JP2015137398A - Boiler or water-cooling panel for converter og equipment and life extension method thereof - Google Patents

Boiler or water-cooling panel for converter og equipment and life extension method thereof Download PDF

Info

Publication number
JP2015137398A
JP2015137398A JP2014010039A JP2014010039A JP2015137398A JP 2015137398 A JP2015137398 A JP 2015137398A JP 2014010039 A JP2014010039 A JP 2014010039A JP 2014010039 A JP2014010039 A JP 2014010039A JP 2015137398 A JP2015137398 A JP 2015137398A
Authority
JP
Japan
Prior art keywords
converter
boiler
layer
build
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014010039A
Other languages
Japanese (ja)
Other versions
JP6015681B2 (en
Inventor
政紀 村井
Masaki Murai
政紀 村井
今村 元己
Motoki Imamura
元己 今村
神山 朋典
Tomonori Kamiyama
朋典 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014010039A priority Critical patent/JP6015681B2/en
Publication of JP2015137398A publication Critical patent/JP2015137398A/en
Application granted granted Critical
Publication of JP6015681B2 publication Critical patent/JP6015681B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PROBLEM TO BE SOLVED: To provide a boiler or water-cooling panel of converter OG equipment (non-combustion type exhaust gas treatment equipment) having durability in long period.SOLUTION: A boiler 1 or water-cooling panel of converter OG equipment, in which the boiler or water-cooling panel is formed by jointing mutually plural steel tubes 2 with a steel fin 3, and formed into a cylindrical shape. On a passage surface side of exhaust gas from a converter of the tubes and fin, a padding layer 5 formed of Inconel alloy whose thickness is 1.0 mm or more and 2.0 mm or less, is formed. The padding layer 5 has variation width of the thickness, preferably 0.5 mm or less in a range of 5 mm in an optional direction.

Description

本発明は、転炉での脱炭精錬時に転炉から発生する、一酸化炭素を主成分とする排ガスを燃焼させずに回収するOG設備(非燃焼式排ガス処理設備)のボイラもしくは水冷パネルに関し、また、ボイラもしくは水冷パネルを長寿命化する方法に関する。   The present invention relates to a boiler or a water-cooled panel of an OG facility (non-combustion exhaust gas treatment facility) that recovers an exhaust gas mainly composed of carbon monoxide generated from a converter during decarburization and refining in the converter without burning. The present invention also relates to a method for extending the life of a boiler or a water-cooled panel.

溶銑の脱炭精錬に用いられる転炉には、脱炭精錬時に転炉から排出される一酸化炭素を主成分とする排ガスを回収し、回収した排ガス中のダストを除去し、ダストを除去した後の排ガスを燃料ガスとして再利用するための設備として、OG設備が設置されている。このOG設備は、排ガスを回収するための煙道(ダクト)を有しており、この煙道の下端側には、転炉の炉口を向いて開口する円筒状のボイラもしくは水冷パネルが設置されている。ボイラもしくは水冷パネルの外周には、昇降可能な円筒状のスカートが設置され、スカートを昇降させることで、精錬中の転炉炉口とボイラもしくは水冷パネルとの間の間隙からの排ガスの流出を防止している。   In the converter used for hot metal decarburization and refining, exhaust gas mainly composed of carbon monoxide discharged from the converter during decarburization and refining is recovered, dust in the recovered exhaust gas is removed, and dust is removed. OG equipment is installed as equipment for reusing the exhaust gas later as fuel gas. This OG equipment has a flue (duct) for collecting exhaust gas, and a cylindrical boiler or water cooling panel that opens toward the furnace port of the converter is installed at the lower end of this flue. Has been. A cylindrical skirt that can be moved up and down is installed on the outer periphery of the boiler or water-cooled panel, and by moving the skirt up and down, exhaust gas can flow out of the gap between the converter furnace opening during refining and the boiler or water-cooled panel. It is preventing.

精錬中の転炉からの排ガスの温度は1600℃を超える温度にも達し、また、転炉炉口からの輻射熱の影響もあることから、OG設備のボイラもしくは水冷パネルは、一般的に、内部冷却型の複数の鋼製のチューブを放熱用の鋼製のフィンによって相互に接合し、全体として円筒状となるように形成された構造となっている。チューブの内部を循環する冷却水は高温となることから、この熱を回収する設備がボイラであり、単に冷却する設備が水冷パネルである。   Since the temperature of exhaust gas from the converter during refining reaches a temperature exceeding 1600 ° C and is also affected by radiant heat from the converter furnace port, the boiler or water-cooled panel of the OG equipment is generally internal. A plurality of cooling-type steel tubes are joined to each other by heat-dissipating steel fins to form a cylindrical shape as a whole. Since the cooling water circulating inside the tube becomes high temperature, the equipment for recovering this heat is the boiler, and the equipment for simply cooling is the water cooling panel.

