JP2015134080A - Respiratory function test system and breathing passage for respiratory function test system - Google Patents

Respiratory function test system and breathing passage for respiratory function test system Download PDF

Info

Publication number
JP2015134080A
JP2015134080A JP2014006847A JP2014006847A JP2015134080A JP 2015134080 A JP2015134080 A JP 2015134080A JP 2014006847 A JP2014006847 A JP 2014006847A JP 2014006847 A JP2014006847 A JP 2014006847A JP 2015134080 A JP2015134080 A JP 2015134080A
Authority
JP
Japan
Prior art keywords
resistance
respiratory function
path
intake
test system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014006847A
Other languages
Japanese (ja)
Other versions
JP6098529B2 (en
Inventor
難波 晋治
Shinji Nanba
晋治 難波
理江 大崎
Rie Osaki
理江 大崎
泰司 河内
Taiji Kawachi
泰司 河内
優佳 杉浦
Yuka Sugiura
優佳 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014006847A priority Critical patent/JP6098529B2/en
Publication of JP2015134080A publication Critical patent/JP2015134080A/en
Application granted granted Critical
Publication of JP6098529B2 publication Critical patent/JP6098529B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technology for testing a respiratory function (pressure flow rate characteristics) of a subject.SOLUTION: An air intake path 19b is narrowed to load air intake resistance by changing the posture of a plate-like member 19f of a flow passage resistance switcher 19e by rotation in the air intake path 19b of a respiratory organ 11 through which intake air of a subject passes, a flow sensor detects a flow rate of intake air of the subject passing through an air intake path 19b of the respiratory organ 11, a pulse wave sensor detects a pulse wave of the subject, and a respiratory function test apparatus tests a respiratory function by a pleural pressure signal estimated on the basis of an intake air signal from the flow sensor and a pulse wave signal from the pulse wave sensor.

Description

本発明は、肺コンプライアンス等の被検者の呼吸機能を検査する技術に関する。   The present invention relates to a technique for examining a subject's respiratory function such as lung compliance.

近年、世界中で肺炎、COPD(慢性閉塞性肺疾患)等の肺疾患が増加の一途を辿っている。肺疾患のスクリーニングや治療効果の確認には、肺の柔軟性を表す肺コンプライアンスが有用な指標と言われており、この肺コンプライアンスの測定には、胸腔内圧の測定が必要となるが、胸腔内圧の測定は困難であり、また、それの代用となる食道内圧の測定も、食道内にバルーンカテーテルあるいは圧力トランスデューサ付カテーテルを挿入しなければならず、患者に与える苦痛が大きいため、容易に行える検査ではない。   In recent years, lung diseases such as pneumonia and COPD (chronic obstructive pulmonary disease) have been increasing all over the world. Lung compliance, which indicates the flexibility of the lung, is said to be a useful index for screening lung diseases and confirming therapeutic effects. Measurement of pulmonary compliance requires measurement of intrathoracic pressure. Measurement of esophageal pressure, which is a substitute for it, requires a balloon catheter or a catheter with a pressure transducer to be inserted into the esophagus, which is very painful for the patient and can be easily performed. is not.

この対策として、血圧(観血血圧)を測定するための血圧トランスデューサと、心拍動の周期を測定する心電図電極とを用い、心電図電極から得られる心臓収縮由来の心電図波形信号を利用して、血圧トランスデューサにより検出された血圧波形信号から呼吸機能を示す呼吸機能信号を抽出する技術が提案されている(特許文献1参照)。   As a countermeasure, a blood pressure transducer for measuring blood pressure (open blood pressure) and an electrocardiogram electrode for measuring the heartbeat cycle are used, and an electrocardiogram waveform signal derived from the cardiac contraction obtained from the electrocardiogram electrode is used to measure the blood pressure. A technique for extracting a respiratory function signal indicating a respiratory function from a blood pressure waveform signal detected by a transducer has been proposed (see Patent Document 1).

