JP2015135122A - Vehicle control device, and vehicle control method - Google Patents

Vehicle control device, and vehicle control method Download PDF

Info

Publication number
JP2015135122A
JP2015135122A JP2012074896A JP2012074896A JP2015135122A JP 2015135122 A JP2015135122 A JP 2015135122A JP 2012074896 A JP2012074896 A JP 2012074896A JP 2012074896 A JP2012074896 A JP 2012074896A JP 2015135122 A JP2015135122 A JP 2015135122A
Authority
JP
Japan
Prior art keywords
thrust
oil chamber
hydraulic pressure
ratio
pulley
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012074896A
Other languages
Japanese (ja)
Inventor
嘉裕 倉橋
Yoshihiro Kurahashi
嘉裕 倉橋
山崎 正典
Masanori Yamazaki
正典 山崎
中崎 勝啓
Katsuhiro Nakasaki
勝啓 中崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
JATCO Ltd
Original Assignee
Nissan Motor Co Ltd
JATCO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, JATCO Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2012074896A priority Critical patent/JP2015135122A/en
Priority to PCT/JP2013/053256 priority patent/WO2013145902A1/en
Publication of JP2015135122A publication Critical patent/JP2015135122A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66254Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)
  • Transmissions By Endless Flexible Members (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle control device having a continuously variable transmission which is enhanced in shift speed.SOLUTION: A vehicle control device for controlling a vehicle comprises a continuously variable transmission 1 having a primary pulley 2 having a second oil chamber 2d and a first oil chamber 2c communicating with a third oil chamber 3c of a secondary pulley 3. The vehicle control device also comprises: thrust ratio calculation means 6 which calculates a thrust ratio being a value which is obtained by dividing a primary thrust by a secondary thrust; instruction thrust ratio calculation means 6 which calculates an instruction thrust ratio that achieves a target speed ratio of the continuously variable transmission 1; and hydraulic pressure control means 6 which controls hydraulic pressure supply means 7 on the basis of the instruction thrust ratio. When the instruction thrust ratio is smaller than a lower limit thrust ratio which is set by dividing a pressure receiving area of the first oil chamber 2c by a pressure receiving area of the third oil chamber 3c, the hydraulic pressure control means 6 controls the hydraulic pressure supply means 7 so that a difference between the thrust ratio and the lower limit thrust ratio becomes large.

Description

本発明は車両の制御装置および車両の制御方法に関するものである。   The present invention relates to a vehicle control device and a vehicle control method.

従来、プライマリプーリの油室として第1油室と第2油室とを設け、第1油室とセカンダリプーリの油室とを油路によって連通する無段変速機が特許文献1に開示されている。   Conventionally, Patent Document 1 discloses a continuously variable transmission in which a first oil chamber and a second oil chamber are provided as oil chambers of a primary pulley, and the first oil chamber and the oil chamber of a secondary pulley are communicated by an oil passage. Yes.

特開2009−236255号公報JP 2009-236255 A

無段変速機では、Low側に変速する場合には、プライマリプーリの油室の油を少なくしてプライマリプーリの推力を減少させる、またはセカンダリプーリの油室の油を多くしてセカンダリプーリの推力を増加させる、もしくはその両方を行うことで変速を実現することができる。つまり、プライマリプーリの推力をセカンダリプーリの推力で除算した推力比を小さくすることで、Low側への変速を実現することができ、目標推力比を小さくし、現在の推力比と目標推力比との差分を大きくすることで変速速度を大きくし、Low側への変速を素早く行うことができる。   In a continuously variable transmission, when shifting to the Low side, the oil in the primary pulley oil chamber is reduced to reduce the thrust of the primary pulley, or the oil in the secondary pulley oil chamber is increased to increase the thrust of the secondary pulley. The shift can be realized by increasing or both. That is, by reducing the thrust ratio obtained by dividing the thrust of the primary pulley by the thrust of the secondary pulley, the shift to the Low side can be realized, the target thrust ratio is reduced, and the current thrust ratio and the target thrust ratio are By increasing the difference, it is possible to increase the shift speed and quickly shift to the Low side.

しかし、上記発明においては、無段変速機の変速比をLow側へ変速させる場合に、セカンダリプーリの油室と連通していない第2油室の油圧をゼロにすることは可能であるが、第1油室はセカンダリプーリの油室に連通しているので、セカンダリプーリの油室に油圧が供給されると第1油室にも油圧が供給され、第1油室の油圧を低くすることができない。そのため、第2油室の油圧がゼロとなった後は、第1油室の受圧面積をセカンダリプーリの油室の受圧面積で除算した下限推力比よりも小さい推力比とすることができず、現在の推力比と目標推力比との差分を大きくすることができず、変速速度を大きくすることができず、Low側への変速を素早く行うことができない。   However, in the above invention, when shifting the transmission ratio of the continuously variable transmission to the Low side, it is possible to make the hydraulic pressure of the second oil chamber not communicating with the oil chamber of the secondary pulley zero. Since the first oil chamber communicates with the oil chamber of the secondary pulley, when the oil pressure is supplied to the oil chamber of the secondary pulley, the oil pressure is also supplied to the first oil chamber, and the oil pressure of the first oil chamber is lowered. I can't. Therefore, after the oil pressure in the second oil chamber becomes zero, it is not possible to make the thrust ratio smaller than the lower limit thrust ratio obtained by dividing the pressure receiving area of the first oil chamber by the pressure receiving area of the oil chamber of the secondary pulley, The difference between the current thrust ratio and the target thrust ratio cannot be increased, the shift speed cannot be increased, and the shift to the Low side cannot be performed quickly.

本発明はこのような問題点を解決するために発明されたもので、プライマリプーリが第1油室および第2油室を有しており、第1油室がセカンダリプーリの油室と連通する無段変速機において、変速速度を大きくし、Low側への変速を素早く行うことを目的とする。   The present invention has been invented to solve such problems. The primary pulley has a first oil chamber and a second oil chamber, and the first oil chamber communicates with the oil chamber of the secondary pulley. An object of the continuously variable transmission is to increase the shift speed and quickly shift to the Low side.

本発明のある態様に係る車両の制御装置は、第1油室と第2油室とを有し、第1油室の油圧よって生じる第1推力と第2油室の油圧によって生じる第2推力との合計推力であるプライマリ推力に応じて可動プーリを固定プーリの軸方向に変位させるプライマリプーリと、第1油室と連通する第3油室を有し、第3油室の油圧によって生じるセカンダリ推力に応じて可動プーリを固定プーリの軸方向に変位させるセカンダリプーリと、第1油室と第3油室とに油圧を供給する油圧供給手段とを有し、第3油室に油圧が供給されると第1油室に油が供給される無段変速機を備えた車両を制御する車両の制御装置であって、プライマリ推力をセカンダリ推力で除算した値である推力比を算出する推力比算出手段と、無段変速機の目標変速比を達成する指示推力比を算出する指示推力比算出手段と、指示推力比に基づいて油圧供給手段を制御する油圧制御手段とを備え、油圧制御手段は、指示推力比が、第1油室の受圧面積を第3油室の受圧面積で除算して設定される下限推力比よりも小さい場合に、推力比と下限推力比との差が大きくなるように油圧供給手段を制御する。   A vehicle control device according to an aspect of the present invention includes a first oil chamber and a second oil chamber, and a first thrust generated by the oil pressure of the first oil chamber and a second thrust generated by the oil pressure of the second oil chamber. A primary pulley that displaces the movable pulley in the axial direction of the fixed pulley in accordance with the primary thrust that is the total thrust of the second pulley, and a third oil chamber that communicates with the first oil chamber, and a secondary that is generated by the hydraulic pressure of the third oil chamber A secondary pulley that displaces the movable pulley in the axial direction of the fixed pulley according to thrust, and a hydraulic pressure supply means that supplies hydraulic pressure to the first oil chamber and the third oil chamber, and the hydraulic pressure is supplied to the third oil chamber When this is done, it is a vehicle control device for controlling a vehicle including a continuously variable transmission in which oil is supplied to the first oil chamber, and a thrust ratio that calculates a thrust ratio that is a value obtained by dividing the primary thrust by the secondary thrust. Achieving the target transmission ratio of the calculation means and continuously variable transmission An instruction thrust ratio calculating means for calculating an instruction thrust ratio; and a hydraulic control means for controlling the hydraulic pressure supply means based on the instruction thrust ratio. The oil pressure control means has an instruction thrust ratio indicating a pressure receiving area of the first oil chamber. When it is smaller than the lower limit thrust ratio set by dividing by the pressure receiving area of the third oil chamber, the hydraulic pressure supply means is controlled so that the difference between the thrust ratio and the lower limit thrust ratio becomes large.