転炉からの排ガスには、飛散した鉄粒やスラグ粒などからなるダストが含まれており、このダストがボイラもしくは水冷パネルを形成するチューブ及びフィンに衝突する。このダストの衝突によってチューブ及びフィンは次第に摩耗し、時間の経過に伴ってチューブ及びフィンの減肉が生じる。特に、内部水冷構造のチューブは、高温の排出ガスや転炉の輻射熱による繰り返しの熱衝撃を受けやすく、この熱衝撃に起因してチューブに亀裂や割れが生じるという場合もあり、チューブが破損して冷却水が漏れ出る危険性もある。   The exhaust gas from the converter contains dust composed of scattered iron particles, slag particles, etc., and this dust collides with the tubes and fins forming the boiler or water-cooled panel. The tube and fin are gradually worn by the collision of the dust, and the tube and the fin are thinned over time. In particular, the internal water-cooled tube is susceptible to repeated thermal shocks caused by high-temperature exhaust gas and radiant heat from the converter, and this thermal shock may cause cracks and cracks in the tube, resulting in damage to the tube. There is also a risk of leakage of cooling water.

これに対処するために、ボイラもしくは水冷パネルのメンテナンスを定期的に行い、補修作業者がチューブ及びフィンの傷みの状況を確認しながら、肉厚が減少した部分については肉盛り溶接したり新品と交換したりしていた。この補修作業は精錬の合間や転炉の修理期間内に実施しており、転炉設備の稼働率を低下させるのみならず、安定操業上に問題があった。   To cope with this, the boiler or water-cooled panel is regularly maintained, and the repair worker confirms the state of damage to the tubes and fins. It was exchanged. This repair work was carried out between refining and within the repair period of the converter, which not only reduced the operating rate of the converter equipment, but also had problems in stable operation.

そこで、OG設備のボイラもしくは水冷パネルの長寿命化を目的とする幾つかの提案がなされている。例えば、特許文献1には、チューブ及びフィンの表面に、C:0.03〜0.3質量%、Si:0.2〜1.2質量%、Mn:0.3〜2.6質量%、Ni:0.1〜6.0質量%、Cr:8.0〜15.0質量%、Mo:0.05〜4.0質量%、V:0.1〜3.0質量%を含有し、残部をFeとする高合金鋼を、その厚みが0.5〜1.5mmとなるように肉盛り溶接して、チューブ及びフィンを保護する技術が提案されている。   Therefore, some proposals have been made for the purpose of extending the life of boilers or water-cooled panels of OG equipment. For example, in Patent Document 1, C: 0.03 to 0.3% by mass, Si: 0.2 to 1.2% by mass, Mn: 0.3 to 2.6% by mass on the surfaces of tubes and fins. Ni: 0.1-6.0% by mass, Cr: 8.0-15.0% by mass, Mo: 0.05-4.0% by mass, V: 0.1-3.0% by mass In addition, a technique has been proposed in which high alloy steel with the balance being Fe is welded so that the thickness thereof is 0.5 to 1.5 mm to protect the tube and the fin.

また、特許文献2には、チューブ及びフィンの表面にインコネル系溶接金属を肉盛り溶接して補修するチューブの補修方法が提案されている。   Patent Document 2 proposes a method for repairing a tube in which the surface of the tube and fin is repaired by overlay welding an Inconel weld metal.

特許文献1及び特許文献2によれば、チューブの表面にチューブを構成する鋼よりも耐熱性、耐摩耗性及び耐食性に優れた金属を肉盛り溶接することで、チューブを長寿命化できるとしている。   According to Patent Literature 1 and Patent Literature 2, the tube can be extended in life by overlay welding a metal having superior heat resistance, wear resistance, and corrosion resistance than the steel constituting the tube on the surface of the tube. .

特開昭64−55320号公報JP-A 64-55320 特開2010−235982号公報JP 2010-235982 A

しかしながら、上記従来技術には以下の問題がある。   However, the above prior art has the following problems.

即ち、特許文献1は、肉盛り溶接用の金属として上記の高合金鋼を選定しているが、この高合金綱は、インコネル系合金(ニッケル基合金)に比較して、高温域での強度及び耐摩耗性に劣り、長期間にわたって無補修でチューブを使用することは極めて困難である。   That is, Patent Document 1 selects the above-mentioned high alloy steel as a metal for build-up welding, but this high alloy steel has a strength in a high temperature range as compared with an Inconel alloy (nickel base alloy). In addition, it is very difficult to use the tube without repairing over a long period of time due to its poor wear resistance.