また、呼吸経路を通過する被検者の呼気の流量から被検者の呼吸機能を測定する技術も提案されている(特許文献2参照)。   In addition, a technique for measuring the respiratory function of a subject from the flow rate of the subject's breath passing through the respiratory path has also been proposed (see Patent Document 2).

特開2010−142594号公報JP 2010-142594 A 特開2012−187292号公報JP 2012-187292 A

しかしながら、上述のような技術では、食道内圧の測定の負担は軽減できるものの、侵襲的な検査であったり、肺の柔軟性を直接計測するわけではないので被検者の呼吸機能を精度良く検査することができないという問題があった。   However, although the above-mentioned technique can reduce the burden of measuring the esophageal pressure, it is an invasive test or does not directly measure the flexibility of the lungs, so it accurately tests the respiratory function of the subject. There was a problem that could not be done.

本発明は、前記課題を解決するためになされたものであり、その目的は、被検者の呼吸機能(圧力流量特性)を検査する技術を提供することにある。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a technique for examining the respiratory function (pressure flow characteristics) of a subject.

上記課題を解決するためになされた請求項1に係る呼吸機能検査システムは、被検者の呼吸機能を検査する呼吸機能検査システムであって、被検者の吸気が通過する吸気経路と、前記吸気経路を通過する被検者の吸気の流量を検出する流量センサと、被検者の脈波を検出する脈波センサと、前記流量センサが検出した被検者の吸気の流量と前記脈波センサが検出した被検者の脈波とに基づいて被検者の呼吸機能を検査する呼吸機能検査部と、を備え、前記吸気経路には、被検者が吸気を行うときに吸気を抑制する抵抗である吸気抵抗を負荷する抵抗負荷部が設けられていることを特徴とする。   A respiratory function test system according to claim 1 made to solve the above-mentioned problem is a respiratory function test system for testing a subject's respiratory function, the inspiratory path through which the subject's inspiration passes, A flow rate sensor for detecting the flow rate of the subject's inspiration passing through the inhalation path, a pulse wave sensor for detecting the pulse wave of the subject, a flow rate of the inhalation of the subject detected by the flow rate sensor, and the pulse wave A respiratory function inspection unit that examines the respiratory function of the subject based on the pulse wave of the subject detected by the sensor, and suppresses inspiration when the subject inhales in the inspiratory path A resistance load section for loading an intake resistance, which is a resistance to perform, is provided.

このように構成された本発明の呼吸機能検査システムによれば、被検者の吸気の流量と被検者の脈波とに基づいて被検者の呼吸機能を検査するので、従来技術のような食道内圧の測定を行わなくても、被検者の呼吸機能(圧力流量特性)を検査することができる。   According to the respiratory function inspection system of the present invention configured as described above, the respiratory function of the subject is examined based on the flow rate of the subject's inspiration and the pulse wave of the subject. Even if the esophageal pressure is not measured, the respiratory function (pressure flow characteristic) of the subject can be examined.

なお、本発明は、上述の呼吸機能検査システムを構成する呼吸機能検査システム用の呼吸経路としても実現可能である。   In addition, this invention is realizable also as a respiratory path | route for the respiratory function test | inspection system which comprises the above-mentioned respiratory function test | inspection system.

本実施形態の呼吸機能検査システムの概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the respiratory function test | inspection system of this embodiment. 本実施形態の呼吸機能検査システムの概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the respiratory function test | inspection system of this embodiment. 本実施形態の流路抵抗可変装置の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the flow-path resistance variable apparatus of this embodiment. 本実施形態の流路抵抗可変装置の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the flow-path resistance variable apparatus of this embodiment. 本実施形態の流路抵抗可変装置の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the flow-path resistance variable apparatus of this embodiment. 圧力取得ポートのポート圧(口腔内圧)を利用した脈波による胸腔内圧の推定結果を示す説明図である。It is explanatory drawing which shows the estimation result of the intrathoracic pressure by the pulse wave using the port pressure (intraoral pressure) of a pressure acquisition port. 別実施形態の流路抵抗可変装置の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the flow-path resistance variable apparatus of another embodiment.