本発明の別の態様に係る車両の制御方法は、第1油室と第2油室とを有し、第1油室の油圧よって生じる第1推力と第2油室の油圧によって生じる第2推力との合計推力であるプライマリ推力に応じて可動プーリを固定プーリの軸方向に変位させるプライマリプーリと、第1油室と連通する第3油室を有し、第3油室の油圧によって生じるセカンダリ推力に応じて可動プーリを固定プーリの軸方向に変位させるセカンダリプーリと、第1油室と第3油室とに油圧を供給する油圧供給手段とを有し、油圧供給手段によって第3油室に油圧が供給されると第1油室に油が供給される無段変速機を備えた車両を制御する車両の制御方法であって、プライマリ推力をセカンダリ推力で除算した値である推力比を算出し、無段変速機の目標変速比を達成する指示推力比を算出し、指示推力比が、第1油室の受圧面積を第3油室の受圧面積で除算して設定される下限推力比よりも小さい場合に、推力比と下限推力比との差が大きくなるように油圧供給手段を制御する。   A vehicle control method according to another aspect of the present invention includes a first oil chamber and a second oil chamber, and a second thrust generated by the first thrust generated by the oil pressure of the first oil chamber and the oil pressure of the second oil chamber. It has a primary pulley that displaces the movable pulley in the axial direction of the fixed pulley according to the primary thrust that is the total thrust with the thrust, and a third oil chamber that communicates with the first oil chamber, and is generated by the hydraulic pressure of the third oil chamber A secondary pulley that displaces the movable pulley in the axial direction of the fixed pulley according to the secondary thrust; and a hydraulic pressure supply means that supplies hydraulic pressure to the first oil chamber and the third oil chamber. A vehicle control method for controlling a vehicle including a continuously variable transmission in which oil is supplied to a first oil chamber when hydraulic pressure is supplied to the chamber, wherein the thrust ratio is a value obtained by dividing primary thrust by secondary thrust To achieve the target gear ratio of the continuously variable transmission When the commanded thrust ratio is smaller than the lower limit thrust ratio set by dividing the pressure receiving area of the first oil chamber by the pressure received area of the third oil chamber, the thrust ratio and the lower limit thrust ratio are calculated. The hydraulic pressure supply means is controlled so as to increase the difference.

これら態様によると、目標変速比を達成する指示推力比が加減推力比よりも小さい場合でも、油圧供給手段によってセカンダリプーリに供給する油圧を制御することで、変速速度を大きくすることができ、Low側への変速を素早く行うことができる。   According to these aspects, even when the command thrust ratio for achieving the target gear ratio is smaller than the acceleration / deceleration thrust ratio, the gear speed can be increased by controlling the hydraulic pressure supplied to the secondary pulley by the hydraulic pressure supply means. Shift to the side can be performed quickly.

本実施形態の無段変速機の概略構成図である。It is a schematic block diagram of the continuously variable transmission of this embodiment. 本実施形態の変速制御を示すフローチャートである。It is a flowchart which shows the shift control of this embodiment. 伝達トルク比とバランス推力比と変速比との関係を示すマップである。It is a map which shows the relationship between transmission torque ratio, balance thrust ratio, and gear ratio. 要求変速速度と変速差推力との関係を示すマップである。It is a map which shows the relationship between a request | requirement transmission speed and a transmission difference thrust. 本実施形態の変速制御を示すタイムチャートである。It is a time chart which shows the shift control of this embodiment.

本発明の実施形態の無段変速機について図1を用いて説明する。図1は、車両に搭載される無段変速機の概略構成図である。   A continuously variable transmission according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic configuration diagram of a continuously variable transmission mounted on a vehicle.

無段変速機1は、プライマリプーリ2と、セカンダリプーリ3と、ベルト4と、油圧制御回路5と、コントローラ6とを備える。   The continuously variable transmission 1 includes a primary pulley 2, a secondary pulley 3, a belt 4, a hydraulic control circuit 5, and a controller 6.

プライマリプーリ2は、固定プーリ2aと、可動プーリ2bと、第1油室2cと、第2油室2dとを備える。プライマリプーリ2は、固定プーリ2aと可動プーリ2bとによってV字状の溝を形成する。   The primary pulley 2 includes a fixed pulley 2a, a movable pulley 2b, a first oil chamber 2c, and a second oil chamber 2d. The primary pulley 2 forms a V-shaped groove by the fixed pulley 2a and the movable pulley 2b.

第1油室2cは、可動プーリ2bの背面側に形成され、油圧制御回路5によって油圧が給排される。第1油室2cは、セカンダリプーリ3の油室3cと連通しており、セカンダリプーリ3の油室3cへ油圧が給排されると、それに応じて第1油室2cにも油圧が給排される。   The first oil chamber 2 c is formed on the back side of the movable pulley 2 b, and the hydraulic pressure is supplied and discharged by the hydraulic control circuit 5. The first oil chamber 2c communicates with the oil chamber 3c of the secondary pulley 3, and when hydraulic pressure is supplied to or discharged from the oil chamber 3c of the secondary pulley 3, the hydraulic pressure is supplied to or discharged from the first oil chamber 2c accordingly. Is done.

第2油室2dは、第1油室2cよりも可動プーリ2b側に形成され、油圧制御回路5を介して油圧が給排される。第2油室2dは、セカンダリプーリ3の油室3cと連通しておらず、第2油室2dに給排される油圧は、第1油室2cに給排される油圧に対して独立して制御される。   The second oil chamber 2 d is formed closer to the movable pulley 2 b than the first oil chamber 2 c, and the hydraulic pressure is supplied and discharged via the hydraulic control circuit 5. The second oil chamber 2d does not communicate with the oil chamber 3c of the secondary pulley 3, and the hydraulic pressure supplied to and discharged from the second oil chamber 2d is independent of the hydraulic pressure supplied to and discharged from the first oil chamber 2c. Controlled.

第1油室2cの油圧および第2油室2dの油圧を制御することで、プライマリプーリ2の可動プーリ2bの推力(以下、プライマリ推力と言う。)が制御され、可動プーリ2bは、プライマリ推力に応じて固定プーリ2aの軸方向に変位し、プライマリプーリ2におけるベルト4の挟持力が制御される。プライマリ推力は、第1油室2cに供給される油圧によって生じる推力(以下、第1推力と言う。)と、第2油室2dに供給される油圧によって生じる推力(以下、第2推力と言う。)との合計推力である。   By controlling the hydraulic pressure of the first oil chamber 2c and the hydraulic pressure of the second oil chamber 2d, the thrust of the movable pulley 2b of the primary pulley 2 (hereinafter referred to as primary thrust) is controlled, and the movable pulley 2b Accordingly, the fixed pulley 2a is displaced in the axial direction, and the clamping force of the belt 4 in the primary pulley 2 is controlled. The primary thrust is a thrust generated by the hydraulic pressure supplied to the first oil chamber 2c (hereinafter referred to as a first thrust) and a thrust generated by the hydraulic pressure supplied to the second oil chamber 2d (hereinafter referred to as a second thrust). .) And total thrust.

セカンダリプーリ3は、固定プーリ3aと、可動プーリ3bと、油室3cとを備える。セカンダリプーリ3は、固定プーリ3aと可動プーリ3bとによってV字状の溝を形成する。   The secondary pulley 3 includes a fixed pulley 3a, a movable pulley 3b, and an oil chamber 3c. The secondary pulley 3 forms a V-shaped groove by the fixed pulley 3a and the movable pulley 3b.

油室3cは、可動プーリ3bの背面側に形成され、油圧制御回路5によって油圧が給排される。油室3cは、第1油室2cと連通している。油室3cの受圧面積は、プライマリプーリの第1油室2cの受圧面積よりも大きい。   The oil chamber 3 c is formed on the back side of the movable pulley 3 b, and the hydraulic pressure is supplied and discharged by the hydraulic control circuit 5. The oil chamber 3c communicates with the first oil chamber 2c. The pressure receiving area of the oil chamber 3c is larger than the pressure receiving area of the first oil chamber 2c of the primary pulley.

