JP2015136753A - Porous sinter plate, vacuum suction pad using the same, and production method of porous sinter plate - Google Patents

Porous sinter plate, vacuum suction pad using the same, and production method of porous sinter plate Download PDF

Info

Publication number
JP2015136753A
JP2015136753A JP2014009203A JP2014009203A JP2015136753A JP 2015136753 A JP2015136753 A JP 2015136753A JP 2014009203 A JP2014009203 A JP 2014009203A JP 2014009203 A JP2014009203 A JP 2014009203A JP 2015136753 A JP2015136753 A JP 2015136753A
Authority
JP
Japan
Prior art keywords
plate
adsorption
porous sintered
porous
action part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014009203A
Other languages
Japanese (ja)
Inventor
慎司 高根
Shinji Takane
慎司 高根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2014009203A priority Critical patent/JP2015136753A/en
Publication of JP2015136753A publication Critical patent/JP2015136753A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a porous sinter plate which can suck a workpiece in a uniform state as a suction plate of a vacuum suction pad, a vacuum suction pad using it, and a production method of the porous sinter plate.SOLUTION: The porous sinter plate has an integrated-plate shape sinter composition and has a suction action part and a non-suction action part formed of sinter composition areas having different gas permeability. For producing such a porous sinter plate, by radiating and scanning high energy beam, powder bodies are laminated and sintered in a plate thickness direction, and by changing a degree of sinter, the suction action part and the non-suction action part having different gas permeability are formed in a suction surface.

Description

本発明は、真空吸着パッドの吸着板としての多孔質焼結板、これを用いた真空吸着パッド、及び多孔質焼結板の製造方法に関する。   The present invention relates to a porous sintered plate as a suction plate for a vacuum suction pad, a vacuum suction pad using the same, and a method for producing a porous sintered plate.

ワークの固定用あるいは搬送用の真空吸着パッドの吸着板として、多孔質材料の適用が提案されている。このような多孔質材料を適用した真空吸着パッドでは、吸着面に、多孔質材料と多孔質材料を支持する支持部との段差が生じて、ワークが均一に吸着出来なくなり、ワークが破損したり、ワークの吸着が不十分になることがある。   Application of a porous material has been proposed as a suction plate for a vacuum suction pad for fixing or conveying a workpiece. In a vacuum suction pad using such a porous material, there is a step between the porous material and the support part that supports the porous material on the suction surface. , Workpiece adsorption may be insufficient.

このような問題に対しては、以下のような提案がなされている。
例えば、特許文献1には、開気孔を備えた多孔質材料(特許文献1では多孔質体と記載)からなる載置部と、緻密質体からなる支持部とを具備し、該載置部と該支持部とが実質的に隙間なく直接に接合されており、かつ、該支持部の上面内周部位に載置部側へ張り出した庇状薄肉部を形成した真空吸着パッド(特許文献1では真空吸着装置と記載)が開示されている。そして、かかる真空吸着パッドにすることにより、載置部と支持部の上面である吸着面に段差が生じることを抑制することが出来、ワークを均一に吸着出来るとしている。
The following proposals have been made for such problems.
For example, Patent Literature 1 includes a placement portion made of a porous material having an open pore (described as a porous body in Patent Literature 1) and a support portion made of a dense body, and the placement portion. And a vacuum suction pad in which a hook-shaped thin portion projecting toward the placement portion is formed on the inner peripheral portion of the upper surface of the support portion (Patent Document 1). Discloses a vacuum adsorption device). By using such a vacuum suction pad, it is possible to suppress the occurrence of a step in the suction surface, which is the upper surface of the mounting portion and the support portion, and to uniformly suck the workpiece.

また、特許文献2には、緻密質セラミックスからなる支持部と、支持部と実質的に隙間なく一体的に接合されたセラミックス/ガラス複合多孔質材料(特許文献2では多孔質体と記載)からなる載置部と、該載置部の外周縁部表面に設けられた気孔率3〜10%の溶射セラミックスからなる環状被覆部から構成され、環状被覆部の溶射セラミックスがアンカー効果を発揮するように載置部の気孔に進入している真空吸着パッド(特許文献2では真空吸着装置と記載)が開示されている。そして、かかる真空吸着パッドにすることにより、環状被覆部の剛性および加工性が載置部の特性と近似され、吸着面に段差が生じるのを抑制することが出来、ワークを均一に吸着出来るとしている。   Further, Patent Document 2 includes a support portion made of dense ceramics and a ceramic / glass composite porous material (described as a porous body in Patent Document 2) integrally joined to the support portion substantially without a gap. And an annular coating portion made of thermal sprayed ceramics with a porosity of 3 to 10% provided on the outer peripheral surface of the mounting portion, so that the thermal spray ceramics of the annular coating portion exhibits an anchor effect. Discloses a vacuum suction pad (described as a vacuum suction device in Patent Document 2) that has entered the pores of the mounting portion. And, by using such a vacuum suction pad, the rigidity and workability of the annular covering portion can be approximated with the characteristics of the mounting portion, it is possible to suppress the occurrence of a step on the suction surface, and the workpiece can be sucked uniformly. Yes.