一方、特許文献2は、肉盛り溶接用の金属としてインコネル系合金を選定しているが、肉盛り層の厚みはどの程度が最適であるのか、肉盛り層の厚みの変動幅はどの程度まで許容されるかなどについて、具体的に記載していない。本発明者らは、肉盛り層の厚みが適正でない場合や厚みの変動幅が大きい場合には、肉盛り溶接用の金属としてインコネル系合金を使用しても、肉盛り層に割れが発生し、チューブの長寿命化が達成できないことを確認している。   On the other hand, Patent Document 2 selects an Inconel-based alloy as a metal for build-up welding, but what is the optimum thickness of the build-up layer and what is the fluctuation range of the thickness of the build-up layer? It does not specifically describe whether it is acceptable. When the thickness of the build-up layer is not appropriate or when the fluctuation range of the thickness is large, the inventors will generate cracks in the build-up layer even if an Inconel alloy is used as the metal for build-up welding. It has been confirmed that the tube life cannot be extended.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、長期間の耐用を可能とする転炉OG設備のボイラもしくは水冷パネルを提供することであり、また、転炉OG設備のボイラもしくは水冷パネルの寿命を延長するための長寿命化方法を提供することである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a boiler or a water-cooled panel of a converter OG facility that can be used for a long period of time, and the converter OG facility. It is to provide a method for extending the service life of a boiler or water-cooled panel.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]複数の鋼製のチューブが鋼製のフィンによって相互に接合され、全体として円筒状となるように形成された転炉OG設備のボイラもしくは水冷パネルであって、前記チューブ及び前記フィンの転炉からの排ガスの通過面側に、厚みが1.0mm以上2.0mm以下であるインコネル系合金の肉盛り層が形成されていることを特徴とする、転炉OG設備のボイラもしくは水冷パネル。
[2]前記肉盛り層は、その厚みの変動幅が任意の方向の5mmの範囲内で0.5mm以下であることを特徴とする、上記[1]に記載の転炉OG設備のボイラもしくは水冷パネル。
[3]複数の鋼製のチューブが鋼製のフィンによって相互に接合され、全体として円筒状となるように形成された転炉OG設備のボイラもしくは水冷パネルの長寿命化方法であって、前記チューブ及び前記フィンの転炉からの排ガスの通過面側にインコネル系合金を肉盛りし、その後、肉盛り層の厚みが1.0mm以上2.0mm以下となるように、肉盛り層を表面研磨することを特徴とする、転炉OG設備のボイラもしくは水冷パネルの長寿命化方法。
[4]前記肉盛り層の厚みの変動幅が任意の方向の5mmの範囲内で0.5mm以下となるように表面研磨することを特徴とする、上記[3]に記載の転炉OG設備のボイラもしくは水冷パネルの長寿命化方法。
The gist of the present invention for solving the above problems is as follows.
[1] A boiler or a water-cooled panel of a converter OG facility in which a plurality of steel tubes are joined to each other by steel fins so as to have a cylindrical shape as a whole. A boiler or a water-cooled panel of a converter OG facility, characterized in that a build-up layer of an Inconel alloy having a thickness of 1.0 mm or more and 2.0 mm or less is formed on a passage surface side of exhaust gas from the converter. .
[2] The boiler of the converter OG facility according to the above [1], wherein the build-up layer has a thickness fluctuation range of 0.5 mm or less within a range of 5 mm in an arbitrary direction. Water cooling panel.
[3] A method for extending the life of a boiler or a water-cooled panel of a converter OG facility in which a plurality of steel tubes are joined to each other by steel fins and formed into a cylindrical shape as a whole. The inconel alloy is built up on the side of the tube and the fin passing through the exhaust gas from the converter, and then the built-up layer is surface polished so that the thickness of the built-up layer is 1.0 mm or more and 2.0 mm or less. A method for extending the life of a boiler or water-cooled panel of a converter OG facility, characterized in that:
[4] The converter OG equipment according to [3], wherein surface polishing is performed so that a fluctuation range of the thickness of the build-up layer is 0.5 mm or less within a range of 5 mm in an arbitrary direction. To extend the service life of boilers or water-cooled panels.

本発明によれば、転炉OG設備のボイラもしくは水冷パネルの内表面でのインコネル系合金の肉盛り層の厚みを1.0mm以上2.0mm以下とするので、使用中における肉盛り層に負荷される応力を軽減することができ、これにより、インコネル系合金の肉盛り層での亀裂・割れの発生が抑制されて、チューブの寿命を従来に比較して大幅に延ばすことが実現される。   According to the present invention, since the thickness of the built-up layer of the Inconel alloy on the inner surface of the boiler or water-cooled panel of the converter OG equipment is 1.0 mm or more and 2.0 mm or less, a load is applied to the built-up layer during use. Therefore, the occurrence of cracks and cracks in the build-up layer of the Inconel alloy can be suppressed, and the life of the tube can be greatly extended compared to the conventional case.

肉盛り層の厚みを変化させ、そのときの肉盛り層の熱衝撃応力による疲労寿命を推定した計算結果を示す図である。It is a figure which shows the calculation result which changed the thickness of the build-up layer and estimated the fatigue life by the thermal shock stress of the build-up layer at that time. 転炉OG設備のボイラの一部分の横断面図である。It is a cross-sectional view of a part of the boiler of the converter OG facility.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明者らは、複数の鋼製のチューブを鋼製のフィンによって相互に接合し、全体として円筒状となるように形成された、転炉OG設備のボイラもしくは水冷パネルの寿命を延ばすことを目的として、ボイラもしくは水冷パネルの内面側にインコネル系合金を肉盛りする試験を実施した。肉盛りしない母材単体のチューブの耐用年数は経験的に約8年間であり、インコネル系合金を肉盛りすることで12年間以上の耐用年数を得ることを期待して試験した。   The inventors of the present invention intend to extend the life of a boiler or a water-cooled panel of a converter OG facility formed by joining a plurality of steel tubes to each other by steel fins and forming a cylindrical shape as a whole. As a purpose, a test was conducted in which an inconel alloy was built up on the inner surface side of a boiler or a water-cooled panel. The service life of the tube of the base material that does not build up is about 8 years empirically, and the test was conducted with the expectation that a service life of 12 years or more was obtained by building up the Inconel alloy.