以下に本発明の実施形態を図面とともに説明する。
[1.呼吸機能検査システム1の構成の説明]
本実施形態の呼吸機能検査システム1は、被検者が呼吸する際の吸気量のデータと、被検者の脈波から得られた胸腔内圧のデータとに基づいて、被検者の呼吸機能を検査する検査システムである。
Embodiments of the present invention will be described below with reference to the drawings.
[1. Description of configuration of respiratory function test system 1]
The respiratory function test system 1 according to the present embodiment is based on the inspiratory amount data when the subject breathes and the intrathoracic pressure data obtained from the pulse wave of the subject. It is an inspection system for inspecting.

具体的には、呼吸機能検査システム1は、図1,2に示すように、被検者の吸気の際のガス流量(吸気流量)を検出する流量センサ(低圧損流量センサ)3と、被検者の脈波を検出する脈波センサ(容積脈波センサ)5と、流量センサ3が検出した被検者の吸気の流量を示す吸気信号と脈波センサ5が検出した被検者の脈波を示す脈波信号とに基づいて被検者の呼吸機能を検査する呼吸機能検査部としての呼吸機能検査装置7と、呼吸機能検査装置7による検査結果を出力する表示部9と、呼吸経路としての呼吸器11と、を備えている。   Specifically, as shown in FIGS. 1 and 2, the respiratory function test system 1 includes a flow rate sensor (low pressure loss flow rate sensor) 3 that detects a gas flow rate (intake flow rate) during inhalation of a subject, A pulse wave sensor (volume pulse wave sensor) 5 for detecting the pulse wave of the examiner, an intake signal indicating the flow rate of the subject's inspiration detected by the flow rate sensor 3 and the pulse of the subject detected by the pulse wave sensor 5 A respiratory function testing device 7 as a respiratory function testing unit for testing the respiratory function of the subject based on a pulse wave signal indicating a wave, a display unit 9 for outputting a test result by the respiratory function testing device 7, and a respiratory path As a respiratory device 11.

[1.1.流量センサ3の構成の説明]
流量センサ3は、呼吸器11の吸気経路13bを通過する被検者の吸気の流量を検出する。この流量センサ3としては、例えば差圧式や熱線式、超音波式等のガス流量を検知できる周知の流量センサを使用することができる。この流量センサ3からは、呼吸機能検査装置7に対して、吸気流量を示す電気信号(吸気量信号)が出力される。
[1.1. Description of the configuration of the flow sensor 3]
The flow sensor 3 detects the inspiratory flow rate of the subject passing through the inspiratory path 13 b of the respiratory device 11. As the flow rate sensor 3, for example, a well-known flow rate sensor that can detect a gas flow rate such as a differential pressure type, a hot wire type, or an ultrasonic type can be used. From the flow sensor 3, an electrical signal (intake amount signal) indicating the inspiratory flow rate is output to the respiratory function testing device 7.

[1.2.脈波センサ5の構成の説明]
脈波センサ5は、周知の発光素子(LED)や受光素子(PD)を備えた光学式のセンサであり、例えば被検者の指先に光を照射し、その反射光を利用して脈波(容積脈波)を検出することができる。この脈波センサ5からは、呼吸機能検査装置7に対して、脈波の状態を示す脈波信号が出力される。
[1.2. Explanation of Configuration of Pulse Wave Sensor 5]
The pulse wave sensor 5 is an optical sensor provided with a known light emitting element (LED) or light receiving element (PD). For example, the pulse wave sensor 5 irradiates light on the fingertip of the subject and uses the reflected light to make a pulse wave. (Volume pulse wave) can be detected. The pulse wave sensor 5 outputs a pulse wave signal indicating the state of the pulse wave to the respiratory function testing device 7.

