JP2015134324A - Copper-supported catalyst and method of producing the same, method of producing lactic acid, and method of producing formic acid - Google Patents

Copper-supported catalyst and method of producing the same, method of producing lactic acid, and method of producing formic acid Download PDF

Info

Publication number
JP2015134324A
JP2015134324A JP2014007027A JP2014007027A JP2015134324A JP 2015134324 A JP2015134324 A JP 2015134324A JP 2014007027 A JP2014007027 A JP 2014007027A JP 2014007027 A JP2014007027 A JP 2014007027A JP 2015134324 A JP2015134324 A JP 2015134324A
Authority
JP
Japan
Prior art keywords
copper
supported catalyst
catalyst
lactic acid
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014007027A
Other languages
Japanese (ja)
Inventor
海老谷 幸喜
Koki Ebiya
幸喜 海老谷
俊 西村
Shun Nishimura
俊 西村
ヘマント チョウダリ
Choudhary Hemant
ヘマント チョウダリ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Advanced Institute of Science and Technology
Original Assignee
Japan Advanced Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Advanced Institute of Science and Technology filed Critical Japan Advanced Institute of Science and Technology
Priority to JP2014007027A priority Critical patent/JP2015134324A/en
Publication of JP2015134324A publication Critical patent/JP2015134324A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a copper-supported catalyst which makes it possible to efficiently obtain a lactic acid or formic acid from a monosaccharide under low temperature condition and can be used repeatedly.SOLUTION: A copper-supported catalyst is obtained by a method comprising a mixture step of applying hydrothermal treatment to a mixture obtained by mixing a solid base catalyst, a copper compound and a surfactant to obtain a catalyst precursor, and a firing step of firing the catalyst precursor to obtain the copper-supported catalyst.

Description

本発明は、銅担持触媒およびその製造方法関する。
また、本発明は、該銅担持触媒を用いた、乳酸の製造方法、および、ギ酸の製造方法にも関する。
The present invention relates to a copper-supported catalyst and a method for producing the same.
The present invention also relates to a method for producing lactic acid and a method for producing formic acid using the copper-supported catalyst.

乳酸およびギ酸は、医薬品・食品・化粧品などの原料として幅広く使用されており、一般的には、糖類の発酵にて合成されてきた。しかし、発酵法は、酵素と生成物との分離が難しい点や、温度やpHなどの各種条件の厳密な制御が必要である点や、酵素自体が非常に高コストである点など種々の問題が指摘されており、発酵法に代わる他の合成法が望まれている。
近年、上記要望を満たすために、バイオマスから得られる糖類を出発原料に用いて、乳酸またはギ酸を製造する方法の開発が望まれている。
Lactic acid and formic acid are widely used as raw materials for pharmaceuticals, foods, cosmetics, etc., and have been generally synthesized by fermentation of sugars. However, the fermentation method has various problems such as difficulty in separating the enzyme and product, the need for strict control of various conditions such as temperature and pH, and the fact that the enzyme itself is very expensive. Therefore, other synthetic methods to replace the fermentation method are desired.
In recent years, in order to satisfy the above-described demand, development of a method for producing lactic acid or formic acid using a saccharide obtained from biomass as a starting material is desired.

例えば、非特許文献1では、グルコースをNaOH(水酸化ナトリウム)水溶液中にて573Kで加熱することで乳酸が得られる旨が開示されている(乳酸の収率:24%)。
また、非特許文献2では、NaOHと過剰のHとの存在下、セルロースを523Kにて加熱することでギ酸が得られる旨が開示されている(ギ酸の収率:24%)。
For example, Non-Patent Document 1 discloses that lactic acid can be obtained by heating glucose at 573 K in a NaOH (sodium hydroxide) aqueous solution (lactic acid yield: 24%).
Non-Patent Document 2 discloses that formic acid can be obtained by heating cellulose at 523 K in the presence of NaOH and excess H 2 O 2 (formic acid yield: 24%).

Jin et. al., Chem. Lett., 2004, 33, 126.Jin et.al., Chem. Lett., 2004, 33, 126. Jin et. al., Green. Chem., 2008, 10, 612.Jin et.al., Green. Chem., 2008, 10, 612.

しかしながら、非特許文献1および2に記載の方法では、反応温度が非常に高く、必ずしも工業的には好ましくなく、より低温(例えば、200℃以下)での実施が望まれていた。また、得られる生成物(乳酸またはギ酸)の収率も低く、さらなる向上が必要であった。
さらに、工業的な観点からは、上記反応に触媒を使用する場合、その触媒が複数回繰り返して使用できることが望まれている。
However, in the methods described in Non-Patent Documents 1 and 2, the reaction temperature is very high, which is not necessarily industrially desirable, and has been desired to be performed at a lower temperature (for example, 200 ° C. or lower). Further, the yield of the obtained product (lactic acid or formic acid) was low, and further improvement was necessary.
Furthermore, from an industrial point of view, when a catalyst is used in the above reaction, it is desired that the catalyst can be used repeatedly several times.

本発明は、上記実情に鑑みて、単糖類から乳酸またはギ酸を低温条件下にて効率的に得ることができ、かつ、繰り返して使用可能な銅担持触媒およびその製造方法を提供することを目的とする。
また、本発明は、上記銅担持触媒を用いた、乳酸の製造方法、および、ギ酸の製造方法を提供することも目的とする。
In view of the above circumstances, an object of the present invention is to provide a copper-supported catalyst capable of efficiently obtaining lactic acid or formic acid from a monosaccharide under low temperature conditions and capable of being repeatedly used, and a method for producing the same. And
Another object of the present invention is to provide a method for producing lactic acid and a method for producing formic acid using the copper-supported catalyst.

本発明者らは、上記課題について鋭意検討した結果、固体塩基触媒、銅化合物、および、界面活性剤を用いて、所定の手順にて製造した銅担持触媒を使用することにより上記課題を解決できることを見出し、本発明を完成するに至った。
すなわち、以下に示す手段により上記課題を解決し得る。
As a result of intensive studies on the above problems, the present inventors can solve the above problems by using a copper-supported catalyst produced by a predetermined procedure using a solid base catalyst, a copper compound, and a surfactant. As a result, the present invention has been completed.
That is, the above problems can be solved by the following means.

(1) 固体塩基触媒、銅化合物および界面活性剤を混合して得られる混合物に対して、水熱処理を施して、触媒前駆体を得る混合工程と、
触媒前駆体を焼成して、銅担持触媒を得る焼成工程とを含む方法により得られる銅担持触媒。
(2) 界面活性剤が、カチオン性界面活性剤またはアニオン性界面活性剤を含む、(1)に記載の銅担持触媒。
(3) 銅化合物が、硫酸銅、塩化銅、硝酸銅、酢酸銅、ギ酸銅、過塩素酸銅、ヨウ素酸銅、および、リン酸銅からなる群から選択される少なくとも1種の銅塩を含む、(1)または(2)に記載の銅担持触媒。
(4) アルカリ条件下にて、(1)〜(3)のいずれかに記載の銅担持触媒と単糖類とを接触させて乳酸を得る、乳酸の製造方法。
(5) (1)〜(3)のいずれかに記載の銅担持触媒の存在下、単糖類と酸化剤とを反応させてギ酸を得る、ギ酸の製造方法。
(6) 固体塩基触媒、銅化合物および界面活性剤を混合して得られる混合物に対して、水熱処理を施して、触媒前駆体を得る混合工程と、
触媒前駆体を焼成して、銅担持触媒を得る焼成工程とを備える、銅担持触媒の製造方法。
(1) A mixing step of obtaining a catalyst precursor by subjecting a mixture obtained by mixing a solid base catalyst, a copper compound and a surfactant to hydrothermal treatment;
A copper-carrying catalyst obtained by a method comprising calcining a catalyst precursor to obtain a copper-carrying catalyst.
(2) The copper-supported catalyst according to (1), wherein the surfactant includes a cationic surfactant or an anionic surfactant.
(3) The copper compound is at least one copper salt selected from the group consisting of copper sulfate, copper chloride, copper nitrate, copper acetate, copper formate, copper perchlorate, copper iodate, and copper phosphate. The copper-supported catalyst according to (1) or (2).
(4) A method for producing lactic acid, wherein lactic acid is obtained by contacting the copper-supported catalyst according to any one of (1) to (3) with a monosaccharide under alkaline conditions.
(5) A method for producing formic acid, wherein formic acid is obtained by reacting a monosaccharide with an oxidizing agent in the presence of the copper-supported catalyst according to any one of (1) to (3).
(6) A mixing step of obtaining a catalyst precursor by subjecting a mixture obtained by mixing a solid base catalyst, a copper compound and a surfactant to hydrothermal treatment;
A method for producing a copper-supported catalyst, comprising: calcining a catalyst precursor to obtain a copper-supported catalyst.

本発明によれば、単糖類から乳酸またはギ酸を低温条件下にて効率的に得ることができ、かつ、繰り返して使用可能な銅担持触媒およびその製造方法を提供することができる。
また、本発明によれば、上記銅担持触媒を用いた、乳酸の製造方法、および、ギ酸の製造方法を提供することもできる。
ADVANTAGE OF THE INVENTION According to this invention, lactic acid or formic acid can be efficiently obtained from a monosaccharide under low temperature conditions, and the copper carrying catalyst which can be used repeatedly and its manufacturing method can be provided.
Moreover, according to this invention, the manufacturing method of lactic acid and the manufacturing method of formic acid using the said copper carrying catalyst can also be provided.

