JP2015137656A - Vibration control device - Google Patents

Vibration control device Download PDF

Info

Publication number
JP2015137656A
JP2015137656A JP2014007686A JP2014007686A JP2015137656A JP 2015137656 A JP2015137656 A JP 2015137656A JP 2014007686 A JP2014007686 A JP 2014007686A JP 2014007686 A JP2014007686 A JP 2014007686A JP 2015137656 A JP2015137656 A JP 2015137656A
Authority
JP
Japan
Prior art keywords
mass
damping device
vibration
vibration damping
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014007686A
Other languages
Japanese (ja)
Other versions
JP6257346B2 (en
Inventor
孝啓 可知
Takahiro Kachi
孝啓 可知
高田 友和
Tomokazu Takada
友和 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2014007686A priority Critical patent/JP6257346B2/en
Publication of JP2015137656A publication Critical patent/JP2015137656A/en
Application granted granted Critical
Publication of JP6257346B2 publication Critical patent/JP6257346B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a vibration control device having an improved structure of which vibration control effect is further improved on the basis of a vibration control device of cantilever type conventional structure.SOLUTION: This invention relates to a vibration control device 10 in which one side of a longitudinal plate-like spring member 14 is applied as a base part 28 fixed to a vibrator body 12, the other side of the spring member 14 is applied as a mass fixing part 30, a mass member 16 is fixed to the mass fixing part 30 and at the same time there is provided an attenuation body 18 protruded from the mass fixing part 30 and abutted against the vibrator body 12. These elements have the conditions expressed in the following equation. Namely, 2≤W/(X+H/2)≤60.8≤H/X≤2.5 where, W=width size of the mass member 16, X=height size from a fixing surface of the mass member 16 to the abutting surface of the attenuation body 18 against the vibrator body 12, H=height size of the mass member 16.

Description

本発明は、例えば建築物の床などに取り付けられて衝撃に伴う音や振動を低減するために用いられる制振装置に関するものである。   The present invention relates to a vibration damping device that is attached to, for example, a floor of a building and used to reduce sound and vibration associated with an impact.

従来から、住宅などの建築物において、床の衝撃音などが問題になる場合がある。特に、複数階建ての集合住宅などでは、上階での歩行や飛び跳ね等に伴う床面への衝撃入力による音や振動が階下の天井に伝搬され易く、階下の住人に不快感を与えるおそれがあった。   Conventionally, a floor impact sound or the like may be a problem in a building such as a house. In particular, in multi-storey apartments, sound and vibration due to impact input to the floor due to walking or jumping on the upper floor are likely to be propagated to the ceiling below the floor, which may cause discomfort to the residents below the floor. there were.

そこで、床の衝撃音を低減するための手段として、例えば、床の裏面に制振装置を取り付けることが提案されている。この制振装置は、例えば特開2010−230031号公報(特許文献1)に記載されているように、長手板状とされたばね部材の一端側が床などの振動体に取り付けられる一方、ばね部材の他端側にマス部材が取り付けられた片持梁状の構造とされている。   Therefore, as a means for reducing the impact sound of the floor, for example, it has been proposed to attach a vibration damping device to the back surface of the floor. For example, as described in Japanese Patent Application Laid-Open No. 2010-230031 (Patent Document 1), the vibration damping device is attached to a vibrating body such as a floor while one end side of a spring member having a longitudinal plate shape is provided. It is a cantilever-like structure in which a mass member is attached to the other end side.

そして、制振装置の共振周波数が、制振対象である床の振動の周波数に合わせるようにチューニングされる。これにより、床に対して歩行や飛び跳ねなどによる衝撃力が及ぼされると、床の振動エネルギーが制振装置の振動エネルギーに変換されて制振効果が発揮され、衝撃音が低減されることとなる。   Then, the resonance frequency of the vibration damping device is tuned so as to match the vibration frequency of the floor to be damped. As a result, when an impact force such as walking or jumping is exerted on the floor, the vibration energy of the floor is converted into the vibration energy of the vibration damping device, and the vibration damping effect is exhibited, and the impact sound is reduced. .

ところが、本発明者が検討したところ、制振装置の共振周波数を床の振動周波数に合わせるチューニングを高精度に施した場合でも、満足できる制振効果を得難い場合のあることが判った。   However, as a result of studies by the present inventor, it has been found that there is a case where it is difficult to obtain a satisfactory vibration damping effect even when tuning that matches the resonance frequency of the vibration damping device with the vibration frequency of the floor is performed with high accuracy.

特開2010−230031号公報JP 2010-230031 A

本発明は、上述の事情を背景に為されたものであって、その解決課題とするところは、特許文献1に示される如き片持梁状の従来構造の制振装置において、その制振効果が一層高められた、改良された構造の制振装置を提供することにある。   The present invention has been made in the background of the above-described circumstances, and the problem to be solved is that in the vibration damping device having a conventional structure having a cantilever shape as shown in Patent Document 1, the vibration damping effect thereof. It is an object of the present invention to provide a vibration damping device having an improved structure and improved.

以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。   Hereinafter, the aspect of this invention made | formed in order to solve such a subject is described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible.

先ず、前述の如き従来構造の制振装置における問題点に鑑み、本発明者が多くの実験と検討を行った結果、従来構造を制振装置を装着した場合に、床材において本来制振すべき振動とは異なる周波数域で振動状態が悪化する場合があり、これが十分な制振効果を安定して得難いことの大きな原因の一つであることを把握した。そして、このような振動状態の悪化は、制振すべき振動とは異なる別モードの振動が制振装置に生ぜしめられることに因るとの知見を得るに至った。   First, in view of the problems in the vibration damping device having the conventional structure as described above, the present inventors have conducted many experiments and examinations. As a result, when the vibration damping device is mounted on the conventional structure, the floor material is originally damped. It has been understood that the vibration state may deteriorate in a frequency range different from the power vibration, and this is one of the main reasons why it is difficult to stably obtain a sufficient damping effect. And it came to the knowledge that such a deterioration of a vibration state originates in the vibration suppression apparatus producing the vibration of another mode different from the vibration which should be controlled.

すなわち、一般に、建築物の床材の振動は鉛直上下方向の振動モードを有することから、制振装置のばね部材は、床材に固定された基部から先端のマス取付部側に向って水平方向に延びるようにして装着される。その際、長手板状とされたばね部材は、曲げ変形される板厚方向が上下方向となるように、板面が水平方向に広がる状態で取り付けられることとなる。ところが、床材への振動荷重の入力位置は定まっておらず、荷重入力位置が支持点間の中央から外れると振動変位方向が鉛直上下方向から傾斜する。また、床材は二次元的に水平方向に広がって周囲を支えられていることから、複数方向の上下振動が重なって単純な上下方向の振動モードとならず、鉛直上下方向から傾斜した振動モードを生じ易いことが判った。   That is, generally, since the vibration of the flooring of the building has a vertical vertical vibration mode, the spring member of the vibration damping device is horizontally oriented from the base fixed to the flooring toward the mass mounting part at the tip. It is attached so as to extend. At that time, the spring member having a long plate shape is attached in a state in which the plate surface extends in the horizontal direction so that the plate thickness direction to be bent is the vertical direction. However, the input position of the vibration load to the flooring is not fixed, and when the load input position deviates from the center between the support points, the vibration displacement direction is inclined from the vertical vertical direction. In addition, since flooring spreads horizontally in two dimensions and is supported around it, vertical vibrations in multiple directions do not overlap to create a simple vertical vibration mode, but a vibration mode inclined from the vertical vertical direction. It turned out that it is easy to produce.

そして、このような傾斜方向の振動が、床材から制振装置に及ぼされると、ばね部材に対して単純な曲げ方向の振動変形だけでなく、捩り方向の振動変形が生ぜしめられることとなる。ばね部材は、捩り方向において本来の曲げ方向とは異なる固有振動数等の振動特性を有していることから、制振装置における捩り方向の共振作用などによって振動増幅されることがあり、それが床材に対して加振源となることにより床材の振動状態が悪化してしまうおそれがあったのである。   When the vibration in the inclined direction is applied from the floor material to the vibration damping device, not only simple vibration deformation in the bending direction but also vibration deformation in the torsional direction is caused to the spring member. . Since the spring member has vibration characteristics such as a natural frequency different from the original bending direction in the torsion direction, vibration may be amplified by a resonance action in the torsion direction in the vibration damping device. There was a possibility that the vibration state of the flooring material would be deteriorated by becoming an excitation source for the flooring material.

ここにおいて、本発明の第一の態様は、長手板状とされたばね部材の一方側が振動体に固定される基部とされている一方、該ばね部材の他方側がマス取付部とされており、該マス取付部に対してマス部材が固定されていると共に、該マス取付部から突出して該振動体に当接される減衰体が設けられている制振装置において、以下の(式1)及び(式2)に示される条件を何れも備えていることを、特徴とする。
2≦W/(X+H/2)≦6・・・(式1)
0.8≦H/X≦2.5 ・・・(式2)
ただし、Wはマス部材の幅寸法であり、Xはマス部材の取付面から減衰体の振動体への当接面までの高さ寸法であり、Hはマス部材の高さ寸法である。
Here, in the first aspect of the present invention, one side of the elongated spring-shaped spring member is a base fixed to the vibrating body, while the other side of the spring member is a mass mounting portion, In the vibration damping device in which a mass member is fixed to the mass attachment portion and a damping body that protrudes from the mass attachment portion and comes into contact with the vibrating body is provided, the following (Equation 1) and ( It is characterized in that all of the conditions shown in Equation 2) are provided.
2 ≦ W / (X + H / 2) ≦ 6 (Formula 1)
0.8 ≦ H / X ≦ 2.5 (Formula 2)
However, W is the width dimension of the mass member, X is the height dimension from the mounting surface of the mass member to the contact surface of the damping body to the vibrating body, and H is the height dimension of the mass member.