油室3cの油圧を制御することで、セカンダリプーリ3の可動プーリ3bの推力(以下、セカンダリ推力と言う。)が制御され、可動プーリ3bは、セカンダリ推力に応じて可動プーリ3b軸方向に変位し、セカンダリプーリ3におけるベルト4の挟持力が制御される。   By controlling the hydraulic pressure of the oil chamber 3c, the thrust of the movable pulley 3b of the secondary pulley 3 (hereinafter referred to as secondary thrust) is controlled, and the movable pulley 3b is displaced in the axial direction of the movable pulley 3b according to the secondary thrust. And the clamping force of the belt 4 in the secondary pulley 3 is controlled.

ベルト4は、プライマリプーリ2のV溝と、セカンダリプーリ3のV溝との間に掛け渡され、プライマリプーリ2とセカンダリプーリ3との間で動力を伝達する。プライマリプーリ2の第1油室2c、第2油室2d、およびセカンダリプーリ3の油室3cに油圧を給排することで、ベルト4とプライマリプーリ2と、ベルト4とセカンダリプーリ3との接触半径が変更され、無段変速機1の変速比が変更される。   The belt 4 is stretched between the V groove of the primary pulley 2 and the V groove of the secondary pulley 3, and transmits power between the primary pulley 2 and the secondary pulley 3. Contact between the belt 4, the primary pulley 2, and the belt 4 and the secondary pulley 3 by supplying and discharging hydraulic pressure to and from the first oil chamber 2 c, the second oil chamber 2 d of the primary pulley 2, and the oil chamber 3 c of the secondary pulley 3. The radius is changed, and the gear ratio of the continuously variable transmission 1 is changed.

油圧制御回路5は、オイルポンプ7と、レギュレータバルブ8と、減圧弁9と、第1プライマリ圧供給路10と、第2プライマリ圧供給路11と、セカンダリ圧供給路12とを備える。第1プライマリ圧供給路10よりもレギュレータバルブ8側のセカンダリ圧供給路12にはオリフィス13が設けられている。   The hydraulic control circuit 5 includes an oil pump 7, a regulator valve 8, a pressure reducing valve 9, a first primary pressure supply path 10, a second primary pressure supply path 11, and a secondary pressure supply path 12. An orifice 13 is provided in the secondary pressure supply path 12 closer to the regulator valve 8 than the first primary pressure supply path 10.

レギュレータバルブ8は、オイルポンプ7から吐出された油圧を調整し、ライン圧に調圧する。減圧弁9は、ライン圧をプライマリプーリ2の第2油室2dに供給する所定の油圧まで減圧する。   The regulator valve 8 adjusts the hydraulic pressure discharged from the oil pump 7 to adjust the line pressure. The pressure reducing valve 9 reduces the line pressure to a predetermined hydraulic pressure that is supplied to the second oil chamber 2 d of the primary pulley 2.

ライン圧は、セカンダリ圧供給路12を介してセカンダリプーリ3の油室3cに給排される。また、ライン圧の一部は、セカンダリ圧供給路12から分岐する第1プライマリ圧供給路10を介して第1油室2cに給排される。つまり、セカンダリ圧供給路12を介してセカンダリプーリ3の油室3cに油圧が供給される場合には、油圧の一部が第1プライマリ圧供給路10を介してプライマリプーリ2の第1油室2cにも供給される。セカンダリプーリ3の油室3cに供給される油圧が、プライマリプーリ2の第1油室2cに供給されるので、無段変速機1の変速比をHigh側へ変更する場合に、第2油室2dに供給する油圧を高くすると変速に必要な油圧差、つまりプライマリ推力とセカンダリ推力との差推力が発生する。   The line pressure is supplied to and discharged from the oil chamber 3 c of the secondary pulley 3 through the secondary pressure supply path 12. A part of the line pressure is supplied to and discharged from the first oil chamber 2 c through the first primary pressure supply path 10 branched from the secondary pressure supply path 12. That is, when the hydraulic pressure is supplied to the oil chamber 3 c of the secondary pulley 3 via the secondary pressure supply path 12, a part of the hydraulic pressure is the first oil chamber of the primary pulley 2 via the first primary pressure supply path 10. 2c is also supplied. Since the hydraulic pressure supplied to the oil chamber 3c of the secondary pulley 3 is supplied to the first oil chamber 2c of the primary pulley 2, the second oil chamber is used when the gear ratio of the continuously variable transmission 1 is changed to the High side. When the hydraulic pressure supplied to 2d is increased, a hydraulic pressure difference required for shifting, that is, a differential thrust between the primary thrust and the secondary thrust is generated.

コントローラ6には、図示しないエンジンコントローラから出力された入力トルクTinに関する信号、アクセルペダル開度センサ20から出力された信号、プライマリプーリ回転速度センサ21から出力された信号、セカンダリプーリ回転速度センサ22から出力された信号、車速センサ23から出力された信号が入力する。コントローラ6は、これらの信号に基づいて、レギュレータバルブ8、減圧弁9などを制御する信号を出力する。   The controller 6 includes a signal related to the input torque Tin output from an engine controller (not shown), a signal output from the accelerator pedal opening sensor 20, a signal output from the primary pulley rotational speed sensor 21, and a secondary pulley rotational speed sensor 22. The output signal and the signal output from the vehicle speed sensor 23 are input. Based on these signals, the controller 6 outputs signals for controlling the regulator valve 8, the pressure reducing valve 9, and the like.

コントローラ6は、CPU、ROM、RAMなどによって構成され、ROMに格納されたプログラムをCPUによって読み出すことによって、コントローラ6の各機能が発揮される。   The controller 6 is constituted by a CPU, a ROM, a RAM, and the like, and each function of the controller 6 is exhibited by reading a program stored in the ROM by the CPU.

次に本実施形態の変速制御について図2のフローチャートを用いて説明する。ここでは、車両がコースト状態であり、最Lowへ変速を行う場合について説明する。コースト状態とは、アクセルペダルが踏み込まれていない状態である。コースト状態では、エンジンから無段変速機1に入力する入力トルクTiの単位時間あたりの変化量は微小であり、本制御においては一定である。   Next, the shift control of this embodiment will be described with reference to the flowchart of FIG. Here, a case will be described in which the vehicle is in a coasting state and shifts to the lowest level. The coast state is a state where the accelerator pedal is not depressed. In the coast state, the amount of change per unit time of the input torque Ti input from the engine to the continuously variable transmission 1 is minute and is constant in this control.

ステップS100では、コントローラ6は、入力トルクTinに基づいて無段変速機1でベルト滑りが発生しないセカンダリ推力FZSを算出する。 In step S100, the controller 6 calculates a secondary thrust FZS that does not cause belt slip in the continuously variable transmission 1 based on the input torque Tin.

ステップS101では、コントローラ6は、伝達トルク比T、現在の変速比とから図3のマップに基づいて、現在のバランス推力比(推力比)Fを算出する。図3は、伝達トルク比Tと、変速比と、バランス推力比Fとの関係を示す図である。伝達トルク比Tは、入力トルクTinを現在の推力によって伝達可能な最大入力トルクTinMAXで除算した値である。伝達トルク比Tは、車両がコースト状態である場合には負の値となり、車両がドライブ状態である場合には正の値となる。変速比は、プライマリプーリ回転速度をセカンダリプーリ回転速度で除算して算出される。バランス推力比Fは、プライマリ推力FPをセカンダリ推力FSで除算した値である。バランス推力比Fはプライマリプーリ2の第1油室2c、第2油室2d、およびセカンダリプーリ3の油室3cに実際に供給されている油圧に基づく推力比を示している。   In step S101, the controller 6 calculates the current balance thrust ratio (thrust ratio) F from the transmission torque ratio T and the current gear ratio based on the map of FIG. FIG. 3 is a diagram illustrating the relationship among the transmission torque ratio T, the transmission ratio, and the balance thrust ratio F. The transmission torque ratio T is a value obtained by dividing the input torque Tin by the maximum input torque TinMAX that can be transmitted by the current thrust. The transmission torque ratio T is a negative value when the vehicle is in a coast state, and is a positive value when the vehicle is in a drive state. The gear ratio is calculated by dividing the primary pulley rotational speed by the secondary pulley rotational speed. The balance thrust ratio F is a value obtained by dividing the primary thrust FP by the secondary thrust FS. The balance thrust ratio F indicates a thrust ratio based on the hydraulic pressure actually supplied to the first oil chamber 2c, the second oil chamber 2d of the primary pulley 2, and the oil chamber 3c of the secondary pulley 3.