特開2005−212000号公報Japanese Patent Laid-Open No. 2005-212000 特開2008−211098号公報JP 2008-211098 A

特許文献1及び特許文献2の真空吸着パッドによれば、吸着面に段差が生じるのを抑制出来るものの、吸着面を異なる部材で形成するので、吸着面に明確な境界が生じ、厳密に段差の無い吸着面とするのは困難である。また、吸着板を複数の部材で作製するので、真空吸着パッドの製造プロセスが複雑になる。   According to the vacuum suction pads of Patent Document 1 and Patent Document 2, although the generation of a step on the suction surface can be suppressed, the suction surface is formed of different members. It is difficult to have a non-adsorbing surface. Further, since the suction plate is made of a plurality of members, the manufacturing process of the vacuum suction pad is complicated.

そこで本発明では、真空吸着パッドの吸着板として、ワークを均一に吸着可能な新規な多孔質焼結板、これを用いた真空吸着パッド、及び多孔質焼結板の製造方法を提供する。   Therefore, the present invention provides a novel porous sintered plate capable of uniformly adsorbing workpieces as a suction plate for a vacuum suction pad, a vacuum suction pad using the same, and a method for manufacturing the porous sintered plate.

本発明の多孔質焼結板は、真空吸着パッドの吸着板に用いられる一体板状の焼結組織を有する多孔質焼結板であって、吸着面内に、気体透過性の異なる焼結組織領域で形成される吸着作用部と非吸着作用部とを有するものである。   The porous sintered plate of the present invention is a porous sintered plate having an integrated plate-like sintered structure used for an adsorption plate of a vacuum adsorption pad, and has a gas-permeable sintered structure with different gas permeability. It has an adsorption action part and a non-adsorption action part formed in a region.

また、本発明の多孔質焼結板では、前記吸着作用部と前記非吸着作用部との間において、気孔率が連続的に変化していることが好ましい。   In the porous sintered plate of the present invention, it is preferable that the porosity is continuously changed between the adsorption action part and the non-adsorption action part.

また、本発明の真空吸着装置は、上記多孔質焼結板を吸着パッドとして備えるものである。   Moreover, the vacuum suction device of the present invention comprises the porous sintered plate as a suction pad.

また、本発明の多孔質焼結板の製造方法は、上記多孔質焼結板の製造方法であって、高エネルギービームの照射と走査により、粉体を板厚方向に積層焼結するとともに、焼結度合いを変化させて、吸着面内に、気体透過性の異なる吸着作用部と非吸着作用部とを形成するものである。   The method for producing a porous sintered plate of the present invention is a method for producing the porous sintered plate, wherein the powder is laminated and sintered in the plate thickness direction by irradiation and scanning with a high energy beam, By changing the degree of sintering, an adsorption action part and a non-adsorption action part having different gas permeability are formed in the adsorption surface.

本発明の多孔質焼結板は、別体の支持部を設ける必要がないため、一体物の真空吸着パッドの吸着板として、ワークを均一に吸着可能な吸着面を形成することができ、また、製造性にも優れたものとなる。また、本発明の多孔質焼結板の製造方法は、積層焼結の適用により、吸着作用部及び非吸着作用部の形状を自在に設定可能であり、たとえば多角形や段型状などの複雑形状のワークを吸着する真空吸着パッドでも容易に作製することが出来る。   Since the porous sintered plate of the present invention does not need to be provided with a separate support part, it can form a suction surface capable of uniformly sucking a workpiece as a suction plate of an integrated vacuum suction pad. In addition, it is excellent in manufacturability. In addition, the manufacturing method of the porous sintered plate of the present invention can freely set the shapes of the adsorption action part and the non-adsorption action part by applying lamination sintering, for example, a complicated shape such as a polygonal shape or a step shape. Even a vacuum suction pad that sucks a workpiece having a shape can be easily manufactured.

