the following Patent Document 1, a distribution control device that monitors and controls the division switch and the distributed power source is provided, and the distribution control device not only operates the division switch but also controls on / off of the distributed power source, An accident recovery method is disclosed in which the total load is controlled so as not to exceed the allowable capacity of the distribution line.

また下記特許文献2には、供給支障区間が発生しないように、区間内の分散電源の発電出力量を増加させて、各分散電源の総発電出力量と各需要設備の総負荷量とを一致させる事故復旧方法が開示されている。   Further, in Patent Document 2 below, the power generation output amount of the distributed power source in the section is increased so that the supply trouble section does not occur, and the total power generation output amount of each distributed power source matches the total load amount of each demand facility. An accident recovery method is disclosed.

また下記特許文献3には、負荷と分散電源とが混在する電力系統の事故復旧操作を行う配電系統監視制御装置において、配電系統監視制御装置があらかじめ選択した負荷を切り離しておき、負荷を十分に軽くした状態で配電線遮断器を投入して事故復旧させる方法が開示されている。   Further, in Patent Document 3 below, in a power distribution system monitoring and control device that performs an accident recovery operation of a power system in which a load and a distributed power source coexist, a load selected in advance by the power distribution system monitoring and control device is disconnected, and the load is sufficiently A method of recovering an accident by putting a distribution line circuit breaker in a light state is disclosed.

その一方、事故復旧に当たってはその前提として、事故直前における、実際に負荷が消費する電力と分散電源(例.太陽光発電装置)の出力量を正確に推定する技術が必要になる。そのため従来では、分散電源(例.太陽光発電装置)の出力量と負荷の消費する電力を推定する技術として、以下のような技術が知られている。すなわち、
下記特許文献4には、太陽光発電システムが導入される前など太陽光発電出力がないデータを用いて負荷が消費する電力と太陽光発電装置の出力量を推定する推定式を構築する技術が開示されている。
On the other hand, as a prerequisite for accident recovery, a technology that accurately estimates the power consumed by the load and the output amount of the distributed power source (eg, photovoltaic power generation device) immediately before the accident is required. Therefore, conventionally, the following techniques are known as techniques for estimating the output amount of a distributed power source (eg, a photovoltaic power generation device) and the power consumed by a load. That is,
In Patent Document 4 below, there is a technique for constructing an estimation formula for estimating the power consumed by a load and the output amount of a photovoltaic power generation device using data without a photovoltaic power generation output such as before the photovoltaic power generation system is introduced. It is disclosed.

また下記特許文献5には、計測した有効電力と無効電力から、太陽光発電装置の出力する有効電力と、負荷が消費する有効電力とを独立成分分析を用いて分離する技術が開示されている。   Patent Document 5 listed below discloses a technique for separating active power output from a solar power generation device and active power consumed by a load from measured active power and reactive power using independent component analysis. .

特開2007−028769号公報JP 2007-028769 A 特開2011−061931号公報JP 2011-061931 A 特開2006−060885号公報JP 2006-066085 A 特開2012−191777号公報JP 2012-191777 A 特開2012−095478号公報JP 2012-095478 A

上記特許文献1ないし3は、いずれも、中央の制御装置(例.配電制御装置、配電系統監視制御装置)から分散電源(例.太陽光発電装置)、もしくは、負荷が消費する電力を直接制御するようにしている。しかし、実際の配電系統で分散電源(例.太陽光発電装置)や負荷が消費する電力を直接制御できることはまれであり、ほとんどの場合は分散電源の発電電力も負荷が消費する電力も共に制御できない。中央の制御装置が直接制御できるのは区分開閉器だけである。   In each of the above Patent Documents 1 to 3, a central control device (eg, power distribution control device, power distribution system monitoring control device) directly controls power consumed by a distributed power source (eg, photovoltaic power generation device) or a load. Like to do. However, it is rare that the actual power distribution system can directly control the power consumed by the distributed power supply (eg, photovoltaic power generation equipment) and the load. In most cases, both the power generated by the distributed power supply and the power consumed by the load are controlled. Can not. The central control unit can only directly control the section switch.

また上記特許文献4は、太陽光発電出力がないデータがないと推定に適用できないという問題がある。太陽光発電出力がないのは雨天時などがあるが、日本の場合は、雨天が他の天気の日と比較すると少ないので、精度の高い推定式が構築できないという課題がある。   Moreover, the said patent document 4 has the problem that it cannot apply for estimation, if there is no data without a photovoltaic power generation output. In the case of rainy weather, etc., there is no solar power output, but in the case of Japan, there is a problem that it is impossible to construct a highly accurate estimation formula because rainy weather is less than that of other weather days.

また上記特許文献5は、太陽光発電装置の出力する有効電力と、負荷が消費する有効電力を推定することはできるが、推定値の幅、つまり、どのぐらいその推定値がはずれそうなのかを提示することができないため、事故復旧の際に必要な電力を見誤るという課題がある。   Moreover, although the said patent document 5 can estimate the effective electric power which a solar power generation device outputs, and the effective electric power which a load consumes, the width of an estimated value, ie, how much the estimated value is likely to deviate. Since it cannot be presented, there is a problem of mistaking the power required for accident recovery.

実際の負荷の推定値が誤差なく推定できれば問題ないが、現状の技術レベルでは誤差無し推定は不可能である。よって、推定した値にある程度の余裕分をみて事故復旧時の融通電力とする必要がある。例えば、復旧に必要な負荷の推定値を90kWと推定しても、余裕分をみて、100kWや110kWの電力を融通する必要がある。しかしながら、この方法では推定した負荷と実際の負荷との間にどの程度の誤差があるのかが事前に分からないため、事故復旧の際の余裕分をどのくらい見積もればよいか正確に分からないという問題がある。   There is no problem if the actual load estimate can be estimated without error, but no error-free estimation is possible at the current technical level. Therefore, it is necessary to take a certain amount of margin into the estimated value and use it as the interchangeable power at the time of accident recovery. For example, even if the estimated load necessary for recovery is estimated to be 90 kW, it is necessary to allow 100 kW or 110 kW of power with a margin. However, since this method does not know in advance how much error there is between the estimated load and the actual load, there is a problem that it is not possible to know exactly how much extra space should be estimated when recovering from an accident. is there.

そこで本発明の課題の一つは、区間ごとの分散電源の出力と負荷が消費する有効電力を推定装置が正確に把握し、推定装置がその状態を考慮して区分開閉器だけを制御して事故復旧を行えるようにすることである。   Therefore, one of the problems of the present invention is that the estimation device accurately grasps the output of the distributed power source and the active power consumed by the load for each section, and the estimation device controls only the division switch in consideration of the state. It is to enable accident recovery.

また本発明の課題のもう一つは、分散電源である太陽光発電出力がある日でもない日でも、区間ごとに計測したデータを、太陽光発電装置の出力と負荷が消費する有効電力を推定するための回帰式、もしくは独立成分分析と回帰式を用いて、配電系統の実負荷及びその幅を正確に推定して事故復旧時の電力融通に利用可能とすることである。   Another object of the present invention is to estimate the effective power consumed by the output of the photovoltaic power generation device and the load from the data measured for each section, even on the day when the photovoltaic power generation output as a distributed power source is not a day. It is possible to accurately estimate the actual load and the width of the distribution system using the regression equation or independent component analysis and regression equation, and make it available for power interchange at the time of accident recovery.

上記課題を解決するために請求項1に記載の発明は、複数の分散電源と負荷が配電線に接続された電力系統の事故復旧方法において、
複数の区分開閉器を設けて前記配電線を複数の区間に区分するステップ、
前記配電線上の前記区間ごとの負荷を計測して推定手段に設けた記憶装置に記憶すると共に配電系統の最大許容容量を予め該記憶装置に記憶するステップ、
前記推定手段に設けた記憶装置に記憶された前記計測負荷を基に前記区間ごとの事故直前の分散電源出力と負荷の消費電力を推定するステップ、
事故後、前記配電系統の事故区間を特定するステップ、および、
前記配電系統の事故区間を特定した後、事故区間の負荷の消費電力推定値を用い、前記配電系統の最大許容容量を超えない範囲で、前記推定手段が前記区分開閉器を操作する事故復旧するステップ、
を含むことを特徴とする。
In order to solve the above-mentioned problem, the invention according to claim 1 is an accident recovery method for a power system in which a plurality of distributed power sources and loads are connected to a distribution line.
Providing a plurality of division switches to divide the distribution line into a plurality of sections;
Measuring the load for each section on the distribution line and storing it in a storage device provided in the estimation means, and storing the maximum allowable capacity of the distribution system in the storage device in advance,
Estimating a distributed power output and load power consumption immediately before an accident for each section based on the measured load stored in a storage device provided in the estimation means;
After the accident, identifying an accident section of the distribution system; and
After identifying the fault section of the power distribution system, use the estimated power consumption value of the load in the fault section, and recover the accident when the estimation means operates the section switch in a range not exceeding the maximum allowable capacity of the power distribution system Step,
It is characterized by including.

前記請求項1記載の発明において、前記推定手段が推定する前記負荷の消費電力推定値には、前記事故復旧時に過負荷とならない推定値の幅(余裕率)を持たせ、前記事故復旧するステップは、前記推定値の幅(余裕率)を含んだ前記負荷の消費電力推定値のみを事故復旧することを特徴とする(請求項2記載の発明)。   In the first aspect of the invention, the estimated power consumption estimated value of the load estimated by the estimating means has an estimated value width (margin ratio) that does not become an overload at the time of the accident recovery, and the accident recovery step. Is characterized in that only the estimated power consumption value of the load including the estimated value width (margin ratio) is recovered from the accident (the invention according to claim 2).

また前記請求項1に記載の発明において、前記区間ごとの事故直前の分散電源出力と負荷の消費電力を推定するステップは、前記記憶装置に記憶した前記区間ごとの前記負荷装置の消費電力、および該当時の気温を座標軸にプロットして得た散布図を用いて、前記負荷装置の消費電力と前記分散電源の出力を推定することを特徴とする(請求項3記載の発明)。   Further, in the invention according to claim 1, the step of estimating the distributed power output and the load power consumption immediately before the accident for each section includes the power consumption of the load apparatus for each section stored in the storage device, and The power consumption of the load device and the output of the distributed power source are estimated using a scatter diagram obtained by plotting the temperature at the time on the coordinate axis (the invention according to claim 3).

また前記請求項1ないし3のいずれか一項に記載の発明において、前記事故区間内の各区間の推定消費電力から前記分散電源の推定出力を除外した値を事故復旧に用いることを特徴とする(請求項4記載の発明)。   The invention according to any one of claims 1 to 3, wherein a value obtained by excluding the estimated output of the distributed power source from the estimated power consumption of each section in the accident section is used for accident recovery. (Invention of Claim 4).

また前記請求項1ないし3のいずれか一項に記載の発明において、高圧側に連系される高圧系分散電源の出力を計測する手段を該高圧系分散電源装置が備える場合には、
前記事故区間の各区間の推定消費電力から分散電源の推定出力を減算し、その値に前記高圧系分散型電源の出力の計測値を加算した値を事故復旧に用いることを特徴とする(請求項5記載の発明)。
Further, in the invention according to any one of claims 1 to 3, when the high-voltage distributed power supply apparatus includes means for measuring the output of the high-voltage distributed power supply connected to the high-voltage side,
A value obtained by subtracting the estimated output of the distributed power source from the estimated power consumption of each section of the accident section and adding the measured value of the output of the high-voltage distributed power source to the value is used for accident recovery (claim) Item 5).

前記請求項4または5に記載の発明において、前記推定手段が推定する前記負荷の消費電力推定値には、前記事故復旧時に過負荷とならない推定値の幅(余裕率)を持たせ、前記負荷の消費電力推定値分のみ事故復旧するステップは、前記推定値の幅(余裕率)を含んだ前記負荷の消費電力推定値のみを事故復旧することを特徴とする(請求項6記載の発明)。   In the invention according to claim 4 or 5, the power consumption estimated value of the load estimated by the estimating means has an estimated value width (margin ratio) that does not become an overload at the time of the accident recovery, and the load The step of recovering the accident only for the estimated power consumption value includes recovering the accident only for the estimated power consumption value of the load including the range (margin ratio) of the estimated value (the invention according to claim 6). .