以下に、本発明の銅担持触媒およびその製造方法、並びに、該銅担持触媒を用いた乳酸の製造方法およびギ酸の製造方法の好適態様について説明する。
本発明の特徴点は、上述したように、固体塩基触媒、銅化合物および界面活性剤を用いて、所定の手順にて製造した銅担持触媒を使用している点が挙げられる。
以下では、まず、銅担持触媒の製造方法について詳述し、その後、該銅担持触媒を用いた各種反応について詳述する。
Below, the copper supported catalyst of this invention, its manufacturing method, and the suitable aspect of the manufacturing method of lactic acid using this copper supported catalyst, and the manufacturing method of formic acid are demonstrated.
As described above, the feature of the present invention is that a copper-supported catalyst produced by a predetermined procedure using a solid base catalyst, a copper compound and a surfactant is used.
Below, the manufacturing method of a copper supported catalyst is explained in full detail first, Then, various reactions using this copper supported catalyst are explained in full detail.

<銅担持触媒の製造方法>
銅担持触媒の製造方法の好適態様としては、触媒前駆体を得る混合工程、および、触媒前駆体を焼成して銅担持触媒を得る焼成工程の少なくとも2つの工程を有する態様が挙げられる。
以下、各工程で使用される材料、および、その手順について詳述する。
<Method for producing copper-supported catalyst>
As a suitable aspect of the manufacturing method of a copper supported catalyst, the aspect which has at least 2 process of the mixing process which obtains a catalyst precursor, and the baking process which calcines a catalyst precursor and obtains a copper supported catalyst is mentioned.
Hereinafter, the material used in each process and its procedure are explained in full detail.

[混合工程]
混合工程は、固体塩基触媒、銅化合物および界面活性剤を混合して得られる混合物に対して、水熱処理を施して、触媒前駆体を得る工程である。本工程を実施することにより、焼成処理が施される触媒前駆体が得られる。
以下では、まず、本工程で使用される材料(固体塩基触媒、銅化合物、界面活性剤など)について詳述し、その後、本工程の手順について詳述する。
[Mixing process]
The mixing step is a step of obtaining a catalyst precursor by subjecting a mixture obtained by mixing a solid base catalyst, a copper compound and a surfactant to hydrothermal treatment. By carrying out this step, a catalyst precursor subjected to a calcination treatment is obtained.
Below, the material (a solid base catalyst, a copper compound, surfactant, etc.) used at this process is explained in full detail first, and the procedure of this process is explained in full detail after that.

(固体塩基触媒)
固体塩基触媒とは、固体状態でその表面が塩基性を示す物質であり、例えば、金属酸化物、金属塩、担持塩基、複合酸化物、ゼオライトなどのうちで表面塩基性を示す固体である。例えば、アルカリ金属またはアルカリ土類金属の、酸化物、水酸化物、炭酸塩、リン酸塩、並びにこれらを含む混合酸化物などが挙げられる。より具体的には、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化ランタン、酸化セリウム、水酸化カルシウム、水酸化ストロンチウム、炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、炭酸水素カリウム、酸化ケイ素−酸化マグネシウム複合酸化物、酸化ケイ素−酸化カルシウム複合酸化物、酸化ケイ素−酸化ストロンチウム複合酸化物、Naイオン交換X型ゼオライト、Kイオン交換Y型ゼオライトが挙げられる。
この中でも、酸化マグネシウム、酸化カルシウム、水酸化カルシウム、酸化ストロンチウムおよび酸化バリウムからなる群から選ばれる1種以上を含む触媒が好ましい。なかでもアルカリ土類金属酸化物を用いることがより好ましい。
また、層状複水酸化物(ハイドロタルサイト)、ゼオライト(K−Y)を用いることもできる。さらに、通常用いられる担体に、酸化カルシウム、酸化マグネシウム等を担持させて得られる触媒を固体塩基触媒として用いてもよい。なお、担体としては無機多孔質坦体で中性または塩基性のものであれば用いることができる。例えば、アルミナ、珪藻土等が例示できる。
(Solid base catalyst)
The solid base catalyst is a substance whose surface is basic in a solid state, for example, a solid having surface basicity among metal oxides, metal salts, supported bases, composite oxides, zeolites and the like. Examples thereof include oxides, hydroxides, carbonates, phosphates, mixed oxides containing these, and the like of alkali metals or alkaline earth metals. More specifically, magnesium oxide, calcium oxide, strontium oxide, barium oxide, lanthanum oxide, cerium oxide, calcium hydroxide, strontium hydroxide, sodium carbonate, potassium carbonate, magnesium carbonate, calcium carbonate, barium carbonate, potassium bicarbonate , Silicon oxide-magnesium oxide composite oxide, silicon oxide-calcium oxide composite oxide, silicon oxide-strontium oxide composite oxide, Na ion exchange X-type zeolite, K ion exchange Y-type zeolite.
Among these, a catalyst containing at least one selected from the group consisting of magnesium oxide, calcium oxide, calcium hydroxide, strontium oxide and barium oxide is preferable. Among these, it is more preferable to use an alkaline earth metal oxide.
Further, layered double hydroxide (hydrotalcite) and zeolite (KY) can also be used. Furthermore, a catalyst obtained by supporting calcium oxide, magnesium oxide or the like on a commonly used carrier may be used as the solid base catalyst. As the carrier, any inorganic porous carrier that is neutral or basic can be used. Examples thereof include alumina and diatomaceous earth.

層状複水酸化物の代表例としてハイドロタルサイト類がある。ハイドロタルサイト類の一般式は[M2 + 1-X3+ X(OH)2][An- X/n・mH2O]で表される。
(ただし、M2+は2価の金属イオン、M3+は3価の金属イオン、An- X/nは層間陰イオンである。)
ハイドロタルサイト類は、層状粘土鉱物であり全体としては正の電荷を有するが層間および表面にアニオンが吸着する特質を持っており、表面のOH-、HCO3 -が塩基として機能する。
固体塩基触媒は、従来から公知の合成法により製造することができる。例えば、ゾル・ゲル法、共沈法、含浸法、尿素法等が例示される。
Hydrotalcite is a typical example of the layered double hydroxide. The general formula of hydrotalcites is represented by [M 2 + 1-X M 3+ X (OH) 2 ] [A n- X / n · mH 2 O].
(However, M 2+ is a divalent metal ion, M 3+ is a trivalent metal ion, and A n− X / n is an interlayer anion.)
Hydrotalcites are lamellar clay minerals and have a positive charge as a whole, but have the property that anions are adsorbed between the layers and on the surface, and OH and HCO 3 − on the surface function as bases.
The solid base catalyst can be produced by a conventionally known synthesis method. For example, sol-gel method, coprecipitation method, impregnation method, urea method and the like are exemplified.

(銅化合物)
銅化合物は、銅元素を含む化合物であり、いわゆる銅塩、銅錯体などが挙げられる。なかでも、水と混合した際、水溶性が高く、容易に銅イオンを解離するものが好ましく、銅を含む水溶性塩がより好ましい。
銅化合物として具体的には、硫酸銅、塩化銅、硝酸銅、酢酸銅、ギ酸銅、過塩素酸銅、ヨウ素酸銅、リン酸銅、トリフルオロ酢酸銅等の銅塩(2価の銅を含む水溶性塩)が挙げられ、硫酸銅、塩化銅、硝酸銅が特に好ましい。
(Copper compound)
A copper compound is a compound containing a copper element, and what is called a copper salt, a copper complex, etc. are mentioned. Among these, when mixed with water, those having high water solubility and capable of easily dissociating copper ions are preferred, and water-soluble salts containing copper are more preferred.
Specifically, copper salts such as copper sulfate, copper chloride, copper nitrate, copper acetate, copper formate, copper perchlorate, copper iodate, copper phosphate, copper trifluoroacetate (divalent copper Water-soluble salts), and copper sulfate, copper chloride, and copper nitrate are particularly preferable.

(界面活性剤)
界面活性剤の種類は特に制限されず、カチオン性界面活性剤、ノニオン性界面活性剤、両性界面活性剤、アニオン性界面活性剤のいずれも使用することができる。なかでも、乳酸またはギ酸の収率がより優れる点で、カチオン性界面活性剤またはアニオン性界面活性剤が好ましく、カチオン性界面活性剤がより好ましい。
カチオン性界面活性剤としては、ドデシルトリメチルアンモニウム塩、セチルトリメチルアンモニウム塩、テトラオクチルアンモニウム塩、メチルトリオクチルアンモニウム塩等のアルキルアンモニウム塩、セチルピリジウム塩、デシルピリジウム塩等のアルキルピリジウム塩、オキシアルキレントリアルキルアンモニウム塩、ジオキシアルキレンジアルキルアンモニウム塩、スルホニウム塩、ホスホニウム塩等が挙げられる。
アニオン性界面活性剤としては、高級アルコールの硫酸エステル塩、高級アルキルスルホン酸塩、高級カルボン酸塩、アルキルベンゼンスルホン酸塩、ポリオキシエチレンアルキルサルフェート塩、ポリオキシエチレンアルキルフェニルエーテルサルフェート塩、ビニルスルホサクシネート等が挙げられる。
ノニオン性界面活性剤としては、ポリオキシエチレンプロピレンエーテル等のポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリエチレングリコール脂肪酸エステル、エチレンオキサイドプロピレンオキサイドブロック共重合体、ポリオキシエチレン脂肪酸アミド、エチレンオキサイド−プロピレンオキサイド共重合体などのポリオキシエチレン構造を有する化合物やポリオキシエチレンソルビタン脂肪酸エステルなどのソルビタン誘導体等が挙げられる。
両性界面活性剤としては、ラウリルベタイン、ラウリルジメチルアミンオキサイド等が挙げられる。
(Surfactant)
The type of the surfactant is not particularly limited, and any of a cationic surfactant, a nonionic surfactant, an amphoteric surfactant, and an anionic surfactant can be used. Among these, a cationic surfactant or an anionic surfactant is preferable, and a cationic surfactant is more preferable in that the yield of lactic acid or formic acid is more excellent.
As cationic surfactants, alkyl ammonium salts such as dodecyl trimethyl ammonium salt, cetyl trimethyl ammonium salt, tetraoctyl ammonium salt, methyl trioctyl ammonium salt, alkyl pyridium salts such as cetyl pyridium salt and decyl pyridium salt, oxyalkylene Examples include trialkylammonium salts, dioxyalkylene dialkylammonium salts, sulfonium salts, phosphonium salts, and the like.
The anionic surfactants include higher alcohol sulfates, higher alkyl sulfonates, higher carboxylates, alkyl benzene sulfonates, polyoxyethylene alkyl sulfate salts, polyoxyethylene alkyl phenyl ether sulfate salts, vinyl sulfosuccinates. And the like.
Nonionic surfactants include polyoxyethylene alkyl ethers such as polyoxyethylene propylene ether, polyoxyethylene alkyl phenyl ether, polyethylene glycol fatty acid esters, ethylene oxide propylene oxide block copolymers, polyoxyethylene fatty acid amides, and ethylene oxide. -A compound having a polyoxyethylene structure such as a propylene oxide copolymer and a sorbitan derivative such as a polyoxyethylene sorbitan fatty acid ester.
Examples of amphoteric surfactants include lauryl betaine and lauryl dimethylamine oxide.