このような第一の態様に従う構造とされた制振装置においては、上記(式1)を満たすことにより、ばね部材の弾性中心軸に直交する方向におけるマス部材の寸法となる幅寸法を、振動体に当接される減衰体の支持点を基準位置としたマス部材の重心の高さ寸法を参照値として考慮して適切に設定して、マス部材の揺動を伴うばね部材の捩り振動を抑えることができる。即ち、マス部材の幅寸法Wを、マス部材の重心の高さ寸法(X+H/2)に対して、2より小さく設定すると、マス部材自体の高さ寸法が幅寸法に比して大きくなり過ぎて幅方向に横揺れし易くなることに起因してばね部材の捩り振動が生じやすい傾向になる。一方、マス部材の幅寸法Wを、マス部材の重心の高さ寸法(X+H/2)に対して、6より大きく設定すると、マス部材自体の幅寸法が高さ寸法に比して大きくなり過ぎて幅方向の横揺れが生じた際の慣性力が大きくなることに起因してばね部材の捩り振動が収まり難く且つ大きくなりやすい傾向になる。しかも、2≦W/(X+H/2)≦6の範囲を逸脱すると、マス部材が、幅方向に比して高さ方向に大きくなり過ぎたり、反対に高さ方向に比して幅方向に大きくなり過ぎて、マス部材の配設用スペースが非効率的になってしまうという問題もある。   In the vibration damping device having the structure according to the first aspect, by satisfying the above (Equation 1), the width dimension which is the dimension of the mass member in the direction orthogonal to the elastic central axis of the spring member is vibrated. The height of the center of gravity of the mass member with respect to the support point of the damping body that is in contact with the body as a reference position is appropriately set in consideration of the reference value, and the torsional vibration of the spring member accompanying the oscillation of the mass member is set. Can be suppressed. That is, if the width dimension W of the mass member is set to be smaller than 2 with respect to the height dimension (X + H / 2) of the center of gravity of the mass member, the height dimension of the mass member itself becomes too large compared to the width dimension. Therefore, it tends to cause torsional vibration of the spring member due to easy rolling in the width direction. On the other hand, if the width dimension W of the mass member is set to be greater than 6 with respect to the height dimension (X + H / 2) of the center of gravity of the mass member, the width dimension of the mass member itself becomes too large compared to the height dimension. Therefore, the torsional vibration of the spring member tends not to be settled and tends to increase due to an increase in the inertial force when the lateral roll occurs. In addition, if it deviates from the range of 2 ≦ W / (X + H / 2) ≦ 6, the mass member becomes too large in the height direction compared to the width direction, or conversely in the width direction compared to the height direction. There is also a problem that the space for disposing the mass member becomes inefficient because it becomes too large.

また、上記(式2)を満たすことにより、基準位置からマス部材の取付面までの高さ寸法(X)に対するマス部材自体の高さ寸法(H)を適切に設定することができ、上記(式1)と併せて、マス部材の揺動を伴うばね部材の捩り振動を一層効果的に抑えることができる。なお、基準位置からマス部材の取付面までの高さ寸法(X)は、実質的に減衰体の高さ寸法を略表すものと把握することができる。即ち、H/Xの値が0.8より小さくなると、マス部材の大きさに比して減衰体の高さ寸法が大きくなり過ぎて、ばね部材の捩り振動に対する減衰体による減衰効果を得難くなることに起因して、ばね部材の捩り振動が大きくなるおそれがある。一方、H/Xの値が2.5より大きくなると、減衰体の大きさに比してマス部材の高さ寸法が大きくなり過ぎて、減衰体の下方に位置するマス部材の首振り状の揺動に対して十分な減衰力が発揮され難くなることに起因して、ばね部材の捩り振動が大きくなるおそれがある。   Further, by satisfying the above (Formula 2), the height dimension (H) of the mass member itself relative to the height dimension (X) from the reference position to the mounting surface of the mass member can be appropriately set. In combination with Equation (1), the torsional vibration of the spring member accompanying the rocking of the mass member can be more effectively suppressed. Note that the height dimension (X) from the reference position to the mounting surface of the mass member can be understood as substantially representing the height dimension of the attenuation body. That is, when the value of H / X is smaller than 0.8, the height of the damping body becomes too large compared to the size of the mass member, and it is difficult to obtain a damping effect by the damping body against the torsional vibration of the spring member. As a result, the torsional vibration of the spring member may increase. On the other hand, when the value of H / X is larger than 2.5, the height dimension of the mass member becomes too large compared to the size of the attenuation body, and the swinging shape of the mass member located below the attenuation body is increased. There is a possibility that torsional vibration of the spring member may increase due to the fact that a sufficient damping force against swinging is difficult to be exhibited.

従って、上記(式1)と(式2)の条件を併せて満たすことにより、長手板状のばね部材における捩り変形が抑えられることとなり、その結果、制振装置における捩りの振動モードのピークが抑えられる。これにより、意図しない捩りモードの振動増幅作用に起因して振動体の振動状態が低下してしまう不具合が効果的に抑制され得て、制振装置において本来目的とするばね部材の曲げ方向に及ぼされる上下方向振動に対する制振効果によって、振動部材に対する良好な制振性能が発揮されるのである。   Therefore, by satisfying the conditions of (Equation 1) and (Equation 2) together, torsional deformation in the long plate spring member is suppressed, and as a result, the peak of the torsional vibration mode in the vibration damping device is obtained. It can be suppressed. As a result, a problem that the vibration state of the vibrating body is reduced due to an unintended torsional mode vibration amplification action can be effectively suppressed, and the vibration device is originally intended to bend in the bending direction of the spring member. By virtue of the vibration damping effect against the vertical vibration, good vibration damping performance for the vibration member is exhibited.

なお、本態様においてより好適には、下式を併せて満足するように設定される。
1≦W/(X+H)≦5
In this embodiment, it is more preferably set so as to satisfy the following expression.
1 ≦ W / (X + H) ≦ 5

本発明の第二の態様は、第一の態様に記載された制振装置であって、前記ばね部材において高さ方向に突出して長手方向に延びる補強リブが幅方向に離隔して複数形成されていると共に、該補強リブの高さ寸法が前記基部よりも前記マス取付部において小さくされているものである。   A second aspect of the present invention is the vibration damping device according to the first aspect, wherein a plurality of reinforcing ribs protruding in the height direction and extending in the longitudinal direction are separated from each other in the width direction in the spring member. In addition, the height dimension of the reinforcing rib is smaller in the mass attaching portion than in the base portion.

第二の態様によれば、例えば平板形状等のばね部材に比して、高さ方向に突出する補強リブによって捩り方向のばね剛性が効果的に増大され得る。それ故、ばね部材の捩り変形量を抑えたり、制振装置の捩り方向の固有振動数を問題にならない高周波数域にチューニングしたりすることで、制振装置における捩りモードの振動に起因する問題を一層効果的に防止することが可能になる。   According to the second aspect, for example, the spring rigidity in the torsional direction can be effectively increased by the reinforcing rib protruding in the height direction as compared with a spring member having a flat plate shape or the like. Therefore, problems caused by torsional mode vibration in the damping device can be achieved by suppressing the amount of torsional deformation of the spring member or by tuning the natural frequency in the torsional direction of the damping device to a high frequency range that does not matter. Can be more effectively prevented.

特に、ばね部材の先端側に位置するマス取付部に装着されたマス部材の揺動を伴って生ぜしめられる捩り振動に際して、大きな曲げモーメントが作用する基部側の補強リブ高さを、先端側よりも大きくすることにより、不必要に補強リブを大形化することなく捩り振動を効率的に抑制することが可能になる。しかも、先端側の補強リブの大きさを抑えることで、ばね部材の曲げ方向のばね特性を要求される制振作用の周波数特性に応じてチューニングする際の自由度も有利に確保され得る。なお、基部側の補強リブ高さと先端側の補強リブ高さとの割合は、以下の第三の態様に示す要件を満たすことが望ましい。   In particular, the height of the reinforcing rib on the base side on which a large bending moment acts when the torsional vibration is generated with the swing of the mass member mounted on the mass mounting portion located on the distal end side of the spring member from the distal end side. As a result, the torsional vibration can be efficiently suppressed without unnecessarily increasing the size of the reinforcing rib. In addition, by suppressing the size of the reinforcing rib on the distal end side, it is possible to advantageously ensure the degree of freedom in tuning the spring characteristics in the bending direction of the spring member according to the required frequency characteristics of the damping action. In addition, it is desirable that the ratio between the height of the reinforcing rib on the base side and the height of the reinforcing rib on the tip side satisfies the requirements shown in the following third aspect.