上記課題を解決するために請求項7に記載の発明は、複数の分散電源及び複数の負荷装置が配電線に接続された電力系統において、
複数の区分開閉器を設けて前記配電線を複数の区間に区分する手段と、
前記配電線上で前記区間ごとの有効電力および無効電力を計測して推定手段に設けた記憶装置に記憶する手段と、
前記記憶装置に記憶された前記区間ごとの前記分散電源および前記負荷装置の無効電力から前記区間ごとの負荷装置の有効電力を回帰式で推定する手段と、
前記回帰式で推定した前記区間ごとの負荷装置の有効電力推定値に対してその推定値の幅を算出する手段と、
を備えることを特徴とする。
In order to solve the above problem, the invention according to claim 7 is a power system in which a plurality of distributed power sources and a plurality of load devices are connected to a distribution line.
Means for providing a plurality of division switches to divide the distribution line into a plurality of sections;
Means for measuring active power and reactive power for each section on the distribution line and storing them in a storage device provided in the estimating means;
Means for estimating the active power of the load device for each section by a regression equation from the distributed power and the reactive power of the load device for each of the sections stored in the storage device;
Means for calculating a width of the estimated value for the active power estimated value of the load device for each of the sections estimated by the regression equation;
It is characterized by providing.

前記請求項7に記載の発明において、前記回帰式で求められた区間ごとの負荷装置の有効電力推定値を基に、前記分散電源の有効電力を推定する手段と、
前記回帰式で推定した前記区間ごとの分散電源の有効電力推定値に対してその推定値の幅を算出する手段と、をさらに備えることを特徴とする(請求項8記載の発明)。
In the invention according to claim 7, means for estimating the active power of the distributed power source based on the active power estimated value of the load device for each section obtained by the regression equation;
The invention further comprises means for calculating a width of the estimated value of the active power estimated value of the distributed power source for each section estimated by the regression equation (the invention according to claim 8).

上記課題を解決するために請求項9に記載の発明は、複数の分散電源及び複数の負荷装置が配電線に接続された電力系統において、
複数の区分開閉器を設けて前記配電線を複数の区間に区分するステップ、
前記配電線上で前記区間ごとの有効電力および無効電力を計測して推定手段に設けた記憶装置に記憶するステップ、
前記記憶装置に記憶された前記区間ごとの前記分散電源および前記負荷装置の無効電力から前記区間ごとの負荷装置の有効電力を回帰式で推定するステップ、および、
前記回帰式で推定した前記区間ごとの負荷装置の有効電力推定値に対してその推定値の幅を算出するステップ、
を含むことを特徴とする。
In order to solve the above problems, the invention according to claim 9 is a power system in which a plurality of distributed power sources and a plurality of load devices are connected to a distribution line.
Providing a plurality of division switches to divide the distribution line into a plurality of sections;
Measuring the active power and reactive power for each section on the distribution line and storing them in a storage device provided in the estimating means;
Estimating the active power of the load device for each section from the distributed power and the reactive power of the load device for each section stored in the storage device by a regression equation; and
Calculating an estimated value width for the active power estimated value of the load device for each section estimated by the regression equation;
It is characterized by including.

前記請求項9に記載の発明において、前記回帰式で求められた区間ごとの負荷装置の有効電力推定値を基に、前記分散電源の有効電力を推定するステップ、
前記回帰式で推定した前記区間ごとの分散電源の有効電力推定値に対してその推定値の幅を算出するステップ、を含むことを特徴とする(請求項10記載の発明)。
In the invention according to claim 9, estimating the active power of the distributed power source based on the active power estimate value of the load device for each section obtained by the regression equation,
Calculating the width of the estimated value of the active power estimated value of the distributed power source for each of the sections estimated by the regression equation (invention according to claim 10).

また前記請求項9または10に記載の発明において、前記計測して有効電力と無効電力から独立成分分析を用いて、前記負荷装置の有効電力、もしくは、前記分散電源の出力を分離するステップと、
該分離した前記負荷装置の有効電力、もしくは、前記分散電源の有効電力と、前記計測した無効電力とから、前記回帰式を用いて、前記負荷装置の有効電力、もしくは、前記分散電源の有効電力を推定するステップと、
該推定した前記負荷装置の有効電力、もしくは、前記分散電源の有効電力の推定値の幅を算出するステップと、さらに含むことを特徴とする(請求項11記載の発明)。
Further, in the invention according to claim 9 or 10, the active power of the load device or the output of the distributed power source is separated using the independent component analysis from the measured active power and reactive power.
From the active power of the separated load device or the active power of the distributed power source and the measured reactive power, the effective power of the load device or the active power of the distributed power source is calculated using the regression equation. Estimating
A step of calculating a range of the estimated effective power of the load device or the estimated value of the active power of the distributed power supply, further comprising the invention (claim 11).

上記課題を解決するために請求項12に記載の発明は、複数の分散電源及び複数の負荷装置が配電線に接続された電力系統において、
該電力系統に配電系統の実負荷を推定する推定装置を備え、該推定装置のコンピュータを、
複数の区分開閉器を設けて前記配電線を複数の区間に区分する手段と、
前記配電線上で前記区間ごとの有効電力および無効電力を計測して記憶装置に記憶する手段と、
前記記憶装置に記憶された前記区間ごとの前記分散電源および前記負荷装置の無効電力から前記区間ごとの負荷装置の有効電力を回帰式で推定する手段と、
前記回帰式で推定した前記区間ごとの負荷装置の有効電力推定値に対してその推定値の幅を算出する手段、として機能させるためのプログラムとしたものである。
In order to solve the above problem, the invention according to claim 12 is a power system in which a plurality of distributed power sources and a plurality of load devices are connected to a distribution line.
The power system includes an estimation device that estimates an actual load of a distribution system, and the computer of the estimation device includes:
Means for providing a plurality of division switches to divide the distribution line into a plurality of sections;
Means for measuring active power and reactive power for each section on the distribution line and storing them in a storage device;
Means for estimating the active power of the load device for each section by a regression equation from the distributed power and the reactive power of the load device for each of the sections stored in the storage device;
This is a program for functioning as a means for calculating the estimated value width for the active power estimated value of the load device for each section estimated by the regression equation.

上記課題を解決するために請求項13に記載の発明は、複数の分散電源及び複数の負荷装置が配電線に接続された電力系統において、
該電力系統に配電系統の実負荷を推定する推定装置を備え、該推定装置のコンピュータを、
複数の区分開閉器を設けて前記配電線を複数の区間に区分する手段と、
前記配電線上で前記区間ごとの有効電力および無効電力を計測して記憶装置に記憶する手段と、
前記記憶装置に記憶された前記区間ごとの前記分散電源および前記負荷装置の無効電力から前記区間ごとの負荷装置の有効電力を回帰式で推定する手段と、
前記回帰式で推定した前記区間ごとの負荷装置の有効電力推定値に対してその推定値の幅を算出する手段と、
前記回帰式で求められた区間ごとの負荷装置の有効電力推定値を基に、前記分散電源の有効電力を推定する手段と、
前記回帰式で推定した前記区間ごとの分散電源の有効電力推定値に対してその推定値の幅を算出する手段、として機能させるためのプログラムとしたものである。
In order to solve the above problem, the invention according to claim 13 is a power system in which a plurality of distributed power sources and a plurality of load devices are connected to a distribution line.
The power system includes an estimation device that estimates an actual load of a distribution system, and the computer of the estimation device includes:
Means for providing a plurality of division switches to divide the distribution line into a plurality of sections;
Means for measuring active power and reactive power for each section on the distribution line and storing them in a storage device;
Means for estimating the active power of the load device for each section by a regression equation from the distributed power and the reactive power of the load device for each of the sections stored in the storage device;
Means for calculating a width of the estimated value for the active power estimated value of the load device for each of the sections estimated by the regression equation;
Means for estimating the active power of the distributed power source based on the active power estimate value of the load device for each section obtained by the regression equation;
This is a program for functioning as means for calculating the estimated value width for the active power estimated value of the distributed power source for each section estimated by the regression equation.

本発明によれば、分散電源が連系された電力系統において、配電系統に接続された分散電源や負荷の全ての出力を正確に計測しなくても、事故時に融通すべき負荷が消費する電力を推定でき、過負荷を起こすことなく事故復旧することが可能となる。また、負荷や分散電源を個別に制御することなく区分開閉器を制御するだけで事故復旧を図ることが可能である。   According to the present invention, in a power system in which distributed power sources are interconnected, the power consumed by the load to be accommodated in the event of an accident without accurately measuring all the outputs of the distributed power source and the load connected to the distribution system. Thus, it is possible to recover from an accident without causing an overload. Moreover, it is possible to recover from an accident only by controlling the division switch without individually controlling the load and the distributed power source.

また本発明によれば、太陽光発電装置に代表される分散電源の出力量を個別に計測する計測装置を設置することなく、配電系統全体の太陽光出力の有効電力と、負荷が消費する有効電力とを分離して推定することができ、また、その推定値の幅を求めることができる。一方、上記特許文献4及び5に示された技術は、いずれも推定値の幅を求めることができないため、推定値に基づいて事故復旧する場合に、その推定誤差をどの程度みつもればよいか判断できないが、本発明によれば、推定値の推定誤差を定量的に求められるので適切な事故復旧を行うことが可能になる。   In addition, according to the present invention, the active power of the solar power output of the entire distribution system and the effective power consumed by the load can be obtained without installing a measuring device that individually measures the output amount of the distributed power source represented by the solar power generation device. The power can be estimated separately, and the width of the estimated value can be obtained. On the other hand, since neither of the techniques disclosed in Patent Documents 4 and 5 can determine the range of the estimated value, how much estimation error should be found when the accident is recovered based on the estimated value? Although it cannot be determined, according to the present invention, the estimated error of the estimated value can be obtained quantitatively, so that appropriate accident recovery can be performed.

本発明の実施形態に係る配電系統の構成例を示す図である。It is a figure which shows the structural example of the power distribution system which concerns on embodiment of this invention. 本発明の実施形態に係る電力推定装置(その1)の構成を示す図である。It is a figure which shows the structure of the electric power estimation apparatus (the 1) which concerns on embodiment of this invention. 本発明の実施形態にかかる計測負荷と雨天時の気温との関係を示す散布図(その1)である。It is a scatter diagram (the 1) which shows the relationship between the measurement load concerning embodiment of this invention, and the temperature at the time of rainy weather. 本発明の実施形態にかかる、多くのデータから作成された計測負荷と雨天時の気温との関係を示す散布図(その2)である。It is a scatter diagram (the 2) which shows the relationship between the measurement load produced from many data, and the temperature at the time of rainy weather concerning embodiment of this invention. 本発明の実施形態に係る配電系統の構成例における配電系統の事故前の状態を示す図である。It is a figure which shows the state before the accident of the power distribution system in the structural example of the power distribution system which concerns on embodiment of this invention. 本発明の実施形態に係る配電系統の構成例における配電系統の事故発生直後の状態を示す図である。It is a figure which shows the state immediately after accident occurrence of the power distribution system in the structural example of the power distribution system which concerns on embodiment of this invention. 本発明の実施形態に係る配電系統の構成例における配電系統の事故復旧で想定される事故復旧の様子を示す図である。It is a figure which shows the mode of the accident recovery assumed by the accident recovery of the power distribution system in the structural example of the power distribution system which concerns on embodiment of this invention. 本発明の実施形態に係る配電系統の構成例における配電系統の事故復旧の様子を示す図である。It is a figure which shows the mode of the accident recovery of the power distribution system in the structural example of the power distribution system which concerns on embodiment of this invention. 本発明の実施形態に係る配電系統の構成例における配電系統が高圧連系と低圧連系とで構成されていた場合の事故復旧の様子を示す図である。It is a figure which shows the mode of accident recovery when the power distribution system in the structural example of the power distribution system which concerns on embodiment of this invention is comprised by the high voltage | pressure interconnection and the low voltage | pressure interconnection. 図8に示した配電系統の構成の一例を示す図である。It is a figure which shows an example of a structure of the power distribution system shown in FIG. 本発明の実施形態に係る電力推定装置(その1)の動作を説明する処理フローを示す図である。It is a figure which shows the processing flow explaining operation | movement of the electric power estimation apparatus (the 1) which concerns on embodiment of this invention. 本発明の実施形態に係る電力推定装置(その2)の構成を示す図である。It is a figure which shows the structure of the electric power estimation apparatus (the 2) which concerns on embodiment of this invention. 本発明の実施形態に係る電力推定装置(その2)の回帰式構築処理部が回帰式(式2)を得るための有効電力及び無効電力の関係を示す図である。It is a figure which shows the relationship between the active power and reactive power for the regression type construction process part of the power estimation apparatus (the 2) which concerns on embodiment of this invention to obtain a regression type (Formula 2). 本発明の実施形態に係る電力推定装置(その2)における実負荷の有効電力推定値(回帰)が採る推定値の幅を示す概念図である。It is a conceptual diagram which shows the width | variety of the estimated value which the active power estimated value (regression) of an actual load takes in the electric power estimation apparatus (the 2) which concerns on embodiment of this invention. 本発明の実施形態に係る電力推定装置(その3)の構成を示す図である。It is a figure which shows the structure of the electric power estimation apparatus (the 3) which concerns on embodiment of this invention. 本発明の実施形態に係る電力推定装置(その3)の回帰式構築処理部が回帰式(式3)を得るための有効電力及び無効電力の関係を示す図である。It is a figure which shows the relationship between the active power and reactive power for the regression type construction process part of the power estimation apparatus (the 3) which concerns on embodiment of this invention for obtaining a regression type (Formula 3). 本発明の実施形態に係る電力推定装置(その3)における実負荷の有効電力推定値が採る推定値の幅を示す概念図である。It is a conceptual diagram which shows the width | variety of the estimated value which the active power estimated value of the real load takes in the electric power estimation apparatus (the 3) which concerns on embodiment of this invention.