(本工程の手順)
本工程では、まず、上述した固体塩基触媒、銅化合物、および、界面活性剤を混合する処理(以下、工程Aとも称する)と、その後、混合物に対して水熱処理を施す処理(以下、工程Bとも称する)とが実施される。
以下では、工程Aおよび工程Bの手順について詳述する。
(Procedure of this process)
In this step, first, the above-described solid base catalyst, copper compound, and surfactant are mixed (hereinafter also referred to as step A), and then the mixture is subjected to hydrothermal treatment (hereinafter referred to as step B). (Also called).
Below, the procedure of the process A and the process B is explained in full detail.

工程Aにおいて、上述した、固体塩基触媒、銅化合物、および、界面活性剤を混合する方法は特に制限されず、公知の方法が採用され、例えば、溶媒の存在下、これらの成分を撹拌する方法(溶液法)や、ビーズミルなどにより混合する方法が挙げられ、手順が容易であり、乳酸またはギ酸の収率がより優れる点から、上記溶液法が好ましく挙げられる。以下、溶液法の手順について詳述する。   In Step A, the method for mixing the solid base catalyst, the copper compound, and the surfactant described above is not particularly limited, and a known method is employed. For example, a method of stirring these components in the presence of a solvent. (Solution method), a method of mixing by a bead mill, and the like are mentioned, the procedure is easy, and the above-mentioned solution method is preferably mentioned because the yield of lactic acid or formic acid is more excellent. Hereinafter, the procedure of the solution method will be described in detail.

溶液法において、使用される溶媒の種類は特に制限されず、上記固体塩基触媒、銅化合物、および、界面活性剤を溶解または分散させる溶媒であればよい。例えば、水、有機溶媒(例えば、アルコール系溶媒、ケトン系溶媒)、または、これらの混合液が使用される。なかでも、得られる溶液を後述する水熱処理をそのまま実施でき、工程がより簡便となる点で、水が好ましい。   In the solution method, the type of the solvent used is not particularly limited as long as it is a solvent that dissolves or disperses the solid base catalyst, the copper compound, and the surfactant. For example, water, an organic solvent (for example, an alcohol solvent, a ketone solvent), or a mixture thereof is used. Among these, water is preferable in that the hydrothermal treatment described below can be performed as it is on the obtained solution, and the process becomes simpler.

固体塩基触媒、銅化合物、および、界面活性剤を溶媒に添加する順番は特に制限されず、例えば、溶媒中に固体塩基触媒を分散させた溶液中に、銅化合物および界面活性剤をこの順で加える手順が挙げられる。
上記各成分を添加する際には、一括で添加しても、所定量毎に分割して添加してもよい。
上記各成分の混合条件(混合温度、混合時間)は特に制限されず、混合温度としては室温〜80℃が好ましく、20〜50℃がより好ましい。混合時間としては1〜10時間が好ましく、2〜4時間がより好ましい。
The order in which the solid base catalyst, the copper compound, and the surfactant are added to the solvent is not particularly limited. For example, the copper compound and the surfactant are added in this order in a solution in which the solid base catalyst is dispersed in the solvent. The procedure to add is mentioned.
When each of the above components is added, it may be added all at once, or may be added divided into predetermined amounts.
The mixing conditions (mixing temperature, mixing time) of the above components are not particularly limited, and the mixing temperature is preferably room temperature to 80 ° C, more preferably 20 to 50 ° C. The mixing time is preferably 1 to 10 hours, more preferably 2 to 4 hours.

銅化合物と界面活性剤との混合モル比(銅化合物のモル量/界面活性剤のモル量)は特に制限されないが、得られる銅担持触媒の触媒活性がより優れる点で、0.3〜3.0が好ましく、1.5〜2.5がより好ましい。
銅化合物と固体塩基触媒との混合質量比(銅化合物の質量/固体塩基触媒の質量)は特に制限されないが、得られる銅担持触媒の触媒活性がより優れる点で、0.006〜1.0が好ましく、0.05〜0.50がより好ましい。
溶媒と、固体塩基触媒、銅化合物および界面活性剤の合計質量との混合質量比は特に制限されないが、得られる銅担持触媒の触媒活性がより優れる点で、溶媒100質量に対して、上記合計質量が1.0〜13.0質量部が好ましく、4.0〜7.0質量部がより好ましい。
The mixing molar ratio of the copper compound and the surfactant (the molar amount of the copper compound / the molar amount of the surfactant) is not particularly limited, but is 0.3 to 3 in that the catalytic activity of the obtained copper-supported catalyst is more excellent. 0.0 is preferable, and 1.5 to 2.5 is more preferable.
The mixing mass ratio of the copper compound and the solid base catalyst (the mass of the copper compound / the mass of the solid base catalyst) is not particularly limited, but is 0.006 to 1.0 in that the catalytic activity of the obtained copper-supported catalyst is more excellent. Is preferable, and 0.05 to 0.50 is more preferable.
The mixing mass ratio of the solvent and the total mass of the solid base catalyst, the copper compound and the surfactant is not particularly limited, but the above total is based on 100 mass of the solvent in that the catalytic activity of the obtained copper-supported catalyst is more excellent. The mass is preferably 1.0 to 13.0 parts by mass, and more preferably 4.0 to 7.0 parts by mass.

なお、必要に応じて、上記各成分を混合した後、一旦溶媒を除去してもよい。
溶媒を除去する方法は特に制限されず、公知の方法(例えば、濾過により混合物を回収する方法、溶媒を留去する方法、など)を採用できる。
なお、溶媒として水を使用した場合は、上述した手順により得られた固体塩基触媒、銅化合物、および、界面活性剤を含む水溶液から水を除去することなく、そのまま水熱処理に施すことができる。
In addition, after mixing each said component as needed, you may remove a solvent once.
The method for removing the solvent is not particularly limited, and a known method (for example, a method of recovering the mixture by filtration, a method of distilling off the solvent, or the like) can be employed.
In addition, when water is used as a solvent, it can apply to hydrothermal treatment as it is, without removing water from the aqueous solution containing the solid base catalyst, copper compound, and surfactant obtained by the procedure mentioned above.

次に、工程Bでは、工程Aで得られた混合物に対して、水熱処理を施す。
水熱処理とは、化学反応および物理反応を促進することを目的として、水を溶媒とする閉鎖系において、水の沸点である100℃以上に加熱することにより得られる高温・高圧の状態に曝露する操作を指す。なお、水熱処理には、一般的に「オートクレーブ」と呼ばれる耐圧性の密閉容器を用いる。
水熱処理時の反応温度(水熱処理温度)は特に制限されず、使用される各種材料(銅化合物、固体塩基触媒)の種類に応じて適宜最適な条件が選択されるが、生産性および得られる銅担持触媒の触媒活性がより優れる点で、130〜250℃が好ましく、160〜200℃がより好ましい。
水熱処理の処理時間は特に制限されず、使用される各種材料(銅化合物、固体塩基触媒)の種類に応じて適宜最適な条件が選択されるが、生産性および得られる銅担持触媒の触媒活性がより優れる点で、5〜40時間が好ましく、20〜30時間がより好ましい。
Next, in the process B, the mixture obtained in the process A is subjected to a hydrothermal treatment.
Hydrothermal treatment is intended to promote chemical and physical reactions, and is exposed to high-temperature and high-pressure conditions obtained by heating to 100 ° C or higher, which is the boiling point of water, in a closed system using water as a solvent. Refers to an operation. For hydrothermal treatment, a pressure-resistant airtight container generally called “autoclave” is used.
The reaction temperature at the time of hydrothermal treatment (hydrothermal treatment temperature) is not particularly limited, and optimal conditions are appropriately selected according to the type of various materials (copper compound, solid base catalyst) used. 130-250 degreeC is preferable and 160-200 degreeC is more preferable at the point which the catalyst activity of a copper carrying catalyst is more excellent.
The treatment time of hydrothermal treatment is not particularly limited, and optimum conditions are appropriately selected according to the type of various materials (copper compound, solid base catalyst) used. Productivity and catalytic activity of the obtained copper-supported catalyst Is more preferable, and 5 to 40 hours are preferable, and 20 to 30 hours are more preferable.

水熱処理を行う際には、上記混合物に水を添加して、上記処理を実施する。なお、溶媒としては、水と共に有機溶媒を混合して使用してもよい。なお、混合物と水との混合比率は特に制限されないが、上記工程Aでの、溶媒と、固体塩基触媒、銅化合物および界面活性剤の合計質量との混合質量比の範囲とすることが好ましい。
また、上述したように、工程Aにおいて溶液法を採用し、溶媒として水を使用した場合は、上記成分を含む溶液を用いて水熱処理を実施することができる。
When performing the hydrothermal treatment, water is added to the mixture and the treatment is performed. In addition, as a solvent, you may mix and use an organic solvent with water. The mixing ratio of the mixture and water is not particularly limited, but is preferably in the range of the mixing mass ratio of the solvent and the total mass of the solid base catalyst, the copper compound and the surfactant in the above step A.
As described above, when the solution method is employed in Step A and water is used as the solvent, hydrothermal treatment can be performed using a solution containing the above components.