[1.3.呼吸機能検査装置7の構成の説明]
呼吸機能検査装置7は、周知のマイクロコンピュータを中心とした電子制御装置であり、流量センサ3からの吸気信号や脈波センサ5からの脈波信号に基づいて、呼吸機能の検査や表示部9の制御を行う。また、呼吸機能検査装置7は、機能的に、吸気信号取得部7aと、脈波信号取得部7bと、吸気量算出部7cと、胸腔内圧推定部7dと、呼吸機能検知部7eと、を備えている。吸気信号取得部7aでは、流量センサ3からの単位時間当たり吸気量(即ちガス流量)を示す吸気量信号を取得(計測)する。脈波信号取得部7bは、脈波センサ5を駆動して、血管の脈動の状態を示す脈波信号を取得する。吸気量算出部7cでは、吸気量信号に基づいて、各呼吸の吸気の期間における吸気量を算出する。具体的には、吸気量信号から得られた吸気流量を積算して吸気量を求める。胸腔内圧推定部7dでは、脈波信号を解析して胸腔内圧を推定する。呼吸機能検知部7eでは、吸気量算出部7cによって算出された吸気量と胸腔内圧推定部7dによって推定された胸腔内圧とのデータに基づいて、呼吸機能を検査(判断)する。また、呼吸機能検知部7eは、後述する圧力取得ポート21のポート圧(口腔内圧)を利用して脈波による胸腔内圧を推定する。なお、図6は、圧力取得ポート21のポート圧(口腔内圧)を利用した脈波による胸腔内圧の推定結果を示すグラフである。
[1.3. Description of the configuration of the respiratory function testing device 7]
The respiratory function inspection device 7 is an electronic control device centered on a known microcomputer, and based on the inspiration signal from the flow sensor 3 and the pulse wave signal from the pulse wave sensor 5, the respiratory function inspection and display unit 9 Control. The respiratory function testing device 7 functionally includes an inspiration signal acquisition unit 7a, a pulse wave signal acquisition unit 7b, an inspiration amount calculation unit 7c, an intrathoracic pressure estimation unit 7d, and a respiratory function detection unit 7e. I have. The intake signal acquisition unit 7a acquires (measures) an intake air amount signal indicating an intake air amount (that is, a gas flow rate) from the flow rate sensor 3 per unit time. The pulse wave signal acquisition unit 7b drives the pulse wave sensor 5 to acquire a pulse wave signal indicating the pulsation state of the blood vessel. The intake air amount calculation unit 7c calculates the intake air amount during the inspiration period of each breath based on the intake air amount signal. Specifically, the intake air amount is obtained by integrating the intake air flow rate obtained from the intake air amount signal. The intrathoracic pressure estimation unit 7d analyzes the pulse wave signal and estimates the intrathoracic pressure. The respiratory function detection unit 7e examines (determines) the respiratory function based on the data of the inspiratory amount calculated by the inspiratory amount calculating unit 7c and the intrathoracic pressure estimated by the intrathoracic pressure estimating unit 7d. The respiratory function detection unit 7e estimates the intrathoracic pressure due to the pulse wave using the port pressure (intraoral pressure) of the pressure acquisition port 21 described later. FIG. 6 is a graph showing the estimation result of the intrathoracic pressure by the pulse wave using the port pressure (intraoral pressure) of the pressure acquisition port 21.

[1.4.表示部9の構成の説明]
表示部9は、呼吸機能検査装置7によって得られた呼吸機能の検査結果を報知する装置であり、液晶等のディスプレイやスピーカ等を備えている。
[1.4. Description of configuration of display unit 9]
The display unit 9 is a device for notifying a respiratory function test result obtained by the respiratory function test device 7, and includes a display such as a liquid crystal display, a speaker, and the like.

[1.5.呼吸器11の構成の説明]
次に、本発明が適用された呼吸器11の構成について説明する。
呼吸器11は、被検者の呼吸機能を検査するために被検者の呼気および吸気を通過させる機器であり、図3に示すように、呼吸器本体13と、マウスピース15と、フィルター17と、抵抗負荷部としての流路抵抗可変装置19と、を備えている。
[1.5. Description of Respirator 11 Configuration]
Next, the configuration of the respiratory apparatus 11 to which the present invention is applied will be described.
The respirator 11 is a device that allows the breath and inhalation of the subject to pass through in order to examine the breathing function of the subject. As shown in FIG. 3, the respirator body 13, the mouthpiece 15, and the filter 17. And a flow path resistance variable device 19 as a resistance load section.