本実施形態である多孔質焼結板の模式図である。It is a schematic diagram of the porous sintered board which is this embodiment. 本実施形態である多孔質焼結板を用いた真空吸着パッドの断面模式図である。It is a cross-sectional schematic diagram of the vacuum suction pad using the porous sintered board which is this embodiment. 本実施形態の製造方法を説明する為の模式図である。It is a schematic diagram for demonstrating the manufacturing method of this embodiment.

本発明では、真空吸着パッドに用いられる吸着板を、一体板状の焼結組織を有する多孔質焼結板とすることが第一の特徴である。これにより、段差と継ぎ目の無い吸着面にすることが可能になり、ワークを均一に吸着することが出来る。   In the present invention, the first feature is that the suction plate used for the vacuum suction pad is a porous sintered plate having an integral plate-like sintered structure. Thereby, it becomes possible to make the suction surface seamless with the step, and the work can be sucked uniformly.

また、本発明では、上記多孔質焼結板の吸着面内に、気体透過性の異なる焼結組織領域で形成される吸着作用部と非吸着作用部を配することが第二の特徴である。
これにより、吸着面の外周部に特許文献のような別体の支持部を設ける必要が無く、真空吸着パッドの製造プロセスをシンプルにすることが出来る。
Further, in the present invention, the second feature is that an adsorption action portion and a non-adsorption action portion formed in sintered structure regions having different gas permeability are arranged in the adsorption surface of the porous sintered plate. .
Thereby, it is not necessary to provide a separate support portion as in the patent document on the outer peripheral portion of the suction surface, and the manufacturing process of the vacuum suction pad can be simplified.

また、本発明では、前記吸着作用部と前記非吸着作用部との間において、気孔率が連続的に変化していることが好ましい。このようにすることで、前記吸着作用部と前記非吸着作用部との境界に応力が集中して多孔質焼結板が破損するのを防止することができる。
なお、ここで言う気孔率とは、多孔質焼結板を板厚方向に貫通する気孔の存在程度(割合)を示すものであり、気孔率は気体透過度との大小関係が一致するものである。
Moreover, in this invention, it is preferable that the porosity is changing continuously between the said adsorption action part and the said non-adsorption action part. By doing in this way, it can prevent that a stress concentrates on the boundary of the said adsorption action part and the said non-adsorption action part, and a porous sintered board breaks.
The porosity referred to here indicates the degree (percentage) of pores penetrating the porous sintered plate in the thickness direction, and the porosity has a magnitude relationship with the gas permeability. is there.

上記多孔質焼結板は、たとえば、高エネルギービームの照射と走査により、粉体を板厚方向に積層焼結して形成することが可能であり、焼結層内の焼結度合いを変化させることにより、吸着面内に、気体透過性の異なる焼結組織領域を有する多孔質焼結板を形成することが出来る。
高エネルギービームの照射と走査により、粉体を板厚方向に積層焼結すると、面方向厚さ方向ともに自在に焼結度合いを変化させることが可能であり、吸着面内に、気体透過性の異なる焼結組織領域を形成することが出来る。
The porous sintered plate can be formed by, for example, laminating and sintering powders in the plate thickness direction by irradiation and scanning with a high energy beam, and changing the degree of sintering in the sintered layer. Thus, a porous sintered plate having sintered structure regions with different gas permeability can be formed in the adsorption surface.
When the powder is laminated and sintered in the plate thickness direction by irradiation and scanning with a high energy beam, the degree of sintering can be changed freely in the thickness direction in the plane direction. Different sintered structure regions can be formed.

なお、上記焼結度合いは、高エネルギービームの走査速度や照射エネルギーを変えることにより調整可能であり、気体透過率を高めたい領域は、高エネルギービームの走査速度を高速にするか、或いは、照射エネルギーを低くすることにより形成することが出来る。
また、本発明に用いられる高エネルギービームは、粉体の焼結を進行させるエネルギービームのことであり、具体的には、レーザや電子ビームを用いることが出来る。
The degree of sintering can be adjusted by changing the scanning speed and irradiation energy of the high energy beam. In the region where the gas permeability is desired to be increased, the scanning speed of the high energy beam is increased or irradiation is performed. It can be formed by lowering the energy.
In addition, the high energy beam used in the present invention is an energy beam that promotes the sintering of powder, and specifically, a laser or an electron beam can be used.