上記水熱処理を実施することにより、後述する焼成処理が施される触媒前駆体が得られる。
また、必要に応じて、上記水熱処理後に、溶媒(例えば、水および有機溶媒(例えば、アルコール系溶媒)からなる群から選択される溶媒)を用いて、触媒前駆体を洗浄してもよい。
さらに、必要に応じて、上記水熱処理後に、溶媒(例えば、水および有機溶媒(例えば、アルコール系溶媒)からなる群から選択される溶媒)を触媒前駆体から除去する処理を実施してもよい。
溶媒を除去する方法は特に制限されず、公知の方法(例えば、濾過により溶媒を除去する方法、溶媒を留去する方法、加熱乾燥処理を施す方法など)を採用できる。
By carrying out the hydrothermal treatment, a catalyst precursor that is subjected to the firing treatment described later is obtained.
If necessary, the catalyst precursor may be washed with a solvent (for example, a solvent selected from the group consisting of water and an organic solvent (for example, alcohol solvent)) after the hydrothermal treatment.
Furthermore, if necessary, a treatment for removing a solvent (for example, a solvent selected from the group consisting of water and an organic solvent (for example, an alcohol solvent)) from the catalyst precursor may be performed after the hydrothermal treatment. .
The method for removing the solvent is not particularly limited, and a known method (for example, a method for removing the solvent by filtration, a method for distilling off the solvent, a method for performing a heat drying treatment, etc.) can be employed.

[焼成工程]
焼成工程は、上記混合工程で得られた触媒前駆体を焼成して、銅担持触媒を得る工程である。本工程を実施することにより、銅成分が固体塩基触媒に担持された銅担持触媒が得られる。
焼成条件は特に制限されず、使用される材料の種類に応じて最適な条件が選択されるが、生産性および得られる銅担持触媒の触媒活性がより優れる点で、焼成温度は100〜900℃が好ましく、400〜600℃がより好ましく、焼成時間は2〜10時間が好ましく、5〜7時間がより好ましい。
焼成時の雰囲気は特に制限されず、空気下で行ってもよく、不活性ガス雰囲気下で行ってもよい。不活性ガスとしては、窒素、二酸化炭素、ヘリウム、アルゴン、ネオン等を用いることができる。
[Baking process]
The firing step is a step of firing the catalyst precursor obtained in the mixing step to obtain a copper-supported catalyst. By carrying out this step, a copper-supported catalyst in which a copper component is supported on a solid base catalyst is obtained.
The calcining conditions are not particularly limited, and optimum conditions are selected according to the type of material used, but the calcining temperature is 100 to 900 ° C. in that the productivity and the catalytic activity of the resulting copper-supported catalyst are more excellent. Is preferable, 400 to 600 ° C. is more preferable, and the firing time is preferably 2 to 10 hours, more preferably 5 to 7 hours.
The atmosphere at the time of firing is not particularly limited, and may be performed in air or in an inert gas atmosphere. Nitrogen, carbon dioxide, helium, argon, neon, etc. can be used as the inert gas.

上記工程を経て、銅成分が担持された銅担持触媒が得られる。
得られる銅担持触媒中の銅成分としては、主に、CuOおよびCuOが含まれる。銅成分として、上記2種の酸化銅成分が含まれることにより、所望の効果が得られていると推測される。なお、混合工程において、界面活性剤を使用しなかった場合は、得られる銅担持触媒中の銅成分としては、CuO成分が含まれておらず、所望の効果が得られない。
Through the above steps, a copper-supported catalyst on which a copper component is supported is obtained.
The copper component in the obtained copper-supported catalyst mainly includes CuO and Cu 2 O. It is estimated that the desired effect is acquired by including the said 2 types of copper oxide component as a copper component. In the mixing step, when no surfactant is used, the copper component in the obtained copper-supported catalyst does not contain a CuO component, and a desired effect cannot be obtained.

銅担持触媒中における銅成分の含有量は特に制限されないが、銅担持触媒中における銅元素の含有割合(質量%)は、銅担持触媒の触媒活性がより優れる点で、銅担持触媒全質量に対して、1.0〜13.0質量%が好ましく、5.0〜7.0質量%がより好ましい。
銅元素の含有量は、高周波誘導結合プラズマ発光分光分析装置(島津製作所社製「ICP−AES」)により測定できる。
The content of the copper component in the copper-supported catalyst is not particularly limited, but the content ratio (mass%) of the copper element in the copper-supported catalyst is the total mass of the copper-supported catalyst in that the catalytic activity of the copper-supported catalyst is more excellent. On the other hand, 1.0-13.0 mass% is preferable, and 5.0-7.0 mass% is more preferable.
The content of the copper element can be measured by a high frequency inductively coupled plasma optical emission spectrometer (“ICP-AES” manufactured by Shimadzu Corporation).

<乳酸の製造方法>
上述した銅担持触媒は、乳酸の製造方法に好適に使用できる。より具体的には、アルカリ条件下にて、銅担持触媒と単糖類とを接触させて乳酸を得ることができる(スキーム1)。なお、本製造方法では、単糖類中の炭素−炭素結合が開裂して、乳酸が得られる。
<Production method of lactic acid>
The copper-supported catalyst described above can be suitably used in a method for producing lactic acid. More specifically, lactic acid can be obtained by contacting a copper-supported catalyst with a monosaccharide under alkaline conditions (Scheme 1). In this production method, the carbon-carbon bond in the monosaccharide is cleaved to obtain lactic acid.

本製造方法の出発物質である単糖類は、バイオマス原料から得ることができる。
単糖類の種類は特に制限されず、3〜7炭糖類のいずれでもよいが、好ましくは5炭糖類または6炭糖類である。5炭糖類の具体例としては、リボース、キシロース、アラビノース等が挙げられ、6炭糖類の具体例としては、グルコース、マンノース、ガラクトース、フルクトース等が挙げられる。
The monosaccharide that is the starting material of this production method can be obtained from a biomass raw material.
The type of monosaccharide is not particularly limited, and may be any of 3-7 carbon sugars, but preferably 5 carbon sugars or 6 carbon sugars. Specific examples of pentose include ribose, xylose, arabinose and the like, and specific examples of hexose include glucose, mannose, galactose and fructose.

反応系における単糖類と銅担持触媒との混合割合は特に制限されないが、乳酸の収率がより優れる点から、単糖類のモル量と銅担持触媒中の銅元素のモル量との比(単糖類のモル量/銅元素のモル量)は、0.1〜50が好ましく、1〜30がより好ましく、3〜15がさらに好ましい。   The mixing ratio of the monosaccharide and the copper-supported catalyst in the reaction system is not particularly limited, but the ratio between the molar amount of the monosaccharide and the molar amount of the copper element in the copper-supported catalyst (simple 0.1-50 are preferable, as for the molar amount of saccharides / molar amount of a copper element), 1-30 are more preferable, and 3-15 are more preferable.

上記反応は、pHがアルカリ条件下にて実施する。アルカリ条件としては、pHが7超であればよく、乳酸の収率がより優れる点で、pHは8〜14が好ましく、11〜12がより好ましい。
なお、反応系をアルカリ条件下にするには、公知のアルカリ化合物(水に加えた際にアルカリ性を示すものであればよいが、安価で入手容易なことからアルカリ金属の水酸化物が好ましく、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウムがさらに好ましい。)を反応系に添加すればよい。
The above reaction is carried out under alkaline conditions of pH. As alkaline conditions, pH should just be more than 7, and 8-14 are preferable and 11-12 are more preferable at the point which the yield of lactic acid is more excellent.
In addition, in order to make the reaction system under alkaline conditions, a known alkali compound (if it shows alkalinity when added to water, an alkali metal hydroxide is preferred because it is inexpensive and readily available, Lithium hydroxide, sodium hydroxide, potassium hydroxide, and cesium hydroxide are more preferable.) May be added to the reaction system.

また、必要に応じて、溶媒の存在下で上記反応を実施してもよい。溶媒の種類は特に制限されず、水、または、有機溶媒(例えば、アルコール系溶媒)が挙げられる。
なお、溶媒の添加量は特に制限されないが、単糖類および銅担持触媒の合計質量100質量部に対して、10〜10000質量部が好ましい。
Moreover, you may implement the said reaction in presence of a solvent as needed. The kind in particular of solvent is not restrict | limited, Water or an organic solvent (for example, alcohol solvent) is mentioned.
In addition, although the addition amount in particular of a solvent is not restrict | limited, 10-10000 mass parts is preferable with respect to 100 mass parts of total mass of a monosaccharide and a copper supported catalyst.

本製造方法においては、単糖類および銅担持触媒の混合方法は特に制限されず、公知の方法が採用できる。また、各成分を加える順番も特に限定されず、反応容器に上記成分を同時に添加しても、それぞれ順番に添加してもよい。
なお、反応容器としては、反応系が加圧条件になることが考えられるため、耐圧ガラス反応管やオートクレーブを使用することが好ましい。
In this production method, the method for mixing the monosaccharide and the copper-supported catalyst is not particularly limited, and a known method can be employed. Moreover, the order which adds each component is not specifically limited, either, The said component may be added simultaneously to a reaction container, and you may add in order, respectively.
In addition, since it is considered that the reaction system is under pressure conditions, it is preferable to use a pressure-resistant glass reaction tube or an autoclave as the reaction vessel.