本発明の第三の態様は、第二の態様に記載された制振装置であって、前記補強リブにおいて、前記基部側の最大の高さ寸法h0と前記マス取付部側の最小の高さ寸法h1とが下式に示される条件を備えているものである。
0.2≦h1/h0<1・・・(式3)
A third aspect of the present invention is the vibration damping device described in the second aspect, wherein in the reinforcing rib, the maximum height dimension h0 on the base side and the minimum height on the mass attachment part side are provided. The dimension h1 has a condition shown by the following formula.
0.2 ≦ h1 / h0 <1 (Formula 3)

第三の態様によれば、ばね部材の基部における剛性を相対的に大きくすることができると共に、マス取付部における剛性を相対的に小さくできることから、床材とばね部材が強固に固定され得ると共に、ばね部材の振動変形も安定して実現され得る。   According to the third aspect, the rigidity at the base portion of the spring member can be relatively increased, and the rigidity at the mass attachment portion can be relatively decreased. Therefore, the floor material and the spring member can be firmly fixed. The vibration deformation of the spring member can also be realized stably.

本発明の第四の態様は、第二又は第三の態様に記載された制振装置において、前記ばね部材が長手方向に延びる凹溝を有する溝形断面形状とされており、該凹溝の両側壁部によって前記補強リブが構成されているものである。   According to a fourth aspect of the present invention, in the vibration damping device described in the second or third aspect, the spring member has a groove-shaped cross-sectional shape having a concave groove extending in a longitudinal direction. The reinforcing rib is constituted by both side wall portions.

第四の態様によれば、補強リブを一体的に備えた構造のばね部材をプレス加工等で容易に且つ良好な生産性をもって製造することが可能になる。   According to the fourth aspect, a spring member having a structure integrally provided with reinforcing ribs can be easily manufactured with good productivity by press working or the like.

本発明の第五の態様は、第四の態様に記載された制振装置において、前記凹溝の両側壁部が、該凹溝の開口側に向って次第に拡幅するように両外側へ傾斜していると共に、該両側壁部の開口側の端縁部から両側外方に向って広がるフランジ状部が形成されており、該フランジ状部に対して前記マス部材が載置されているものである。   According to a fifth aspect of the present invention, in the vibration damping device according to the fourth aspect, the both side walls of the concave groove are inclined outwardly so as to gradually widen toward the opening side of the concave groove. In addition, a flange-like portion is formed to extend outward from both edge portions on the opening side of the both side wall portions, and the mass member is placed on the flange-like portion. is there.

第五の態様によれば、両側のフランジ状部によってマス部材を安定して支持せしめることができると共に、溝開口部に向って相互に拡開方向へ傾斜した凹溝の両側壁部により、ばね部材における断面二次モーメントを一層効果的に確保することが出来て、捩り変形の抑制効果の向上が図られ得る。   According to the fifth aspect, the mass member can be stably supported by the flange-like portions on both sides, and the springs can be provided by the both side walls of the concave grooves inclined in the direction of expansion toward the groove openings. The cross-sectional secondary moment in the member can be more effectively ensured, and the effect of suppressing torsional deformation can be improved.

本発明の第六の態様は、第二〜第五の何れか一つの態様に記載された制振装置において、前記ばね部材における前記基部と前記マス取付部との間に連結部が設けられており、該基部と該マス取付部とにおいて前記補強リブが略一定の高さ寸法で長手方向に延びていると共に、該連結部において該補強リブの高さ寸法が長手方向に変化しているものである。   According to a sixth aspect of the present invention, in the vibration damping device according to any one of the second to fifth aspects, a connection portion is provided between the base portion and the mass attachment portion of the spring member. The reinforcing rib extends in the longitudinal direction at a substantially constant height in the base portion and the mass mounting portion, and the height of the reinforcing rib changes in the longitudinal direction at the connecting portion. It is.

第六の態様によれば、基部とマス取付部との間に連結部を設けたことにより、例えば基部とマス取付部における補強リブの高さ寸法を略一定にして、振動部材へ固定される基部の剛性を安定して確保すると共に、マス取付部におけるマス部材の支持強度を安定して得ることが可能になる。   According to the sixth aspect, by providing the connecting portion between the base portion and the mass attachment portion, for example, the height of the reinforcing ribs at the base portion and the mass attachment portion is made substantially constant and fixed to the vibration member. While ensuring the rigidity of a base part stably, it becomes possible to obtain the support strength of the mass member in a mass attachment part stably.

本態様における連結部では、例えば長手方向の中間部分に一つ以上の段差部を設けて該段差部の両側で補強リブの高さ寸法を長手方向に異ならせる他、補強リブの高さ寸法を長手方向で漸次に変化させて異ならせることも可能である。特に、補強リブの高さ寸法を次第に変化させる場合には、以下の第七の態様に示す要件を満たすことが望ましい。   In the connecting portion in this aspect, for example, one or more stepped portions are provided in the middle portion in the longitudinal direction, and the height of the reinforcing rib is changed in the longitudinal direction on both sides of the stepped portion. It is also possible to make the difference gradually by changing in the longitudinal direction. In particular, when the height dimension of the reinforcing rib is gradually changed, it is desirable to satisfy the requirements shown in the following seventh aspect.

本発明の第七の態様は、第六の態様に記載された制振装置において、前記連結部における前記補強リブの高さ方向の端縁部が、下式を満たす傾斜角度θで長手方向に傾斜しているものである。
0°<θ≦90°
According to a seventh aspect of the present invention, in the vibration damping device according to the sixth aspect, an end edge portion in the height direction of the reinforcing rib in the connecting portion extends in the longitudinal direction at an inclination angle θ satisfying the following formula: It is inclined.
0 ° <θ ≦ 90 °

なお、本態様において、ばね部材の長手方向における補強リブの傾斜角度θは、連結部の長さ方向で一定とされている他、長さ方向で部分的に又は段階的に或いは連続的に異ならされていても良い。   In addition, in this aspect, the inclination angle θ of the reinforcing rib in the longitudinal direction of the spring member is constant in the length direction of the connecting portion, and is different partially or stepwise or continuously in the length direction. May be.

本発明の第八の態様は、第一〜第七の何れか一つの態様に記載された制振装置において、前記マス部材の重心位置が、前記基部よりも前記マス取付部側に設定されているものである。   According to an eighth aspect of the present invention, in the vibration damping device according to any one of the first to seventh aspects, the center of gravity position of the mass member is set closer to the mass attachment portion than the base portion. It is what.

第八の態様によれば、マス部材によるばね部材の変形阻害を回避しつつ、マス部材をその重心位置近くでばね部材に対して安定して固定することが可能になる。即ち、ばね部材がマス部材によって不必要に拘束されてしまうことを回避するためには、ばね部材において基部を先端側へ外れた位置へマス部材を固定することが必要になる。本態様に従えば、特別なブラケット等を必要とすることなく、ばね部材のマス部材による拘束を回避しつつ、マス部材を略重心位置においてばね部材に対して容易に固定することが可能になる。   According to the eighth aspect, the mass member can be stably fixed to the spring member near the position of the center of gravity while avoiding deformation inhibition of the spring member by the mass member. In other words, in order to avoid the spring member being unnecessarily restrained by the mass member, it is necessary to fix the mass member to a position where the base portion of the spring member is disengaged toward the distal end side. According to this aspect, the mass member can be easily fixed to the spring member at a substantially center of gravity while avoiding the restraint of the spring member by the mass member without requiring a special bracket or the like. .

本発明の第九の態様は、第一〜第八の何れか一つの態様に記載された制振装置において、前記ばね部材が長手方向に延びる凹溝を有する溝形断面形状とされており、該ばね部材の長手方向の中間部分において該凹溝の底壁部に傾斜が付されて該凹溝の深さ寸法が次第に変化せしめられている一方、該凹溝の開口端縁部が全体に亘って同一平面上に延びているものである。   According to a ninth aspect of the present invention, in the vibration damping device according to any one of the first to eighth aspects, the spring member has a groove-shaped cross-sectional shape having a concave groove extending in a longitudinal direction. In the middle part of the longitudinal direction of the spring member, the bottom wall portion of the groove is inclined so that the depth dimension of the groove is gradually changed, while the opening edge of the groove is entirely formed. It extends on the same plane.

第九の態様によれば、溝形とされたばね部材の底壁部側に傾斜が付されることにより、基部において該底壁部の外面を振動体に重ね合わせて固定することで装着できると共に、かかる装着状態下で、マス取付部と振動体との間に減衰体の配設スペースを効率的に確保することも可能になる。   According to the ninth aspect, by attaching a slope to the bottom wall portion side of the groove-shaped spring member, the outer surface of the bottom wall portion can be mounted and fixed on the vibrating body at the base portion. In such a mounting state, it is also possible to efficiently secure a space for disposing the damping body between the mass mounting portion and the vibrating body.

また、凹溝の開口端縁部が全体に亘って同一平面上に延びていることから、かかる開口端縁部において、マス部材を安定して支持する支持面を容易に形成することも可能となる。   Further, since the opening edge of the concave groove extends on the same plane throughout, it is possible to easily form a support surface that stably supports the mass member at the opening edge. Become.