肉盛り金属として使用したインコネル系合金はインコネル625(Alloy625)であり、チューブとして使用した鋼管は、JIS G 3461 (2005)で規定されるボイラ・熱交換器用炭素鋼鋼管(STB410、外径38.1mm、厚み4.0〜5.0mm)であり、フィンは、STB410に相当する化学成分のJIS G 4052 (2003)で規定される厚み6.0mmの構造用鋼鋼材(例えばSMn420H)である。インコネル系合金の肉盛りは肉盛り溶接で行い、肉盛り層の厚みは2.0mm超え3.0mm以下とした。STB410及びインコネル625の化学成分及び機械的性質を下記の表1に示す。   The Inconel alloy used as the build-up metal is Inconel 625 (Alloy625), and the steel pipe used as the tube is a carbon steel pipe for boiler / heat exchanger (STB410, outer diameter 38. The fin is a structural steel material (for example, SMn420H) having a thickness of 6.0 mm defined by JIS G 4052 (2003), a chemical component corresponding to STB410. The build-up of the Inconel alloy was performed by build-up welding, and the thickness of the build-up layer was 2.0 mm to 3.0 mm. The chemical components and mechanical properties of STB410 and Inconel 625 are shown in Table 1 below.

Figure 2015137398
Figure 2015137398

しかしながら、インコネル625を肉盛りしたにも拘わらず、実機に設置後、早い場合には、6ヶ月経過した時点で、肉盛り層に亀裂が発生した。その亀裂が母材のチューブにまで達成する場合も発生し、この場合には、チューブ母材単体の耐用年数である約8年間をも達成することができない。   However, even though Inconel 625 was built up, cracks occurred in the built-up layer when 6 months had passed since the installation in the actual machine. In some cases, the crack may reach the base material tube, and in this case, the service life of the tube base material alone cannot be achieved for about 8 years.

この原因を解明するべく、伝熱計算手法及び応力計算手法を用いて、脱炭精錬での昇熱(精錬開始に該当)から冷却(精錬終了後)までの1サイクルにおける肉盛り層に負荷される熱応力を算出し、応力値の振幅(最大値と最小値との差)を求め、求めた応力値の振幅を、JISによって鋼種別に定められている使用疲労曲線に照らし合わせ、肉盛り層の熱衝撃応力による疲労寿命を推定した。計算は、インコネル625とSTB410との溶け込み層は存在しない理想的な形態とし、肉盛り層の厚みを、0mm(ケース1)、1.0mm(ケース2)、2.0mm(ケース3)、3.0mm(ケース4)、及び、2.0mmから3.0mmの範囲で厚みが変動している場合(ケース5)の合計5水準で実施した。図1及び表2に計算結果を示す。   In order to elucidate this cause, using the heat transfer calculation method and stress calculation method, it is loaded on the build-up layer in one cycle from heating (decomposing refining start) to cooling (after refining end) in decarburization refining. The thermal stress is calculated, the amplitude of the stress value (difference between the maximum value and the minimum value) is obtained, and the amplitude of the obtained stress value is compared with the fatigue curve used for the steel type by JIS, The fatigue life due to thermal shock stress of the layer was estimated. The calculation is an ideal form in which there is no melted layer of Inconel 625 and STB410, and the thickness of the build-up layer is 0 mm (case 1), 1.0 mm (case 2), 2.0 mm (case 3), 3 It was carried out at a total of five levels: 0.0 mm (case 4) and a case where the thickness fluctuated in the range of 2.0 mm to 3.0 mm (case 5). FIG. 1 and Table 2 show the calculation results.

Figure 2015137398
Figure 2015137398

表2に示すように、肉盛り層の厚みが0mmの場合、つまり、母材単体のチューブの耐用回数計算値は5.7×104回であり、この値は上記の約8年間(15ch/日×365日/年×8年=43800ch)の使用回数と概ね一致しており、計算結果は十分に信頼できるものであることが確認できた。 As shown in Table 2, when the thickness of the built-up layer is 0 mm, that is, the calculated number of useful times of the tube of the base material alone is 5.7 × 10 4 times, and this value is about 8 years (15 ch) / Day x 365 days / year x 8 years = 43800 ch), which is almost the same as the number of uses, confirming that the calculation results are sufficiently reliable.

また、図1及び表2に示すように、インコネル625の肉盛り層の厚みが1.0mm、2.0mm、3.0mmの場合で比較すると、肉盛り層の厚みが1.0mmの場合に、応力振幅値が最も小さくなり、熱応力による疲労破壊までの繰り返し数が最も長くなることがわかった。一方、肉盛り層の厚みが3.0mmの場合には、肉盛り層が形成されていない母材単体のチューブよりも疲労破壊までの繰り返し数が短くなることがわかった。また、肉盛り層の厚みが2.0mmから3.0mmの範囲で変動している場合には、疲労破壊までの繰り返し数が更に短くなることがわかった。   As shown in FIG. 1 and Table 2, when the thickness of the built-up layer of Inconel 625 is 1.0 mm, 2.0 mm, and 3.0 mm, the thickness of the built-up layer is 1.0 mm. It was found that the stress amplitude value was the smallest and the number of repetitions until fatigue failure due to thermal stress was the longest. On the other hand, when the thickness of the build-up layer is 3.0 mm, it has been found that the number of repetitions until fatigue failure is shorter than that of a single base material tube on which no build-up layer is formed. Moreover, when the thickness of the build-up layer was fluctuate | varied in the range of 2.0 mm to 3.0 mm, it turned out that the repetition number until fatigue failure becomes still shorter.