本製造方法においては、必要に応じて、加熱処理を施してもよい。より具体的には、単糖類と銅担持触媒とを含む反応系(反応溶液)に加熱処理を施してもよい。
加熱処理の温度条件は特に制限されないが、収率がより優れる点で、反応温度としては、100℃超が好ましく、120℃以上が好ましい。上限は特に制限されないが、経済性の点から、180℃以下が好ましく、150℃以下がより好ましい。
In this manufacturing method, you may heat-process as needed. More specifically, the reaction system (reaction solution) containing a monosaccharide and a copper-supported catalyst may be subjected to heat treatment.
The temperature conditions for the heat treatment are not particularly limited, but the reaction temperature is preferably more than 100 ° C., more preferably 120 ° C. or more, in that the yield is more excellent. The upper limit is not particularly limited, but is preferably 180 ° C. or less and more preferably 150 ° C. or less from the viewpoint of economy.

本製造方法の反応時間は特に制限されないが、乳酸の収率がより優れる点で、0.5〜30時間が好ましく、1〜25時間がより好ましく、1〜10時間がさらに好ましい。
反応雰囲気は特に制限されず、空気下で行ってもよく、不活性ガス雰囲気下で行ってもよい。不活性ガスとしては、窒素、二酸化炭素、ヘリウム、アルゴン、ネオン等を用いることができる。
さらに、反応の際の圧力条件は特に制限されないが、乳酸の収率がより優れる点で、0.1〜1.0MPaが好ましく、0.3〜0.5MPaがより好ましい。
Although the reaction time of this production method is not particularly limited, 0.5 to 30 hours are preferable, 1 to 25 hours are more preferable, and 1 to 10 hours are more preferable in that the yield of lactic acid is more excellent.
The reaction atmosphere is not particularly limited, and may be performed in air or in an inert gas atmosphere. Nitrogen, carbon dioxide, helium, argon, neon, etc. can be used as the inert gas.
Furthermore, although the pressure conditions in the case of reaction are not restrict | limited in particular, 0.1-1.0 Mpa is preferable and 0.3-0.5 Mpa is more preferable at the point which the yield of lactic acid is more excellent.

上記反応系においては、反応終了後、銅担持触媒は、濾過または遠心分離のような分離方法により生成物である乳酸と容易に分離することができ、工業的な観点から優れた系であるといえる。
なお、上記工程で生成された乳酸は、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段により分離精製できる。
なお、回収された銅担持触媒は、再度繰り返し使用することができる。
In the above reaction system, after completion of the reaction, the copper-supported catalyst can be easily separated from the product lactic acid by a separation method such as filtration or centrifugation, and is an excellent system from an industrial viewpoint. I can say that.
In addition, the lactic acid produced | generated at the said process can be isolate | separated and refined by separation means, such as filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, etc., or the separation means combining these.
The recovered copper supported catalyst can be used again and again.

<ギ酸の製造方法>
上述した銅担持触媒は、ギ酸の製造方法に好適に使用できる。より具体的には、上記銅担持触媒の存在下、単糖類と酸化剤とを反応させてギ酸を得ることができる(スキーム2)。なお、本製造方法では、単糖類中の炭素−炭素結合が開裂して、ギ酸が得られる。
<Method for producing formic acid>
The copper-supported catalyst described above can be suitably used for a formic acid production method. More specifically, formic acid can be obtained by reacting a monosaccharide with an oxidizing agent in the presence of the copper-supported catalyst (Scheme 2). In this production method, the carbon-carbon bond in the monosaccharide is cleaved to obtain formic acid.

本製造方法で使用される単糖類の定義は、上述の通りである。
酸化剤としては、公知の酸化剤を使用することができ、例えば、酸素含有ガス、過酸化物、例えば、過酸化水素(H22)、過酸化ナトリウム、過酸化カリウム、過酸化マグネシウム、過酸化カルシウム、過酸化バリウム、過酸化ベンゾイルおよび過酸化ジアセチル;過酸または過酸の塩、例えば、過ギ酸、過酢酸、過硫酸ナトリウム、過硫酸アンモニウムおよび過硫酸カリウム;オキソ酸もしくはオキソ酸の塩、例えば、過ヨウ素酸、過ヨウ素酸カリウム、過ヨウ素酸ナトリウム、過塩素酸、過塩素酸カリウム、過塩素酸ナトリウム、塩素酸カリウム、塩素酸ナトリウム、臭素酸カリウム、ヨウ素酸ナトリウム、ヨウ素酸、次亜塩素酸ナトリウム;過マンガン酸塩、例えば、過マンガン酸カリウム、過マンガン酸ナトリウムおよび過マンガン酸リチウム;クロム酸の塩、例えば、クロム酸カリウム、クロム酸ナトリウムおよびクロム酸アンモニウムが挙げられる。
The definition of the monosaccharide used by this manufacturing method is as the above-mentioned.
As the oxidizing agent, a known oxidizing agent can be used. For example, an oxygen-containing gas, a peroxide such as hydrogen peroxide (H 2 O 2 ), sodium peroxide, potassium peroxide, magnesium peroxide, Calcium peroxide, barium peroxide, benzoyl peroxide and diacetyl peroxide; peracids or peracid salts such as performic acid, peracetic acid, sodium persulfate, ammonium persulfate and potassium persulfate; oxoacid or oxoacid salts , For example, periodic acid, potassium periodate, sodium periodate, perchloric acid, potassium perchlorate, sodium perchlorate, potassium chlorate, sodium chlorate, potassium bromate, sodium iodate, iodic acid, Sodium hypochlorite; permanganates such as potassium permanganate, sodium permanganate and perman Lithium phosphate; salts of chromic acid, e.g., potassium chromate, sodium chromate and ammonium chromate.

反応系における単糖類と銅担持触媒との混合割合は特に制限されないが、ギ酸の収率がより優れる点から、単糖類のモル量と銅担持触媒中の銅元素のモル量との比(単糖類のモル量/銅元素のモル量)は、0.1〜50が好ましく、1〜30がより好ましく、3〜15がさらに好ましい。
反応系における単糖類と酸化剤との混合割合は特に制限されないが、ギ酸の収率がより優れる点から、単糖類のモル数と酸化剤のモル数との比(単糖類のモル量/酸化剤のモル量)は、0.1〜1.0が好ましく、0.12〜0.30がより好ましい。
The mixing ratio of the monosaccharide and the copper-supported catalyst in the reaction system is not particularly limited, but the ratio between the molar amount of monosaccharide and the molar amount of copper element in the copper-supported catalyst (simple 0.1-50 are preferable, as for the molar amount of saccharides / molar amount of a copper element), 1-30 are more preferable, and 3-15 are more preferable.
The mixing ratio of the monosaccharide and the oxidant in the reaction system is not particularly limited, but the ratio of the number of moles of monosaccharide to the number of moles of oxidant (mole amount of monosaccharide / oxidation from the point of better formic acid yield). The molar amount of the agent is preferably 0.1 to 1.0, more preferably 0.12 to 0.30.

また、必要に応じて、溶媒の存在下で上記反応を実施してもよい。溶媒の種類は特に制限されず、水、または、有機溶媒(例えば、アルコール系溶媒)が挙げられる。
なお、溶媒の添加量は特に制限されないが、単糖類、酸化剤、および銅担持触媒の合計質量100質量部に対して、10〜10000質量部が好ましい。
Moreover, you may implement the said reaction in presence of a solvent as needed. The kind in particular of solvent is not restrict | limited, Water or an organic solvent (for example, alcohol solvent) is mentioned.
In addition, although the addition amount in particular of a solvent is not restrict | limited, 10-10000 mass parts is preferable with respect to 100 mass parts of total mass of a monosaccharide, an oxidizing agent, and a copper supported catalyst.

本製造方法においては、単糖類、酸化剤、および銅担持触媒の混合方法は特に制限されず、公知の方法が採用できる。また、各成分を加える順番も特に限定されず、反応容器に上記成分を同時に添加しても、それぞれ順番に添加してもよい。
なお、反応容器としては、反応系が加圧条件になることが考えられるため、耐圧ガラス反応管やオートクレーブを使用することが好ましい。
In this production method, the mixing method of the monosaccharide, the oxidizing agent, and the copper-supported catalyst is not particularly limited, and a known method can be adopted. Moreover, the order which adds each component is not specifically limited, either, The said component may be added simultaneously to a reaction container, and you may add in order, respectively.
In addition, since it is considered that the reaction system is under pressure conditions, it is preferable to use a pressure-resistant glass reaction tube or an autoclave as the reaction vessel.

本製造方法においては、必要に応じて、加熱処理を施してもよい。より具体的には、単糖類と、酸化剤と、銅担持触媒とを含む反応系(反応溶液)に加熱処理を施してもよい。
加熱処理の温度条件は特に制限されないが、収率がより優れる点で、反応温度としては、100℃超が好ましく、120℃以上が好ましい。上限は特に制限されないが、経済性の点から、180℃以下が好ましく、150℃以下がより好ましい。
In this manufacturing method, you may heat-process as needed. More specifically, a heat treatment may be performed on a reaction system (reaction solution) including a monosaccharide, an oxidizing agent, and a copper-supported catalyst.
The temperature conditions for the heat treatment are not particularly limited, but the reaction temperature is preferably more than 100 ° C., more preferably 120 ° C. or more, in that the yield is more excellent. The upper limit is not particularly limited, but is preferably 180 ° C. or less and more preferably 150 ° C. or less from the viewpoint of economy.

本製造方法の反応時間は特に制限されないが、ギ酸の収率がより優れる点で、2〜30時間が好ましく、15〜25時間がより好ましく、15〜21時間がさらに好ましい。
反応雰囲気は特に制限されず、空気下で行ってもよく、不活性ガス雰囲気下で行ってもよい。不活性ガスとしては、窒素、二酸化炭素、ヘリウム、アルゴン、ネオン等を用いることができる。
さらに、反応の際の圧力条件は特に制限されないが、ギ酸の収率がより優れる点で、0.1〜1.0MPaが好ましく、0.3〜0.5MPaがより好ましい。
Although the reaction time of this production method is not particularly limited, it is preferably 2 to 30 hours, more preferably 15 to 25 hours, and still more preferably 15 to 21 hours in that the yield of formic acid is more excellent.
The reaction atmosphere is not particularly limited, and may be performed in air or in an inert gas atmosphere. Nitrogen, carbon dioxide, helium, argon, neon, etc. can be used as the inert gas.
Furthermore, although the pressure conditions in the case of reaction are not restrict | limited in particular, 0.1-1.0 MPa is preferable and 0.3-0.5 MPa is more preferable at the point which the yield of formic acid is more excellent.