以下、本発明の多孔質焼結板、及びその多孔質焼結板を用いた真空吸着パッド、及びその多孔質焼結板の製造方法の実施形態について、図面を参照しながら説明する。ただし、本発明は、以下の実施形態に限定されるものではない。   Hereinafter, embodiments of a porous sintered plate of the present invention, a vacuum adsorption pad using the porous sintered plate, and a method for producing the porous sintered plate will be described with reference to the drawings. However, the present invention is not limited to the following embodiments.

図1は、本実施形態である多孔質焼結板の模式図であり、図1(a)は上面模式図、図1(b)は断面模式図である。
本実施形態の多孔質焼結板1は、一体板状の多孔質焼結板1であり、多孔質焼結板1の中央に吸着作用部1aを、外周に非吸着作用部1bを、一体の焼結組織として配している。なお、吸着作用部とは、多孔質焼結板1を真空吸着パッドの吸着板に用いた際、吸着面となる多孔質焼結体1表面の空気を、真空吸着パッド内部に吸引可能な部分のことを指す。
1A and 1B are schematic views of a porous sintered plate according to the present embodiment. FIG. 1A is a schematic top view and FIG. 1B is a schematic cross-sectional view.
The porous sintered plate 1 of the present embodiment is an integrated plate-like porous sintered plate 1, and an adsorption action portion 1 a is integrated at the center of the porous sintered plate 1, and a non-adsorption action portion 1 b is integrated at the outer periphery. It is arranged as a sintered structure. The adsorption action part is a part capable of sucking the air on the surface of the porous sintered body 1 serving as the adsorption surface into the vacuum adsorption pad when the porous sintered plate 1 is used as the adsorption plate of the vacuum adsorption pad. Refers to that.

また、非吸着作用部1bは、気孔率と気体透過度がほぼゼロになるよう焼結された部分のことであり、多孔質焼結板1を真空吸着パッドに用いた際、多孔質焼結板1表面の空気を殆ど吸引しない部分となる。なお、上記気孔率は、吸着面の多孔質焼結板1を板厚方向に貫通する気孔の存在割合であり、上記気体透過度は、真空吸着パッドに用いた際、単位吸着面あたり透過する気体の量である。そして、気孔率が高くなると気体透過度も大きくなる関係となる。   The non-adsorbing action part 1b is a part sintered so that the porosity and gas permeability are substantially zero. When the porous sintered plate 1 is used as a vacuum adsorption pad, porous sintering is performed. It becomes a portion that hardly sucks air on the surface of the plate 1. The porosity is the ratio of pores penetrating the porous sintered plate 1 on the adsorption surface in the thickness direction, and the gas permeability permeates per unit adsorption surface when used in a vacuum adsorption pad. The amount of gas. And as the porosity increases, the gas permeability increases.

また、本実施形態の多孔質焼結板1は、非吸着作用部1bに複数のネジ孔1cが形成されていて、真空吸着パッドを組み立てる際、多孔質焼結板1をネジ止め出来るようにしている。そして、これらネジ孔1cは、皿ネジに対応するザグリ形状に形成されていて、ネジ止めをした際、吸着面からネジ頭が突出しないようにしている。   Further, the porous sintered plate 1 of the present embodiment has a plurality of screw holes 1c formed in the non-adsorbing action portion 1b so that the porous sintered plate 1 can be screwed when assembling the vacuum suction pad. ing. And these screw holes 1c are formed in the counterbore shape corresponding to a countersunk screw, and when screwing is carried out, a screw head does not protrude from an adsorption surface.

なお、図1の模式図は、多孔質焼結板1が一体板状の焼結組織を有するものであって、吸着面内に、気体透過性の異なる焼結組織領域で形成される吸着作用部1aと非吸着作用部1bとを配していることを例示的に示したものである。実際に真空吸着パッドで用いる多孔質焼結体1では、多孔質焼結板1、吸着作用部1a、非吸着作用部1bの形状を、吸着するワークの形状、撓みに合わせて適宜設定することが有効である。   The schematic diagram of FIG. 1 shows that the porous sintered plate 1 has an integral plate-like sintered structure, and an adsorption action formed in a sintered structure region having different gas permeability in the adsorption surface. The arrangement of the part 1a and the non-adsorbing action part 1b is exemplarily shown. In the porous sintered body 1 actually used in the vacuum suction pad, the shapes of the porous sintered plate 1, the suction action part 1a, and the non-suction action part 1b should be set as appropriate according to the shape and deflection of the work to be sucked. Is effective.