以下、本発明の実施の形態について、図面を参照しながら説明する。
図1は、本発明の実施形態に係る配電系統の構成例を示す図である。図1を用いて、本発明の実施形態に係る配電系統について説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram illustrating a configuration example of a power distribution system according to an embodiment of the present invention. A power distribution system according to an embodiment of the present invention will be described with reference to FIG.

図1に示すように、変電所1から下流に位置するA系統及びB系統に分岐された配電線に、負荷や分散電源の代表例である太陽光発電装置(PV:Photo Voltaic generation )がつながる。そして配電線には、1もしくは複数の電力計(図示例では、電力計P1,・・・,P4)が設けられ、電力計で計測した有効電力と無効電力は定期的に電力推定装置10に伝送される。なお電力計P1,・・・,P4では、上記した有効電力、無効電力のほか、電流、力率、開閉器の開閉状態等についても計測され、電力推定装置10に伝送される。   As shown in FIG. 1, a photovoltaic power generation device (PV: Photo Voltaic generation), which is a representative example of a load and a distributed power source, is connected to a distribution line branched into a system A and a system B located downstream from a substation 1 . The distribution line is provided with one or a plurality of wattmeters (in the illustrated example, wattmeters P1,..., P4), and the active power and reactive power measured by the wattmeter are periodically sent to the power estimation device 10. Is transmitted. In addition, in the wattmeters P1,..., P4, in addition to the above-described active power and reactive power, the current, power factor, switching state of the switch, and the like are also measured and transmitted to the power estimation apparatus 10.

図1について更に詳しく説明すると、変電所1に接続される配電線のA系統(フィーダともいう)には、一例として2棟の一般家庭と1つ工場が接続され、配電線のB系統(フィーダともいう)には、一例として3棟の一般家庭が接続されている。そして一般家庭の屋根等には、太陽光発電パネルが設置され、該太陽光発電パネルにより発電された電力はインバータを介して交流に変換されるとともに、家庭内の負荷で電力を消費したり、太陽光発電電力が余れば系統に電力を供給することが出来るよう構成している。なお、変電所1には発電所(不図示)から送電線を介して送電が行われている。   Referring to FIG. 1 in more detail, for example, a distribution line A system (also referred to as a feeder) connected to the substation 1 is connected to two general households and one factory, and the distribution line B system (feeder). As an example, three ordinary homes are connected. And a solar power generation panel is installed on the roof of a general household, and the electric power generated by the solar power generation panel is converted into alternating current through an inverter, and power is consumed by a load in the home, It is configured so that power can be supplied to the system if there is excess solar power. Note that power is transmitted to the substation 1 from a power plant (not shown) via a power transmission line.

図1に示す配電系統の構成例は、単なる例示であり、実際は、これより多くの一般家庭、工場、メガソーラ等が配電線に接続されることになる。また図示例の工場は、太陽光発電装置(発電パネル)を有さずに、工場内のモータ、コンデンサ(リアクタンス)、及び、一般的な電力負荷、等から成るエネルギーを消費する負荷が接続され、配電線から供給される電力を消費するものとして記述されている。なお、無効電力補償装置200は、無効電力の調整を行うもので、それ自体の機能は当業者に知られているのでその説明を省略する。   The configuration example of the power distribution system shown in FIG. 1 is merely an example, and in fact, more general households, factories, mega solars, and the like are connected to the power distribution line. The factory shown in the figure does not have a photovoltaic power generation device (power generation panel), but is connected to a load that consumes energy consisting of a motor, a capacitor (reactance), a general power load, and the like in the factory. It is described as consuming the power supplied from the distribution line. The reactive power compensator 200 adjusts the reactive power, and its function is known to those skilled in the art, and the description thereof is omitted.

また図示例の配電線には、開閉器S1の変電所1側に電力計P1が設けられ、電力計P1より下流の配電線に接続される負荷全てが消費する電力値が、また開閉器S2の変電所1側に電力計P2が設けられ、電力計P2より下流の配電線に接続される負荷全てが消費する電力値が、また開閉器S3の変電所1側に電力計P3が設けられ、電力計P3より下流の配電線に接続される負荷全てが消費する電力値が、さらに開閉器S4の変電所1側に電力計P4が設けられ、電力計P4より下流の配電線に接続される負荷全てが消費する電力値が、それぞれ計測され、電力計P1,電力計P2、および、電力計P3,電力計P4でそれぞれ計測した有効電力と無効電力の値が定期的に電力推定装置(その1)10に伝送される。なお、図1では、S1〜S4を単に“開閉器”と表記しているが、正式には“区分開閉器”である。しかし図示上で図が煩雑になるため敢えて“開閉器”と表記することにしたものである。また、S5,S6は、系統を跨いで電力を融通するときに使用されるものであるので、“開閉器”として表記するものである。   In addition, the distribution line in the illustrated example is provided with a power meter P1 on the substation 1 side of the switch S1, and the power value consumed by all the loads connected to the distribution line downstream from the power meter P1 is also represented by the switch S2. A wattmeter P2 is installed on the substation 1 side, and the power value consumed by all the loads connected to the distribution lines downstream from the wattmeter P2 is installed, and a wattmeter P3 is installed on the substation 1 side of the switch S3. The power value consumed by all the loads connected to the distribution line downstream from the power meter P3 is further provided on the substation 1 side of the switch S4, and the power meter P4 is connected to the distribution line downstream from the power meter P4. The power values consumed by all loads are measured, and the active power and reactive power values measured by the power meter P1, the power meter P2, the power meter P3, and the power meter P4, respectively, are periodically calculated by the power estimation device ( Part 1) is transmitted to 10. In FIG. 1, S1 to S4 are simply expressed as “switches”, but formally “segment switches”. However, since the figure becomes complicated in the drawing, it is deliberately written as “switch”. In addition, S5 and S6 are used when accumulating power across the grid, and are described as “switches”.

このようにすることで各(区分)開閉器によって区切られた配電線の各区間ごとに有効電力と無効電力の値を計測することが可能となる。また配電線の各区間ごとに有効電力と無効電力の値を計測することによって、後述するように、散布図、回帰式、若しくは、回帰式と独立成分分析を用いて、区間ごとの実負荷の有効電力値や太陽光発電装置の有効電力値を推定することが可能となる。   By doing in this way, it becomes possible to measure the value of active power and reactive power for each section of the distribution line divided by each (section) switch. In addition, by measuring the values of active power and reactive power for each section of the distribution line, as described later, the actual load of each section can be calculated using a scatter diagram, regression equation, or regression equation and independent component analysis. It becomes possible to estimate the effective power value and the effective power value of the solar power generation device.

図2は、本発明の実施形態に係る電力推定装置(その1)の構成を示す図である。図2に示す本発明の電力推定装置(その1)10は、コンピュータ等の情報を処理する汎用の装置で構成されており、当該装置には、特に図示しないが、CPU(中央処理ユニット)、記憶装置(ハードディスク)、メモリ、通信機能部、入出力インタフェース、入出力装置など当業者によく知られたハードウェア構成を備えている。そして上記記憶装置には予め所定のアプリケーションプログラムが記憶されており、上記CPUがこのアプリケーションプログラムを読出して実行することにより下記に記述する各種処理部11〜17の機能を実現する。   FIG. 2 is a diagram showing the configuration of the power estimation apparatus (part 1) according to the embodiment of the present invention. A power estimation apparatus (No. 1) 10 according to the present invention shown in FIG. 2 is configured by a general-purpose apparatus that processes information such as a computer. The apparatus includes a CPU (Central Processing Unit), which is not particularly illustrated. It has a hardware configuration well known to those skilled in the art, such as a storage device (hard disk), a memory, a communication function unit, an input / output interface, and an input / output device. A predetermined application program is stored in advance in the storage device, and the functions of various processing units 11 to 17 described below are realized by the CPU reading and executing the application program.

上記電力推定装置(その1)10が備えるハードウェア構成の下に、
入力処理部11は、配電系統に備えられた電力計P1,電力計P2、および、電力計P3,電力計P4で計測された有効電力、無効電力、電流、力率、開閉器の開閉状態、などの各値(データ)を取り込む。図示していないが、外部(例えば、気象庁等)により提供される、気象情報・暦情報など計測器以外のデータも取り込めるようにしており、また、必要に応じて、担当者(図示せず)が入力処理部11から上記情報を直接入力することもできる。
Under the hardware configuration of the power estimation apparatus (part 1) 10,
The input processing unit 11 includes a wattmeter P1, a wattmeter P2, and a wattmeter P3 and a wattmeter P4 provided in the distribution system. Import each value (data). Although not shown, data other than measuring instruments such as meteorological information and calendar information provided by the outside (for example, the Japan Meteorological Agency) can be taken in, and a person in charge (not shown) is also required if necessary. Can directly input the information from the input processing unit 11.

データ蓄積処理部12は、入力処理部11で取り込んだ情報を蓄積するとともに、後述する電力推定装置(その1)10内の各機能部13〜17で処理した情報を適宜蓄積する。
出力処理部13は、データ蓄積処理部12に蓄積された情報を画面に表示したり、紙等に印刷して出力する。また出力処理部13は、電力推定装置(その1)10内の各機能部11〜17で処理し蓄積した情報をネットワーク等を介して外部の装置(図示せず)に出力することができる。
The data accumulation processing unit 12 accumulates information captured by the input processing unit 11 and appropriately accumulates information processed by the functional units 13 to 17 in the power estimation apparatus (part 1) 10 described later.
The output processing unit 13 displays the information stored in the data storage processing unit 12 on a screen or prints it on paper or the like and outputs it. Further, the output processing unit 13 can output the information processed and accumulated by the functional units 11 to 17 in the power estimation device (part 1) 10 to an external device (not shown) via a network or the like.

上記した入力処理部11及び出力処理部13は、上述した情報処理装置の入出力装置により実現される。またデータ蓄積処理部12は上述した情報処理装置の記憶装置(ハードディスク)、メモリ等により実現される。バス18は上記処理部及び後記する処理部を接続するものである。   The input processing unit 11 and the output processing unit 13 described above are realized by the input / output device of the information processing apparatus described above. The data accumulation processing unit 12 is realized by a storage device (hard disk), a memory, or the like of the information processing apparatus described above. The bus 18 connects the above processing unit and a processing unit described later.

一方、電力推定装置(その1)10の事故区間判定部14は、事故が起きた区間を判定する処理を行う。本処理は、従来から我が国で実施されている通常の方法を用いる。すなわち我が国では、上流側(変電所1側)の開閉器を順次操作することで判定する方法が一般的である。つまり、事故発生時には事故が発生した区間を含むフィーダのすべての開閉器がいったん開く。その後、上流側の開閉器を閉じて過電流が流れなければ、さらに1つ下流の開閉器を閉じる。この操作を自動で継続して過電流が発生するまで行い、もし過電流が発生したならば当該開閉器より下流の区間を事故区間と判定するものである。   On the other hand, the accident section determination unit 14 of the power estimation apparatus (part 1) 10 performs a process of determining a section in which an accident has occurred. This processing uses a conventional method that has been practiced in Japan. That is, in Japan, it is common to make a judgment by sequentially operating the upstream side switch (substation 1 side). That is, when an accident occurs, all the switches of the feeder including the section where the accident occurred are opened once. Thereafter, when the upstream switch is closed and no overcurrent flows, the switch further downstream is closed. This operation is automatically continued until an overcurrent occurs. If an overcurrent occurs, a section downstream from the switch is determined as an accident section.