上記反応系においては、反応終了後、銅担持触媒は濾過または遠心分離のような分離方法により生成物であるギ酸と容易に分離することができ、工業的な観点から優れた系であるといえる。
なお、上記工程で生成されたギ酸は、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段により分離精製できる。
なお、回収された銅担持触媒は、再度繰り返し使用することができる。
In the above reaction system, after completion of the reaction, the copper-supported catalyst can be easily separated from the product formic acid by a separation method such as filtration or centrifugation, and can be said to be an excellent system from an industrial viewpoint. .
The formic acid produced in the above step can be separated and purified by separation means such as filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, etc., or a separation means combining these.
The recovered copper supported catalyst can be used again and again.

以下、実施例により、本発明についてさらに詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these.

(合成例1:銅担持触媒1の合成)
酸化マグネシウム(関東化学社製)(1.0g)を水(25ml)に分散させた反応溶液を激しく撹拌しながら、硝酸銅(Cu(NO・3HO)(和光化学社製、1.0mmol)を水(5ml)に溶解させた溶液を反応溶液に滴下した。その後、さらに、セチルトリメチルアンモニウムブロマイド(CTAB)(0.5mmol)を反応溶液に添加した。得られた反応溶液を、室温条件下、さらに1000rpmにて3時間撹拌した。
次に、得られた反応溶液をオートクレーブ内に入れ、180℃で24時間水熱処理を行った。水熱処理後、反応溶液を濾過して固形分を回収して、水およびエタノールで洗浄した。その後、室温下にて一晩乾燥し、触媒前駆体を得た。
次に、得られた触媒前駆体を、空気下にて、500℃で6時間焼成し、銅成分が担持された銅担持触媒1を得た。
得られた銅担持触媒中における銅元素の質量は、銅担持触媒全質量に対して、6.3質量%であった。なお、銅元素の質量は、高周波誘導結合プラズマ発光分光分析装置(島津製作所社製「ICP−AES」)にて測定した。また、銅成分としては、CuOおよびCuOが含まれていた。
(Synthesis Example 1: Synthesis of copper-supported catalyst 1)
While vigorously stirring a reaction solution in which magnesium oxide (manufactured by Kanto Chemical Co., Ltd.) (1.0 g) was dispersed in water (25 ml), copper nitrate (Cu (NO 3 ) 2 .3H 2 O) (manufactured by Wako Chemical Co., Ltd., 1.0 mmol) in water (5 ml) was added dropwise to the reaction solution. Thereafter, cetyltrimethylammonium bromide (CTAB) (0.5 mmol) was further added to the reaction solution. The obtained reaction solution was further stirred for 3 hours at 1000 rpm under room temperature conditions.
Next, the obtained reaction solution was put in an autoclave and hydrothermally treated at 180 ° C. for 24 hours. After the hydrothermal treatment, the reaction solution was filtered to recover the solid content, and washed with water and ethanol. Thereafter, the catalyst precursor was obtained by drying overnight at room temperature.
Next, the obtained catalyst precursor was calcined at 500 ° C. for 6 hours under air to obtain a copper-supported catalyst 1 on which a copper component was supported.
The mass of the copper element in the obtained copper supported catalyst was 6.3% by mass with respect to the total mass of the copper supported catalyst. The mass of the copper element was measured with a high frequency inductively coupled plasma optical emission spectrometer (“ICP-AES” manufactured by Shimadzu Corporation). As the copper component, it was included CuO and Cu 2 O.

(合成例2〜合成例7)
上記セチルトリメチルアンモニウムブロマイド(CTAB)の代わりに、表1に示す界面活性剤をそれぞれ用いた以外は、合成例1と同様の手順に従って、銅担持触媒2〜7を得た。なお、各銅担持触媒中の銅元素の質量は、銅担持触媒1と同様であった。
(Synthesis Example 2 to Synthesis Example 7)
In accordance with the procedure similar to the synthesis example 1 except having used each surfactant shown in Table 1 instead of the said cetyl trimethyl ammonium bromide (CTAB), the copper supported catalysts 2-7 were obtained. In addition, the mass of the copper element in each copper supported catalyst was the same as that of the copper supported catalyst 1.

(合成例8〜12)
硝酸銅(Cu(NO・3HO)の使用モル量を表2に示す量にそれぞれ変更した以外は、合成例1と同様の手順に従って、銅担持触媒8〜12を得た。各銅担持触媒中の銅元素の量を、表2にまとめて示す。
(Synthesis Examples 8 to 12)
Copper-supported catalysts 8 to 12 were obtained according to the same procedure as in Synthesis Example 1 except that the molar amounts of copper nitrate (Cu (NO 3 ) 2 .3H 2 O) were changed to the amounts shown in Table 2, respectively. Table 2 summarizes the amount of copper element in each copper-supported catalyst.

<実施例A:乳酸の製造>
(実施例1〜4)
1MのNaOH水溶液(1ml)を水(5ml)に溶解させたアルカリ水溶液(pH=12)に、表3に記載の単糖類(90mg)と、銅担持触媒9(60mg)とを加えて、得られた反応溶液をオートクレーブ中に入れて、アルゴン雰囲気下(0.4MPa)、120℃にて1時間加熱した。
次に、高速液体クロマトグラフィー(Water 600, Aminex HPX-87Hカラム)を用いて、反応溶液中に生成物である乳酸(以後、LAとも称する)があることを同定した。
生成物の収率は、出発物質である各単糖類の仕込み量から計算した。より具体的には、出発物質が6炭糖類(グルコース、ガラクトース、フルクトース)の場合、1分子の6炭糖類から2分子の乳酸が得られることを理想反応として、乳酸の収率を計算した。また、出発物質が5炭糖類(キシロース)の場合、1分子の5炭糖類から1分子の乳酸が得られることを理想反応として、乳酸の収率を計算した。
結果を表3に示す。
<Example A: Production of lactic acid>
(Examples 1-4)
A monosaccharide (90 mg) described in Table 3 and a copper-supported catalyst 9 (60 mg) were added to an alkaline aqueous solution (pH = 12) obtained by dissolving 1M NaOH aqueous solution (1 ml) in water (5 ml). The obtained reaction solution was put in an autoclave and heated at 120 ° C. for 1 hour under an argon atmosphere (0.4 MPa).
Next, high-performance liquid chromatography (Water 600, Aminex HPX-87H column) was used to identify the presence of lactic acid (hereinafter also referred to as LA) as a product in the reaction solution.
The yield of the product was calculated from the charged amount of each monosaccharide as a starting material. More specifically, when the starting material is a hexose (glucose, galactose, fructose), the yield of lactic acid was calculated by assuming that two molecules of lactic acid can be obtained from one molecule of hexose. In addition, when the starting material was pentose (xylose), the yield of lactic acid was calculated with an ideal reaction that one molecule of lactic acid was obtained from one molecule of pentose.
The results are shown in Table 3.

表3に示すように、本発明の銅担持触媒を用いると、各単糖類から乳酸を効率よく得ることができた。   As shown in Table 3, when the copper-supported catalyst of the present invention was used, lactic acid could be efficiently obtained from each monosaccharide.

(実施例5)
1MのNaOH水溶液の代わりに、2.5MのNaOH水溶液を使用して、単糖類としてグルコースを使用した以外は、実施例1と同様の手順に従って、乳酸を製造した(1回目)。
次に、反応終了後、反応溶液を濾過して銅担持触媒9を回収し、再度、回収した銅担持触媒9を用いて同様の手順に従って、乳酸を製造した(2回目)。
さらに、反応終了後、反応溶液を濾過して銅担持触媒9を回収し、再度、回収した銅担持触媒9を用いて同様の手順に従って、乳酸を製造した(3回目)。
表4に、結果をまとめて示す。なお、上記1回目〜3回目までの反応条件は、アルカリ条件下(pH:7超)であった。
(Example 5)
Lactic acid was produced according to the same procedure as in Example 1 except that glucose was used as a monosaccharide instead of 1M NaOH aqueous solution and using 2.5M NaOH aqueous solution (first time).
Next, after completion of the reaction, the reaction solution was filtered to recover the copper-supported catalyst 9, and lactic acid was produced again according to the same procedure using the recovered copper-supported catalyst 9 (second time).
Further, after completion of the reaction, the reaction solution was filtered to recover the copper-supported catalyst 9, and lactic acid was produced again according to the same procedure using the recovered copper-supported catalyst 9 (third time).
Table 4 summarizes the results. The first to third reaction conditions were alkaline conditions (pH: more than 7).

表4に示すように、本発明の銅担持触媒は繰り返し使用しても、優れた触媒活性を示すことが確認された。   As shown in Table 4, it was confirmed that the copper-supported catalyst of the present invention exhibited excellent catalytic activity even when used repeatedly.

(実施例6〜12)
1MのNaOH水溶液の代わりに2.5MのNaOH水溶液を使用し、銅担持触媒9の代わりに表5に示す各銅担持触媒を使用して、単糖類としてグルコースを使用した以外は、実施例1と同様の手順に従って、乳酸を製造した。なお、反応条件は、アルカリ条件下(pH:7超)であった。
結果を表5にまとめて示す。
(Examples 6 to 12)
Example 1 except that 2.5 M NaOH aqueous solution was used instead of 1 M NaOH aqueous solution, each copper supported catalyst shown in Table 5 was used instead of copper supported catalyst 9, and glucose was used as a monosaccharide. Lactic acid was produced according to the same procedure as described above. The reaction conditions were alkaline conditions (pH: more than 7).
The results are summarized in Table 5.