図2は、本実施形態である多孔質焼結板1を用いて組み立てた、真空吸着パッド2の断面模式図である。真空吸着パッド2は、一面が開放面になった真空箱3と、一端が真空箱3の内空間に接続され他端が不図示の真空ポンプに接続された真空ポート4を備えていて、多孔質焼結板1が不図示のパッキンを介して真空箱3にネジ止めされ、上記開放面はカバーされている。   FIG. 2 is a schematic cross-sectional view of the vacuum suction pad 2 assembled using the porous sintered plate 1 according to the present embodiment. The vacuum suction pad 2 includes a vacuum box 3 having one open surface, and a vacuum port 4 having one end connected to the inner space of the vacuum box 3 and the other end connected to a vacuum pump (not shown). The quality sintered plate 1 is screwed to the vacuum box 3 through a packing (not shown), and the open surface is covered.

そして、真空吸着パッド2は、不図示の真空ポンプにより真空箱3の内部を排気すると、真空吸着パッド2の内外に圧力差が生じ、真空吸着パッド2の外の空気を、多孔質焼結板1の吸着作用部1aを通して真空吸着パッド2内に吸引することが出来る。
そして、板状ワークWが、多孔質焼結板1の吸着面S上に載置され、且つ、板状ワークWの外周が非吸着作用部1b上に配されると、板状ワークWと吸着面Sとの間の空気が吸着作用部1aから吸引され、板状ワークWを吸着面Sに吸着することが出来る。
When the vacuum suction pad 2 is evacuated from the inside of the vacuum box 3 by a vacuum pump (not shown), a pressure difference is generated inside and outside the vacuum suction pad 2, and the air outside the vacuum suction pad 2 is removed from the porous sintered plate. It is possible to suck into the vacuum suction pad 2 through one suction action portion 1a.
Then, when the plate-like workpiece W is placed on the suction surface S of the porous sintered plate 1 and the outer periphery of the plate-like workpiece W is arranged on the non-adsorption action portion 1b, Air between the suction surface S is sucked from the suction action portion 1a, and the plate-like workpiece W can be sucked to the suction surface S.

さらに、上記の真空吸着パッド2は、一枚の多孔質焼結板1を真空箱3に固定するだけの簡単な構造で作製することが出来る。   Furthermore, the vacuum suction pad 2 can be manufactured with a simple structure in which one porous sintered plate 1 is fixed to the vacuum box 3.

次に、図1の多孔質焼結板1の製造方法について説明する。
図3は、本実施形態の製造方法の説明する為の模式図である。多孔質焼結板1の作製には、例えば、金属粉体に高エネルギービームを照射して積層焼結する3次元プリンタを適用することが出来る。そのため、図3では、3次元プリンタ10を用いた製造方法について示す。
Next, a method for manufacturing the porous sintered plate 1 of FIG. 1 will be described.
FIG. 3 is a schematic diagram for explaining the manufacturing method of the present embodiment. For the production of the porous sintered plate 1, for example, a three-dimensional printer that irradiates and sinters a metal powder with a high energy beam can be applied. Therefore, FIG. 3 shows a manufacturing method using the three-dimensional printer 10.

本実施形態で用いる3次元プリンタ10は、図3(a)のように、中央に造形チャンバ11、造形チャンバ11の右側に粉体供給箱12、造型チャンバ11の左側に粉体回収箱13を配していて、造形チャンバ11の上方には、高エネルギビームの出力ヘッド14を備えている。そして、粉体供給箱12の中には、多孔質焼結板1に積層焼結する金属粉体Pが収納されている。   As shown in FIG. 3A, the three-dimensional printer 10 used in the present embodiment has a modeling chamber 11 at the center, a powder supply box 12 on the right side of the modeling chamber 11, and a powder recovery box 13 on the left side of the molding chamber 11. The high-energy beam output head 14 is provided above the modeling chamber 11. In the powder supply box 12, metal powder P that is laminated and sintered on the porous sintered plate 1 is stored.