肉盛り層の厚みが3.0mmの場合に寿命が短くなる理由は、インコネル625の熱伝導率はSTB410などの炭素鋼に比較して小さく、肉盛り層が3.0mmの場合には、精錬時、肉盛り層の外周部は高温となり、一方、肉盛り層のチューブとの接合面は冷却水により冷却されていることから、肉盛り層内の温度勾配が大きくなり、これにより過大な熱応力が発生することに起因すると考えられる。また、精錬終了後は肉盛り層の周囲の雰囲気(大気)の温度が低く、内部から冷却されることもあって、肉盛り層の外周部は急減に温度が低下し、これに伴って過大な熱応力が発生することも寿命が短くなる理由であると考えられる。   The reason why the life is shortened when the thickness of the build-up layer is 3.0 mm is that the thermal conductivity of Inconel 625 is smaller than that of carbon steel such as STB410, and when the build-up layer is 3.0 mm, refining is performed. At the same time, the outer peripheral portion of the build-up layer becomes hot, while the joint surface of the build-up layer with the tube is cooled by cooling water, so that the temperature gradient in the build-up layer becomes large, which causes excessive heat. This is thought to be due to the generation of stress. In addition, after refining, the temperature of the atmosphere (atmosphere) around the built-up layer is low, and it may be cooled from the inside, so the temperature of the outer peripheral part of the built-up layer suddenly decreases and excessively increases. It is considered that the generation of a thermal stress is also a reason for shortening the life.

また、肉盛り層の厚みが2.0mmから3.0mmの範囲で変動している場合に更に寿命が短くなる理由は、肉盛り層厚みの異なる部位に、熱応力が集中することに起因すると考えられる。このことから、肉盛り層の厚みが均一であるほど、肉盛り層の寿命が延びることが確認できた。   The reason why the life is further shortened when the thickness of the build-up layer varies in the range of 2.0 mm to 3.0 mm is that the thermal stress is concentrated on the different parts of the build-up layer thickness. Conceivable. From this, it was confirmed that the life of the build-up layer was extended as the thickness of the build-up layer was uniform.

尚、肉盛り層の厚みがゼロの場合に最も応力振幅値は小さくなるが、チューブの母材は炭素鋼であり、炭素鋼の引張り強度はインコネル625の引張り強度に比較して低く、これが、母材のみの繰り返し数が、肉盛り層の厚みが1.0mmの場合に比較して小さくなる理由である。   The stress amplitude value is the smallest when the thickness of the build-up layer is zero, but the base material of the tube is carbon steel, and the tensile strength of the carbon steel is lower than the tensile strength of Inconel 625, This is the reason why the number of repetitions of only the base material is smaller than when the thickness of the build-up layer is 1.0 mm.

本発明は、上記検討結果に基づいてなされたものであり、転炉OG設備のボイラもしくは水冷パネルを形成するチューブ及びフィンの転炉からの排ガスの通過面側に、厚みが1.0mm以上2.0mm以下であるインコネル系合金の肉盛り層を形成することを必須の条件とする。   The present invention has been made on the basis of the above examination results, and has a thickness of 1.0 mm or more on the passage side of the exhaust gas from the converter and the tube and fins forming the boiler or water-cooled panel of the converter OG equipment. It is an essential condition to form a build-up layer of Inconel alloy that is 0.0 mm or less.

以下、転炉OG設備のボイラもしくは水冷パネルの内表面にインコネル系合金の肉盛り層を形成する方法を具体的に説明する。ここでは、ボイラの場合について説明するが、水冷パネルの場合もボイラと同様にすればよい。図2は、転炉OG設備のボイラの一部分の横断面図である。   Hereinafter, a method for forming a built-up layer of an Inconel alloy on the inner surface of a boiler or water-cooled panel of a converter OG facility will be specifically described. Here, the case of a boiler will be described, but the case of a water-cooled panel may be the same as that of a boiler. FIG. 2 is a cross-sectional view of a part of the boiler of the converter OG facility.

図2に示すように、転炉OG設備のボイラ1は、複数のチューブ2を鋼製のフィン3で相互に接合し、全体として円筒状となるように形成されている。チューブ2とフィン3とは、溶接金属4により接合されている。このように構成されるボイラ1の転炉からの排ガスの通過面側に、インコネル系合金の肉盛り層5を形成する。肉盛り層5は溶接手法或いは溶射手法によって形成するが、投入熱量が少なく、溶接されるインコネル系合金のチューブ2への溶け込み量を少なくすることができることから、溶接手法を用いることが好ましい。   As shown in FIG. 2, the boiler 1 of the converter OG facility is formed such that a plurality of tubes 2 are joined to each other with steel fins 3 and is formed into a cylindrical shape as a whole. The tube 2 and the fin 3 are joined by a weld metal 4. A build-up layer 5 of an Inconel alloy is formed on the side of the exhaust gas passing surface from the converter of the boiler 1 configured as described above. Although the build-up layer 5 is formed by a welding method or a thermal spraying method, it is preferable to use a welding method because the amount of input heat is small and the amount of inconel alloy to be welded can be reduced in the tube 2.