呼吸器本体13は、筒状に構成され、被検者の呼気および吸気が通過するようになっている。なお、呼吸器本体13には、上述の流量センサ3が取り付けられている。
マウスピース15は、被検者がくわえて呼気を呼吸器本体13に吹き込んだり吸気を吸い込んだりするのに用いられる装置であり、フィルター17を介して呼吸器本体13の前端側に取り付けられている。
The respiratory main body 13 is configured in a cylindrical shape so that the exhalation and inspiration of the subject can pass therethrough. Note that the flow rate sensor 3 described above is attached to the respiratory body 13.
The mouthpiece 15 is a device that is used by the subject to inhale exhaled air into the respiratory body 13 or inhale inhaled air, and is attached to the front end side of the respiratory body 13 via the filter 17. .

フィルター17は、呼吸器11を通過する被検者の呼気および吸気を清浄する装置であり、呼吸器本体13とマウスピース15の間に取り付けられている。なお、フィルター17の前端部には、被検者の胸腔内圧および口腔内圧を計測するための圧力取得ポート21が設けられ、呼吸機能検査装置7に接続されている。この圧力取得ポート21は、流路抵抗可変装置19の吸気経路19bを流路抵抗切替器19eによって狭めた場合に被検者の胸腔内圧を計測し、一方、吸気経路19bを流路抵抗切替器19eによって広げた場合に被検者の口腔内圧を計測するために利用可能である。なお、圧力取得ポート21が呼吸器11に設けられている箇所は、流量センサ3が呼吸器11に取り付けられている箇所(被検者の吸気流量を検出する箇所)よりも下流側となっている。   The filter 17 is a device that cleans the exhalation and inspiration of the subject that passes through the respirator 11, and is attached between the respirator body 13 and the mouthpiece 15. A pressure acquisition port 21 for measuring the intrathoracic pressure and intraoral pressure of the subject is provided at the front end of the filter 17 and is connected to the respiratory function testing device 7. This pressure acquisition port 21 measures the subject's intrathoracic pressure when the intake path 19b of the flow path resistance variable device 19 is narrowed by the flow path resistance switch 19e, while the intake path 19b is measured by the flow path resistance switch. It can be used for measuring the intraoral pressure of the subject when spread by 19e. In addition, the location where the pressure acquisition port 21 is provided in the respirator 11 is downstream of the location where the flow sensor 3 is attached to the respirator 11 (location where the inspiratory flow rate of the subject is detected). Yes.