推定処理部15は、分散電源(例.太陽光発電装置)の出力と、負荷が消費する電力を区間ごとに推定する処理を行う。推定方法としては、様々な方法があるが、本処理部では、以下の方法を用いる。もちろん本発明は、本例のみに限定されるものではない。すなわち、
図3に示されるように、計測された負荷(計測負荷)と雨天時の気温との関係を示す散布図(その1)を作成する。図3の散布図(その1)に用いられるデータとしては、例えば過去1か月の雨天時のデータが使用され、これを計測負荷及び温度から成る座標軸上にプロットすることで得られる。散布図は、例えば一日のうちの1時〜24時まで1時間ごと、且つ平日及び休日ごとに1部ずつ作成する。上記では1時間ごとの刻みで作成する例を示すが、30分ごとや15分ごとの刻みで作成してもよい。なお図3ではプロットの数を割愛して示している。
The estimation process part 15 performs the process which estimates the output of a distributed power supply (for example, solar power generation device) and the electric power which a load consumes for every area. There are various estimation methods, but this processing unit uses the following method. Of course, the present invention is not limited to this example. That is,
As shown in FIG. 3, a scatter diagram (part 1) showing the relationship between the measured load (measurement load) and the temperature during rainy weather is created. As data used in the scatter diagram (part 1) in FIG. 3, for example, data in the past one month of rainy weather is used, and this is obtained by plotting on the coordinate axis composed of the measurement load and temperature. The scatter diagram is created, for example, every hour from 1 o'clock to 24 o'clock of the day, and for each weekday and holiday. In the above, an example of creating at intervals of 1 hour is shown, but it may be created at intervals of 30 minutes or 15 minutes. In FIG. 3, the number of plots is omitted.

ここで図3の散布図(その1)を参照し、該当時の気温と雨天時の当該散布図が示すプロットで交わるA点を負荷の消費電力として推定する。図3のB点に示す値は、事故発生当日の事故直前に上記した電力計で計測された計測値である。したがって、事故発生直前の分散電源(例.太陽光発電装置)の出力推定値は、A-Bとなる。この場合、気温が一致するA点がなければ、当該気温に一番近い雨天時の散布図上のデータを代用すればよい。そして上記計測値が、図1の電力計P1で計測されていれば、電力計P1以下の負荷が消費する電力と分散電源(例.太陽光発電装置)の出力による推定値となる。電力計P2で計測されていれば同様に、電力計P2以下の負荷が消費する電力と分散電源(例.太陽光発電装置)の出力による推定値となる。電力計の設置数が少ない場合には、区分ごとの負荷が消費する電力は正確には分からない。例えば、電力計P2がなければ電力計P1と電力計P2の間の区間の負荷が消費する電力は分からない。その場合は、各区間の契約容量から按分して推定することになる。   Here, with reference to the scatter diagram (part 1) in FIG. 3, the point A, which intersects with the plot shown by the scatter diagram in rainy weather, is estimated as the power consumption of the load. The value indicated by point B in FIG. 3 is a measured value measured by the above-described wattmeter immediately before the accident on the day of the accident. Therefore, the estimated output value of the distributed power supply (eg, photovoltaic power generation device) immediately before the occurrence of the accident is A-B. In this case, if there is no point A that matches the temperature, the data on the scatter diagram during rainy weather closest to the temperature may be used instead. And if the said measured value is measured with the wattmeter P1 of FIG. 1, it will become an estimated value by the output of the electric power consumed by the load below the wattmeter P1 and a distributed power supply (for example, solar power generation device). Similarly, if it is measured by the power meter P2, it is an estimated value based on the power consumed by the load below the power meter P2 and the output of the distributed power source (eg, photovoltaic power generation device). When the number of installed wattmeters is small, the power consumed by the load for each category cannot be accurately determined. For example, without the power meter P2, the power consumed by the load in the section between the power meter P1 and the power meter P2 is unknown. In that case, it will be prorated based on the contracted capacity of each section.

次に、図4を用いて推定幅処理部16の処理について説明する。図4は、図3とは異なる散布図(その2)を示すものである。図3に示すような雨天時の散布図を多くのデータから作成すると、図4に示すように同じ気温であっても計測負荷に幅(両矢印線参照)が生じる。そこで、事故直前の気温において、図4に示すA点の幅をもとめ、その半分の値と、事前にデータベース(図示はしていないが、図2のデータ蓄積処理部12内に作成される)上に設定される経験則で得られた任意の余裕率との加算により、以下に示される推定幅(余裕率)が算出される。すなわち、
推定値の幅(余裕率)= 散布図上のA点が示す幅 / 2 + 任意の余裕率・・・式1
次いで、図2に示した事故復旧処理部17の処理について、図5A〜図8を用いて説明する。なお、図5A〜図8に示す例では、任意の数の区間(上記した開閉器(図示例では矩形表示)によって区切られた区間)を設け、さらに、説明を簡略化するためにどの区間も、負荷が500kW、分散電源として太陽光発電装置(PV)が200kW出力しているものとする。つまり、各区間の見かけ上の負荷は300kWとなるものとする。そして図5A〜図8において、白抜き矩形は開閉器が“開”の状態を示し、また黒矩形は開閉器が“閉”の状態を示すものとしている。
Next, processing of the estimated width processing unit 16 will be described with reference to FIG. FIG. 4 is a scatter diagram (part 2) different from FIG. When a scatter diagram during rainy weather as shown in FIG. 3 is created from a large amount of data, the measurement load has a width (see the double arrow line) even at the same temperature as shown in FIG. Therefore, the temperature of the point A shown in FIG. 4 is obtained at the temperature immediately before the accident, and the half value and the database in advance (not shown, but created in the data storage processing unit 12 of FIG. 2). The estimated width (margin ratio) shown below is calculated by adding the arbitrary margin ratio obtained by the rule of thumb set above. That is,
Width of estimated value (margin ratio) = Width indicated by point A on the scatter diagram / 2 + Arbitrary margin ratio ... Formula 1
Next, processing of the accident recovery processing unit 17 illustrated in FIG. 2 will be described with reference to FIGS. 5A to 8. In the examples shown in FIGS. 5A to 8, an arbitrary number of sections (sections separated by the above-described switches (in the illustrated example, rectangular display)) are provided, and any section is provided for the sake of simplicity. Suppose that the load is 500kW and the photovoltaic power generation device (PV) outputs 200kW as a distributed power source. In other words, the apparent load in each section is assumed to be 300kW. In FIGS. 5A to 8, white rectangles indicate that the switch is “open”, and black rectangles indicate that the switch is “closed”.

図5Aの例では、各フィーダ(図1に示すA系統,B系統)に6区間が設けられる例を示しているので、変電所1から各フィーダにそれぞれ1800kWずつ送り出している。なお、変電所1から各フィーダに供給できる最大許容容量は4000kWとする。そして図5Bに示すような事故発生直後には、PV出力が無くなるため、もしも図6に示すように、正常なフィーダ(図示例ではB系統)から事故区間(吹き出し線表示)以外すべてを復旧させようとすると、合計の負荷が4300kWとなり、フィーダの最大許容容量4000kWを超えてしまうことになる。   The example of FIG. 5A shows an example in which each feeder (system A and system B shown in FIG. 1) is provided with 6 sections, so 1800 kW is sent from the substation 1 to each feeder. The maximum allowable capacity that can be supplied from the substation 1 to each feeder is 4000 kW. Since PV output is lost immediately after the occurrence of the accident as shown in FIG. 5B, all parts other than the accident section (callout line display) are restored from the normal feeder (B system in the illustrated example) as shown in FIG. If it tries to do so, the total load will be 4300 kW, exceeding the maximum allowable capacity of the feeder 4000 kW.

そこで本発明の実施形態に係る事故復旧法に基づく事故復旧では、4000kWを超えない範囲で復旧させるので、図7に示すとおり、A系統の事故区間及びその1つ下流の区間を除いた、合計3800kW分について復旧させるようにしている。なお、各区間の負荷については、上記した式1に示した「任意の余裕率」を含んだ、「負荷の消費電力推定値+推定値の幅(余裕率)」に基づいて推定した値を使用している。   Therefore, in the accident recovery based on the accident recovery method according to the embodiment of the present invention, the recovery is performed within a range not exceeding 4000 kW. Therefore, as shown in FIG. We are trying to restore 3800kW. In addition, about the load of each area, the value estimated based on "the estimated power consumption value + the width of the estimated value (margin rate)" including the "arbitrary margin rate" shown in the above-described equation 1 is used. I use it.

また本発明の実施形態では、上記に示す事故復旧法に加えて、図1に示す配電系統が図8に示されるような高圧連系の分散電源と、低圧連系の太陽光発電装置(PV)とで構成されている場合には、以下に示す事故復旧法に基づいて事故復旧を行う。すなわち、
分散電源が低圧に連系している太陽光発電装置(PV)の場合は、復旧後短時間で再連系されることが知られている。つまり短期的な過負荷状態では配電線は何らの問題も生じないので、低圧系の太陽光発電装置(PV)分については解列しないとみなしてよい。もし、分散電源がすべて低圧系の太陽光発電装置(PV)であるならば、停電区間の各区間の200kW分を負荷から除外できるので、各区間が300kWとみなして事故復旧処理を行ってもよい。
Further, in the embodiment of the present invention, in addition to the above-described accident recovery method, the distribution system shown in FIG. 1 includes a high-voltage-connected distributed power source as shown in FIG. ), The accident will be recovered based on the accident recovery law shown below. That is,
In the case of a photovoltaic power generation device (PV) in which a distributed power source is connected to a low voltage, it is known that the power source is reconnected in a short time after restoration. In other words, since there is no problem with the distribution line in a short-term overload state, it may be considered that the low-voltage photovoltaic power generation unit (PV) is not disconnected. If all the distributed power sources are low-voltage photovoltaic power generation equipment (PV), 200kW of each section of the power outage section can be excluded from the load, so even if each section is regarded as 300kW and the accident recovery process is performed Good.

一方、高圧系に連系される分散電源が有る場合には、高圧系に連系される分散電源は、自動的に再連系することはなく、事故復旧後必ず手動で連系させるようになっている。よって高圧系に連系している分散電源は、事故時に解列されたとみなして事故復旧の処理を行うようにする。なお、高圧系に連系している分散電源は、通常、負荷が消費する電力および分散電源の出力が不図示の電力計で計測されているので、その分散電源の出力分については容易に把握できる。ここで高圧系と低圧系とは、通常、変電所1より給電される電圧が柱上変圧器を介さずに受電できるようにされている場合が高圧系とされ、一方、柱上変圧器を介して受電できるようにされている場合が低圧系とされている。   On the other hand, if there is a distributed power supply connected to the high-voltage system, the distributed power supply connected to the high-voltage system will not be automatically re-connected, but must be manually connected after the accident recovery. It has become. Therefore, the distributed power source connected to the high voltage system is assumed to have been disconnected at the time of the accident, and the accident recovery process is performed. For distributed power sources linked to high-voltage systems, the power consumed by the load and the output of the distributed power source are usually measured with a power meter (not shown), so the output of the distributed power source can be easily grasped. it can. Here, the high-voltage system and the low-voltage system are usually a high-voltage system when the voltage supplied from the substation 1 can be received without going through the pole transformer. The case where the power can be received via a low-voltage system.

さらに具体例について図8を用いて説明する。図示例では、事故区間を含むA系統に高圧連系の分散電源が3区間あり、低圧連系の太陽光発電装置(PV)が2区間あるとする。高圧連系の分散電源は自動で再連系しないため、該当区間それぞれの融通すべき負荷は500kWである。低圧連系のPVは比較的短期間に自動的に連系するため、融通すべき負荷はPVの出力分減って300kWとなる。よって、融通すべき負荷電力は、事故区間を除く全負荷の1800kW+600kW+1500kW=3900kWとなり、この分を正常なフィーダ(図示例ではB系統)を通じて復旧させることができる。つまり、この場合には、図6や図7に示す事故復旧処理では不可能であった、事故区間(吹き出し線表示)以外のすべての区間を復旧させることができる。   A specific example will be described with reference to FIG. In the illustrated example, it is assumed that the A system including the accident section has three sections of high-voltage-connected distributed power supplies and two sections of low-voltage-connected photovoltaic power generation devices (PV). Since the distributed power supply of high voltage interconnection does not automatically reconnect, the load to be accommodated in each section is 500 kW. Since the PV of low-voltage interconnection is automatically linked in a relatively short time, the load to be accommodated is reduced by the PV output to 300 kW. Therefore, the load power to be accommodated is 1800 kW + 600 kW + 1500 kW = 3900 kW for all loads excluding the accident section, and this amount can be restored through a normal feeder (B system in the illustrated example). That is, in this case, all sections other than the accident section (speech line display), which was impossible in the accident recovery process shown in FIGS. 6 and 7, can be recovered.