肉盛り層5を形成するインコネル系合金としては、インコネル625に限らず、インコネル600、インコネル718、インコネルX750など、種々のインコネル系合金を使用することができる。   The Inconel alloy for forming the build-up layer 5 is not limited to Inconel 625, and various Inconel alloys such as Inconel 600, Inconel 718, and Inconel X750 can be used.

本発明では、肉盛り層5の厚みを1.0〜2.0mmの範囲に規定するが、これは肉盛り層5の表面を研磨した後の厚みである。従って、肉盛り施工直後の肉盛り層5の厚みをおよそ1.5〜2.5mmとし、これを肉盛り層5の厚みが1.0〜2.0mmの範囲となるまで、表面研磨する。表面研磨はグラインダーなどで行う。表面研磨により、肉盛り施工時のビードによる凹凸が除去され、凹部での熱応力の集中が妨げられる。つまり、少なくとも、肉盛り施工時のビードによる凹凸が除去されるまで、表面研磨を実施する。   In this invention, although the thickness of the build-up layer 5 is prescribed | regulated in the range of 1.0-2.0 mm, this is the thickness after grind | polishing the surface of the build-up layer 5. Therefore, the thickness of the build-up layer 5 immediately after the build-up operation is set to about 1.5 to 2.5 mm, and the surface is polished until the thickness of the build-up layer 5 is in the range of 1.0 to 2.0 mm. Surface polishing is performed with a grinder. By surface polishing, irregularities due to beads during the overlaying process are removed, and concentration of thermal stress in the concave portions is hindered. That is, surface polishing is performed at least until the irregularities due to the beads at the time of overlaying are removed.

また、肉盛り層5の厚みが均一であるほど、熱応力の集中が少なく発生する熱応力が小さくなるので、つまり、耐用回数が延びるので、表面研磨の際には、肉盛り層5の厚みが均一となるように研磨する。具体的には、肉盛り層5の厚みの変動幅が任意の方向の5mmの範囲内で0.5mm以下となるように表面研磨することが好ましい。   Further, as the thickness of the build-up layer 5 is uniform, the thermal stress concentration is reduced and the generated thermal stress is reduced. In other words, the number of times of service life is extended. Polish until uniform. Specifically, it is preferable to perform surface polishing so that the fluctuation range of the thickness of the build-up layer 5 is 0.5 mm or less within a range of 5 mm in an arbitrary direction.

チューブ2として使用する鋼管としては、上記のJIS G 3461 (2005)で規定されるボイラ・熱交換器用炭素鋼鋼管以外に、ボイラ・熱交換器用合金鋼管(JIS G 3462 (2004))、ボイラ・熱交換器用ステンレス鋼鋼管(JIS G 3463 (2006))などを使用することができる。   Steel pipes used as tube 2 include boiler and heat exchanger alloy steel pipes (JIS G 3462 (2004)), boilers and heat exchanger carbon steel pipes specified in JIS G 3461 (2005). Stainless steel pipes for heat exchangers (JIS G 3463 (2006)) can be used.

以上説明したように、本発明によれば、転炉OG設備のボイラ1もしくは水冷パネルの転炉からの排ガスの通過面側に、厚みが1.0mm以上2.0mm以下であるインコネル系合金の肉盛り層5を形成するので、それぞれ熱伝導率の異なるチューブ2にインコネル系合金の肉盛り層5が形成されたときの熱衝撃による繰り返し応力を最も低くすることができ、肉盛り層5における亀裂・割れの発生を長期間にわたって防止することが実現される。これにより、肉盛り層5の内部のチューブ2は肉盛り層5によって保護され、チューブ2は長期間の耐用が可能となる。   As described above, according to the present invention, an inconel-based alloy having a thickness of 1.0 mm or more and 2.0 mm or less is formed on the exhaust gas passing surface side from the boiler 1 of the converter OG equipment or the converter of the water-cooled panel. Since the build-up layer 5 is formed, the repeated stress due to thermal shock when the build-up layer 5 of the Inconel alloy is formed on the tubes 2 having different thermal conductivities can be minimized. It is possible to prevent the generation of cracks and cracks over a long period of time. Thereby, the tube 2 inside the build-up layer 5 is protected by the build-up layer 5, and the tube 2 can be used for a long period of time.