上述の説明から明らかなように、本発明に従う構造とされた制振装置においては、長手板状のばね部材における捩り変形が抑えられることにより、意図しない捩りモードの振動増幅作用に起因して振動体の振動状態が悪化してしまう不具合が防止される。その結果、本来目的とする振動に対する制振作用が効率的に発揮されることとなり、振動部材に対して一層優れた制振効果が達成される。   As is apparent from the above description, in the vibration damping device having the structure according to the present invention, the torsional deformation in the long plate-like spring member is suppressed, so that vibration is caused by an unintended torsional mode vibration amplification action. The trouble that the vibration state of the body deteriorates is prevented. As a result, the vibration damping action with respect to the originally intended vibration is efficiently exhibited, and a further excellent vibration damping effect is achieved for the vibration member.

本発明の第一の実施形態としての制振装置の正面図。1 is a front view of a vibration damping device as a first embodiment of the present invention. 図1に示す制振装置の平面図。The top view of the damping device shown in FIG. 図1のIII−III断面図。III-III sectional drawing of FIG. 図3のIV−IV断面図。IV-IV sectional drawing of FIG. 図1に示す制振装置を構成するばね部材の基部の横断面図。The cross-sectional view of the base part of the spring member which comprises the damping device shown in FIG. 図1に示す制振装置を構成するばね部材のマス取付部の横断面図。The cross-sectional view of the mass attachment part of the spring member which comprises the damping device shown in FIG. 図1に示された構造の制振装置における周波数の振動特性を測定した具体例を参考例と併せて示すグラフ。The graph which shows the specific example combined with the reference example which measured the vibration characteristic of the frequency in the damping device of the structure shown by FIG.

以下、本発明の実施形態について、図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1には、本発明に従う構造とされた制振装置の実施形態としての建築用のダイナミックダンパ10が示されている。なお、図1中の仮想線は、ダイナミックダンパ10が装着される振動体としての建築物の床材12を示す。また、以下の説明において、上下方向とは、特に説明がない限り、床材12の裏面への装着状態で略鉛直上下方向となる図1中の上下方向を言う。   FIG. 1 shows an architectural dynamic damper 10 as an embodiment of a vibration damping device structured according to the present invention. In addition, the virtual line in FIG. 1 shows the flooring 12 of the building as a vibrating body to which the dynamic damper 10 is mounted. Further, in the following description, the vertical direction means the vertical direction in FIG. 1 that is substantially vertical in the vertical direction when mounted on the back surface of the flooring 12 unless otherwise specified.

本実施形態のダイナミックダンパ10は、図1〜4に示されているように、ばね部材としての板ばね14と、板ばね14に取り付けられるマス部材16および減衰体としての当接ゴム18とを、備えている。   1-4, the dynamic damper 10 of this embodiment includes a leaf spring 14 as a spring member, a mass member 16 attached to the leaf spring 14, and a contact rubber 18 as a damping body. Have.

板ばね14は、略水平方向に広がって図1中の左右方向にのびる長手板状を呈している。板ばね14は、鉄や鋼、アルミニウム合金等の金属で形成されることが望ましいが、合成樹脂等で形成しても良い。本実施形態の板ばね14は、金属製であって、平板形状の素板に打抜き加工とプレス加工を施すことによって形成されている。   The leaf spring 14 has a longitudinal plate shape extending in the substantially horizontal direction and extending in the left-right direction in FIG. The leaf spring 14 is preferably formed of a metal such as iron, steel, or aluminum alloy, but may be formed of a synthetic resin or the like. The leaf spring 14 of the present embodiment is made of metal, and is formed by stamping and pressing a flat plate.

また、板ばね14は、長手方向に延びる凹溝20が下方に向って開口する溝形横断面形状とされている。即ち、板ばね14の幅方向中央部分には、底壁部として上底部22が設けられていると共に、上底部22の幅方向両端縁部から下方に向って立ち上がる両側壁部24,24が形成されている。   Further, the leaf spring 14 has a groove-shaped cross-sectional shape in which a groove 20 extending in the longitudinal direction opens downward. That is, at the center portion in the width direction of the leaf spring 14, an upper bottom portion 22 is provided as a bottom wall portion, and both side wall portions 24, 24 rising downward from both edge portions in the width direction of the upper bottom portion 22 are formed. Has been.

換言すれば、板ばね14には、上方に突出して長手方向に延びる補強リブが一対形成されており、板ばね14の幅方向(図3中の左右方向)両側に所定距離を隔てて対向配置されている。本実施形態では、これらの補強リブの上端縁部が相互に接続されて凹溝20が形成されている。即ち、一対の補強リブが両側壁部24,24により構成されていると共に、両側壁部24,24の上端縁部が上底部22により接続されて凹溝20が構成されている。   In other words, the leaf spring 14 is formed with a pair of reinforcing ribs that protrude upward and extend in the longitudinal direction, and is opposed to the both sides of the leaf spring 14 in the width direction (left and right direction in FIG. 3) with a predetermined distance therebetween. Has been. In the present embodiment, the upper end edges of these reinforcing ribs are connected to each other to form the concave groove 20. That is, the pair of reinforcing ribs are constituted by the both side wall portions 24, 24, and the upper end edge portions of the both side wall portions 24, 24 are connected by the upper bottom portion 22 to constitute the concave groove 20.

そして、これら両側壁部24,24は、上底部22から溝開口側に向って次第に拡幅するように両外側へ傾斜角α(図5参照)で傾斜している。また、両側壁部24,24における溝開口側の端縁部には、凹溝20の外側に向って略水平方向に広がるフランジ状部26,26が形成されている。   And these both side wall parts 24 and 24 incline with the inclination | tilt angle (alpha) (refer FIG. 5) to both outer sides so that it may spread gradually toward the groove opening side from the upper bottom part 22. FIG. Further, flange-like portions 26, 26 that extend in the substantially horizontal direction toward the outside of the groove 20 are formed at the edge portions on the groove opening side of the both side wall portions 24, 24.

なお、両側壁部24,24における溝開口側の端縁部は、全長に亘って同一平面上に延びている。それにより、両側壁部24,24の端縁部から広がるフランジ状部26,26は、その全体が同一平面上に広がっている。また、板ばね14の凹溝20の開口面は、一つの水平面をもって広がっていると共に、フランジ状部26,26は、板ばね14の長手方向の全長に亘って略一定の幅寸法で凹溝20の幅方向に広がっている。   In addition, the edge part by the side of the groove opening in both the side wall parts 24 and 24 is extended on the same plane over the full length. As a result, the flange-like portions 26, 26 spreading from the end edges of the side wall portions 24, 24 are spread out on the same plane. Further, the opening surface of the concave groove 20 of the leaf spring 14 is widened with one horizontal plane, and the flange-like portions 26 and 26 are concave grooves with a substantially constant width dimension over the entire length in the longitudinal direction of the leaf spring 14. It spreads in the width direction of 20.

さらに、板ばね14の凹溝20は、板ばね14の長手方向で深さ寸法が変化せしめられており、図1中の左側の深さ寸法に比して、右側の深さ寸法が小さくされている。従って、補強リブを構成する凹溝20の両側壁部24,24も、図1中の左側の高さ寸法に比して右側の高さ寸法が小さくされている。   Further, the depth dimension of the concave groove 20 of the leaf spring 14 is changed in the longitudinal direction of the leaf spring 14, and the depth dimension on the right side is made smaller than the depth dimension on the left side in FIG. ing. Accordingly, the side wall portions 24 and 24 of the concave groove 20 constituting the reinforcing ribs also have a right-side height dimension smaller than the left-side height dimension in FIG.

特に本実施形態では、板ばね14の図1中の左側端部から所定長さに亘る領域が、図5に示されるような、最大の溝深さ寸法h0を有して一定横断面形状でのびる深溝形状の基部28とされている。一方、板ばね14の図1中の右側端部から所定長さに亘る領域が、図6に示されるような、最小の溝深さ寸法h1を有して一定横断面形状でのびる浅溝形状のマス取付部30とされている。なお、かかるh0およびh1は以下の数式を満たすことが好ましい。
0.2≦h1/h0<1・・・(式3)
In particular, in this embodiment, the region extending from the left end in FIG. 1 of the leaf spring 14 to a predetermined length has a maximum groove depth dimension h0 as shown in FIG. The base 28 has a deep groove shape that extends. On the other hand, the region extending from the right end of the leaf spring 14 to the predetermined length in FIG. 1 has a minimum groove depth dimension h1 as shown in FIG. The mass mounting portion 30 is formed. Such h0 and h1 preferably satisfy the following mathematical formula.
0.2 ≦ h1 / h0 <1 (Formula 3)

さらに、板ばね14の長手方向において基部28とマス取付部30との間に挟まれて位置する中間部分は、基部28の溝深さ寸法h0からマス取付部30の溝深さ寸法h1にまで変化する深さ変化部を有する連結部32とされている。なお、本実施形態の連結部32は、その全長が深さ変化部とされており、長手方向の一方の端部から他方の端部に向って連続的して漸次に深さ寸法が変化せしめられている。即ち、板ばね14の基部28とマス取付部30においては、何れも、側壁部24,24の高さ寸法が板ばね14の長手方向の全長に亘って略一定とされていると共に、基部28とマス取付部30の中間に位置する連結部32では、高さ寸法が板ばね14の長手方向で変化するようにされている。   Further, the intermediate portion located between the base portion 28 and the mass attachment portion 30 in the longitudinal direction of the leaf spring 14 extends from the groove depth dimension h0 of the base portion 28 to the groove depth dimension h1 of the mass attachment portion 30. The connecting portion 32 has a changing depth changing portion. Note that the entire length of the connecting portion 32 of the present embodiment is a depth changing portion, and the depth dimension is changed gradually and gradually from one end portion in the longitudinal direction to the other end portion. It has been. That is, in the base portion 28 and the mass attachment portion 30 of the leaf spring 14, the height of the side wall portions 24, 24 is substantially constant over the entire length of the leaf spring 14 in the longitudinal direction. In the connecting portion 32 located in the middle of the mass attaching portion 30, the height dimension changes in the longitudinal direction of the leaf spring 14.