図9は、図8に示した高圧連系の分散電源と、低圧連系の太陽光発電装置(PV)とで配電線が構成される場合の具体的な配電系統の構成例を示す図である。図9では、各フィーダ、すなわちA系統,B系統のそれぞれにおいて、低圧連系の太陽光発電装置(PV)と、高圧連系の分散電源(例.メガソーラ)とが配電線に接続されるように構成されている。   FIG. 9 is a diagram showing a specific configuration example of the distribution system in the case where a distribution line is configured by the high-voltage interconnection distributed power source shown in FIG. 8 and the low-voltage interconnection photovoltaic power generation device (PV). is there. In FIG. 9, in each feeder, that is, each of the A system and the B system, a low-voltage-connected photovoltaic power generation device (PV) and a high-voltage-connected distributed power source (for example, mega solar) are connected to the distribution line. It is configured.

以上における事故復旧動作を図10の処理フローを用いて説明する。図10は、本発明の実施形態に係る電力推定装置(その1)の動作を説明する処理フロー図である。図10においてはステップを“S”と略記する。また図1、図2及び図9を適宜参照するものとする。   The accident recovery operation will be described with reference to the processing flow of FIG. FIG. 10 is a processing flowchart for explaining the operation of the power estimation apparatus (part 1) according to the embodiment of the present invention. In FIG. 10, the step is abbreviated as “S”. Reference should also be made to FIGS. 1, 2 and 9 as appropriate.

図10において、まず、入力されたデータの入力処理を図2に示す入力処理部11を用いて行うとともに入力処理したデータをデータ蓄積処理部12に蓄積する(ステップS1)。次いで、ステップS2では、事故区間判定部14により事故区間の判定を行う。   10, first, input processing of input data is performed using the input processing unit 11 shown in FIG. 2, and the input data is stored in the data storage processing unit 12 (step S1). Next, in step S2, the accident section determination unit 14 determines the accident section.

ステップS3では、推定処理部15を用いて、事故直前における分散電源(例.太陽光発電装置)の出力と、負荷が消費する電力を推定する。本ステップでは、上述した散布図を用いた推定のほか、後述する回帰式あるいは、回帰式と独立成分分析とを用いた推定を行う。   In step S3, the estimation processing unit 15 is used to estimate the output of the distributed power source (eg, solar power generation device) immediately before the accident and the power consumed by the load. In this step, in addition to the above-described estimation using the scatter diagram, estimation using a regression equation described later or a regression equation and independent component analysis is performed.

次にステップS4では、推定幅処理部16を用いて上記で推定した分散電源(例.太陽光発電装置)の出力と負荷が消費する電力についての推定値の幅を算出する。
そのうえでステップS5において、事故復旧処理を行う。事故復旧処理にあたっては、図7および図8で説明した事故復旧処理法が用いられる。
Next, in step S4, the estimated width processing unit 16 is used to calculate the estimated value width of the power consumed by the output of the distributed power source (e.g., photovoltaic power generation device) estimated above and the load.
In step S5, accident recovery processing is performed. In the accident recovery processing, the accident recovery processing method described in FIGS. 7 and 8 is used.

最後にステップS6において、図2に示す出力処理部13を用いてデータの出力処理を行う。このようにして本発明の実施形態における一連の事故復旧処理が実行される。
以上説明したように、各区間に融通すべき負荷は、推定した負荷の消費電力から、推定した分散型電源の出力(高圧系および低圧系を含む)を減算し、その値に高圧系分散型電源の出力(計測値)を加算したものとして計算することができる。分散型電源の出力は高圧系分散型電源を含んだ値として推定されるが、高圧系分散型電源はすぐには復旧しないため、その出力値(測定値)をないものとして、自動で事故復旧する区間を見積もることが必要である。
Finally, in step S6, data output processing is performed using the output processing unit 13 shown in FIG. In this way, a series of accident recovery processing in the embodiment of the present invention is executed.
As described above, the load to be accommodated in each section is obtained by subtracting the estimated output of the distributed power source (including the high voltage system and the low voltage system) from the estimated power consumption of the estimated load, and adding the value to the high voltage system distributed type. It can be calculated as the sum of the power supply outputs (measured values). The output of the distributed power source is estimated as the value including the high-voltage distributed power source, but the high-voltage distributed power source does not recover immediately, so it is assumed that there is no output value (measured value) and the accident is automatically recovered. It is necessary to estimate the interval to be performed.

図11は、本発明の実施形態に係る電力推定装置(その2)の構成を示す図である。本電力推定装置(その2)20は、図2に示した本発明の実施形態に係る電力推定装置(その1)10の構成と同様、コンピュータ等の情報を処理する汎用の装置で構成されており、当該装置には、特に図示しないが、CPU(中央処理ユニット)、記憶装置(ハードディスク)、メモリ、通信機能部、入出力インタフェース、入出力装置など当業者によく知られたハードウェア構成を備えている。そして上記記憶装置には予め所定のアプリケーションプログラムが記憶されており、上記CPUがこのアプリケーションプログラムを読出して実行することにより下記に記述する各種処理部21〜27の機能を実現する。なお、本発明の実施形態に係る配電系統の構成は図1に示した電力推定装置(その1)10が電力推定装置(その2)20に置き換わるのを除き、同様であるので、機能ブロック名が重複するものはその説明を省略するものとする。また上記各種処理部21〜27を接続するバスが設けられている。   FIG. 11 is a diagram illustrating a configuration of the power estimation apparatus (part 2) according to the embodiment of the present invention. The power estimation apparatus (No. 2) 20 is composed of a general-purpose apparatus that processes information such as a computer, as in the configuration of the power estimation apparatus (Part 1) 10 according to the embodiment of the present invention shown in FIG. Although not particularly shown, the device has a hardware configuration well known to those skilled in the art, such as a CPU (Central Processing Unit), a storage device (hard disk), a memory, a communication function unit, an input / output interface, and an input / output device. I have. A predetermined application program is stored in advance in the storage device, and the functions of various processing units 21 to 27 described below are realized by the CPU reading and executing the application program. The configuration of the power distribution system according to the embodiment of the present invention is the same except that the power estimation apparatus (part 1) 10 shown in FIG. The description of those that overlap is omitted. A bus for connecting the various processing units 21 to 27 is provided.

本電力推定装置(その2)20では、説明を簡単にするため1か所の電力計、例えば電力計P1、によって計測された値に基づく推定について説明する。この手法では計測地点から下流の負荷が消費する有効電力を推定するので、開閉器ごとに計測すれば、区間ごとの負荷が消費する有効電力を推定することができる。   In this power estimation apparatus (No. 2) 20, estimation based on values measured by one wattmeter, for example, wattmeter P <b> 1, will be described for the sake of simplicity. Since this method estimates the effective power consumed by the load downstream from the measurement point, the effective power consumed by the load for each section can be estimated by measuring each switch.

電力推定装置(その2)20のデータ抽出処理部24は、後述する回帰式構築処理部25にて必要となる回帰式構築用のデータを抽出する処理を行う。例えば、以下のような複数の抽出条件の組合せで抽出処理を行う。
抽出条件1:推定対象日から過去x日以内の日(例.x=30)
抽出条件2:t1時〜t2時(例.t1=10,t2=16)
抽出条件3:日射量時間0(つまり、PV発電量がない日)
ここで、日射量時間は、通常は気象庁にて計測している1時間当たりの日照時間であり、0〜10の値である。0のときには規定値以上の日射量がなく、規定値以上の日射量が6分ごとに1加算され、該当する1時間枠の中で60分あれば10となる。つまり、0は夜か雨天・曇天を示し、10は晴天を示すことになる。
The data extraction processing unit 24 of the power estimation apparatus (part 2) 20 performs a process of extracting data for regression equation construction required by a regression equation construction processing unit 25 described later. For example, the extraction process is performed with a combination of a plurality of extraction conditions as follows.
Extraction condition 1: Days within the past x days from the estimation target date (eg, x = 30)
Extraction condition 2: From t1 to t2 (eg t1 = 10, t2 = 16)
Extraction condition 3: Solar radiation time 0 (that is, the day without PV power generation)
Here, the solar radiation amount time is a sunshine hour per hour usually measured by the Japan Meteorological Agency, and is a value of 0 to 10. When the value is 0, there is no amount of solar radiation that exceeds the specified value, and the amount of solar radiation that exceeds the specified value is incremented by 1 every 6 minutes, and becomes 10 if it is 60 minutes within the corresponding time frame. In other words, 0 indicates night or rainy or cloudy, and 10 indicates clear sky.

なお、抽出したデータは、具体的には、以下のn個のデータになる。
有効電力計測値i ,無効電力計測値i
ただしi : 1〜n
次に、回帰式構築処理部25は、上記で抽出されたデータの無効電力計測値と、有効電力計測値を用いて以下の回帰式を構築する。回帰式の構築に当たっては、図12に示すように、有効電力をY座標に、無効電力をX座標に設定し、当該座標上に上記データ抽出処理部24によって抽出された有効電力と無効電力の値をプロットすることでその傾きから次のような回帰式を得る。つまり、式2のa0とa1を求める。この場合、データ抽出処理部24が抽出条件3を選択することにすれば、日照時間が0のデータ、例えば雨天時のデータを得ることができ、これにより、計測データは負荷が消費する有効電力と無効電力を表すことになるから、負荷が消費する電力における有効電力と無効電力は、ほぼ直線的な関係としてグラフ表示されることが分かる。
Note that the extracted data is specifically the following n pieces of data.
Active power measurement value i, reactive power measurement value i
Where i: 1 to n
Next, the regression formula construction processing unit 25 constructs the following regression formula using the reactive power measurement value and the active power measurement value of the data extracted above. In constructing the regression equation, as shown in FIG. 12, the active power is set to the Y coordinate, the reactive power is set to the X coordinate, and the active power and the reactive power extracted by the data extraction processing unit 24 on the coordinates are set. By plotting the values, the following regression equation is obtained from the slope. That is, a0 and a1 of Equation 2 are obtained. In this case, if the data extraction processing unit 24 selects the extraction condition 3, it is possible to obtain data with zero sunshine time, for example, data in rainy weather. Therefore, it can be seen that the active power and the reactive power in the power consumed by the load are displayed in a graph with a substantially linear relationship.

有効電力計測値=a0+a1無効電力計測値・・・式2
本例では、計測された有効電力と無効電力の値を用いているので、誤差が少ない(誤差があるとすれば計測誤差だけで、後述する独立成分分析による推定誤差の影響がなく)信頼性が高いデータである。その一方で、抽出条件が多く、少ない日のデータしか得られない。
Active power measurement value = a0 + a1 Reactive power measurement value ... Formula 2
In this example, the measured active power and reactive power values are used, so there is little error (if there is an error, there is only the measurement error, and there is no influence of the estimation error by independent component analysis described later). Is high data. On the other hand, there are many extraction conditions, and only a few days of data can be obtained.

上記において精度の高い回帰式を構築する(上記の係数a0,a1を求める)ためには、誤差が少なく多くのデータが必要であるが、実際にはそのようなデータは得ることができない。そこで、データの重きをいずれに置くかによって後述する独立成分分析による推定誤差を含む、つまり、データの多さに重きを置いて回帰式を構築するか、上記のように、少ないデータでも誤差の少なさに重きを置いて回帰式を構築するかの二者択一になる。   In order to construct a highly accurate regression equation (determining the above-described coefficients a0 and a1), a large amount of data is required with little error, but such data cannot actually be obtained. Therefore, depending on where the weight of the data is placed, it includes an estimation error due to independent component analysis described later, that is, the regression equation is constructed with weight on the amount of data, or as described above, the error can be reduced even with a small amount of data. It is an alternative to build a regression equation with little emphasis.