表5に示すように、種々の界面活性剤を用いて製造した銅担持触媒1〜7において、優れた収率が得られた。特に、カチオン性界面活性剤またはアニオン性界面活性剤(特に、カチオン性界面活性剤)を用いて製造された銅担持触媒において、収率がより優れていた。   As shown in Table 5, in the copper supported catalysts 1 to 7 produced using various surfactants, excellent yields were obtained. In particular, the yield was more excellent in the copper-supported catalyst produced using a cationic surfactant or an anionic surfactant (particularly a cationic surfactant).

(実施例13〜17)
NaOH水溶液の使用量を1.0mlから0.5mlに変更し、銅担持触媒9の代わりに銅担持触媒1を使用して、単糖類としてグルコースを使用し、反応時間を1時間から3時間に変更し、反応温度を表6に示す温度に変更した以外は、実施例1と同様の手順に従って、乳酸を製造した。結果を表6にまとめて示す。なお、反応条件は、アルカリ条件下(pH:7超)であった。
なお、表6において、実施例14〜17の収率は、実施例13の収率を「1.0」とした相対値として示す。例えば、実施例14は、実施例13の収率よりも1.4倍の収率を示す。
(Examples 13 to 17)
The amount of NaOH aqueous solution used was changed from 1.0 ml to 0.5 ml, copper-supported catalyst 1 was used instead of copper-supported catalyst 9, glucose was used as a monosaccharide, and the reaction time was changed from 1 hour to 3 hours. Lactic acid was produced according to the same procedure as in Example 1 except that the reaction temperature was changed to the temperature shown in Table 6. The results are summarized in Table 6. The reaction conditions were alkaline conditions (pH: more than 7).
In Table 6, the yields of Examples 14 to 17 are shown as relative values with the yield of Example 13 as “1.0”. For example, Example 14 shows a yield 1.4 times that of Example 13.

表6に示すように、反応温度を変更した場合も乳酸が得られることが確認された。特に、反応温度が120℃以上の場合、収率がより優れることが確認された。   As shown in Table 6, it was confirmed that lactic acid was obtained even when the reaction temperature was changed. In particular, when the reaction temperature was 120 ° C. or higher, it was confirmed that the yield was superior.

(実施例18〜21)
NaOH水溶液の使用量を1.0mlから0.5mlに変更し、銅担持触媒9の代わりに表7に記載の銅担持触媒を使用して、単糖類としてグルコースを使用し、反応時間を1時間から3時間に変更し、モル比(グルコースのモル量/銅元素のモル量)を表7に示す値に変更した以外は、実施例1と同様の手順に従って、乳酸を製造した。結果を表7にまとめて示す。なお、反応条件は、アルカリ条件下(pH:7超)であった。
なお、表7においては、実施例18〜20の収率は、実施例21の収率を「1.0」とした相対値として示す。
(Examples 18 to 21)
The amount of NaOH aqueous solution used was changed from 1.0 ml to 0.5 ml, the copper supported catalyst described in Table 7 was used instead of the copper supported catalyst 9, glucose was used as a monosaccharide, and the reaction time was 1 hour. Was changed to 3 hours, and lactic acid was produced according to the same procedure as in Example 1 except that the molar ratio (the molar amount of glucose / the molar amount of copper element) was changed to the values shown in Table 7. The results are summarized in Table 7. The reaction conditions were alkaline conditions (pH: more than 7).
In Table 7, the yields of Examples 18 to 20 are shown as relative values with the yield of Example 21 as “1.0”.

表7に示すように、モル比(グルコースのモル量/銅元素のモル量)を変更した場合も、乳酸が得られることが確認された。特に、該モル比が3.0〜15.0において、収率がより優れることが確認された。   As shown in Table 7, it was confirmed that lactic acid was also obtained when the molar ratio (the molar amount of glucose / the molar amount of copper element) was changed. In particular, it was confirmed that the yield was more excellent at the molar ratio of 3.0 to 15.0.

<実施例B:ギ酸の製造>
(実施例30〜33)
30%H水溶液(Hのモル量:2mmol)を水(5ml)に溶解させた水溶液に、表8に記載の単糖類(0.5mmol)と、銅担持触媒8(60mg)とを加えて、得られた反応溶液をオートクレーブ中に入れて、アルゴン雰囲気下(0.4MPa)、120℃にて12時間加熱した。
次に、高速液体クロマトグラフィー(Water 600, Aminex HPX-87Hカラム)を用いて、反応溶液中に生成物であるギ酸(以後、FAとも称する)があることを同定した。
生成物の収率は、出発物質である各単糖類の仕込み量から計算した。より具体的には、出発物質が6炭糖類(グルコース、ガラクトース、フルクトース)の場合、1分子の6炭糖類から6分子のギ酸が得られることを理想反応として、ギ酸の収率を計算した。また、出発物質が5炭糖類(キシロース)の場合、1分子の5炭糖類から5分子のギ酸が得られることを理想反応として、ギ酸の収率を計算した。
<Example B: Production of formic acid>
(Examples 30 to 33)
To an aqueous solution in which 30% H 2 O 2 aqueous solution (molar amount of H 2 O 2 : 2 mmol) was dissolved in water (5 ml), monosaccharides (0.5 mmol) described in Table 8 and copper-supported catalyst 8 (60 mg And the resulting reaction solution was placed in an autoclave and heated at 120 ° C. for 12 hours under an argon atmosphere (0.4 MPa).
Next, high-performance liquid chromatography (Water 600, Aminex HPX-87H column) was used to identify the presence of product formic acid (hereinafter also referred to as FA) in the reaction solution.
The yield of the product was calculated from the charged amount of each monosaccharide as a starting material. More specifically, when the starting material is hexose (glucose, galactose, fructose), the yield of formic acid was calculated based on the ideal reaction that six molecules of formic acid can be obtained from one molecule of hexose. In addition, when the starting material was pentose (xylose), the yield of formic acid was calculated based on the ideal reaction that five molecules of formic acid were obtained from one molecule of pentose.

表8に示すように、本発明の銅担持触媒を用いると、各単糖類からギ酸を効率よく得ることができた。   As shown in Table 8, when the copper-supported catalyst of the present invention was used, formic acid could be efficiently obtained from each monosaccharide.

(実施例34)
30%H水溶液の使用モル量を2mmolから4mmolに変更し、単糖類としてグルコースを使用し、銅担持触媒8の使用量を60mgから90mgに変更した以外は、上記実施例30〜33と同様の手順に従って、ギ酸を製造した(1回目)。
次に、反応終了後、反応溶液を濾過して銅担持触媒8を回収し、再度、回収した銅担持触媒8を用いて同様の手順に従って、ギ酸を製造した(2回目)。
さらに、反応終了後、反応溶液を濾過して銅担持触媒8を回収し、再度、回収した銅担持触媒8を用いて同様の手順に従って、ギ酸を製造した(3回目)。
表9に、結果をまとめて示す。
(Example 34)
Examples 30 to 33 above, except that the molar amount of 30% H 2 O 2 aqueous solution was changed from 2 mmol to 4 mmol, glucose was used as a monosaccharide, and the usage amount of the copper-supported catalyst 8 was changed from 60 mg to 90 mg. Formic acid was prepared according to the same procedure as (1).
Next, after completion of the reaction, the reaction solution was filtered to recover the copper-supported catalyst 8, and formic acid was produced again according to the same procedure using the recovered copper-supported catalyst 8 (second time).
Furthermore, after completion | finish of reaction, the reaction solution was filtered and copper supported catalyst 8 was collect | recovered, and formic acid was manufactured according to the same procedure again using the collect | recovered copper supported catalyst 8 (the 3rd time).
Table 9 summarizes the results.

表9に示すように、本発明の銅担持触媒は繰り返し使用しても、優れた触媒活性を示すことが確認された。   As shown in Table 9, it was confirmed that the copper-supported catalyst of the present invention exhibited excellent catalytic activity even when used repeatedly.

Claims (6)

固体塩基触媒、銅化合物および界面活性剤を混合して得られる混合物に対して、水熱処理を施して、触媒前駆体を得る混合工程と、
前記触媒前駆体を焼成して、銅担持触媒を得る焼成工程とを含む方法により得られる銅担持触媒。
A mixing step of obtaining a catalyst precursor by subjecting a mixture obtained by mixing a solid base catalyst, a copper compound and a surfactant to hydrothermal treatment;
A copper-supported catalyst obtained by a method comprising a calcining step of calcining the catalyst precursor to obtain a copper-supported catalyst.
前記界面活性剤が、カチオン性界面活性剤またはアニオン性界面活性剤を含む、請求項1に記載の銅担持触媒。   The copper-supported catalyst according to claim 1, wherein the surfactant comprises a cationic surfactant or an anionic surfactant. 前記銅化合物が、硫酸銅、塩化銅、硝酸銅、酢酸銅、ギ酸銅、過塩素酸銅、ヨウ素酸銅、および、リン酸銅からなる群から選択される少なくとも1種の銅塩を含む、請求項1または2に記載の銅担持触媒。   The copper compound includes at least one copper salt selected from the group consisting of copper sulfate, copper chloride, copper nitrate, copper acetate, copper formate, copper perchlorate, copper iodate, and copper phosphate, The copper supported catalyst according to claim 1 or 2. アルカリ条件下にて、請求項1〜3のいずれか1項に記載の銅担持触媒と単糖類とを接触させて乳酸を得る、乳酸の製造方法。   A method for producing lactic acid, wherein the copper-supported catalyst according to any one of claims 1 to 3 is contacted with a monosaccharide under alkaline conditions to obtain lactic acid. 請求項1〜3のいずれか1項に記載の銅担持触媒の存在下、単糖類と酸化剤とを反応させてギ酸を得る、ギ酸の製造方法。   The manufacturing method of formic acid which makes a monosaccharide and an oxidizing agent react in presence of the copper carrying | support catalyst of any one of Claims 1-3, and obtains formic acid. 固体塩基触媒、銅化合物および界面活性剤を混合して得られる混合物に対して、水熱処理を施して、触媒前駆体を得る混合工程と、
前記触媒前駆体を焼成して、銅担持触媒を得る焼成工程とを備える、銅担持触媒の製造方法。
A mixing step of obtaining a catalyst precursor by subjecting a mixture obtained by mixing a solid base catalyst, a copper compound and a surfactant to hydrothermal treatment;
A method for producing a copper-supported catalyst, comprising calcining the catalyst precursor to obtain a copper-supported catalyst.
JP2014007027A 2014-01-17 2014-01-17 Copper-supported catalyst and method of producing the same, method of producing lactic acid, and method of producing formic acid Pending JP2015134324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014007027A JP2015134324A (en) 2014-01-17 2014-01-17 Copper-supported catalyst and method of producing the same, method of producing lactic acid, and method of producing formic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014007027A JP2015134324A (en) 2014-01-17 2014-01-17 Copper-supported catalyst and method of producing the same, method of producing lactic acid, and method of producing formic acid