ステップS102では、コントローラ6は、要求変速速度から図4のマップに基づいて、変速差推力を算出し、変速差推力を生じさせるためのプライマリ差推力FZDIF_P、セカンダリ差推力FZDIF_Sを算出する。要求変速速度は、アクセルペダルの踏み込み量、車速などに基づいて算出される。ここでは、プライマリ差推力FZDIF_Pをゼロとし、変速差推力の値をセカンダリ差推力FZDIF_Sとする。要求変速速度に従って無段変速機1で変速差推力が発生すると、無段変速機1では目標変速比に従った変速が実行される。 In step S102, the controller 6 calculates a shift difference thrust from the requested shift speed based on the map of FIG. 4, and calculates a primary difference thrust F ZDIF_P and a secondary difference thrust F ZDIF_S for generating the shift difference thrust. The required shift speed is calculated based on the accelerator pedal depression amount, the vehicle speed, and the like. Here, the primary differential thrust FZDIF_P is set to zero, and the shift differential thrust is set to the secondary differential thrust FZDIF_S . When a shift difference thrust is generated in the continuously variable transmission 1 according to the requested shift speed, the continuously variable transmission 1 executes a shift according to the target gear ratio.

ステップS103では、コントローラ6は、セカンダリ推力FZSに変速差推力FZDIF_Sを加算し、変速に必要な変速セカンダリ推力FZS_outを算出する。 In step S103, the controller 6 adds the speed difference thrust F ZDIF_S the secondary thrust F ZS, calculates the shift secondary thrust F ZS_out required shift.

ステップS104では、コントローラ6は、セカンダリ推力FZSにバランス推力比Fを乗算してセカンダリ推力FZSに釣り合うプライマリ推力FZPを算出し、これにプライマリ差推力FZDIF_Pを加算して、プライマリ推力FZP_outを算出する。ここではプライマリ差推力FZDIF_Pはゼロである。 In step S104, the controller 6 calculates the primary thrust force F ZP commensurate with secondary thrust F ZS by multiplying the balance thrust ratio F to the secondary thrust force F ZS, by adding the primary thrust difference F ZDIF_P thereto, the primary thrust force F ZP_out is calculated. Here, the primary differential thrust FZDIF_P is zero.

ステップS105では、コントローラ6は、プライマリプーリ2の第1油室2cに供給される油圧によって発生する推力である第1推力FZP_out1を算出する。第1推力FZP_out1は、変速セカンダリ推力FZS_outに、プライマリプーリ2の第1油室2cの受圧面積AreaP1をセカンダリプーリ3の油室3cの受圧面積AreaSで除算した値を乗算した値である。 In step S105, the controller 6 calculates a first thrust F ZP_out1 that is a thrust generated by the hydraulic pressure supplied to the first oil chamber 2c of the primary pulley 2. The first thrust F ZP_out1 is a value obtained by multiplying the speed change secondary thrust F ZS_out by a value obtained by dividing the pressure receiving area AreaP1 of the first oil chamber 2c of the primary pulley 2 by the pressure receiving area AreaS of the oil chamber 3c of the secondary pulley 3.

ステップS106では、コントローラ6は、プライマリプーリ2の第2油室2dに供給される油圧によって発生する推力である第2推力FZP_out2を算出する。第2推力FZP_out2は、プライマリ推力FZP_outから第1推力FZP_out1を減算して算出される。 In step S106, the controller 6 calculates a second thrust F ZP_out2 that is a thrust generated by the hydraulic pressure supplied to the second oil chamber 2d of the primary pulley 2. The second thrust F ZP_out2 is calculated by subtracting the first thrust F ZP_out1 from the primary thrust F ZP_out .

ステップS103によって算出した変速セカンダリ推力FZS_out、ステップS105によって算出した第1推力FZP_out1、およびステップS106によって算出した第2推力FZP_out2となるように、セカンダリプーリ3の油室3c、プライマリプーリ2の第1油室2c、第2油室2dに供給される油圧が制御されると、目標変速速度を達成するために設定される推力比が指示推力比となる。 The oil pressure chamber 3c of the secondary pulley 3 and the primary pulley 2 of the primary pulley 2 are set so as to be the transmission secondary thrust F ZS_out calculated in step S103, the first thrust F ZP_out1 calculated in step S105, and the second thrust F ZP_out2 calculated in step S106. When the hydraulic pressure supplied to the first oil chamber 2c and the second oil chamber 2d is controlled, the thrust ratio set to achieve the target shift speed becomes the command thrust ratio.

ステップS107では、コントローラ6は、第2推力FZP_out2がゼロ以下であるかどうか判定する。コントローラ6は、第2推力FZP_out2がゼロ以下である場合にはステップS108に進み、第2推力FZP_out2がゼロよりも大きい場合にはステップS112へ進む。 In step S107, the controller 6 determines whether or not the second thrust F ZP_out2 is equal to or less than zero. Controller 6, when the second thrust F ZP_out2 is less than zero, the process proceeds to step S108, if the second thrust F ZP_out2 is greater than zero, the process proceeds to step S112.

ステップS107によって第2推力FZP_out2がゼロ以下になると、プライマリプーリ2の第2油室2dに供給されている油圧によってはプライマリプーリ2の可動プーリ2bは固定プーリ2a側へ押されないので、プライマリ推力は第1推力FZP_out1に等しくなる。プライマリプーリ2の第1油室2cとセカンダリプーリ3の油室3cとは連通しているので、2つの油室2c、3cの油圧はほぼ等しい。従って、第2推力FZP_out2がゼロ以下となった運転状態においては、指示推力比はプライマリプーリ2の第1油室2cの受圧面積とセカンダリプーリ3の油室3cに受圧面積との比で固定される。つまり、第2推力FZP_out2がゼロ以下になると、指示推力比は下限推力比となり、目標となる指示推力比を達成することができない。下限推力比は、プライマリプーリ2の第1油室2cの受圧面積をセカンダリプーリ3の油室3cに受圧面積で除算した値であり、第2油室2dの油圧がゼロになった場合のプライマリ推力と、セカンダリ推力との比を示すものである。 When the second thrust F ZP_out2 becomes zero or less in step S107, the movable pulley 2b of the primary pulley 2 is not pushed toward the fixed pulley 2a depending on the hydraulic pressure supplied to the second oil chamber 2d of the primary pulley 2. Becomes equal to the first thrust F ZP_out1 . Since the first oil chamber 2c of the primary pulley 2 and the oil chamber 3c of the secondary pulley 3 communicate with each other, the oil pressures of the two oil chambers 2c and 3c are substantially equal. Therefore, in the operation state in which the second thrust FZP_out2 is less than or equal to zero, the indicated thrust ratio is fixed by the ratio of the pressure receiving area of the first oil chamber 2c of the primary pulley 2 to the oil receiving chamber 3c of the secondary pulley 3. Is done. That is, when the second thrust FZP_out2 becomes zero or less, the command thrust ratio becomes the lower limit thrust ratio, and the target command thrust ratio cannot be achieved. The lower limit thrust ratio is a value obtained by dividing the pressure receiving area of the first oil chamber 2c of the primary pulley 2 by the pressure receiving area of the oil chamber 3c of the secondary pulley 3, and the primary oil pressure when the oil pressure of the second oil chamber 2d becomes zero. The ratio of thrust and secondary thrust is shown.

第2推力FZP_out2がゼロ以下となる場合は、車両が減速し、変速比が最Low付近まで大きくなるような運転状態である場合が想定される。例えば図3に示すマップで、車両の運転状態がA点となっている状態から最Lowまで変速させる場合には、伝達トルク比Tを一定として指示推力比を小さくすることで変速比を最Lowに変更することができる。しかし、変速比を素早く最Lowまで変更するために、目標変速比を一時的に最Lowよりも大きい値に指示する場合には、指示推力比が下限推力比よりも小さい値(図3中、B点)となるように油圧が制御されても、実際には指示推力比を下限推力比よりも小さくすることができない。図3においては、矢印の長さ(現在の変速比に応じたバランス推力比と目標変速比に応じたバランス推力比との差分)が長いほど変速速度を大きくすることができ、変速比を最Lowへ素早く変更することができることを示している。このように、指示推力比を下限推力比よりも小さくすることができないので、変速速度を大きくすることができず、変速比を最Lowへ素早く変更することができない。 When the second thrust F ZP_out2 is less than or equal to zero, it is assumed that the vehicle is in a driving state in which the vehicle decelerates and the gear ratio increases to near the lowest. For example, in the map shown in FIG. 3, when shifting from the state where the driving state of the vehicle is the point A to the lowest level, the transmission ratio T is kept constant by making the transmission torque ratio T constant and the transmission ratio is made the lowest. Can be changed. However, when the target gear ratio is temporarily instructed to a value larger than the maximum Low in order to quickly change the gear ratio to the lowest level, the indicated thrust ratio is smaller than the lower limit thrust ratio (in FIG. 3, Even if the hydraulic pressure is controlled so as to be (B point), the indicated thrust ratio cannot actually be made smaller than the lower limit thrust ratio. In FIG. 3, as the length of the arrow (the difference between the balance thrust ratio according to the current gear ratio and the balance thrust ratio according to the target gear ratio) is longer, the speed can be increased and the speed ratio is maximized. It shows that it can be changed quickly to Low. Thus, since the command thrust ratio cannot be made smaller than the lower limit thrust ratio, the shift speed cannot be increased, and the shift ratio cannot be quickly changed to the lowest level.