転炉OG設備のボイラの転炉からの排ガスの通過面側に、厚みが約2.2mmとなるように、インコネル625を肉盛り溶接した。その後、肉盛り層の表面をグラインダーで研磨し、肉盛り層の厚みを1.7mmとした。チューブは、外径が38.1mm、厚みが5.0mmのボイラ・熱交換器用炭素鋼鋼管(STB410)である。肉盛り層厚みの測定は、超音波探傷による反射エコーから肉盛り層を含めた厚みを求め、求めた値からチューブの肉厚を差し引いた値から求めた。また、このようにして求めた肉盛り層の厚みから、厚みの変動幅を求めた。その結果、厚みの変動幅は、任意の方向の5mmの範囲内で0.5mm以下であることを確認した。   Inconel 625 was build-up welded so that the thickness would be about 2.2 mm on the exhaust gas passage surface side from the converter of the boiler of the converter OG facility. Thereafter, the surface of the build-up layer was polished with a grinder, and the thickness of the build-up layer was set to 1.7 mm. The tube is a carbon steel pipe (STB410) for boiler / heat exchanger having an outer diameter of 38.1 mm and a thickness of 5.0 mm. The thickness of the build-up layer was determined from the value obtained by calculating the thickness including the build-up layer from the reflection echo by ultrasonic flaw detection and subtracting the tube thickness from the obtained value. Moreover, the thickness fluctuation | variation width | variety was calculated | required from the thickness of the buildup layer calculated | required in this way. As a result, it was confirmed that the variation width of the thickness was 0.5 mm or less within a range of 5 mm in an arbitrary direction.

このようにして構成した転炉OG設備のボイラを実機転炉に設置した。転炉に設置して25ヶ月が経過した時点で肉盛り層の表面を調査した結果、それ以前全く補修していないにも拘わらず、亀裂及び割れは全く発生しておらず、長期間の耐用が可能であることが確認できた。   The boiler of the converter OG equipment constructed as described above was installed in the actual converter. As a result of investigating the surface of the built-up layer when 25 months have passed since it was installed in the converter, no cracks and cracks occurred at all, although it had not been repaired at all before, and it was used for a long time It was confirmed that it was possible.

前述したように、インコネル625の肉盛り層の厚みを2.0mm超え3.0mm以下とした試験では、6ヶ月経過した時点で、肉盛り層に亀裂が発生しており、本発明を適用することで、インコネル625からなる肉盛り層の長寿命化が期待できることが確認できた。   As described above, in the test in which the thickness of the build-up layer of Inconel 625 is more than 2.0 mm and 3.0 mm or less, the build-up layer has cracked after 6 months, and the present invention is applied. Thus, it was confirmed that the life of the built-up layer made of Inconel 625 can be expected to be extended.

1 ボイラ
2 チューブ
3 フィン
4 溶接金属
5 肉盛り層
1 Boiler 2 Tube 3 Fin 4 Weld Metal 5 Overlay Layer

Claims (4)

複数の鋼製のチューブが鋼製のフィンによって相互に接合され、全体として円筒状となるように形成された転炉OG設備のボイラもしくは水冷パネルであって、前記チューブ及び前記フィンの転炉からの排ガスの通過面側に、厚みが1.0mm以上2.0mm以下であるインコネル系合金の肉盛り層が形成されていることを特徴とする、転炉OG設備のボイラもしくは水冷パネル。   A boiler or water-cooled panel of a converter OG facility in which a plurality of steel tubes are joined to each other by steel fins and formed into a cylindrical shape as a whole, from the converter of the tubes and the fins A boiler or a water-cooled panel of a converter OG facility, wherein a build-up layer of an inconel alloy having a thickness of 1.0 mm to 2.0 mm is formed on the exhaust gas passage surface side. 前記肉盛り層は、その厚みの変動幅が任意の方向の5mmの範囲内で0.5mm以下であることを特徴とする、請求項1に記載の転炉OG設備のボイラもしくは水冷パネル。   The boiler or water-cooled panel of a converter OG facility according to claim 1, wherein the thickness of the build-up layer is 0.5 mm or less within a range of 5 mm in an arbitrary direction. 複数の鋼製のチューブが鋼製のフィンによって相互に接合され、全体として円筒状となるように形成された転炉OG設備のボイラもしくは水冷パネルの長寿命化方法であって、前記チューブ及び前記フィンの転炉からの排ガスの通過面側にインコネル系合金を肉盛りし、その後、肉盛り層の厚みが1.0mm以上2.0mm以下となるように、肉盛り層を表面研磨することを特徴とする、転炉OG設備のボイラもしくは水冷パネルの長寿命化方法。   A method for extending the life of a boiler or a water-cooled panel of a converter OG facility in which a plurality of steel tubes are joined to each other by steel fins and formed into a cylindrical shape as a whole. Build up the Inconel alloy on the side of the passage of the exhaust gas from the fin converter, and then polish the surface of the built-up layer so that the thickness of the built-up layer is 1.0 mm or more and 2.0 mm or less. A feature is a method for extending the life of a boiler or water-cooled panel of a converter OG facility. 前記肉盛り層の厚みの変動幅が任意の方向の5mmの範囲内で0.5mm以下となるように表面研磨することを特徴とする、請求項3に記載の転炉OG設備のボイラもしくは水冷パネルの長寿命化方法。   The boiler or water cooling of the converter OG equipment according to claim 3, wherein surface polishing is performed so that a fluctuation range of the thickness of the build-up layer is 0.5 mm or less within a range of 5 mm in an arbitrary direction. How to extend panel life.
JP2014010039A 2014-01-23 2014-01-23 Method for manufacturing boiler or water-cooled panel for converter OG equipment and method for extending the life of boiler or water-cooled panel for converter OG equipment Active JP6015681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014010039A JP6015681B2 (en) 2014-01-23 2014-01-23 Method for manufacturing boiler or water-cooled panel for converter OG equipment and method for extending the life of boiler or water-cooled panel for converter OG equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014010039A JP6015681B2 (en) 2014-01-23 2014-01-23 Method for manufacturing boiler or water-cooled panel for converter OG equipment and method for extending the life of boiler or water-cooled panel for converter OG equipment