流路抵抗可変装置19は、被検者が吸気を行うときに吸気を抑制する抵抗である吸気抵抗を負荷する装置であり、呼吸器本体13の後端側に取り付けられている。
また、流路抵抗可変装置19には、被検者の呼気が通過する呼気経路19aと被検者の吸気が通過する吸気経路19bとが形成されており、呼気経路19aの前端部と吸気経路19bの前端部が開放されるとともに、呼気経路19aの前端部と吸気経路19bの前端部が合流する略Y字形状になっており、呼吸器本体13へ取り付けられた際には呼吸器本体13の後端部に接続されている。なお、呼気経路19a内には、チェックバルブ19cが設けられており、このチェックバルブ19cによって、被検者の呼気などが呼気経路19a内を前端側(上流側)から後端側(下流側)へ向けて流れるのが許容される一方、反対方向への気体の流れが阻止される。また、吸気経路19b内には、前端側にチェックバルブ19dが設けられるとともに、後端側に抵抗負荷部としての流路抵抗切替器19eが設けられている。吸気経路19b内においては、チェックバルブ19dによって、被検者の吸気などが吸気経路19b内部を後端側(上流側)から先端側(下流側)へ向けて流れるのが許容される一方、反対方向への気体の流れが阻止される。また、流路抵抗切替器19eは、板状部材19fが吸気経路19bの長手方向に対して直交する軸19gを回転中心として回転可能に構成されており、吸気経路19b内においては、回転によって板状部材19fの姿勢を変化させることで吸気経路19bを狭めて吸気抵抗を負荷するようになっている。なお、板状部材19fについては、軸19gを回転させるなど手動で回転させるようにしてもよいし、吸気経路19bを狭めた状態か広げた状態の何れか一方に板状部材19fをしておいて、気体の流れを用いて板状部材19fを回転させるようにしてもよい。
The flow path resistance variable device 19 is a device that loads an inspiratory resistance, which is a resistance for suppressing inspiration when the subject inhales, and is attached to the rear end side of the respiratory body 13.
In addition, the flow resistance variable device 19 is formed with an exhalation path 19a through which the subject's exhalation passes and an inhalation path 19b through which the inhalation of the subject passes, and the front end portion of the exhalation path 19a and the inhalation path The front end portion of 19b is opened, and the front end portion of the exhalation path 19a and the front end portion of the inhalation path 19b are joined together in a substantially Y shape, and when attached to the respirator body 13, the respirator body 13 It is connected to the rear end. A check valve 19c is provided in the exhalation path 19a, and the check valve 19c allows the subject's exhalation to pass through the exhalation path 19a from the front end side (upstream side) to the rear end side (downstream side). Gas flow in the opposite direction is prevented while allowing flow toward the. In addition, in the intake passage 19b, a check valve 19d is provided on the front end side, and a flow path resistance switch 19e as a resistance load portion is provided on the rear end side. In the intake passage 19b, the check valve 19d allows the subject's intake air or the like to flow in the intake passage 19b from the rear end side (upstream side) to the front end side (downstream side). Gas flow in the direction is blocked. Further, the flow path resistance switch 19e is configured such that the plate-like member 19f can rotate around a shaft 19g orthogonal to the longitudinal direction of the intake passage 19b, and the plate is rotated by rotation in the intake passage 19b. By changing the posture of the member 19f, the intake passage 19b is narrowed to load the intake resistance. The plate-like member 19f may be rotated manually such as by rotating the shaft 19g, or the plate-like member 19f is provided in either the narrowed state or the widened state of the intake passage 19b. In addition, the plate-like member 19f may be rotated using a gas flow.

[2.呼吸機能検査システム1を用いた呼吸機能の検査の説明]
次に、呼吸機能検査システム1を用いた呼吸機能の検査について説明する。
(1)呼吸機能検査システム1の校正
呼吸機能検査システム1を校正するには、図4に示すように、流路抵抗可変装置19の吸気経路19bを流路抵抗切替器19eによって狭めることで(第一抵抗負荷状態)、被検者が呼吸を行うときに気道にて呼吸を抑制する抵抗である気道抵抗よりも充分に大きな値の吸気抵抗(15cmHO以上の抵抗)を負荷し、口腔内圧ならびに胸腔内圧(≒食道内圧)が低下した時の脈波に現れる呼吸性変動を測定する。なお、呼気経路19aにおいては、被検者が呼気を行うときに呼気を抑制する抵抗である呼気抵抗は気道抵抗よりも小さく保たれている(3cmHO以下の抵抗)。この時、呼吸量は少ないので気道抵抗はほぼゼロとなり、口腔内圧≒胸腔内圧となる。そして、口腔内圧と脈波の呼吸性変動量の比から換算係数Cを求める。
[2. Explanation of respiratory function test using respiratory function test system 1]
Next, the respiratory function test using the respiratory function test system 1 will be described.
(1) Calibration of Respiratory Function Test System 1 To calibrate the respiratory function test system 1, as shown in FIG. 4, the intake path 19b of the variable flow resistance device 19 is narrowed by a flow resistance switch 19e ( 1st resistance load state), when the subject breathes, inhalation resistance (resistance of 15 cmH 2 O or more) having a value sufficiently larger than the airway resistance, which is resistance to suppress the breathing in the airway, is applied to the oral cavity Respiratory fluctuations appearing in the pulse wave when internal pressure and intrathoracic pressure (≒ esophageal pressure) drop are measured. In the exhalation path 19a, the exhalation resistance, which is a resistance for suppressing exhalation when the subject exhales, is kept smaller than the airway resistance (resistance of 3 cmH 2 O or less). At this time, since the respiratory volume is small, the airway resistance becomes almost zero, and the intraoral pressure≈the intrathoracic pressure. Then, a conversion coefficient C is obtained from the ratio between the intraoral pressure and the respiratory wave fluctuation amount.