そこで、本実施形態では、変速比を素早く最Lowに変更するために、伝達トルク比Tを変更する。伝達トルク比Tは、入力トルクTinを現在の推力によって伝達可能な最大入力トルクTinMAXで除算した値である。本実施形態では、最大入力トルクTinMAXを大きくすることで伝達トルク比Tを変更する。最大入力トルクTinMAXはセカンダリプーリ3におけるベルト挟持力、つまりセカンダリ推力を変更することで変更される。これにより、無段変速機1の運転状態は図3のC点となる状態に変更され、変更される前と比較して、矢印の長さが長くなり、指示推力比と下限推力比との差が大きくなる。そのため、変速速度を大きくすることができ、変速比を素早く最Lowに変更することができる。   Therefore, in the present embodiment, the transmission torque ratio T is changed in order to quickly change the gear ratio to the lowest level. The transmission torque ratio T is a value obtained by dividing the input torque Tin by the maximum input torque TinMAX that can be transmitted by the current thrust. In the present embodiment, the transmission torque ratio T is changed by increasing the maximum input torque TinMAX. The maximum input torque TinMAX is changed by changing the belt clamping force in the secondary pulley 3, that is, the secondary thrust. As a result, the operating state of the continuously variable transmission 1 is changed to a state at point C in FIG. 3, and the length of the arrow becomes longer than before the change, and the instruction thrust ratio and the lower limit thrust ratio are reduced. The difference increases. Therefore, the transmission speed can be increased, and the transmission ratio can be quickly changed to the lowest level.

ステップS108では、コントローラ6は、式(1)に基づいて新セカンダリ推力FZS_outNを算出する。 In step S108, the controller 6 calculates a new secondary thrust FZS_outN based on the equation (1).

Figure 2015135122
Figure 2015135122

式(1)は、式(2)を変形したものである。   Expression (1) is a modification of Expression (2).

Figure 2015135122
Figure 2015135122

式(2)は、式(3)を以下のように変形したものである。   Expression (2) is obtained by modifying Expression (3) as follows.

Figure 2015135122
Figure 2015135122

プライマリプーリ2の第2油室2dに供給される油圧による第2推力FZP_out2がゼロ以下となるような状態で変速する場合の変速差推力の特性は、ベルト滑りが発生しないセカンダリ推力FZSと、バランス推力比Fと、プライマリプーリ2の第1油室2cの受圧面積AreaP1とセカンダリプーリ3の油室3cの受圧面積AreaSとの面積比(AreaP1/AreaS)との偏差と、新セカンダリ推力FZS_outNとの比例関係であることが判った。式(2)はこの関係を示す。ここでは式(2)のFZDIF_Pはゼロ、FZDIF_ALLは変速に必要な変速差推力であり、第2推力FZP_out2でセカンダリ差推力(−FZDIF_S)ある。 The characteristics of the shift differential thrust when shifting in a state where the second thrust F ZP_out2 due to the hydraulic pressure supplied to the second oil chamber 2d of the primary pulley 2 is zero or less is the secondary thrust F ZS in which belt slip does not occur. The deviation between the balance thrust ratio F and the area ratio (AreaP1 / AreaS) between the pressure receiving area AreaP1 of the first oil chamber 2c of the primary pulley 2 and the pressure receiving area AreaS of the oil chamber 3c of the secondary pulley 3 and the new secondary thrust F It was found that it is proportional to ZS_outN . Equation (2) shows this relationship. Here, F ZDIF_P in equation (2) is zero, F ZDIF_ALL is a shift difference thrust required for shifting, and the second thrust F ZP_out2 is a secondary difference thrust (−F ZDIF_S ).

ステップS109では、コントローラ6は、新セカンダリ推力FZS_outNとセカンダリ強度限界推力とを比較する。コントローラ6は、新セカンダリ推力FZS_outNがセカンダリ強度限界推力以下である場合にはステップS110へ進み、新セカンダリ推力FZS_outNがセカンダリ強度限界推力よりも大きい場合にはステップS111へ進む。セカンダリ強度限界推力は、予め設定される値であり、無段変速機1が劣化しない上限推力である。 In step S109, the controller 6 compares the new secondary thrust FZS_outN with the secondary strength limit thrust. The controller 6, when the new secondary thrust F ZS_outN is below secondary strength limit thrust proceeds to step S110, in case the new secondary thrust F ZS_outN is greater than the secondary intensity limit thrust proceeds to step S111. The secondary strength limit thrust is a value set in advance and is an upper limit thrust at which the continuously variable transmission 1 does not deteriorate.

ステップS110では、コントローラ6は、セカンダリ推力が新セカンダリ推力FZS_outNとなるように油圧を制御する。具体的にはコントローラ6は、レギュレータバルブ8を制御する。これにより最大入力トルクTinMAXが大きくなり、伝達トルク比Tが大きくなり、指示推力比と下限推力比との差が大きくなるので、最Lowへの変速を素早く行うことができる。 In step S110, the controller 6 controls the hydraulic pressure so that the secondary thrust becomes the new secondary thrust FZS_outN . Specifically, the controller 6 controls the regulator valve 8. As a result, the maximum input torque TinMAX increases, the transmission torque ratio T increases, and the difference between the commanded thrust ratio and the lower limit thrust ratio increases, so that shifting to the lowest level can be performed quickly.

ステップS111では、コントローラ6は、セカンダリ推力がセカンダリ強度限界推力となるように油圧を制御する。具体的にはコントローラ6は、レギュレータバルブ8を制御する。これにより無段変速機1の劣化を抑制しつつ、最Lowへの変速を素早く行うことができる。   In step S111, the controller 6 controls the hydraulic pressure so that the secondary thrust becomes the secondary strength limit thrust. Specifically, the controller 6 controls the regulator valve 8. Thereby, it is possible to quickly shift to the lowest level while suppressing deterioration of the continuously variable transmission 1.

ステップS112では、コントローラ6は、セカンダリ推力が変速セカンダリ推力FZS_outとなるように、また第2推力がステップS106によって算出した第2推力FZP_out2となるように油圧を制御する。具体的にはコントローラ6は、レギュレータバルブ8、および減圧弁9を制御する。 In Step S112, the controller 6 controls the hydraulic pressure so that the secondary thrust becomes the shift secondary thrust F ZS_out and the second thrust becomes the second thrust F ZP_out2 calculated in Step S106. Specifically, the controller 6 controls the regulator valve 8 and the pressure reducing valve 9.

次に本実施形態の変速制御について図5のタイムチャートを用いて説明する。   Next, the shift control of this embodiment will be described with reference to the time chart of FIG.

時間t0において、車両が減速し、無段変速機1の変速比を最Lowへ変更する変速が開始される。Low側への変速を行うために、セカンダリプーリ3の油室3cへ油圧が供給され、セカンダリプーリ圧が高くなり、セカンダリ推力が大きくなる(図5中、A)。プライマリプーリ2の第1油室2cはセカンダリプーリ3の油室3cと連通しているのでセカンダリプーリ3の油室3cへ油圧が供給されると第1油室2cにも油圧が供給され、プライマリプーリ2の第1推力は大きくなる(図5中、B)。変速比を最Lowに変更するためにプライマリ推力を小さくするので、プライマリプーリ2では第1推力の増加分を考慮してプライマリプーリ2の第2油室2dから油圧が排出され、第2推力は小さくなる(図5中、C)。   At time t0, the vehicle decelerates and a shift is started to change the gear ratio of the continuously variable transmission 1 to the lowest level. In order to shift to the Low side, hydraulic pressure is supplied to the oil chamber 3c of the secondary pulley 3, the secondary pulley pressure increases, and the secondary thrust increases (A in FIG. 5). Since the first oil chamber 2c of the primary pulley 2 communicates with the oil chamber 3c of the secondary pulley 3, when the oil pressure is supplied to the oil chamber 3c of the secondary pulley 3, the oil pressure is also supplied to the first oil chamber 2c. The first thrust of the pulley 2 increases (B in FIG. 5). Since the primary thrust is reduced in order to change the gear ratio to the lowest level, the primary pulley 2 takes into account the increase in the first thrust, and the hydraulic pressure is discharged from the second oil chamber 2d of the primary pulley 2, and the second thrust is (C in FIG. 5).