Publications (2)

Publication Number Publication Date
JP2015137398A true JP2015137398A (en) 2015-07-30
JP6015681B2 JP6015681B2 (en) 2016-10-26

Family

ID=53768623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014010039A Active JP6015681B2 (en) 2014-01-23 2014-01-23 Method for manufacturing boiler or water-cooled panel for converter OG equipment and method for extending the life of boiler or water-cooled panel for converter OG equipment

Country Status (1)

Country Link
JP (1) JP6015681B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017077603A (en) * 2015-10-21 2017-04-27 Jfeスチール株式会社 Method for manufacturing membrane structure duct

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146508A (en) * 2000-11-07 2002-05-22 Nkk Corp Water cooled steel structure
JP2007169733A (en) * 2005-12-22 2007-07-05 Dai Ichi High Frequency Co Ltd Alloy for corrosion resistant coating and member coated therewith
JP2010235982A (en) * 2009-03-30 2010-10-21 Nippon Steel Corp Method for repairing hood-tube in converter og equipment
JP2010269330A (en) * 2009-05-20 2010-12-02 Jfe Steel Corp Tool for suppressing strain and method of repairing wall part made of steel
JP2012110900A (en) * 2010-11-19 2012-06-14 Mitsubishi Heavy Ind Ltd Laser build-up method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146508A (en) * 2000-11-07 2002-05-22 Nkk Corp Water cooled steel structure
JP2007169733A (en) * 2005-12-22 2007-07-05 Dai Ichi High Frequency Co Ltd Alloy for corrosion resistant coating and member coated therewith
JP2010235982A (en) * 2009-03-30 2010-10-21 Nippon Steel Corp Method for repairing hood-tube in converter og equipment
JP2010269330A (en) * 2009-05-20 2010-12-02 Jfe Steel Corp Tool for suppressing strain and method of repairing wall part made of steel
JP2012110900A (en) * 2010-11-19 2012-06-14 Mitsubishi Heavy Ind Ltd Laser build-up method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017077603A (en) * 2015-10-21 2017-04-27 Jfeスチール株式会社 Method for manufacturing membrane structure duct

Also Published As

Publication number Publication date
JP6015681B2 (en) 2016-10-26

Similar Documents

Publication Publication Date Title
JP5953272B2 (en) Preventive maintenance repair method for welded part of membrane panel for boiler
CN103612000A (en) Cold bend roller welding repairing method
Saito et al. Development of materials for use in A-USC boilers
CN107675168A (en) Laser melting coating restorative procedure after steam circulation pump seal surface wear
JP6015681B2 (en) Method for manufacturing boiler or water-cooled panel for converter OG equipment and method for extending the life of boiler or water-cooled panel for converter OG equipment
JP2010201491A (en) Method for repairing heat-resistant steel casting by welding and heat resistant steel casting having part repaired by welding
JP6862986B2 (en) How to operate the gas preheater
CN104400180A (en) Repair welding process of high alloy steel track shoe
JP2011194458A (en) Repair welding method
CN210967535U (en) Surfacing, melting and coating anti-corrosion device for water-cooled wall of high-temperature area of hearth
JP7138385B1 (en) Water-cooled wall and manufacturing method thereof
JPWO2015045036A1 (en) Regenerative heat treatment method for heat-resistant metal material member with creep damage
Saito et al. Fabrication trials of Ni-based alloys for advanced USC boiler application
Avery et al. Repair welding high-alloy furnace tubes
CN105855663A (en) New method for surfacing coating composite welding
CN110303297A (en) CrMoV steel-casting reprocesses repair method
JP2021004683A (en) Boiler furnace and boiler furnace wall panel used in the same and hardening method of boiler furnace wall
WANG et al. Effect of martensitic transformation on stress evolution in multi-pass butt-welded 9% Cr heat-resistant steel pipes
Singh et al. Behavioural Investigation of Hardness Profile for Dissimilar TIG-Weldment between P22 and P91 Steels.
Lee et al. Three-dimensional finite element analysis for estimation of the weld residual stress in the dissimilar butt weld piping
Yang et al. Multiphysics Modeling of a Welded Furnace Roll for Improving Creep-Fatigue Life
TWI761883B (en) Safety structure and repairing method of waste acid recovery roaster
CN106112296A (en) The welding method of loading shovel
Jiao-jiao et al. Cause analysis of leakage of supercritical (ultra-supercritical) boiler water wall slag screen pipe
JP6049256B2 (en) Oxidation resistance method for ferritic heat resistant steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160912

R150 Certificate of patent or registration of utility model

Ref document number: 6015681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250