推定処理部26は、回帰式を示す上記式2を用いて、抽出したデータの推定値を求める。すなわち、
実負荷の有効電力推定値(回帰)i=a0+a1無効電力計測値i
太陽光発電の有効電力推定値i=実負荷の有効電力推定値(回帰)i
-有効電力計測値i
推定幅計算処理部27は、上記した推定値の幅を求める。幅を求める式は以下の通りである。
The estimation processing unit 26 obtains an estimated value of the extracted data using the above equation 2 indicating the regression equation. That is,
Actual load active power estimate (regression) i = a0 + a1 reactive power measurement i
Estimated active power for photovoltaic power generation i = Estimated active power for actual load (regression) i
-Active power measurement i
The estimated width calculation processing unit 27 obtains the width of the estimated value described above. The formula for obtaining the width is as follows.

実負荷の有効電力推定値(回帰)の幅i=実負荷の有効電力推定値(回帰)i±幅i
太陽光発電の有効電力推定値の幅i=実負荷の有効電力推定値(回帰)の幅i
-有効電力計測値i
幅i=t(n−2,信頼区間) × √(Ve)×√(1+1/n+(無効電力計測値i-avg(無効電力計測値i))2/Sxx)
Ve=Σ(実負荷の有効電力推定値(回帰)i-有効電力計測値i)2/(n-2)
Sxx=Σ(無効電力計測値i-avg(無効電力計測値i))2
ここで、t(n−2,信頼区間)は、t分布表から求められる値であり、nが無限大の場合には正規分布になり、nが小さい場合には正規分布よりも幅が広くなる分布である。例えば、nが12で信頼区間が95%の場合には、2.228になり、nが無限大で信頼区間が95%の場合には1.960になる。なお、Veは、残差による分散であり、上式のとおり、実負荷の有効電力推定値(回帰)と有効電力計測値の差を意味する。Sxxは、偏差平方和と呼ばれる統計指標である。
Actual load active power estimate (regression) width i = actual load active power estimate (regression) i ± width i
Width of estimated active power of photovoltaic power generation i = Width of estimated active power of actual load (regression) i
-Active power measurement i
Width i = t (n−2, confidence interval) × √ (Ve) × √ (1 + 1 / n + (reactive power measurement value i-avg (reactive power measurement value i)) 2 / Sxx)
Ve = Σ (Actual load active power estimate (regression) i-Active power measurement i) 2 / (n-2)
Sxx = Σ (Reactive power measurement value i-avg (Reactive power measurement value i)) 2
Here, t (n−2, confidence interval) is a value obtained from the t distribution table. When n is infinite, a normal distribution is obtained, and when n is small, the width is wider than the normal distribution. Distribution. For example, when n is 12 and the confidence interval is 95%, it becomes 2.228, and when n is infinite and the confidence interval is 95%, it becomes 1.960. Note that Ve is a variance due to the residual, and as shown in the above formula, means the difference between the active power estimated value (regression) of the actual load and the active power measurement value. Sxx is a statistical index called deviation sum of squares.

図13は、本発明の実施形態に係る電力推定装置(その2)における実負荷の有効電力推定値(回帰)が採る推定値の幅を示す概念図である。図13において、○印は、有効電力計測値iを示し、△印は、実負荷の有効電力推定値(回帰)iを示し、実負荷の有効電力推定値(回帰)iは△印を結んだ直線上の値となる。また図13において、左上及び右下の曲線は上記幅iを求める計算式によって既定される推定値の確からしさを担保する境界を示し、当該二つの曲線の乖離が両矢印線によって推定値の幅iとして示されている。   FIG. 13: is a conceptual diagram which shows the width | variety of the estimated value which the active power estimated value (regression) of an actual load takes in the power estimation apparatus (the 2) which concerns on embodiment of this invention. In FIG. 13, ◯ indicates the active power measured value i, △ indicates the actual load active power estimated value (regression) i, and the actual load active power estimated value (regression) i connects the △ mark. The value on the straight line. In FIG. 13, the upper left and lower right curves indicate the boundaries that guarantee the certainty of the estimated value defined by the formula for obtaining the above width i, and the difference between the two curves is the width of the estimated value by the double arrow line. Shown as i.

図14は、本発明の実施形態に係る電力推定装置(その3)の構成を示す図である。本電力推定装置(その3)30は、図2に示した本発明の実施形態に係る電力推定装置(その1)10の構成と同様、コンピュータ等の情報を処理する汎用の装置で構成されており、当該装置には、特に図示しないが、CPU(中央処理ユニット)、記憶装置(ハードディスク)、メモリ、通信機能部、入出力インタフェース、入出力装置など当業者によく知られたハードウェア構成を備えている。そして上記記憶装置には予め所定のアプリケーションプログラムが記憶されており、上記CPUがこのアプリケーションプログラムを読出して実行することにより下記に記述する各種処理部31〜39の機能を実現する。なお、本発明の実施形態に係る配電系統の構成は図1に示した電力推定装置(その1)10が電力推定装置(その3)30に置き換わるのを除き、同様であるので、機能ブロック名が重複するものはその説明を省略するものとする。また上記各種処理部31〜39を接続するバスが設けられている。   FIG. 14 is a diagram showing the configuration of the power estimation apparatus (part 3) according to the embodiment of the present invention. The power estimation apparatus (part 3) 30 is configured by a general-purpose apparatus that processes information such as a computer, as in the configuration of the power estimation apparatus (part 1) 10 according to the embodiment of the present invention shown in FIG. Although not particularly shown, the device has a hardware configuration well known to those skilled in the art, such as a CPU (Central Processing Unit), a storage device (hard disk), a memory, a communication function unit, an input / output interface, and an input / output device. I have. A predetermined application program is stored in the storage device in advance, and the CPU reads and executes the application program to realize the functions of various processing units 31 to 39 described below. The configuration of the power distribution system according to the embodiment of the present invention is the same except that the power estimation device (part 1) 10 shown in FIG. 1 is replaced with the power estimation device (part 3) 30. The description of those that overlap is omitted. In addition, a bus for connecting the various processing units 31 to 39 is provided.

本電力推定装置(その3)30では、説明を簡単にするため1か所の電力計、例えば電力計P1、によって計測された値に基づく推定について説明する。この手法では計測地点から下流の負荷が消費する有効電力を推定するので、開閉器ごとに計測すれば、区間ごとの負荷が消費する有効電力を推定することができる。   In this power estimation apparatus (part 3) 30, for simplicity of explanation, estimation based on values measured by one wattmeter, for example, wattmeter P1, will be described. Since this method estimates the effective power consumed by the load downstream from the measurement point, the effective power consumed by the load for each section can be estimated by measuring each switch.

電力推定装置(その3)30のデータ抽出処理部34は、後述する復元行列構築処理部35にて必要となる復元行列構築用のデータを抽出する処理を行う。例えば、以下のような複数の抽出条件の組合せでデータの抽出処理を行う。この抽出条件は図11に示した電力推定装置(その2)20のデータ抽出処理部24で用いる抽出条件よりも少ないものになっている。
抽出条件1:推定対象日から過去x日以内の日(例.x=30)
抽出条件2:t1時〜t2時(例.t1=10,t2=16)
因みに通常の独立成分分析(ICA:Independent Component Analysis)では、推定したい時間を含む数十分もしくは数時間の時間的に連続したデータ(有効電力と無効電力)を推定に活用している。しかし本例では、データが時間的に連続していなくてもよく、例えば、前日の13時〜14時、前々日の13時〜14時のように時間的に連続していないデータを抽出してもよい。なお抽出したデータは、具体的には、以下のn個のデータである。
The data extraction processing unit 34 of the power estimation apparatus (part 3) 30 performs a process of extracting data for reconstruction matrix construction required by the restoration matrix construction processing unit 35 described later. For example, data extraction processing is performed using a combination of a plurality of extraction conditions as follows. This extraction condition is less than the extraction condition used in the data extraction processing unit 24 of the power estimation apparatus (part 2) 20 shown in FIG.
Extraction condition 1: Days within the past x days from the estimation target date (eg, x = 30)
Extraction condition 2: From t1 to t2 (eg t1 = 10, t2 = 16)
By the way, in the normal independent component analysis (ICA), continuous data (active power and reactive power) of several tens of minutes or several hours including the time to be estimated is used for estimation. However, in this example, the data does not have to be continuous in time. For example, data that is not continuous in time such as 13:00 to 14:00 on the previous day or 13:00 to 14:00 on the previous day is extracted. May be. The extracted data is specifically the following n pieces of data.

有効電力計測値i ,無効電力計測値i
ただしi : 1〜n
復元行列構築処理部35は、上記のようにして抽出したデータ(有効電力計測値iと無効電力計測値i)を用いて復元行列を構築する処理を行う。本復元行列構築処理は、通常のICAの一般的な処理であるため、詳細な説明を割愛する。
Active power measurement value i, reactive power measurement value i
Where i: 1 to n
The restoration matrix construction processing unit 35 performs processing for constructing a restoration matrix using the data (active power measurement value i and reactive power measurement value i) extracted as described above. Since this restoration matrix construction process is a general process of a normal ICA, a detailed description is omitted.

推定処理部1(36)は、復元行列構築処理部35で構築した復元行列を用いて実負荷が消費する電力(有効電力)と太陽光発電出力を分離する処理を行う。本推定処理部1(36)の処理は、通常の独立成分分析を用いた分離処理であるので、詳細な説明を割愛する(必要であれば上記した特許文献5参照)。なお、本推定処理部1(36)の処理によって出力されるデータは、以下のものになる。すなわち、
実負荷の有効電力推定値(独立成分分析)i (ただしi : 1〜n)
回帰式構築処理部37は、上記データ抽出処理部34で抽出した無効電力計測値と、上記推定処理部1(36)の処理によって出力された実負荷の有効電力推定値(独立成分分析)を用いて回帰式を構築する。回帰式の構築に当たっては、図15に示すように、有効電力をY座標に、無効電力をX座標に設定し、当該座標上に上記推定処理部1(36)の処理によって出力された実負荷の有効電力推定値(独立成分分析)をプロットすることでその傾きから次のような回帰式を得る。つまり、次式のa0とa1を求める。
The estimation processing unit 1 (36) performs processing for separating the power consumed by the actual load (active power) and the photovoltaic power generation output using the restoration matrix constructed by the restoration matrix construction processing unit 35. Since the process of the estimation processing unit 1 (36) is a separation process using a normal independent component analysis, a detailed description is omitted (see Patent Document 5 described above if necessary). The data output by the processing of the estimation processing unit 1 (36) is as follows. That is,
Estimated active power of actual load (independent component analysis) i (where i is 1 to n)
The regression formula construction processing unit 37 uses the reactive power measurement value extracted by the data extraction processing unit 34 and the active power estimation value (independent component analysis) of the actual load output by the processing of the estimation processing unit 1 (36). To build a regression equation. In constructing the regression equation, as shown in FIG. 15, the active power is set to the Y coordinate, the reactive power is set to the X coordinate, and the actual load output by the processing of the estimation processing unit 1 (36) on the coordinates. By plotting the estimated active power value (independent component analysis), the following regression equation is obtained from the slope. That is, a0 and a1 of the following expression are obtained.

実負荷の有効電力推定値(独立成分分析)=a0+a1無効電力計測値・・・式3
そして推定処理部2(38)は、上記の回帰式(式3)を用いて、抽出したデータ(データ抽出処理部34で抽出した無効電力計測値,有効電力計測値)に基づく推定値を求める。つまり、
実負荷の有効電力推定値(回帰)i=a0+a1無効電力計測値i
太陽光発電の有効電力推定値i=実負荷の有効電力推定値(回帰)i-有効電力計測値i
推定幅計算処理部39は、上記推定処理部2(38)が上記回帰式(式3)を用いて得た上記推定値の幅を求める。幅を求める式は、以下に示すとおりである。
Estimated active power value of actual load (independent component analysis) = a0 + a1 reactive power measurement value Equation 3
And the estimation process part 2 (38) calculates | requires the estimated value based on the extracted data (The reactive power measured value extracted by the data extraction process part 34, active power measured value) using said regression equation (Formula 3). . That means
Actual load active power estimate (regression) i = a0 + a1 reactive power measurement i
Estimated active power for photovoltaic power generation i = Estimated active power for actual load (regression) i-Active power measured value i
The estimated width calculation processing unit 39 obtains the width of the estimated value obtained by the estimation processing unit 2 (38) using the regression equation (Equation 3). The formula for obtaining the width is as follows.