時間t1において、第2推力がゼロ以下となる場合に、第2推力分の差推力がセカンダリ推力と第1推力との間で差推力として発生するようにセカンダリプーリ3の油室3cに供給する油圧を高くし、セカンダリ推力を大きくする(図5中、D)。これにより、最大入力トルクが大きくなり、伝達トルク比が大きくなるので、変速速度を大きくし、変速比を素早く最Lowに変更することができる。図5において第2推力の不足分を破線で示す(図5中、E)。セカンダリプーリ3の油室3cに供給する油圧を高くすると、プライマリプーリ2の第1油室2cに供給される油圧も高くなるが、セカンダリプーリ3の油室3cの受圧面積はプライマリプーリ2の第1油室2cの受圧面積よりも大きいので、セカンダリ推力と第1推力(プライマリ推力)との差推力が大きくなる。そのため、変速速度を大きくし、変速比を素早く最Lowに変更することができる。   When the second thrust becomes zero or less at time t1, the differential thrust for the second thrust is supplied to the oil chamber 3c of the secondary pulley 3 so as to be generated as a differential thrust between the secondary thrust and the first thrust. The hydraulic pressure is increased and the secondary thrust is increased (D in FIG. 5). As a result, the maximum input torque is increased and the transmission torque ratio is increased, so that the transmission speed can be increased and the transmission ratio can be quickly changed to the lowest level. In FIG. 5, the shortage of the second thrust is indicated by a broken line (E in FIG. 5). When the hydraulic pressure supplied to the oil chamber 3c of the secondary pulley 3 is increased, the hydraulic pressure supplied to the first oil chamber 2c of the primary pulley 2 is also increased, but the pressure receiving area of the oil chamber 3c of the secondary pulley 3 is the same as that of the primary pulley 2. Since it is larger than the pressure receiving area of one oil chamber 2c, the differential thrust between the secondary thrust and the first thrust (primary thrust) increases. Therefore, the speed change speed can be increased and the speed ratio can be quickly changed to the lowest level.

時間t2において、変速比が最Lowとなり、車両が停車すると、変速比を最Lowに維持される。セカンダリ推力および第1推力はベルト滑りが生じない所定の推力となるように減少する。また、次回の発進に備えて、プライマリプーリ2の第2油室2dに油圧が供給され、第2推力は高くなる。   At time t2, when the speed ratio is at the lowest level and the vehicle stops, the speed ratio is maintained at the lowest level. The secondary thrust and the first thrust decrease so as to be a predetermined thrust that does not cause belt slip. In preparation for the next start, the hydraulic pressure is supplied to the second oil chamber 2d of the primary pulley 2 and the second thrust is increased.

なお、図5においてはセカンダリ強度限界推力を一点鎖線で示しており、セカンダリ推力がセカンダリ強度限界推力となるとセカンダリ推力は、セカンダリ強度限界推力に維持される。   In FIG. 5, the secondary strength limit thrust is indicated by a one-dot chain line. When the secondary thrust becomes the secondary strength limit thrust, the secondary thrust is maintained at the secondary strength limit thrust.

本発明の実施形態の効果について説明する。   The effect of the embodiment of the present invention will be described.

プライマリプーリ2がセカンダリプーリ3の油室3cと連通する第1油室2cと、セカンダリプーリ3の油室3cと連通しない第2油室2dとを有し、目標変速比を達成するための指示推力比が下限推力比よりも小さい場合に、現在の指示推力比と下限推力比との差が大きくなるように伝達トルク比を変更する。これにより、変速速度が大きくなり、Low側への変速を素早く行うことができる(請求項1に対応する効果)。   The primary pulley 2 has a first oil chamber 2c communicating with the oil chamber 3c of the secondary pulley 3, and a second oil chamber 2d not communicating with the oil chamber 3c of the secondary pulley 3, and an instruction for achieving the target gear ratio When the thrust ratio is smaller than the lower limit thrust ratio, the transmission torque ratio is changed so that the difference between the current indicated thrust ratio and the lower limit thrust ratio becomes large. As a result, the shift speed increases, and the shift to the Low side can be performed quickly (effect corresponding to claim 1).

プライマリプーリの油室とセカンダリプーリの油室とをそれぞれ1つ備えた無段変速機が一般的であるが、変速に必要な油圧を下げるために、プライマリプーリとセカンダリプーリとでそれぞれ2つの油室を備えることも可能である。この無段変速機では、プライマリプーリの第1油室とセカンダリプーリの第1油室、プライマリプーリの第2油室とセカンダリプーリの第2油室とを連通している。この無段変速機では、変速に必要な油圧を下げることができるが、各油室で行き来する油によって変速を実現するので、変速に必要な推力を発生させるために、油室に供給する油量が増大する、といった問題がある。   A continuously variable transmission having one primary pulley oil chamber and one secondary pulley oil chamber is generally used, but in order to reduce the hydraulic pressure required for shifting, two oils are respectively provided for the primary pulley and the secondary pulley. It is also possible to provide a chamber. In this continuously variable transmission, the first oil chamber of the primary pulley and the first oil chamber of the secondary pulley, and the second oil chamber of the primary pulley and the second oil chamber of the secondary pulley are communicated. In this continuously variable transmission, the hydraulic pressure required for shifting can be reduced, but since shifting is achieved by the oil traveling in each oil chamber, the oil supplied to the oil chamber is generated in order to generate thrust necessary for shifting. There is a problem that the amount increases.

そこで、変速に必要な油圧を下げつつ、油室に供給する油量の増大を抑制するために、プライマリプーリの第1油室とセカンダリプーリの油室とを連通し、プライマリプーリの第2油室をセカンダリプーリの油室と連通させない無段変速機とすることが考えられる。本実施形態では、このような無段変速機において、Low側への変速を素早く行うことができる。   Therefore, in order to suppress an increase in the amount of oil supplied to the oil chamber while lowering the hydraulic pressure required for shifting, the first oil chamber of the primary pulley and the oil chamber of the secondary pulley are communicated with each other, and the second oil of the primary pulley is communicated. It is conceivable to provide a continuously variable transmission that does not allow the chamber to communicate with the oil chamber of the secondary pulley. In the present embodiment, in such a continuously variable transmission, shifting to the Low side can be performed quickly.

本実施形態では、変速比をLow側へ変更するためにセカンダリプーリ3の油室3cに油圧を供給すると、プライマリプーリ2の第1油室2cにも油圧が供給される。そのため、プライマリプーリ2の第2油室2dの油圧による第2推力がゼロ以下となると、指示推力比がプライマリプーリ2の第1油室2cの受圧面積をセカンダリプーリ3の油室3cの受圧面積で除算した下限推力比に固定される。このような無段変速機1においても伝達トルク比を変更することで、変速速度を大きくし、Low側への変速を素早く行うことができる。   In the present embodiment, when the hydraulic pressure is supplied to the oil chamber 3c of the secondary pulley 3 in order to change the gear ratio to the Low side, the hydraulic pressure is also supplied to the first oil chamber 2c of the primary pulley 2. Therefore, when the second thrust due to the hydraulic pressure of the second oil chamber 2d of the primary pulley 2 becomes zero or less, the indicated thrust ratio becomes the pressure receiving area of the first oil chamber 2c of the primary pulley 2 as the pressure receiving area of the oil chamber 3c of the secondary pulley 3. Fixed to the lower limit thrust ratio divided by. In such a continuously variable transmission 1 as well, by changing the transmission torque ratio, it is possible to increase the shift speed and quickly shift to the Low side.