(2)推定胸腔内圧Pおよび呼吸流量Vの測定(PV測定)
次に、被検者の推定胸腔内圧Pおよび呼吸流量Vの測定を行う際には、図5に示すように、流路抵抗可変装置19の吸気経路19bを流路抵抗切替器19eによって広げることで(第二抵抗負荷状態)、気道抵抗よりも小さな値の吸気抵抗(3cmHO以下の抵抗、本実施形態ではほぼゼロ(開放))を負荷する状態に切り替え、呼吸をした時の呼吸流量Vと脈波を測定し、上記(1)の呼吸機能検査システム1の校正時に求めた換算係数Cを用いて推定胸腔内圧Pを求める(次式参照)。
(2) Measurement of estimated intrathoracic pressure P and respiratory flow V (PV measurement)
Next, when measuring the estimated intrathoracic pressure P and respiratory flow rate V of the subject, as shown in FIG. 5, the inspiratory path 19b of the flow path resistance variable device 19 is widened by the flow path resistance switch 19e. (Second resistance load state), switching to a state where an inspiratory resistance (resistance of 3 cmH 2 O or less, in this embodiment, almost zero (open)) smaller than the airway resistance is loaded, and the respiratory flow rate when breathing V and the pulse wave are measured, and an estimated intrathoracic pressure P is obtained using the conversion coefficient C obtained at the time of calibration of the respiratory function test system 1 of (1) (see the following formula).

推定胸腔内圧P=脈波の呼吸性変動量×換算係数C
なお、呼気経路19aにおいては、上記(1)の呼吸機能検査システム1の校正時と同様に、被検者が呼気を行うときに呼気を抑制する抵抗である呼気抵抗は気道抵抗よりも小さく保たれている(3cmHO以下の抵抗)。
Estimated intrathoracic pressure P = Respiration fluctuation amount of pulse wave × Conversion coefficient C
In the exhalation path 19a, as in the calibration of the respiratory function test system 1 in (1) above, the exhalation resistance, which is a resistance for suppressing exhalation when the subject exhales, is kept smaller than the airway resistance. Sagging (resistance of 3 cmH 2 O or less).

(3)肺コンプライアンス等の算出
上記(2)で求めた推定胸腔内圧Pおよび呼吸流量VからPV線図を描画し、V/Pの傾き(肺コンプライアンス)、面積等を求める。
(3) Calculation of lung compliance etc. A PV diagram is drawn from the estimated intrathoracic pressure P and respiratory flow V obtained in (2) above, and the slope of V / P (lung compliance), area, etc. are obtained.

(4)評価
呼吸量ならびに呼吸周期を変えてV/P等を求めることで、肺の呼吸周波数、呼吸流量毎の特性(肺コンプライアンス;肺の弾性係数)、仕事量等を評価する。
(4) Evaluation By changing the respiratory volume and respiratory cycle to obtain V / P, etc., the respiratory frequency, characteristics for each respiratory flow (lung compliance; lung elastic modulus), workload, etc. are evaluated.