本実施形態では、積層焼結する金属粉体Pとして、たとえばステンレス鋼のSUS316Lやチタン合金のTi−6Al−4Vの粉体を用いることが出来る。また、金属粉体Pの典型的な平均粒計は20〜50μmである。
また、金属粉体Pに照射する高エネルギービームとしては、レーザビームや電子ビームを用いることが出来る。このとき、レーザビームを用いる場合には、ガルバノミラーの駆動によりレーザビームを走査することが出来、電子ビームを用いる場合には、偏向コイルの磁界により電子ビームを走査することが出来る。
In the present embodiment, as the metal powder P to be laminated and sintered, for example, stainless steel SUS316L or titanium alloy Ti-6Al-4V powder can be used. The typical average particle size of the metal powder P is 20 to 50 μm.
Moreover, as a high energy beam irradiated to the metal powder P, a laser beam or an electron beam can be used. At this time, when the laser beam is used, the laser beam can be scanned by driving the galvanometer mirror, and when the electron beam is used, the electron beam can be scanned by the magnetic field of the deflection coil.

次に、図3(b)において、スキージ15を用い、粉体供給箱12の上部開口部12aから造型チャンバ11の台板11a上に、金属粉体Pを薄く平面状に広げるようにする。その際、余った金属材料Pは、同じくスキージ15を用いて粉体回収箱13に回収する。   Next, in FIG. 3B, the squeegee 15 is used to spread the metal powder P thinly and flatly on the base plate 11 a of the molding chamber 11 from the upper opening 12 a of the powder supply box 12. At that time, the surplus metal material P is recovered in the powder recovery box 13 using the squeegee 15 as well.

次に、図3(c)において、台板11a上の平面上の金属粉体Pに対し、出力ヘッド14から高エネルギビームを照射しつつ多孔質焼結板1の形状に走査し、金属粉体Pの薄い多孔質焼結層Bを形成する。
その際、高エネルギービームは、多孔質焼結板1の吸着作用部1a、非吸着作用部1bに相当する部分ごとに照射エネルギー量を変え、金属粉体Pを所望の焼結度に焼結する。
すなわち、吸着作用部1aに相当する部分は、照射するエネルギー量を調整して、所望の気孔率と気体透過度の焼結組織となるよう、金属粉体Pを不完全焼結する。そして、非吸着作用部1bに相当する部分は、照射するエネルギー量を、吸着作用部1aより多くし、気孔率と気体透過度がほぼゼロになるよう、金属粉体Pを完全焼結する。
Next, in FIG. 3C, the metal powder P on the plane on the base plate 11a is scanned with the shape of the porous sintered plate 1 while irradiating the high energy beam from the output head 14, and the metal powder P is scanned. to form a thin porous sintered layer B 1 of the body P.
At that time, the high energy beam changes the irradiation energy amount for each portion corresponding to the adsorption action part 1a and the non-adsorption action part 1b of the porous sintered plate 1, and sinters the metal powder P to a desired degree of sintering. To do.
That is, the portion corresponding to the adsorption action portion 1a adjusts the amount of energy to be irradiated and incompletely sinters the metal powder P so as to obtain a sintered structure having a desired porosity and gas permeability. And the part equivalent to the non-adsorption part 1b increases the amount of energy to irradiate more than the adsorption part 1a, and completely sinters the metal powder P so that the porosity and the gas permeability are almost zero.

なお、高エネルギービームの照射エネルギー量は、出力ヘッド14の出力を一定に、照射時間の調整により調整することが出来るが、照射時間を調整すると、高エネルギービームの走査速度が下がり、焼結層の形成時間が長くなる可能性がある。従って、効率の良く積層焼結するためには、高エネルギービームの照射エネルギー量を、出力ヘッド14の出力調整により調整することが好ましい。   Note that the irradiation energy amount of the high energy beam can be adjusted by adjusting the irradiation time while keeping the output of the output head 14 constant. However, when the irradiation time is adjusted, the scanning speed of the high energy beam decreases, and the sintered layer There is a possibility that the formation time of is prolonged. Therefore, in order to efficiently laminate and sinter, it is preferable to adjust the irradiation energy amount of the high energy beam by adjusting the output of the output head 14.