これにより、板ばね14の基部28の上底部22aが、最も鉛直方向上方に位置して略水平に広がる床材12への取付面とされている。また、板ばね14の連結部32の上底部22bが、傾斜して広がる傾斜面とされている。更にまた、板ばね14のマス取付部30の上底部22cが、基部28の上底部22aよりも鉛直方向下方に所定距離だけ下がった位置で略水平に広がる装着面とされている。   Thereby, the upper bottom part 22a of the base part 28 of the leaf | plate spring 14 is made into the attachment surface to the flooring 12 which is located in the uppermost perpendicular direction and spreads substantially horizontally. Further, the upper bottom portion 22b of the connecting portion 32 of the leaf spring 14 is an inclined surface that is inclined and widened. Furthermore, the upper bottom portion 22c of the mass attachment portion 30 of the leaf spring 14 is a mounting surface that extends substantially horizontally at a position that is lower than the upper bottom portion 22a of the base portion 28 by a predetermined distance in the vertical direction.

ここにおいて、基部28に対する連結部32の傾斜角θ(図1参照)は、0°<θ≦90°に設定されることが好ましい。換言すれば、連結部32における補強リブ24の端縁部が0°<θ≦90°の角度をもって板ばね14の長手方向に傾斜していることが好ましい。なお、θが90°とされる場合は、連結部32において鉛直方向の段差が設けられており、板ばね14の基部28とマス取付部30は段差を有する連結部32で連結される。   Here, the inclination angle θ (see FIG. 1) of the connecting portion 32 with respect to the base portion 28 is preferably set to 0 ° <θ ≦ 90 °. In other words, it is preferable that the edge portion of the reinforcing rib 24 in the connecting portion 32 is inclined in the longitudinal direction of the leaf spring 14 with an angle of 0 ° <θ ≦ 90 °. When θ is 90 °, a step in the vertical direction is provided in the connecting portion 32, and the base portion 28 of the leaf spring 14 and the mass attaching portion 30 are connected by the connecting portion 32 having a step.

そして、板ばね14の基部28において、取付面22aが、建築物の床材12の下面に重ね合わされて、複数のボルト孔34に挿通される固定ボルトにより板ばね14が床材12に対して固定されるようになっている。このような装着状態下では、板ばね14のマス取付部30の装着面22cが、床材12から所定距離だけ離隔して対向位置せしめられるようになっている。   And in the base 28 of the leaf | plate spring 14, the attachment surface 22a is overlaid on the lower surface of the flooring 12 of a building, and the leaf | plate spring 14 with respect to the flooring 12 with the fixing volt | bolt penetrated by the several bolt hole 34 is carried out. It is supposed to be fixed. Under such a mounting state, the mounting surface 22c of the mass mounting portion 30 of the leaf spring 14 is separated from the floor material 12 by a predetermined distance so as to be opposed to each other.

また、板ばね14のマス取付部30には、装着面22cに対して当接ゴム18が重ね合わされて、装着面22cから上方に向って突出する状態で固着されている。当接ゴム18は略円錐台形状とされており、大径側の基端面には略段付円柱形状とされた係止突起36が突設されている。そして、かかる当接ゴム18が大径側の基端面において装着面22cに重ね合わされると共に、係止突起36の大径頭部が、マス取付部30の上底部22cに設けられた係止孔38に挿通係止されることにより、板ばね14に対して当接ゴム18が固着されている。   Further, the contact rubber 18 is superimposed on the mounting surface 22c and fixed to the mass mounting portion 30 of the leaf spring 14 so as to protrude upward from the mounting surface 22c. The abutting rubber 18 has a substantially truncated cone shape, and a locking projection 36 having a substantially stepped columnar shape projects from the base end surface on the large diameter side. The contact rubber 18 is superimposed on the mounting surface 22c at the base end surface on the large diameter side, and the large-diameter head portion of the locking protrusion 36 is a locking hole provided in the upper bottom portion 22c of the mass mounting portion 30. The contact rubber 18 is fixed to the leaf spring 14 by being inserted and locked to the plate 38.

そして、当接ゴム18の高さ寸法が、板ばね14における基部28の上底部22aとマス取付部30の上底部22cとの高さ寸法差よりも大きくされることで、ダイナミックダンパ10の装着状態下で当接ゴム18の先端面が所定の押圧力をもって床材12の下面に押し付けられるようになっている。   The height of the contact rubber 18 is set to be larger than the height difference between the upper bottom 22a of the base 28 and the upper bottom 22c of the mass attaching portion 30 in the leaf spring 14, so that the dynamic damper 10 is mounted. Under the state, the front end surface of the contact rubber 18 is pressed against the lower surface of the flooring 12 with a predetermined pressing force.

また一方、板ばね14のマス取付部30には、凹溝20の開口側からマス部材16が重ね合わされて、フランジ状部26,26に対して当接状態で固定されている。マス部材16は鉄等の比重の大きな金属により好適に形成され得て、本実施形態では円柱形状とされている。そして、マス取付部30のフランジ状部26,26にはボルト孔40,40が形成されており、これらのボルト孔40,40にボルトが挿通されることにより、マス取付部30に対してマス部材16が固定されている。   On the other hand, the mass member 16 is superimposed on the mass attaching portion 30 of the leaf spring 14 from the opening side of the groove 20 and fixed in contact with the flange-like portions 26 and 26. The mass member 16 can be suitably formed of a metal having a large specific gravity such as iron, and has a cylindrical shape in this embodiment. Bolt holes 40, 40 are formed in the flange-like portions 26, 26 of the mass attachment portion 30, and the bolts 40 are inserted into these bolt holes 40, 40, so that the mass attachment portion 30 can be connected to the mass attachment portion 30. The member 16 is fixed.

かくの如き構造とされたダイナミックダンパ10は、装着状態下において床材12の上面に加えられる歩行等に際しての衝撃振動が基部28に作用せしめられると、実質的に片持構造をもって支持されていることから、マス取付部30が上下に振動することとなる。即ち、マス部材16が板ばね14を介して床材12に弾性支持されており、板ばね14の弾性変形によってマス部材16が床材12に対して上下に相対変位可能とされている。そして、板ばね14と当接ゴム18をばね成分とすると共に、マス部材16の質量をマス成分とするマス−バネ共振系がダイナミックダンパ10によって構成されて、床材12に付加されている。   The dynamic damper 10 having such a structure is substantially supported by a cantilever structure when shock vibration during walking or the like applied to the upper surface of the flooring 12 is applied to the base portion 28 in the mounted state. Therefore, the mass attaching part 30 vibrates up and down. That is, the mass member 16 is elastically supported by the floor material 12 via the leaf spring 14, and the mass member 16 can be relatively displaced up and down with respect to the floor material 12 by elastic deformation of the leaf spring 14. A mass-spring resonance system in which the leaf spring 14 and the contact rubber 18 are used as spring components and the mass of the mass member 16 is used as a mass component is configured by the dynamic damper 10 and added to the flooring 12.

また、当接ゴム18が板ばね14と床材12の間に配設されて、床材12の裏面に当接されており、本実施形態では板ばね14と床材12の間で軸方向に圧縮されている。なお、当接ゴム18は、軸方向に圧縮されることなく床材12の裏面に接触(0タッチ)していても良いし、床材12の裏面に対して下方に離隔していても良い。   In addition, the contact rubber 18 is disposed between the leaf spring 14 and the flooring 12 and is in contact with the back surface of the flooring 12. In this embodiment, the axial direction is between the leaf spring 14 and the flooring 12. Is compressed. The contact rubber 18 may be in contact with the back surface of the flooring 12 without being compressed in the axial direction (0 touch), or may be spaced downward with respect to the back surface of the flooring 12. .

そして、上階で人が飛び跳ねる等して、床材12に上下方向の振動が入力されると、床材12の振動エネルギーがダイナミックダンパ10の振動エネルギーに変換されて吸収される。これにより、床材12の振動が低減されて、階下への振動エネルギーの伝搬が低減されることから、階下に伝搬される音が低減されるようになっている。なお、図中には示されていないが、一般的に、床材12に対して複数のダイナミックダンパ10が分散して取り付けられる。好適には、それら複数のダイナミックダンパ10におけるマス部材16の質量の総和が、床材12の質量に対して、5%〜20%程度とされることで、制振効果を有効に得ることができる。   When a vibration in the vertical direction is input to the flooring 12 due to, for example, a person jumping on the upper floor, the vibrational energy of the flooring 12 is converted into vibrational energy of the dynamic damper 10 and absorbed. Thereby, the vibration of the flooring 12 is reduced and the propagation of vibration energy to the downstairs is reduced, so that the sound propagated downstairs is reduced. Although not shown in the drawing, generally, a plurality of dynamic dampers 10 are attached to the flooring 12 in a distributed manner. Preferably, when the sum total of the mass of the mass members 16 in the plurality of dynamic dampers 10 is about 5% to 20% with respect to the mass of the flooring 12, the vibration damping effect can be effectively obtained. it can.