実負荷の有効電力推定値(回帰)の幅i=実負荷の有効電力推定値(回帰)i±幅i
太陽光発電の有効電力推定値の幅i=実負荷の有効電力推定値(回帰)の幅i -有効電力計測値i
幅i=t(n−2,信頼区間) × √(Ve)×√(1+1/n+(無効電力計測値i-avg(無効電力計測値i))2/Sxx)
Ve=Σ(実負荷の有効電力推定値(回帰)i-実負荷の有効電力推定値(独立成分分析)i)2/(n-2)
Sxx=Σ(無効電力計測値i-avg(無効電力計測値i))2
ここで、t(n−2,信頼区間)は、t分布表から求められる値であり、nが無限大の場合には正規分布になり、nが小さい場合には正規分布よりも幅が広くなる分布である。例えば、nが12で信頼区間が95%の場合には、2.228になり、nが無限大で信頼区間が95%の場合には1.960になる。なお、Veは、残差による分散であり、上式のとおり、実負荷の有効電力推定値(回帰)と独立成分分析で求めた有効電力推定値の差を意味する。また、Sxxは、偏差平方和と呼ばれる統計指標である。
Actual load active power estimate (regression) width i = actual load active power estimate (regression) i ± width i
Width of estimated active power of photovoltaic power generation i = Width of estimated active power of actual load (regression) i -Measured active power i
Width i = t (n−2, confidence interval) × √ (Ve) × √ (1 + 1 / n + (reactive power measurement value i-avg (reactive power measurement value i)) 2 / Sxx)
Ve = Σ (estimated active power of actual load (regression) i-estimated active power of actual load (independent component analysis) i) 2 / (n-2)
Sxx = Σ (Reactive power measurement value i-avg (Reactive power measurement value i)) 2
Here, t (n−2, confidence interval) is a value obtained from the t distribution table. When n is infinite, a normal distribution is obtained, and when n is small, the width is wider than the normal distribution. Distribution. For example, when n is 12 and the confidence interval is 95%, it becomes 2.228, and when n is infinite and the confidence interval is 95%, it becomes 1.960. Note that Ve is the variance due to the residual, and as shown in the above equation, means the difference between the active power estimated value (regression) of the actual load and the active power estimated value obtained by independent component analysis. Sxx is a statistical index called deviation sum of squares.

図16は、本発明の実施形態に係る電力推定装置(その3)における実負荷の有効電力推定値が採る推定値の幅を示す概念図である。図16において、○印は、実負荷の有効電力推定値(独立成分分析)iを示し、△印は、実負荷の有効電力推定値(回帰)iを示し、実負荷の有効電力推定値(回帰)iは△印を結んだ直線上の値となる。また図16において、左上及び右下の曲線は上記幅iを求める計算式によって既定される推定値の確からしさを担保する境界を示し、当該二つの曲線の乖離が両矢印線によって推定値の幅iとして示されている。   FIG. 16 is a conceptual diagram illustrating a width of an estimated value taken by an active power estimated value of an actual load in the power estimating apparatus (part 3) according to the embodiment of the present invention. In FIG. 16, ◯ indicates the actual load active power estimated value (independent component analysis) i, Δ indicates the actual load active power estimated value (regression) i, and the actual load active power estimated value ( (Regression) i is a value on a straight line connecting Δ marks. In FIG. 16, the upper left and lower right curves indicate the boundaries that guarantee the certainty of the estimated value determined by the formula for obtaining the width i, and the difference between the two curves is the width of the estimated value by the double arrow line. Shown as i.

1 変電所
10〜30 電力推定装置
11、21、31 入力処理部
12、22、32 データ蓄積処理部
13、23、33 出力処理部
14 事故区間判定部
15 推定処理部
16 推定幅処理部
17 事故復旧処理部
18 バス
24、34 データ抽出処理部
25、37 回帰式構築処理部
26 推定処理部
27、39 推定幅計算処理部
35 復元行列構築処理部
36 推定処理部1
38 推定処理部2
200 無効電力補償装置
300 開閉器S5
400 開閉器S6
P1〜P4 電力計
S1〜S4 (区分)開閉器
1 Substation
10-30 Power estimation device
11, 21, 31 Input processor
12, 22, 32 Data storage processor
13, 23, 33 Output processor
14 Accident section judgment section
15 Estimation processing unit
16 Estimated width processing section
17 Accident recovery processing department
18 Bus
24, 34 Data extraction processing section
25, 37 Regression formula construction processing section
26 Estimator
27, 39 Estimated width calculation processor
35 Restoration matrix construction processor
36 Estimator 1
38 Estimator 2
200 Reactive power compensator
300 Switch S5
400 Switch S6
P1 to P4 Wattmeter
S1 ~ S4 (Division) Switch

Claims (13)

複数の分散電源と負荷が配電線に接続された電力系統の事故復旧方法において、
複数の区分開閉器を設けて前記配電線を複数の区間に区分するステップ、
前記配電線上の前記区間ごとの負荷を計測して推定手段に設けた記憶装置に記憶すると共に配電系統の最大許容容量を予め該記憶装置に記憶するステップ、
前記推定手段に設けた記憶装置に記憶された前記計測負荷を基に前記区間ごとの事故直前の分散電源出力と負荷の消費電力を推定するステップ、
事故後、前記配電系統の事故区間を特定するステップ、および、
前記配電系統の事故区間を特定した後、事故区間の負荷の消費電力推定値を用い、前記配電系統の最大許容容量を超えない範囲で、前記推定手段が前記区分開閉器を操作する事故復旧するステップ、
を含むことを特徴とする配電系統の事故復旧方法。
In an accident recovery method for a power system in which multiple distributed power sources and loads are connected to a distribution line,
Providing a plurality of division switches to divide the distribution line into a plurality of sections;
Measuring the load for each section on the distribution line and storing it in a storage device provided in the estimation means, and storing the maximum allowable capacity of the distribution system in the storage device in advance,
Estimating a distributed power output and load power consumption immediately before an accident for each section based on the measured load stored in a storage device provided in the estimation means;
After the accident, identifying an accident section of the distribution system; and
After identifying the fault section of the power distribution system, use the estimated power consumption value of the load in the fault section, and recover the accident when the estimation means operates the section switch in a range not exceeding the maximum allowable capacity of the power distribution system Step,
An accident recovery method for a distribution system characterized by including:
前記推定手段が推定する前記負荷の消費電力推定値には、前記事故復旧時に過負荷とならない推定値の幅(余裕率)を持たせ、前記事故復旧するステップは、前記推定値の幅(余裕率)を含んだ前記負荷の消費電力推定値のみを事故復旧することを特徴とする請求項1に記載の配電系統の事故復旧方法。   The estimated power consumption value estimated by the estimating means has an estimated value width (margin ratio) that does not cause an overload at the time of accident recovery, and the step of recovering from the accident includes the estimated value width (margin). The accident recovery method for a power distribution system according to claim 1, wherein only the estimated power consumption value of the load including the rate is recovered from the accident. 前記区間ごとの事故直前の分散電源出力と負荷の消費電力を推定するステップは、前記記憶装置に記憶した前記区間ごとの前記負荷装置の消費電力、および該当時の気温を座標軸にプロットして得た散布図を用いて、前記負荷装置の消費電力と前記分散電源の出力を推定することを特徴とする請求項1に記載の配電系統の事故復旧方法。   The step of estimating the distributed power output and load power consumption immediately before the accident for each section is obtained by plotting the power consumption of the load apparatus for each section stored in the storage device and the temperature at the time on the coordinate axis. The power distribution system accident recovery method according to claim 1, wherein the power consumption of the load device and the output of the distributed power source are estimated using the scatter diagram. 前記事故区間内の各区間の推定消費電力から前記分散電源の推定出力を除外した値を事故復旧に用いることを特徴とする請求項1ないし3のいずれか一項に記載の配電系統の事故復旧方法。   The accident recovery of the distribution system according to any one of claims 1 to 3, wherein a value obtained by excluding the estimated output of the distributed power source from the estimated power consumption of each section in the accident section is used for accident recovery. Method. 高圧側に連系される高圧系分散電源の出力を計測する手段を該高圧系分散電源装置が備える場合には、
前記事故区間の各区間の推定消費電力から分散電源の推定出力を減算し、その値に前記高圧系分散型電源の出力の計測値を加算した値を事故復旧に用いることを特徴とする請求項1ないし3のいずれか一項に記載の配電系統の事故復旧方法。
When the high-voltage distributed power supply device has a means for measuring the output of the high-voltage distributed power supply connected to the high-voltage side,
The estimated power consumption of each section of the accident section is subtracted from the estimated output of the distributed power source, and a value obtained by adding the measured value of the output of the high-voltage system distributed power source to the value is used for accident recovery. A method for recovering from an accident in a power distribution system according to any one of claims 1 to 3.
前記推定手段が推定する前記負荷の消費電力推定値には、前記事故復旧時に過負荷とならない推定値の幅(余裕率)を持たせ、前記負荷の消費電力推定値分のみ事故復旧するステップは、前記推定値の幅(余裕率)を含んだ前記負荷の消費電力推定値のみを事故復旧することを特徴とする請求項4または5に記載の配電系統の事故復旧方法。   The estimated power consumption value of the load estimated by the estimating means has an estimated value width (margin ratio) that does not become an overload at the time of the accident recovery, and the step of recovering the accident only by the estimated power consumption value of the load is: 6. The accident recovery method for a power distribution system according to claim 4 or 5, wherein only the estimated power consumption value of the load including the estimated value width (margin ratio) is recovered. 複数の分散電源及び複数の負荷装置が配電線に接続された電力系統において、
複数の区分開閉器を設けて前記配電線を複数の区間に区分する手段と、
前記配電線上で前記区間ごとの有効電力および無効電力を計測して推定手段に設けた記憶装置に記憶する手段と、
前記記憶装置に記憶された前記区間ごとの前記分散電源および前記負荷装置の無効電力から前記区間ごとの負荷装置の有効電力を回帰式で推定する手段と、
前記回帰式で推定した前記区間ごとの負荷装置の有効電力推定値に対してその推定値の幅を算出する手段と、
を備えることを特徴とする配電系統の実負荷推定装置。
In a power system in which a plurality of distributed power sources and a plurality of load devices are connected to a distribution line,
Means for providing a plurality of division switches to divide the distribution line into a plurality of sections;
Means for measuring active power and reactive power for each section on the distribution line and storing them in a storage device provided in the estimating means;
Means for estimating the active power of the load device for each section by a regression equation from the distributed power and the reactive power of the load device for each of the sections stored in the storage device;
Means for calculating a width of the estimated value for the active power estimated value of the load device for each of the sections estimated by the regression equation;
An actual load estimation device for a power distribution system comprising:
前記回帰式で求められた区間ごとの負荷装置の有効電力推定値を基に、前記分散電源の有効電力を推定する手段と、
前記回帰式で推定した前記区間ごとの分散電源の有効電力推定値に対してその推定値の幅を算出する手段と、
をさらに備えることを特徴とする請求項7に記載の配電系統の実負荷推定装置。
Means for estimating the active power of the distributed power source based on the active power estimate value of the load device for each section obtained by the regression equation;
Means for calculating a width of the estimated value for the active power estimated value of the distributed power source for each of the sections estimated by the regression equation;
The actual load estimation device for a distribution system according to claim 7, further comprising:
複数の分散電源及び複数の負荷装置が配電線に接続された電力系統において、
複数の区分開閉器を設けて前記配電線を複数の区間に区分するステップ、
前記配電線上で前記区間ごとの有効電力および無効電力を計測して推定手段に設けた記憶装置に記憶するステップ、
前記記憶装置に記憶された前記区間ごとの前記分散電源および前記負荷装置の無効電力から前記区間ごとの負荷装置の有効電力を回帰式で推定するステップ、および、
前記回帰式で推定した前記区間ごとの負荷装置の有効電力推定値に対してその推定値の幅を算出するステップ、
を含むことを特徴とする配電系統の実負荷推定方法。
In a power system in which a plurality of distributed power sources and a plurality of load devices are connected to a distribution line,
Providing a plurality of division switches to divide the distribution line into a plurality of sections;
Measuring the active power and reactive power for each section on the distribution line and storing them in a storage device provided in the estimating means;
Estimating the active power of the load device for each section from the distributed power and the reactive power of the load device for each section stored in the storage device by a regression equation; and
Calculating an estimated value width for the active power estimated value of the load device for each section estimated by the regression equation;
A method for estimating an actual load of a power distribution system.
前記回帰式で求められた区間ごとの負荷装置の有効電力推定値を基に、前記分散電源の有効電力を推定するステップ、
前記回帰式で推定した前記区間ごとの分散電源の有効電力推定値に対してその推定値の幅を算出するステップ、
を含むことを特徴とする請求項9に記載の配電系統の実負荷推定方法。
Estimating the active power of the distributed power source based on the active power estimate value of the load device for each section obtained by the regression equation;
Calculating a width of the estimated value for the active power estimated value of the distributed power source for each section estimated by the regression equation;
The actual load estimation method for a power distribution system according to claim 9, comprising:
前記計測して有効電力と無効電力から独立成分分析を用いて、前記負荷装置の有効電力、もしくは、前記分散電源の出力を分離するステップと、
該分離した前記負荷装置の有効電力、もしくは、前記分散電源の有効電力と、前記計測した無効電力とから、前記回帰式を用いて、前記負荷装置の有効電力、もしくは、前記分散電源の有効電力を推定するステップと、
該推定した前記負荷装置の有効電力、もしくは、前記分散電源の有効電力の推定値の幅を算出するステップと、
さらに含むことを特徴とする請求項9または10に記載の配電系統の実負荷推定方法。
Separating the active power of the load device or the output of the distributed power source using independent component analysis from the measured active power and reactive power;
From the active power of the separated load device or the active power of the distributed power source and the measured reactive power, the effective power of the load device or the active power of the distributed power source is calculated using the regression equation. Estimating
Calculating the estimated effective power of the load device or the estimated value width of the active power of the distributed power source; and
The distribution system actual load estimation method according to claim 9 or 10, further comprising:
複数の分散電源及び複数の負荷装置が配電線に接続された電力系統において、
該電力系統に配電系統の実負荷を推定する推定装置を備え、該推定装置のコンピュータを、
複数の区分開閉器を設けて前記配電線を複数の区間に区分する手段と、
前記配電線上で前記区間ごとの有効電力および無効電力を計測して記憶装置に記憶する手段と、
前記記憶装置に記憶された前記区間ごとの前記分散電源および前記負荷装置の無効電力から前記区間ごとの負荷装置の有効電力を回帰式で推定する手段と、
前記回帰式で推定した前記区間ごとの負荷装置の有効電力推定値に対してその推定値の幅を算出する手段、
として機能させるためのプログラム。
In a power system in which a plurality of distributed power sources and a plurality of load devices are connected to a distribution line,
The power system includes an estimation device that estimates an actual load of a distribution system, and the computer of the estimation device includes:
Means for providing a plurality of division switches to divide the distribution line into a plurality of sections;
Means for measuring active power and reactive power for each section on the distribution line and storing them in a storage device;
Means for estimating the active power of the load device for each section by a regression equation from the distributed power and the reactive power of the load device for each of the sections stored in the storage device;
Means for calculating a width of the estimated value for the active power estimated value of the load device for each of the sections estimated by the regression equation;
Program to function as.
複数の分散電源及び複数の負荷装置が配電線に接続された電力系統において、
該電力系統に配電系統の実負荷を推定する推定装置を備え、該推定装置のコンピュータを、
複数の区分開閉器を設けて前記配電線を複数の区間に区分する手段と、
前記配電線上で前記区間ごとの有効電力および無効電力を計測して記憶装置に記憶する手段と、
前記記憶装置に記憶された前記区間ごとの前記分散電源および前記負荷装置の無効電力から前記区間ごとの負荷装置の有効電力を回帰式で推定する手段と、
前記回帰式で推定した前記区間ごとの負荷装置の有効電力推定値に対してその推定値の幅を算出する手段と、
前記回帰式で求められた区間ごとの負荷装置の有効電力推定値を基に、前記分散電源の有効電力を推定する手段と、
前記回帰式で推定した前記区間ごとの分散電源の有効電力推定値に対してその推定値の幅を算出する手段、
として機能させるためのプログラム。
In a power system in which a plurality of distributed power sources and a plurality of load devices are connected to a distribution line,
The power system includes an estimation device that estimates an actual load of a distribution system, and the computer of the estimation device includes:
Means for providing a plurality of division switches to divide the distribution line into a plurality of sections;
Means for measuring active power and reactive power for each section on the distribution line and storing them in a storage device;
Means for estimating the active power of the load device for each section by a regression equation from the distributed power and the reactive power of the load device for each of the sections stored in the storage device;
Means for calculating a width of the estimated value for the active power estimated value of the load device for each of the sections estimated by the regression equation;
Means for estimating the active power of the distributed power source based on the active power estimate value of the load device for each section obtained by the regression equation;
Means for calculating the width of the estimated value for the active power estimated value of the distributed power source for each of the sections estimated by the regression equation;
Program to function as.
JP2014010501A 2014-01-23 2014-01-23 Distribution system accident recovery method, and distribution system's actual load and its width estimating device, method and program Active JP6387617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014010501A JP6387617B2 (en) 2014-01-23 2014-01-23 Distribution system accident recovery method, and distribution system's actual load and its width estimating device, method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014010501A JP6387617B2 (en) 2014-01-23 2014-01-23 Distribution system accident recovery method, and distribution system's actual load and its width estimating device, method and program