第2推力FZP_out2がゼロ以下である場合に、不足する第2推力FZP_out2分の差推力が生じるようにセカンダリプーリ3の油室3c、およびプライマリプーリ2の第1油室2cに供給される油圧を高くする。これにより、Low側への変速を素早く行い、かつセカンダリプーリ3の油室3c、およびプライマリプーリ2の第1油室2cの油圧増加量を少なくすることができる。そのため、Low側への変速を素早く行い、かつオイルポンプ7における駆動力消費量を抑制することができる(請求項2、5に対応する効果)。 When the second thrust F ZP_out2 is equal to or less than zero, the differential thrust for the second thrust F ZP_out2 that is insufficient is supplied to the oil chamber 3c of the secondary pulley 3 and the first oil chamber 2c of the primary pulley 2. Increase hydraulic pressure. As a result, the shift to the Low side can be performed quickly, and the amount of increase in hydraulic pressure in the oil chamber 3c of the secondary pulley 3 and the first oil chamber 2c of the primary pulley 2 can be reduced. Therefore, the shift to the Low side can be performed quickly and the driving force consumption in the oil pump 7 can be suppressed (effect corresponding to claims 2 and 5).

車両がコースト状態であり、指示推力比が下限推力比よりも小さい場合に、セカンダリプーリ3の油室3c、およびプライマリプーリ2の第1油室2cに供給される油圧を高くすることで、変速速度を大きくし、Low側への変速を素早く行うことができる(請求項3に対応する効果)。   When the vehicle is in a coast state and the commanded thrust ratio is smaller than the lower limit thrust ratio, the hydraulic pressure supplied to the oil chamber 3c of the secondary pulley 3 and the first oil chamber 2c of the primary pulley 2 is increased to change the speed. The speed can be increased and the shift to the Low side can be performed quickly (effect corresponding to claim 3).

本発明は上記した実施形態に限定されるものではなく、その技術的思想の範囲内でなしうるさまざまな変更、改良が含まれることは言うまでもない。   It goes without saying that the present invention is not limited to the above-described embodiments, and includes various modifications and improvements that can be made within the scope of the technical idea.

本実施形態では、伝達トルク比Tを大きくすることでバランス推力比Fが大きくなることによって指示推力比と下限推力比との差を大きくし、変速速度を大きくしてLow側への変速を素早く行ったが、伝達トルク比Tを小さくすることで、指示推力比と下限推力比との差を大きくしてもよい。これによっても、変速速度を大きくしてLow側への変速を素早く行うことができる。   In this embodiment, increasing the transmission torque ratio T increases the balance thrust ratio F, thereby increasing the difference between the indicated thrust ratio and the lower limit thrust ratio, and increasing the shift speed to quickly shift to the Low side. However, the difference between the indicated thrust ratio and the lower limit thrust ratio may be increased by reducing the transmission torque ratio T. Also by this, the shift speed can be increased and the shift to the Low side can be performed quickly.

本実施形態では、第2推力の分だけ差推力が生じるようにセカンダリプーリ3の油室3cおよびプライマリプーリ2の第1油室2cに油圧を供給したが、この油圧を無段変速機1における最大油圧としてもよい。これにより変速速度をさらに大きくし、さらにLow側への変速を素早く行うことができる(請求項4に対応する効果)。   In the present embodiment, the hydraulic pressure is supplied to the oil chamber 3c of the secondary pulley 3 and the first oil chamber 2c of the primary pulley 2 so that a differential thrust is generated by the amount of the second thrust. The maximum hydraulic pressure may be used. As a result, the shift speed can be further increased, and the shift to the Low side can be quickly performed (effect corresponding to claim 4).

本実施形態では、第2油室2dを第1油室2cよりも可動プーリ2b側に形成しているが、第1油室を第2油室よりも可動プーリ側に形成してもよい。   In the present embodiment, the second oil chamber 2d is formed closer to the movable pulley 2b than the first oil chamber 2c. However, the first oil chamber may be formed closer to the movable pulley than the second oil chamber.

本実施形態では、無段変速機1は、ライン圧をセカンダリ圧として供給するいわゆる片調圧方式であるが、ライン圧を減圧してセカンダリ圧として供給するいわゆる両調圧方式であってもよい。   In the present embodiment, the continuously variable transmission 1 is a so-called single pressure adjustment system that supplies line pressure as a secondary pressure. .

1 無段変速機
2 プライマリプーリ
2a 固定プーリ
2b 可動プーリ
2c 第1油室
2d 第2油室
3 セカンダリプーリ
3a 固定プーリ
3b 可動プーリ
3c 油室(第3油室)
6 コントローラ(推力比算出手段、指示推力比算出手段、油圧制御手段)
7 オイルポンプ(油圧供給手段)
1 continuously variable transmission 2 primary pulley 2a fixed pulley 2b movable pulley 2c first oil chamber 2d second oil chamber 3 secondary pulley 3a fixed pulley 3b movable pulley 3c oil chamber (third oil chamber)
6 Controller (thrust ratio calculation means, instruction thrust ratio calculation means, hydraulic control means)
7 Oil pump (hydraulic supply means)

Claims (6)