ここにおいて、本実施形態の制振装置10では、各部位の寸法が下式で表される要件を満足するように設定されており、それによって、捩り方向の振動モードを小さく抑えて、上下方向となる片持梁構造の曲げ振動モードによる床材における上下振動に対する制振効果を効率的に発揮し得るようにされている。   Here, in the vibration damping device 10 of the present embodiment, the dimensions of each part are set so as to satisfy the requirements expressed by the following formulas, thereby suppressing the vibration mode in the torsional direction to be small in the vertical direction. Thus, it is possible to efficiently exhibit the damping effect on the vertical vibration in the floor material by the bending vibration mode of the cantilever structure.

2≦W/(X+H/2)≦6・・・(式1)
0.8≦H/X≦2.5 ・・・(式2)
ただし、Wはマス部材16の幅寸法(図2参照)であり、Xはマス部材16の取付面から当接ゴム18の床材12への当接面、要するに当接ゴム18の上面までの高さ寸法であり、Hはマス部材16の高さ寸法である(図1参照)。
2 ≦ W / (X + H / 2) ≦ 6 (Formula 1)
0.8 ≦ H / X ≦ 2.5 (Formula 2)
However, W is the width dimension of the mass member 16 (see FIG. 2), and X is the distance from the mounting surface of the mass member 16 to the contact surface of the contact rubber 18 to the flooring 12, that is, the upper surface of the contact rubber 18. It is a height dimension, H is a height dimension of the mass member 16 (refer FIG. 1).

すなわち、ダイナミックダンパ10におけるマス取付部30においては、マス部材16の重量に比して、当接ゴム18とマス取付部30の重量が十分に小さくされていることから、ダイナミックダンパ10におけるマス取付部30の高さ方向における重心位置は、当接ゴム18の床材12への当接面から(X+H/2)だけ下方に位置している。ここにおいて、上記(式1)のように、W/(X+H/2)の値が2以上、且つ6以下の範囲に設定されることにより、板ばね14が安定して上下方向に振動せしめられて、ダイナミックダンパ10の制振作用が効果的に発揮され得る。蓋し、マス部材16および当接ゴム18を含むマス取付部30は、全体として扁平形状とされているが、W/(X+H/2)が6より大きくなると、形状が扁平になり過ぎて、板ばね14が振動する際に上下方向以外の捩り振動が生じやすくなるおそれがあるからである。また一方、W/(X+H/2)が2より小さくなると、ダイナミックダンパ10におけるマス取付部30の高さ方向における重心位置に対して、マス取付部16の幅寸法Wが十分に確保できないことから、板ばね14が振動する際に上下方向以外の捩り振動が生じやすくなるおそれがあるからである。   That is, in the mass mounting portion 30 in the dynamic damper 10, the weight of the contact rubber 18 and the mass mounting portion 30 is sufficiently small compared to the weight of the mass member 16. The position of the center of gravity of the portion 30 in the height direction is positioned below (X + H / 2) from the contact surface of the contact rubber 18 with the flooring 12. Here, as shown in the above (Equation 1), when the value of W / (X + H / 2) is set in the range of 2 or more and 6 or less, the leaf spring 14 is stably vibrated in the vertical direction. Thus, the vibration damping action of the dynamic damper 10 can be effectively exhibited. The mass mounting portion 30 that covers and includes the mass member 16 and the contact rubber 18 has a flat shape as a whole, but when W / (X + H / 2) is larger than 6, the shape becomes too flat, This is because when the leaf spring 14 vibrates, torsional vibrations other than the vertical direction are likely to occur. On the other hand, if W / (X + H / 2) is smaller than 2, the width dimension W of the mass mounting portion 16 cannot be sufficiently secured with respect to the position of the center of gravity in the height direction of the mass mounting portion 30 in the dynamic damper 10. This is because when the leaf spring 14 vibrates, it is likely that torsional vibration other than the vertical direction is likely to occur.

また、上記(式2)のように、(H/X)の値が0.8以上、且つ2.5以下に設定されることにより、板ばね14が安定して上下方向に振動せしめられて、ダイナミックダンパ10の制振作用が効果的に発揮され得る。蓋し、(H/X)の値が0.8より小さいと、マス部材16における十分な質量の確保が困難となり、板ばね14が振動する際に上下方向以外の捩り振動が生じやすくなるおそれがあるからである。また一方、(H/X)の値が2.5より大きいと、マス部材30の質量が大きくなり過ぎることにより上下方向以外の捩り振動が生じやすくなって、板ばね14の安定した上下振動に影響を及ぼすおそれがあるからである。   Further, as in (Expression 2) above, the value of (H / X) is set to 0.8 or more and 2.5 or less, so that the leaf spring 14 is stably vibrated in the vertical direction. The vibration damping action of the dynamic damper 10 can be effectively exhibited. When the lid is closed and the value of (H / X) is smaller than 0.8, it is difficult to secure a sufficient mass in the mass member 16, and it is likely that torsional vibrations other than the vertical direction are likely to occur when the leaf spring 14 vibrates. Because there is. On the other hand, if the value of (H / X) is larger than 2.5, the mass of the mass member 30 becomes too large, and torsional vibrations other than the vertical direction are likely to occur, and stable vertical vibrations of the leaf spring 14 are caused. It is because there is a possibility of affecting.

このように上記(式1)および(式2)を満たすように数値を設定することにより、捩れモードでの振動が抑えられることから、本来目的とする鉛直上下方向の曲げモードでの振動状態の安定化が図られ得る。それ故、図7に示されているように、捩れモードの固有振動域でのゲインを低減させて、鉛直モード(曲げモード)でのゲインの増大を図ることが可能になり、本来の鉛直方向の床振動に対して、制振装置の捩れモードの共振等による阻害を抑えつつ、床材の振動に対して一層優れた制振効果を得ることが可能となるのである。なお、図7では、参考例として、上記(式1)の要件を満足しない制振装置の測定データを併せ示す。   Since the vibration in the torsion mode is suppressed by setting the numerical values so as to satisfy the above (Equation 1) and (Equation 2), the vibration state in the originally intended vertical vertical bending mode is suppressed. Stabilization can be achieved. Therefore, as shown in FIG. 7, it is possible to increase the gain in the vertical mode (bending mode) by reducing the gain in the natural vibration region of the torsion mode, and the original vertical direction. Therefore, it is possible to obtain a more excellent vibration damping effect against the vibration of the flooring material while suppressing the hindrance of the floor vibration due to the torsional mode resonance of the vibration damping device. In addition, in FIG. 7, the measurement data of the damping device which does not satisfy the requirements of said (Formula 1) are also shown as a reference example.

また、上述の要件を満たすことによって捩り振動が有効に抑えられることは、図7に示す実測結果からも明らかである。なお、この実測では、本実施形態に示された構造のダイナミックダンパ10を用いており、マス部材16の質量は何れも3.5kgとした。また、板ばね14の他、マス部材16や当接ゴム18の材質は同じものを用いて、それらマス部材16、当接ゴム18、板ばね14の形状だけを変更した。なお、比較例として、要件を満たさない制振装置についても同様な測定を行った結果を、以下の[表1]に併せ示す。   Further, it is clear from the actual measurement result shown in FIG. 7 that the torsional vibration is effectively suppressed by satisfying the above-described requirements. In this actual measurement, the dynamic damper 10 having the structure shown in this embodiment is used, and the mass of the mass member 16 is 3.5 kg. Moreover, the material of the mass member 16 and the contact rubber 18 other than the plate spring 14 is the same, and only the shapes of the mass member 16, the contact rubber 18 and the plate spring 14 are changed. In addition, as a comparative example, the following results are also shown in [Table 1], in which the same measurement is performed for a damping device that does not satisfy the requirements.

なお、[表1]中においては、(式1),(式2),および(式3)の数値範囲を満たすものが太字で示されていると共に、捩れモードの加速度ゲインと鉛直モードの加速度ゲインとの比によって、制振効果を◎,○,△,×で評価した。即ち、鉛直モードの加速度ゲインが捩れモードの加速度ゲインの3倍より大きいものを非常に効果があるものとして◎で、2倍より大きく3倍以下のものを効果があるものとして○で、1倍より大きく2倍以下のものを僅かに効果があるものとして△で、1倍以下のものを効果がないものとして×で評価した。   In [Table 1], those satisfying the numerical ranges of (Equation 1), (Equation 2), and (Equation 3) are shown in bold, and the acceleration gain in the torsion mode and the acceleration in the vertical mode are shown. The damping effect was evaluated by ◎, ○, △, × by the ratio with the gain. That is, the vertical mode acceleration gain is greater than 3 times the torsion mode acceleration gain, which is very effective, and the greater than 2 times and less than 3 times are effective, and 1 A larger value of 2 times or less was evaluated as Δ with a slight effect, and a value of 1 time or less was evaluated as x with no effect.