そして、焼結層Bの形成が終了した後、台板11a上の焼結に係わらなかった金属粉体Pを、スキージ15を用いて粉体回収箱13に回収し、その後、図3(d)のように、造形チャンバ11の台板11aを下降させる。その後、再度、図3(b)と同様にして、スキージ15を用い、粉体供給箱12の上部開口部12aから造型チャンバ11の台板11a上の焼結層B上に、金属粉体Pを薄く平面状に広げる、次いで、平面状の金属粉体Pに対して、図3(c)と同様にして、焼結層B上に焼結層B(不図示)を形成する。
以上プロセスの繰返しにより、焼結層を積層して所望の厚さの多孔質焼結板を作製し、この焼結板を通常の機械加工で端面加工して、本発明の多孔質焼結板1を形成する。
After the formation of the sintered layer B 1 is terminated, the metal powder P that did not matter sintering on the base plate 11a, and collected in the powder recovery box 13 by using a squeegee 15, then FIG. 3 ( As shown in d), the base plate 11a of the modeling chamber 11 is lowered. Thereafter, again in the same manner as in FIG. 3B, the metal powder is applied onto the sintered layer B 1 on the base plate 11 a of the molding chamber 11 from the upper opening 12 a of the powder supply box 12 using the squeegee 15. P is spread thinly in a planar shape, and then a sintered layer B 2 (not shown) is formed on the sintered layer B 1 with respect to the planar metal powder P in the same manner as in FIG. .
By repeating the process described above, the sintered layers are laminated to produce a porous sintered plate having a desired thickness, and this sintered plate is subjected to end machining by ordinary machining, thereby producing the porous sintered plate of the present invention. 1 is formed.

以上、本発明の真空吸着装置用の多孔質焼結体及びその製造方法の実施例について説明してきたが、本発明はこれら実施例に限定されるものでは無い。
例えば、本発明の真空吸着装置用の多孔質焼結体は、金属粉体以外にも、セラミックス粉体を原料に作製することも可能である。
As mentioned above, although the Example of the porous sintered compact for vacuum adsorption apparatuses of this invention and its manufacturing method has been demonstrated, this invention is not limited to these Examples.
For example, the porous sintered body for a vacuum adsorption device of the present invention can be produced using ceramic powder as a raw material in addition to metal powder.

1: 多孔質焼結板
1a: 吸着作用部
1b: 非吸着作用部
1c: ネジ孔
2: 真空吸着装置
3: 真空箱
10: 3次元プリンタ
11: 造型チャンバ
11a: 台板
12: 粉体供給箱
13: 粉体回収箱
14: 出力ヘッド
: 焼結層
S: 吸着面
W: 板状ワーク
1: Porous sintered plate 1a: Adsorption action part 1b: Non-adsorption action part 1c: Screw hole 2: Vacuum adsorption device 3: Vacuum box 10: Three-dimensional printer 11: Molding chamber 11a: Base plate 12: Powder supply box 13: Powder recovery box 14: Output head B 1 : Sintered layer S: Suction surface W: Plate workpiece

Claims (4)

真空吸着パッドの吸着板に用いられる一体板状の焼結組織を有する多孔質焼結板であって、吸着面内に、気体透過性の異なる焼結組織領域で形成される吸着作用部と非吸着作用部とを有することを特徴とする多孔質焼結板。   A porous sintered plate having an integral plate-like sintered structure used for an adsorption plate of a vacuum adsorption pad, and an adsorption action portion formed in a sintered structure region having different gas permeability in the adsorption surface A porous sintered plate having an adsorption action part. 前記吸着作用部と前記非吸着作用部との間において、気孔率が連続的に変化していることを特徴とする請求項1に記載の多孔質焼結板。   2. The porous sintered plate according to claim 1, wherein the porosity continuously changes between the adsorption action part and the non-adsorption action part. 請求項1又は2に記載の多孔質焼結板を吸着板として備えることを特徴とする真空吸着パッド。   A vacuum suction pad comprising the porous sintered plate according to claim 1 as a suction plate. 請求項1又は2に記載の多孔質焼結板の製造方法であって、高エネルギービームの照射と走査により、粉体を板厚方向に積層焼結するとともに、焼結度合いを変化させて、吸着面内に、気体透過性の異なる吸着作用部と非吸着作用部とを形成することを特徴とする多孔質焼結板の製造方法。



The method for producing a porous sintered plate according to claim 1 or 2, wherein the powder is laminated and sintered in the plate thickness direction by irradiation and scanning with a high energy beam, and the degree of sintering is changed, A method for producing a porous sintered plate, wherein an adsorption portion and a non-adsorption portion having different gas permeability are formed in the adsorption surface.