Publications (2)

Publication Number Publication Date
JP2015139320A true JP2015139320A (en) 2015-07-30
JP6387617B2 JP6387617B2 (en) 2018-09-12

Family

ID=53769987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014010501A Active JP6387617B2 (en) 2014-01-23 2014-01-23 Distribution system accident recovery method, and distribution system's actual load and its width estimating device, method and program

Country Status (1)

Country Link
JP (1) JP6387617B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016151960A1 (en) * 2015-03-25 2016-09-29 日本電気株式会社 Data analysis device, data analysis method, and program
CN106655252A (en) * 2016-10-26 2017-05-10 华南理工大学 Prim-based microgrid source load storage recovery method
JP2017147875A (en) * 2016-02-18 2017-08-24 富士電機株式会社 Reactive power output device, control method for reactive power output device, and power system
JP2017163772A (en) * 2016-03-11 2017-09-14 東京電力ホールディングス株式会社 Electrical distribution control system, and prediction program
CN107290629A (en) * 2017-07-12 2017-10-24 国网青海省电力公司海南供电公司 A kind of 10KV low-voltage networks Earth design method
JP2018152935A (en) * 2017-03-10 2018-09-27 三菱電機株式会社 Electric power system state estimation device
JP2021069263A (en) * 2019-10-28 2021-04-30 富士電機株式会社 Power distribution control device and system
KR20220045858A (en) * 2020-10-06 2022-04-13 아주대학교산학협력단 Apparatus and method for system recovery based on voltage reduction
CN114665474A (en) * 2022-03-28 2022-06-24 南通电力设计院有限公司 Power transmission and distribution recovery method and system based on distributed power supply
KR20220168903A (en) * 2021-06-17 2022-12-26 한국전력공사 Solar power generation calculation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028769A (en) * 2005-07-14 2007-02-01 Chugoku Electric Power Co Inc:The Method for recovery from accident in distribution line system, and power distribution control device
JP2010193594A (en) * 2009-02-17 2010-09-02 Tokyo Electric Power Co Inc:The Maximum power generation amount estimating method for photovoltaic power generation system, method for controlling power distribution system, and distribution system control apparatus
JP2010193605A (en) * 2009-02-18 2010-09-02 Tokyo Electric Power Co Inc:The Load estimating method of power distribution section and power distribution system control method
JP2012095478A (en) * 2010-10-28 2012-05-17 Kansai Electric Power Co Inc:The Output estimation method and output estimation device for photovoltaic power generation
JP2012191777A (en) * 2011-03-11 2012-10-04 Nissin Electric Co Ltd Method for estimating generated amount of power in photovoltaic power generation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028769A (en) * 2005-07-14 2007-02-01 Chugoku Electric Power Co Inc:The Method for recovery from accident in distribution line system, and power distribution control device
JP2010193594A (en) * 2009-02-17 2010-09-02 Tokyo Electric Power Co Inc:The Maximum power generation amount estimating method for photovoltaic power generation system, method for controlling power distribution system, and distribution system control apparatus
JP2010193605A (en) * 2009-02-18 2010-09-02 Tokyo Electric Power Co Inc:The Load estimating method of power distribution section and power distribution system control method
JP2012095478A (en) * 2010-10-28 2012-05-17 Kansai Electric Power Co Inc:The Output estimation method and output estimation device for photovoltaic power generation
JP2012191777A (en) * 2011-03-11 2012-10-04 Nissin Electric Co Ltd Method for estimating generated amount of power in photovoltaic power generation system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016151960A1 (en) * 2015-03-25 2016-09-29 日本電気株式会社 Data analysis device, data analysis method, and program
JP2017147875A (en) * 2016-02-18 2017-08-24 富士電機株式会社 Reactive power output device, control method for reactive power output device, and power system
JP2017163772A (en) * 2016-03-11 2017-09-14 東京電力ホールディングス株式会社 Electrical distribution control system, and prediction program
CN106655252B (en) * 2016-10-26 2021-05-14 华南理工大学 Prim-based micro-grid source charge storage recovery method
CN106655252A (en) * 2016-10-26 2017-05-10 华南理工大学 Prim-based microgrid source load storage recovery method
JP2018152935A (en) * 2017-03-10 2018-09-27 三菱電機株式会社 Electric power system state estimation device
CN107290629A (en) * 2017-07-12 2017-10-24 国网青海省电力公司海南供电公司 A kind of 10KV low-voltage networks Earth design method
JP2021069263A (en) * 2019-10-28 2021-04-30 富士電機株式会社 Power distribution control device and system
JP7363367B2 (en) 2019-10-28 2023-10-18 富士電機株式会社 Power distribution control equipment and systems
KR20220045858A (en) * 2020-10-06 2022-04-13 아주대학교산학협력단 Apparatus and method for system recovery based on voltage reduction
KR102520871B1 (en) * 2020-10-06 2023-04-12 아주대학교산학협력단 Apparatus and method for system recovery based on voltage reduction
KR20220168903A (en) * 2021-06-17 2022-12-26 한국전력공사 Solar power generation calculation method
KR102594676B1 (en) 2021-06-17 2023-10-26 한국전력공사 Solar power generation calculation method
CN114665474A (en) * 2022-03-28 2022-06-24 南通电力设计院有限公司 Power transmission and distribution recovery method and system based on distributed power supply
CN114665474B (en) * 2022-03-28 2023-09-08 南通电力设计院有限公司 Power transmission and distribution recovery method and system based on distributed power supply

Also Published As

Publication number Publication date
JP6387617B2 (en) 2018-09-12

Similar Documents

Publication Publication Date Title
JP6387617B2 (en) Distribution system accident recovery method, and distribution system&#39;s actual load and its width estimating device, method and program
US20200003811A1 (en) Method of determining mutual voltage sensitivity coefficients between a plurality of measuring nodes of an electric power network
Agüero et al. Integration challenges of photovoltaic distributed generation on power distribution systems
Ashton et al. Novel application of detrended fluctuation analysis for state estimation using synchrophasor measurements
JP6543145B2 (en) Peak power prediction device, power management system and peak power prediction method
JP2010193594A (en) Maximum power generation amount estimating method for photovoltaic power generation system, method for controlling power distribution system, and distribution system control apparatus
US20170271915A1 (en) Energy Demand Monitoring System and Smart micro-Grid Controller
JP2010193605A (en) Load estimating method of power distribution section and power distribution system control method
WO2021176318A1 (en) Topology identification and state estimation of power grids
US11101653B2 (en) Solar generation estimation
JP2015109737A (en) Power distribution system monitoring device
US20200395755A1 (en) Method and arrangement for estimating a grid state of a power distribution grid
Zhang et al. Quantitative frequency security assessment method considering cumulative effect and its applications in frequency control
Price Practical considerations for implementing wide area monitoring, protection and control
EP3771061B1 (en) Power system stabilization system and power system stabilization method using calculated power system sensitivity
JP6314529B2 (en) Learning data creation method, program, distribution system actual load estimation device and estimation method contributing to actual load system distribution load estimation
JP2018160990A (en) Load management apparatus and method
JP6833303B1 (en) Power generation forecaster
JP5944225B2 (en) Alarm presenting device and alarm presenting method
WO2016151960A1 (en) Data analysis device, data analysis method, and program
JP2023032358A (en) Estimation device, system, program, and method for estimating charge/discharge efficiency of storage battery
CN109494707B (en) Method for monitoring and controlling an electrical network
de la Rosa et al. A web-based distributed measurement system for electrical Power Quality monitoring
Amin et al. Security Assessment and Reliability Improvement with considering Demand Response
JP6327060B2 (en) Power estimation apparatus and power estimation method for distribution system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180730

R150 Certificate of patent or registration of utility model

Ref document number: 6387617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250