第1油室と第2油室とを有し、前記第1油室の油圧よって生じる第1推力と前記第2油室の油圧によって生じる第2推力との合計推力であるプライマリ推力に応じて可動プーリを固定プーリの軸方向に変位させるプライマリプーリと、
前記第1油室と連通する第3油室を有し、前記第3油室の油圧によって生じるセカンダリ推力に応じて可動プーリを固定プーリの軸方向に変位させるセカンダリプーリと、
前記第1油室と前記第3油室とに油圧を供給する油圧供給手段とを有し、前記第3油室に油圧が供給されると前記第1油室に油が供給される無段変速機を備えた車両を制御する車両の制御装置であって、
前記プライマリ推力を前記セカンダリ推力で除算した値である推力比を算出する推力比算出手段と、
前記無段変速機の目標変速比を達成する指示推力比を算出する指示推力比算出手段と、
前記指示推力比に基づいて前記油圧供給手段を制御する油圧制御手段とを備え、
前記油圧制御手段は、前記指示推力比が、前記第1油室の受圧面積を前記第3油室の受圧面積で除算して設定される下限推力比よりも小さい場合に、前記推力比と前記下限推力比との差が大きくなるように前記油圧供給手段を制御することを特徴とする車両の制御装置。
According to a primary thrust that is a total thrust of a first thrust generated by the hydraulic pressure of the first oil chamber and a second thrust generated by the hydraulic pressure of the second oil chamber. A primary pulley that displaces the movable pulley in the axial direction of the fixed pulley;
A secondary pulley having a third oil chamber communicating with the first oil chamber, and displacing the movable pulley in the axial direction of the fixed pulley according to the secondary thrust generated by the hydraulic pressure of the third oil chamber;
And a hydraulic pressure supply means for supplying hydraulic pressure to the first oil chamber and the third oil chamber. When the hydraulic pressure is supplied to the third oil chamber, oil is supplied to the first oil chamber. A vehicle control device for controlling a vehicle including a transmission,
Thrust ratio calculation means for calculating a thrust ratio that is a value obtained by dividing the primary thrust by the secondary thrust;
An instruction thrust ratio calculating means for calculating an instruction thrust ratio for achieving a target speed ratio of the continuously variable transmission;
Hydraulic control means for controlling the hydraulic pressure supply means based on the indicated thrust ratio,
When the indicated thrust ratio is smaller than a lower limit thrust ratio set by dividing the pressure receiving area of the first oil chamber by the pressure receiving area of the third oil chamber, the hydraulic pressure control means A control apparatus for a vehicle, wherein the hydraulic pressure supply means is controlled so that a difference from a lower limit thrust ratio becomes large.
前記指示推力比算出手段は、
運転状態に基づいて前記目標変速比を達成する前記セカンダリ推力を算出するセカンダリ推力算出手段と、
前記目標変速比を達成する前記プライマリ推力を前記セカンダリ推力に基づいて算出するプライマリ推力算出手段と、
前記第1推力を算出する第1推力算出手段と、
前記プライマリ推力および前記第1推力に基づいて前記第2推力を算出する第2推力算出手段とを備え、
前記油圧制御手段は、前記第2推力算出手段によって算出された前記第2推力がゼロ以下である場合に、前記第2推力算出手段によって算出された前記第2推力に基づいて前記油圧供給手段を制御することを特徴とする請求項1に記載の車両の制御装置。
The instruction thrust ratio calculation means includes:
Secondary thrust calculation means for calculating the secondary thrust for achieving the target gear ratio based on the driving state;
Primary thrust calculation means for calculating the primary thrust for achieving the target gear ratio based on the secondary thrust;
First thrust calculating means for calculating the first thrust;
Second thrust calculation means for calculating the second thrust based on the primary thrust and the first thrust,
The hydraulic pressure control means controls the hydraulic pressure supply means based on the second thrust calculated by the second thrust calculation means when the second thrust calculated by the second thrust calculation means is equal to or less than zero. The vehicle control device according to claim 1, wherein the vehicle control device controls the vehicle.
前記油圧制御手段は、前記車両がコースト状態である場合に、前記第1油室および前記第3油室に供給される油圧が高くなるように前記油圧供給手段を制御することを特徴とする請求項1または2に記載の車両の制御装置。   The hydraulic pressure control means controls the hydraulic pressure supply means so that the hydraulic pressure supplied to the first oil chamber and the third oil chamber is high when the vehicle is in a coasting state. Item 3. The vehicle control device according to Item 1 or 2. 前記油圧制御手段は、前記第1油室または前記第3油室に供給される油圧を前記無段変速機における最大油圧にすることを特徴とする請求項1から3のいずれか一つに記載の車両の制御装置。   4. The hydraulic control unit according to claim 1, wherein the hydraulic pressure supplied to the first oil chamber or the third oil chamber is set to a maximum hydraulic pressure in the continuously variable transmission. 5. Vehicle control device. 前記油圧制御手段は、前記第2推力算出手段によって算出された前記第2推力がゼロ以下である場合に、前記第2推力算出手段によって算出された前記第2推力の分だけ、前記セカンダリ推力と前記第1推力との差が生じるように前記油圧供給手段を制御することを特徴とする請求項1から3のいずれか一つに記載の車両の制御装置。   When the second thrust calculated by the second thrust calculation means is less than or equal to zero, the hydraulic pressure control means is equal to the secondary thrust by the amount of the second thrust calculated by the second thrust calculation means. 4. The vehicle control device according to claim 1, wherein the hydraulic pressure supply unit is controlled such that a difference from the first thrust is generated. 5. 第1油室と第2油室とを有し、前記第1油室の油圧よって生じる第1推力と前記第2油室の油圧によって生じる第2推力との合計推力であるプライマリ推力に応じて可動プーリを固定プーリの軸方向に変位させるプライマリプーリと、
前記第1油室と連通する第3油室を有し、前記第3油室の油圧によって生じるセカンダリ推力に応じて可動プーリを固定プーリの軸方向に変位させるセカンダリプーリと、
前記第1油室と前記第3油室とに油圧を供給する油圧供給手段とを有し、前記油圧供給手段によって前記第3油室に油圧が供給されると前記第1油室に油が供給される無段変速機を備えた車両を制御する車両の制御方法であって、
前記プライマリ推力を前記セカンダリ推力で除算した値である推力比を算出し、
前記無段変速機の目標変速比を達成する指示推力比を算出し、
前記指示推力比が、前記第1油室の受圧面積を前記第3油室の受圧面積で除算して設定される下限推力比よりも小さい場合に、前記推力比と前記下限推力比との差が大きくなるように前記油圧供給手段を制御することを特徴とする車両の制御方法。
According to a primary thrust that is a total thrust of a first thrust generated by the hydraulic pressure of the first oil chamber and a second thrust generated by the hydraulic pressure of the second oil chamber. A primary pulley that displaces the movable pulley in the axial direction of the fixed pulley;
A secondary pulley having a third oil chamber communicating with the first oil chamber, and displacing the movable pulley in the axial direction of the fixed pulley according to the secondary thrust generated by the hydraulic pressure of the third oil chamber;
Hydraulic pressure supply means for supplying hydraulic pressure to the first oil chamber and the third oil chamber, and when hydraulic pressure is supplied to the third oil chamber by the hydraulic pressure supply means, oil is supplied to the first oil chamber. A vehicle control method for controlling a vehicle including a continuously variable transmission to be supplied,
Calculating a thrust ratio which is a value obtained by dividing the primary thrust by the secondary thrust;
Calculating an instruction thrust ratio that achieves a target speed ratio of the continuously variable transmission;
The difference between the thrust ratio and the lower limit thrust ratio when the indicated thrust ratio is smaller than the lower limit thrust ratio set by dividing the pressure receiving area of the first oil chamber by the pressure receiving area of the third oil chamber. A control method for a vehicle, wherein the hydraulic pressure supply means is controlled so as to increase.
JP2012074896A 2012-03-28 2012-03-28 Vehicle control device, and vehicle control method Pending JP2015135122A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012074896A JP2015135122A (en) 2012-03-28 2012-03-28 Vehicle control device, and vehicle control method
PCT/JP2013/053256 WO2013145902A1 (en) 2012-03-28 2013-02-12 Vehicle control device and vehicle control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012074896A JP2015135122A (en) 2012-03-28 2012-03-28 Vehicle control device, and vehicle control method

Publications (1)

Publication Number Publication Date
JP2015135122A true JP2015135122A (en) 2015-07-27

Family

ID=49259185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012074896A Pending JP2015135122A (en) 2012-03-28 2012-03-28 Vehicle control device, and vehicle control method

Country Status (2)

Country Link
JP (1) JP2015135122A (en)
WO (1) WO2013145902A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018096622A1 (en) * 2016-11-24 2018-05-31 日産自動車株式会社 Method for controlling continuously variable transmission, and continuously variable transmission system
CN110230692A (en) * 2018-03-05 2019-09-13 上海汽车集团股份有限公司 A kind of method and device updating main slave cylinder thrust ratio and speed ratio relational graph

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6637466B2 (en) * 2017-05-02 2020-01-29 本田技研工業株式会社 Transmission unit and control method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3464347B2 (en) * 1996-06-25 2003-11-10 三菱電機株式会社 Transmission control device for continuously variable transmission
JP4317116B2 (en) * 2004-11-08 2009-08-19 ジヤトコ株式会社 Hydraulic control device for belt type continuously variable transmission
JP4857004B2 (en) * 2006-03-29 2012-01-18 富士重工業株式会社 Control device for continuously variable transmission
JP2012052619A (en) * 2010-09-02 2012-03-15 Toyota Motor Corp Control device of belt type continuously variable transmission for vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018096622A1 (en) * 2016-11-24 2018-05-31 日産自動車株式会社 Method for controlling continuously variable transmission, and continuously variable transmission system
JPWO2018096622A1 (en) * 2016-11-24 2019-10-17 日産自動車株式会社 Continuously variable transmission control method and continuously variable transmission system
US10527164B2 (en) 2016-11-24 2020-01-07 Nissan Motor Co., Ltd. Method for controlling continuously variable transmission and continuously variable transmission system
CN110230692A (en) * 2018-03-05 2019-09-13 上海汽车集团股份有限公司 A kind of method and device updating main slave cylinder thrust ratio and speed ratio relational graph
CN110230692B (en) * 2018-03-05 2020-08-28 上海汽车集团股份有限公司 Method and device for updating relation graph of thrust ratio and speed ratio of driving cylinder and driven cylinder

Also Published As

Publication number Publication date
WO2013145902A1 (en) 2013-10-03

Similar Documents

Publication Publication Date Title
KR101376371B1 (en) Method for operating a hybrid drive device having a torque converter
US10507833B2 (en) Vehicle control device and method for controlling the same
CN108779846B (en) Control device for continuously variable transmission and control method for continuously variable transmission
KR20130070542A (en) Line pressure control apparatus for vehicle
KR102105888B1 (en) Hybrid vehicle control unit
KR101994018B1 (en) Method of controlling vehicle and vehicle
WO2018043052A1 (en) Control method and control apparatus for continuously variable transmission
WO2013145902A1 (en) Vehicle control device and vehicle control method
KR20190044072A (en) Control device of continuously variable transmission
KR20180122727A (en) Control device and control method of vehicle equipped with continuously variable transmission
WO2018043056A1 (en) Control method and control apparatus for continuously variable transmission
US10240672B2 (en) Control device for continuously variable transmission and method for controlling the same
US10794481B2 (en) Control device for continuously variable transmission and control method for continuously variable transmission
WO2018047559A1 (en) Continuously variable transmission and continuously variable transmission control method
JP6772846B2 (en) Control method of continuously variable transmission
WO2016021316A1 (en) Controller for continuously variable transmission
JP6101187B2 (en) Control device and control method for automatic transmission
US11085535B2 (en) Automatic transmission control method and control device
JP7305287B2 (en) belt type continuously variable transmission
EP3273106A1 (en) Transmission control device and transmission control method
JP2007064371A (en) Control device for continuously variable transmission