上記[表1]に示されるように、(式1)および(式2)の数値範囲を両方満たす実施例1〜4のダイナミックダンパでは、捩れモードの加速度ゲインが小さく抑えられると共に、鉛直モードの加速度ゲインが比較的大きな数値とされることから、板ばね14の捩り振動が抑えられ、効果的に上下方向に振動して、安定した制振効果が得られるものと推測される。一方、(式1)および(式2)の少なくとも一方の数値範囲を満たさない比較例1〜6のダイナミックダンパでは、捩れモードの加速度ゲインが比較的大きな値とされるとともに、鉛直モードの加速度ゲインが小さな数値とされることから、捩り振動が生じやすく、効果的な制振作用が得られないものと推測される。   As shown in [Table 1] above, in the dynamic dampers of Examples 1 to 4 that satisfy both the numerical ranges of (Expression 1) and (Expression 2), the acceleration gain in the torsion mode is suppressed to be small, and the vertical mode Since the acceleration gain is a relatively large numerical value, it is presumed that the torsional vibration of the leaf spring 14 is suppressed and the vibration is effectively vibrated in the vertical direction, and a stable vibration damping effect is obtained. On the other hand, in the dynamic dampers of Comparative Examples 1 to 6 that do not satisfy at least one of the numerical ranges of (Expression 1) and (Expression 2), the acceleration gain in the torsion mode is set to a relatively large value, and the acceleration gain in the vertical mode is set. Therefore, it is presumed that torsional vibration is likely to occur and an effective vibration control action cannot be obtained.

また、本実施形態のダイナミックダンパ10では、床材12に取り付けられる基部28の剛性を大きくすると共に、実質的に振動により弾性変形するマス取付部30の剛性を小さくすることが好適である。ここにおいて、本実施形態の板ばね14は同一の材質で一体形成されていることから、かかる剛性の差をそれぞれの溝深さ寸法で実現している。そして、基部28における溝深さ寸法h0とマス取付部30における溝深さ寸法h1は、前記(式3)を満たしていることが好ましい。蓋し、h1/h0が0.2より小さいと、基部28に比してマス取付部30が薄くなり過ぎることから、板ばね14がばねとしての機能を発揮し得ず、ダイナミックダンパ10の制振効果を得られないからである。   In the dynamic damper 10 of the present embodiment, it is preferable to increase the rigidity of the base portion 28 attached to the flooring 12 and reduce the rigidity of the mass attachment portion 30 that is elastically deformed substantially by vibration. Here, since the leaf spring 14 of the present embodiment is integrally formed of the same material, such a difference in rigidity is realized by the respective groove depth dimensions. And it is preferable that the groove depth dimension h0 in the base part 28 and the groove depth dimension h1 in the mass attachment part 30 satisfy | fill said (Formula 3). If h1 / h0 is smaller than 0.2, the mass mounting portion 30 becomes too thin as compared with the base portion 28, so that the leaf spring 14 cannot function as a spring, and the dynamic damper 10 is controlled. This is because the vibration effect cannot be obtained.

以上、本発明の実施形態について詳述してきたが、本発明はその具体的な記載によって限定されない。例えば、前記実施形態では、連結部32は長さ方向全長に亘って連続的に深さ寸法が変化していたが、前述のようにθ=90°として、板ばねの長さ方向の中間部分に段差を設けることも可能である。また、板ばねの長さ方向において、これら連続的に深さ寸法が変化する部分と段差部分とが複数設けられていてもよい。   As mentioned above, although embodiment of this invention was explained in full detail, this invention is not limited by the specific description. For example, in the above-described embodiment, the connecting portion 32 has a depth dimension that continuously changes over the entire length in the length direction. However, as described above, θ = 90 ° and an intermediate portion in the length direction of the leaf spring. It is also possible to provide a step on the surface. Further, in the longitudinal direction of the leaf spring, a plurality of these portions where the depth dimension continuously changes and step portions may be provided.

また、前記実施形態では、板ばね14が溝型断面形状とされて補強リブとしての側壁部24,24が一体形成されていたが、板ばねとして平板形状を採用すると共に、別体で形成した縦板状の補強リブを溶着等で設けてもよい。   Moreover, in the said embodiment, although the leaf | plate spring 14 was made into the groove type cross-sectional shape and the side wall parts 24 and 24 as a reinforcement rib were integrally formed, while using flat plate shape as a leaf | plate spring, it formed separately. Vertical plate-shaped reinforcing ribs may be provided by welding or the like.

更にまた、前記実施形態の如き板ばね14の幅方向両側に離隔した補強リブ24,24に替えて、或いは加えて板ばねの幅方向中間部分を長手方向に延びる補強リブを採用しても良い。   Furthermore, instead of or in addition to the reinforcing ribs 24 and 24 spaced apart on both sides in the width direction of the leaf spring 14 as in the above-described embodiment, a reinforcing rib extending in the longitudinal direction at the intermediate portion in the width direction of the leaf spring may be adopted. .

さらに、マス部材や減衰体の具体的形状も限定されない。例えばマス部材として例示の円形ブロック形状の他、楕円形のブロック形状や矩形のブロック形状などの任意の形状が採用可能である。なお、マス部材において、重心位置は基部よりもマス取付側に位置していることが好適であり、これにより板ばねのばね機能が安定して発揮されて、ダイナミックダンパによる制振作用も効果的に得ることができる。   Furthermore, the specific shapes of the mass member and the attenuation body are not limited. For example, in addition to the circular block shape illustrated as the mass member, an arbitrary shape such as an elliptical block shape or a rectangular block shape can be adopted. In the mass member, the position of the center of gravity is preferably located on the mass mounting side of the base, so that the spring function of the leaf spring is stably exhibited, and the damping action by the dynamic damper is also effective. Can get to.

また、減衰体とマス部材の取付位置は、必ずしも同じにする必要はなく、ばね部材の長手方向で相互に異なる位置に減衰体とマス部材を装着することも可能である。更にまた、要求される特性に応じて、複数の減衰体や複数のマス部材も適宜に装着することができる。なお、マス部材を複数装着する場合には、マス部材の幅寸法Wとして、複数のマス部材の幅方向における両側の最外端間の距離を採用する一方、マス部材の高さ寸法Hとして、複数のマス部材の高さ方向における平均値を採用する。また、マス部材の重心位置は、幅方向において、ばね部材の弾性主軸を含む鉛直面上に位置するようにされる。   Further, the mounting positions of the damping body and the mass member are not necessarily the same, and the damping body and the mass member can be mounted at different positions in the longitudinal direction of the spring member. Furthermore, a plurality of attenuation bodies and a plurality of mass members can be appropriately mounted according to required characteristics. When mounting a plurality of mass members, the distance between the outermost ends on both sides in the width direction of the mass members is adopted as the width dimension W of the mass members, while the height dimension H of the mass members is An average value in the height direction of the plurality of mass members is employed. The center of gravity of the mass member is positioned on the vertical plane including the elastic main axis of the spring member in the width direction.

更にまた、建築物への装着状態も例示のものに限定されない。例えば、床材が傾斜している場合には、傾斜した床面に沿ってばね部材が延びるように傾斜して配設することも可能であるし、また、建築物の壁材の振動低減を目的とする場合には、ばね部材が鉛直に広がる壁材に沿って延びる状態で鉛直方向や垂直方向に配設され得る。尤も、本発明に係る制振装置は、前記実施形態の如き建築物に装着されるダイナミックダンパに限定されず、振動を抑制するための各種制振装置として採用され得る。   Furthermore, the mounting state on the building is not limited to the example. For example, when the flooring is inclined, it is possible to arrange the spring member so as to extend along the inclined floor surface, and to reduce the vibration of the wall material of the building. In the case of the purpose, the spring member can be arranged in the vertical direction or the vertical direction in a state of extending along the wall material extending vertically. However, the vibration damping device according to the present invention is not limited to the dynamic damper attached to the building as in the above-described embodiment, and can be employed as various types of vibration damping devices for suppressing vibration.

さらに、板ばねの表面にゴム弾性体を被着形成して、減衰性能を付加的に調節することも可能である。また、減衰体の内部に粘性流体を封入して流動抵抗による減衰効果を利用することも可能である。   Further, it is possible to additionally adjust the damping performance by forming a rubber elastic body on the surface of the leaf spring. It is also possible to use a damping effect due to flow resistance by sealing a viscous fluid inside the damping body.

更にまた、前記実施形態では、板ばね14は溝形断面形状とされて、長手方向において溝深さを異ならせることにより、板ばね14の長手方向における剛性を変化させていたが、板ばねの長手方向で幅寸法や板厚を異ならせることにより剛性を変化させてもよく、また、溝形断面形状である必要もない。   Furthermore, in the above embodiment, the leaf spring 14 has a groove-shaped cross-sectional shape, and the rigidity in the longitudinal direction of the leaf spring 14 is changed by changing the groove depth in the longitudinal direction. The rigidity may be changed by varying the width dimension and the plate thickness in the longitudinal direction, and it is not necessary to have a groove-shaped cross-sectional shape.