Publications (1)

Publication Number Publication Date
JP2015134324A true JP2015134324A (en) 2015-07-27

Family

ID=53766610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014007027A Pending JP2015134324A (en) 2014-01-17 2014-01-17 Copper-supported catalyst and method of producing the same, method of producing lactic acid, and method of producing formic acid

Country Status (1)

Country Link
JP (1) JP2015134324A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113509931A (en) * 2021-03-12 2021-10-19 大连工业大学 Cu2Preparation of O/CuO @ CA photocatalyst and application thereof in synthesis of lactic acid by photocatalytic oxidation of xylose
CN115301284A (en) * 2022-08-05 2022-11-08 同济大学 Modified Beta molecular sieve for catalytically converting biomass into lactic acid and preparation method and application thereof
CN115819219A (en) * 2022-11-23 2023-03-21 昆明理工大学 Method for preparing formic acid by hydrothermal oxidation and catalysis of biomass through CuO
CN116237046A (en) * 2023-02-13 2023-06-09 广州大学 Preparation method and application of copper carbon silicon Fenton catalyst

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145556B1 (en) * 1966-10-18 1976-12-04
JPH05170670A (en) * 1991-12-23 1993-07-09 Novamont Spa Preparation of hydroxyacid from carbohydrate
JP2009263241A (en) * 2008-04-22 2009-11-12 National Institute Of Advanced Industrial & Technology Method of preparing lactic acid
JP2013253073A (en) * 2012-02-17 2013-12-19 Japan Advanced Institute Of Science & Technology Hokuriku Method for producing d-glucosamic acid or its analogue, and catalyst composition therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145556B1 (en) * 1966-10-18 1976-12-04
JPH05170670A (en) * 1991-12-23 1993-07-09 Novamont Spa Preparation of hydroxyacid from carbohydrate
JP2009263241A (en) * 2008-04-22 2009-11-12 National Institute Of Advanced Industrial & Technology Method of preparing lactic acid
JP2013253073A (en) * 2012-02-17 2013-12-19 Japan Advanced Institute Of Science & Technology Hokuriku Method for producing d-glucosamic acid or its analogue, and catalyst composition therefor

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
CHAUDHARI, R. V. ET AL: "Multiphase Catalytic Hydrogenolysis/Hydrodeoxygenation Processes for Chemicals from Renewable Feedst", IND. ENG. CHEM. RES., vol. 52, no. 44, JPN6017035287, 15 May 2013 (2013-05-15), pages 15226 - 15243 *
JIN, F. ET AL: "Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures", GREEN CHEM., vol. 10, no. 6, JPN6017035262, 21 April 2008 (2008-04-21), pages 612 - 615 *
LI, Q. ET AL: "Facile and Green Production of Cu from CuO Using Cellulose under Hydrothermal Conditions", IND. ENG. CHEM. RES., vol. 51, no. 7, JPN6017035292, 10 January 2012 (2012-01-10), pages 3129 - 3136 *
ONDA, A. ET AL: "A new chemical process for catalytic conversion of d-glucose into lactic acid and gluconic acid", APPLIED CATALYSIS A: GENERAL, vol. Vol.343, No.1-2, JPN6017035283, 20 March 2008 (2008-03-20), pages 49 - 54 *
ONDA, A. ET AL: "Lactic acid production from glucose over activated hydrotalcites as solid base catalysts in water", CATALYSIS COMMUNICATIONS, vol. 9, no. 6, JPN6017035282, 15 October 2007 (2007-10-15), pages 1050 - 1053 *
ROY, D. ET AL: "Cu-Based Catalysts Show Low Temperature Activity for Glycerol Conversion to Lactic Acid", ACS CATAL., vol. 1, no. 5, JPN6017035290, 4 April 2011 (2011-04-04), pages 548 - 551 *
SARKAR, B. ET AL: "Room temperature selective oxidation of cyclohexane over Cu-nanoclusters supported on nanocrystallin", GREEN CHEMISTRY, vol. Vol.14, JPN7017002989, 6 July 2012 (2012-07-06), pages 2600 - 2606 *
WANG, Y. ET AL: "Selective conversion of glucose into lactic acid and acetic acid with copper oxide under hydrotherma", AICHE JOURNAL, vol. 59, no. 6, JPN6017035285, 7 December 2012 (2012-12-07), pages 2096 - 2104 *
恩田歩武,外: "ハイドロタルサイト触媒によるグルコースからの乳酸生成", 第98回触媒討論会討論会A予稿集, JPN6017035280, 26 September 2006 (2006-09-26), pages 2 - 7 *
恩田歩武,外: "固体酸触媒を用いた糖類からの乳酸合成", 触媒, vol. 55, no. 5, JPN6017035288, 10 October 2013 (2013-10-10), pages 276 - 282 *
相衛: "複合酸化物の酸化触媒作用と酸・塩基性", 有機合成化学協会誌, vol. 35, no. 3, JPN6017035278, 1977, pages 201 - 211 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113509931A (en) * 2021-03-12 2021-10-19 大连工业大学 Cu2Preparation of O/CuO @ CA photocatalyst and application thereof in synthesis of lactic acid by photocatalytic oxidation of xylose
CN113509931B (en) * 2021-03-12 2023-05-30 大连工业大学 Cu (copper) alloy 2 Preparation of O/CuO@CA photocatalyst and application of O/CuO@CA photocatalyst in synthesis of lactic acid by photocatalytic oxidation of xylose
CN115301284A (en) * 2022-08-05 2022-11-08 同济大学 Modified Beta molecular sieve for catalytically converting biomass into lactic acid and preparation method and application thereof
CN115819219A (en) * 2022-11-23 2023-03-21 昆明理工大学 Method for preparing formic acid by hydrothermal oxidation and catalysis of biomass through CuO
CN116237046A (en) * 2023-02-13 2023-06-09 广州大学 Preparation method and application of copper carbon silicon Fenton catalyst

Similar Documents

Publication Publication Date Title
Algoufi et al. Upgrading of glycerol from biodiesel synthesis with dimethyl carbonate on reusable Sr–Al mixed oxide catalysts
EP2794093B1 (en) Zinc and manganese aluminate catalyst useful for alkane dehydrogenation
Hwang et al. Production of γ-butyrolactone from biomass-derived 1, 4-butanediol over novel copper-silica nanocomposite
KR101919030B1 (en) Process for the conversion of sugars to lactic acid and 2-hydroxy-3-butenoic acid or esters thereof comprising a metallo-silicate material and a metal ion
CN107771101B (en) Preparation method of ferrite metal oxide catalyst
JP2015134324A (en) Copper-supported catalyst and method of producing the same, method of producing lactic acid, and method of producing formic acid
JP2015107954A (en) Production method of 1,2-pentane diol and 1,5-pentane diol
KR20160037916A (en) Nitrous oxide decomposition catalyst
EP3305405A1 (en) Mangan(iii)-mangan(iv) mixed oxide catalyst containing an intercalated cation x for aerobic oxidative cleavage of 1,2-diols
CN106238063A (en) A kind of glycerine hydrogenation Cu ZnO catalyst preparing propylene glycol and preparation method thereof
CN110975884B (en) Preparation method of transition metal-containing catalyst for preparing benzaldehyde by selectively oxidizing toluene
KR101858278B1 (en) Process for preparing pseudoionone
CN105964266A (en) Catalyst for synthesizing nonanal by high-selectivity catalytic oxidation of oleic acid
CN111499489B (en) Isomerization method of fluorine-containing olefin
CN107115895B (en) A kind of preparation method of copper-zinc-based catalyst
JP2014172874A (en) Method for producing ketol compound
KR101535987B1 (en) Preparation method of acetophenone
CN108047276B (en) Method for synthesizing ruthenium (III) acetylacetonate
KR101943825B1 (en) Preparation method of high-purity dinitro diphenyl ether using sudo-hydrotalcite compound
CN111871418A (en) Coated nano catalyst for one-step synthesis of isobutyraldehyde from methanol and ethanol and preparation method thereof
CN112717922B (en) Tert-butyl alcohol pretreatment catalyst and preparation method and application thereof
CN112368258B (en) Method for selectively acylating primary hydroxyl groups in the presence of secondary hydroxyl groups and catalysts therefor
CN115286506B (en) Method for synthesizing matrithrin by one-step oxidation esterification with metal organic framework material as catalyst
CN112823883B (en) Alpha, alpha-dimethyl benzyl alcohol hydrogenolysis catalyst and preparation method and application thereof
KR101402226B1 (en) Method for producing propylene glycol from alkyl lactate and a catalyst used therein

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180403