JP2014009203A 2014-01-22 2014-01-22 Porous sinter plate, vacuum suction pad using the same, and production method of porous sinter plate Pending JP2015136753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014009203A JP2015136753A (en) 2014-01-22 2014-01-22 Porous sinter plate, vacuum suction pad using the same, and production method of porous sinter plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014009203A JP2015136753A (en) 2014-01-22 2014-01-22 Porous sinter plate, vacuum suction pad using the same, and production method of porous sinter plate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017003672U Continuation JP3213127U (en) 2017-08-09 2017-08-09 Vacuum suction pad

Publications (1)

Publication Number Publication Date
JP2015136753A true JP2015136753A (en) 2015-07-30

Family

ID=53768127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014009203A Pending JP2015136753A (en) 2014-01-22 2014-01-22 Porous sinter plate, vacuum suction pad using the same, and production method of porous sinter plate

Country Status (1)

Country Link
JP (1) JP2015136753A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847835A (en) * 1994-08-01 1996-02-20 Ckd Corp Suction plate of vacuum chuck
JPH11226833A (en) * 1998-02-13 1999-08-24 Ckd Corp Adsorptive plate for vacuum chuck and manufacture thereof
JP2004168610A (en) * 2002-11-21 2004-06-17 Toyota Motor Corp Manufacturing method of three dimensional sintered body and three dimensional sintered body
JP2005022027A (en) * 2003-07-02 2005-01-27 Taiheiyo Cement Corp Vacuum sucking device and its manufacturing method
JP2005059574A (en) * 2002-09-30 2005-03-10 Matsushita Electric Works Ltd Method for producing three-dimensional shaped article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847835A (en) * 1994-08-01 1996-02-20 Ckd Corp Suction plate of vacuum chuck
JPH11226833A (en) * 1998-02-13 1999-08-24 Ckd Corp Adsorptive plate for vacuum chuck and manufacture thereof
JP2005059574A (en) * 2002-09-30 2005-03-10 Matsushita Electric Works Ltd Method for producing three-dimensional shaped article
JP2004168610A (en) * 2002-11-21 2004-06-17 Toyota Motor Corp Manufacturing method of three dimensional sintered body and three dimensional sintered body
JP2005022027A (en) * 2003-07-02 2005-01-27 Taiheiyo Cement Corp Vacuum sucking device and its manufacturing method

Similar Documents

Publication Publication Date Title
US9604410B2 (en) Three dimensional printer
JP6722676B2 (en) Additive manufacturing method, object data processing method, data carrier, object data processor, and object manufactured by the same
JP2020505251A (en) Additive manufacturing equipment combining electron beam selective melting and electron beam cutting
JP5189953B2 (en) Manufacturing method of three-dimensional shaped object
JP3213127U (en) Vacuum suction pad
KR20150115598A (en) Device and method for forming a 3-dimensional shaped object
TWI670125B (en) Additive manufacturing method, method of processing object data, data carrier, object data processor and manufactured object
WO2015133576A1 (en) Joined body manufacturing method and joined body
WO2018154737A1 (en) Production method for impeller
TW201917816A (en) Semiconductor manufacturing device member and method for preparing same
JP3213128U (en) Vacuum suction pad
JP2006257463A (en) Powdery material to be sintered by laser, manufacturing method therefor, three-dimensional structure and manufacturing method therefor
JP2008211097A (en) Vacuum suction apparatus and manufacturing method thereof
JP2016002698A (en) Writing ball formed by powder sintering laminate shaping method, and writing instrument having the same
JP2015136754A (en) Porous sinter plate, vacuum suction pad using the same, and production method of porous sinter plate
JP2003321704A (en) Lamination shaping method and lamination shaping apparatus used in the same
US20170157884A1 (en) Porous aerostatic carrier and porous body therein
EP3501797B1 (en) Method for additively manufacturing of three-dimensional objects
JP2015136753A (en) Porous sinter plate, vacuum suction pad using the same, and production method of porous sinter plate
JP2015030872A (en) Method and apparatus for production of three-dimensional laminate formed object
JP2019190591A (en) Porous static pressure air bearing and its process of manufacture
JP2014095515A (en) Work-piece storage container, optical element heat treatment container using the same, and process of manufacture of workpiece storage container
JP2016196694A (en) Laminate molding method and laminate molding apparatus
JP4867745B2 (en) Manufacturing method of three-dimensional shaped object
JP2008311297A (en) Electrode plate for plasma treatment apparatus, manufacturing method thereof, and plasma treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170616