10:ダイナミックダンパ(制振装置)、12:床材(振動体)、14:板ばね(ばね部材)、16:マス部材、18:当接ゴム(減衰体)、20:凹溝、22:上底部(底壁部)、22a:上底部(取付面)、22b:上底部(傾斜面)、22c:上底部(装着面)、24:側壁部(補強リブ)、26:フランジ状部、28:基部、30:マス取付部、32:連結部 10: Dynamic damper (damping device), 12: Floor material (vibrating body), 14: Leaf spring (spring member), 16: Mass member, 18: Abutting rubber (damping body), 20: Concave groove, 22: Upper bottom portion (bottom wall portion), 22a: upper bottom portion (mounting surface), 22b: upper bottom portion (inclined surface), 22c: upper bottom portion (mounting surface), 24: side wall portion (reinforcing rib), 26: flange-shaped portion, 28: Base part, 30: Mass attachment part, 32: Connection part

Claims (9)

長手板状とされたばね部材の一方側が振動体に固定される基部とされている一方、該ばね部材の他方側がマス取付部とされており、該マス取付部に対してマス部材が固定されていると共に、該マス取付部から突出して該振動体に当接される減衰体が設けられている制振装置において、
下式に示される条件を何れも備えていることを特徴とする制振装置。
2≦W/(X+H/2)≦6
0.8≦H/X≦2.5
W=マス部材の幅寸法
X=マス部材の取付面から減衰体の振動体への当接面までの高さ寸法
H=マス部材の高さ寸法
One side of the spring member having a longitudinal plate shape is a base portion fixed to the vibrating body, while the other side of the spring member is a mass attachment portion, and the mass member is fixed to the mass attachment portion. And a damping device provided with a damping body that protrudes from the mass mounting portion and abuts against the vibrating body,
A vibration damping device characterized by having all of the conditions shown in the following equations.
2 ≦ W / (X + H / 2) ≦ 6
0.8 ≦ H / X ≦ 2.5
W = Width dimension of the mass member X = Height dimension from the mounting surface of the mass member to the contact surface of the damping body to the vibrating body H = Height dimension of the mass member
前記ばね部材において高さ方向に突出して長手方向に延びる補強リブが幅方向に離隔して複数形成されていると共に、該補強リブの高さ寸法が前記基部よりも前記マス取付部において小さくされている請求項1に記載の制振装置。   In the spring member, a plurality of reinforcing ribs protruding in the height direction and extending in the longitudinal direction are formed apart from each other in the width direction, and the height dimension of the reinforcing ribs is made smaller in the mass mounting portion than in the base portion. The vibration damping device according to claim 1. 前記補強リブにおいて、前記基部側の最大の高さ寸法h0と前記マス取付部側の最小の高さ寸法h1とが下式に示される条件を備えている請求項2に記載の制振装置。
0.2≦h1/h0<1
3. The vibration damping device according to claim 2, wherein in the reinforcing rib, a maximum height dimension h <b> 0 on the base side and a minimum height dimension h <b> 1 on the mass attachment part side are provided with a condition expressed by the following expression.
0.2 ≦ h1 / h0 <1
前記ばね部材が長手方向に延びる凹溝を有する溝形断面形状とされており、該凹溝の両側壁部によって前記補強リブが構成されている請求項2又は3に記載の制振装置。   4. The vibration damping device according to claim 2, wherein the spring member has a groove-shaped cross-sectional shape having a recessed groove extending in a longitudinal direction, and the reinforcing rib is formed by both side wall portions of the recessed groove. 前記凹溝の両側壁部が、該凹溝の開口側に向って次第に拡幅するように両外側へ傾斜していると共に、該両側壁部の開口側の端縁部から両側外方に向って広がるフランジ状部が形成されており、該フランジ状部に対して前記マス部材が載置されている請求項4に記載の制振装置。   Both side wall portions of the concave groove are inclined to both outer sides so as to gradually widen toward the opening side of the concave groove, and toward both sides outward from the edge of the opening side of the both side wall portions. The vibration damping device according to claim 4, wherein a flange-like portion that extends is formed, and the mass member is placed on the flange-like portion. 前記ばね部材における前記基部と前記マス取付部との間に連結部が設けられており、該基部と該マス取付部とにおいて前記補強リブが略一定の高さ寸法で長手方向に延びていると共に、該連結部において該補強リブの高さ寸法が長手方向に変化している請求項2〜5の何れか1項に記載の制振装置。   A connecting portion is provided between the base portion and the mass attaching portion of the spring member, and the reinforcing rib extends in the longitudinal direction at a substantially constant height dimension between the base portion and the mass attaching portion. The vibration damping device according to any one of claims 2 to 5, wherein a height dimension of the reinforcing rib is changed in a longitudinal direction in the connecting portion. 前記連結部における前記補強リブの高さ方向の端縁部が、下式を満たす傾斜角度θで長手方向に傾斜している請求項6に記載の制振装置。
0°<θ≦90°
The vibration damping device according to claim 6, wherein an end edge portion in the height direction of the reinforcing rib in the connecting portion is inclined in the longitudinal direction at an inclination angle θ satisfying the following expression.
0 ° <θ ≦ 90 °
前記マス部材の重心位置が、前記基部よりも前記マス取付部側に設定されている請求項1〜7の何れか1項に記載の制振装置。   The vibration damping device according to claim 1, wherein a position of the center of gravity of the mass member is set closer to the mass attachment portion than the base portion. 前記ばね部材が長手方向に延びる凹溝を有する溝形断面形状とされており、該ばね部材の長手方向の中間部分において該凹溝の底壁部に傾斜が付されて該凹溝の深さ寸法が次第に変化せしめられている一方、該凹溝の開口端縁部が全体に亘って同一平面上に延びている請求項1〜8の何れか1項に記載の制振装置。   The spring member has a groove-shaped cross-sectional shape having a groove extending in the longitudinal direction, and the bottom wall portion of the groove is inclined at an intermediate portion in the longitudinal direction of the spring member so that the depth of the groove is 9. The vibration damping device according to claim 1, wherein the dimension of the groove is gradually changed, and the opening edge of the groove extends over the same plane throughout.
JP2014007686A 2014-01-20 2014-01-20 Vibration control device Active JP6257346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014007686A JP6257346B2 (en) 2014-01-20 2014-01-20 Vibration control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014007686A JP6257346B2 (en) 2014-01-20 2014-01-20 Vibration control device

Publications (2)

Publication Number Publication Date
JP2015137656A true JP2015137656A (en) 2015-07-30
JP6257346B2 JP6257346B2 (en) 2018-01-10

Family

ID=53768810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014007686A Active JP6257346B2 (en) 2014-01-20 2014-01-20 Vibration control device

Country Status (1)

Country Link
JP (1) JP6257346B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090976A (en) * 2016-11-30 2018-06-14 株式会社フコク Vibration damping device for floor and vibration isolation floor structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2805639B2 (en) 2008-11-21 2021-08-18 Boa Technology, Inc. Reel based lacing system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61142672U (en) * 1985-02-26 1986-09-03
JPH05172183A (en) * 1991-12-24 1993-07-09 Ando Kensetsu Kk Vibration resistant device for structure
JP2010230031A (en) * 2009-03-26 2010-10-14 Tokai Rubber Ind Ltd Leaf spring suspension type damping device
JP2013170698A (en) * 2012-02-23 2013-09-02 Asahi Kasei Homes Co Vibration damping device and building

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61142672U (en) * 1985-02-26 1986-09-03
JPH05172183A (en) * 1991-12-24 1993-07-09 Ando Kensetsu Kk Vibration resistant device for structure
JP2010230031A (en) * 2009-03-26 2010-10-14 Tokai Rubber Ind Ltd Leaf spring suspension type damping device
JP2013170698A (en) * 2012-02-23 2013-09-02 Asahi Kasei Homes Co Vibration damping device and building

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090976A (en) * 2016-11-30 2018-06-14 株式会社フコク Vibration damping device for floor and vibration isolation floor structure

Also Published As

Publication number Publication date
JP6257346B2 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
US20110017561A1 (en) Vibration damping apparatus
JP5386209B2 (en) Leaf spring type damping device
JP6257346B2 (en) Vibration control device
US8151954B2 (en) Vibration damping apparatus
JP6257247B2 (en) Vibration control device
JP4971065B2 (en) Damping device for building structure
KR20130075453A (en) Conical steel damper using cantilever behavior
JP4806247B2 (en) Damping structure for buildings
JP6079457B2 (en) Building
JP5917291B2 (en) Mass damper type damping device
JP4497685B2 (en) Dynamic damper
JP2020090812A (en) Vibration control structure
JP2018132156A (en) Vibration control device with bracket
JP2018204627A (en) Damping device
JP5149773B2 (en) Dynamic damper
JP7424453B2 (en) floor structure
JP4881810B2 (en) Leaf spring type damping device
JP3245445U (en) Vibration damping structure
JP2018025083A (en) Dwelling damping material
JP2009263864A (en) Vibration control device for floor vibration and floor impact sound
JP2013237983A (en) Floor structure and leaf spring vibration control device
JP2008202608A (en) Vibration damping device
JP2006162071A (en) Hydraulic vibration-proof device comprising spacer
JP4971759B2 (en) Mass damper and beam damping structure using it
JP2017137919A (en) Flexure yielding type damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171205

R150 Certificate of patent or registration of utility model

Ref document number: 6257346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150