[3.実施形態の効果]
このように本実施形態の呼吸機能検査システム1によれば、被検者の吸気が通過する呼吸器11の吸気経路19b内においては、流路抵抗切替器19eの板状部材19fの姿勢を回転によって変化させることで吸気経路19bを狭めて吸気抵抗を負荷するようになっており、流量センサ3が呼吸器11の吸気経路13bを通過する被検者の吸気の流量を検出し、脈波センサ5が被検者の脈波を検出し、呼吸機能検査装置7が、流量センサ3からの吸気量信号や脈波センサ5からの脈波信号に基づいて推定した胸腔内圧信号によって呼吸機能の検査を行うので、従来技術のような食道内圧の測定を行わなくても、被検者の呼吸機能を検査することができる。
[3. Effects of the embodiment]
As described above, according to the respiratory function testing system 1 of the present embodiment, the posture of the plate-like member 19f of the flow path resistance switch 19e is rotated in the inspiratory path 19b of the respirator 11 through which the subject's inspiration passes. Is changed so that the inspiratory path 19b is narrowed to load the inspiratory resistance, and the flow rate sensor 3 detects the inspiratory flow rate of the subject passing through the inspiratory path 13b of the respirator 11, and the pulse wave sensor 5 detects the pulse wave of the subject, and the respiratory function test device 7 tests the respiratory function based on the inspiratory pressure signal from the flow sensor 3 and the intrathoracic pressure signal estimated based on the pulse wave signal from the pulse wave sensor 5. Therefore, the respiratory function of the subject can be examined without measuring the esophageal pressure as in the prior art.

[4.他の実施形態]
以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、以下のような様々な態様にて実施することが可能である。
[4. Other Embodiments]
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the said embodiment, It is possible to implement in the following various aspects.

(1)上記実施形態では、流路抵抗可変装置19については、呼気経路19aの前端部と吸気経路19bの前端部が合流する略Y字形状になっており、呼吸器本体13へ取り付けられた際には呼吸器本体13の後端部に接続されているが、これには限られず、図7に例示するように、呼気経路119aの下端部と吸気経路119bの前端部が合流する略T字形状になっており、呼吸器本体13へ取り付けられた際には呼吸器本体13の後端部に接続されるように構成された流路抵抗可変装置119としてもよい。なお、本実施形態の流路抵抗可変装置119においては、呼気経路119a内にチェックバルブ119cが設けられており、このチェックバルブ119cによって、被検者の呼気などが呼気経路119a内を下端側(上流側)から上端側(下流側)へ向けて流れるのが許容される一方、反対方向への気体の流れが阻止される。また、吸気経路119b内には上述の流路抵抗切替器19eと同様の構成を有する流路抵抗切替器119eが設けられている。この流路抵抗切替器119eは、板状部材119fが吸気経路119bの長手方向に対して直交する軸119gを回転中心として回転可能に構成されており、吸気経路119b内においては、回転によって板状部材119fの姿勢を変化させることで吸気経路119bを狭めて吸気抵抗を負荷するようになっている。なお、板状部材119fについては、軸119gを回転させるなど手動で回転させるようにしてもよいし、吸気経路119bを狭めた状態か広げた状態の何れか一方に板状部材119fをしておいて、気体の流れを用いて板状部材119fを回転させるようにしてもよい。   (1) In the above embodiment, the variable flow resistance device 19 has a substantially Y shape in which the front end of the exhalation path 19a and the front end of the inhalation path 19b merge, and is attached to the respiratory body 13 However, the present invention is not limited to this, and as illustrated in FIG. 7, the lower end of the exhalation path 119a and the front end of the inhalation path 119b merge. It is good also as the flow-path-resistance variable apparatus 119 comprised so that it might be connected to the rear-end part of the respiratory organ main body 13, when it is a letter shape and attached to the respiratory main body 13. In the variable flow resistance device 119 of the present embodiment, a check valve 119c is provided in the exhalation path 119a. By this check valve 119c, the exhalation of the subject passes through the exhalation path 119a on the lower end side ( While it is allowed to flow from the upstream side toward the upper end side (downstream side), gas flow in the opposite direction is prevented. Further, a flow path resistance switch 119e having the same configuration as the above-described flow path resistance switch 19e is provided in the intake path 119b. The flow path resistance switch 119e is configured such that the plate-like member 119f can rotate about an axis 119g orthogonal to the longitudinal direction of the intake passage 119b, and the plate-like member 119f is rotated in the intake passage 119b by rotation. By changing the posture of the member 119f, the intake path 119b is narrowed to load the intake resistance. The plate-like member 119f may be rotated manually such as by rotating the shaft 119g, or the plate-like member 119f is provided in either the narrowed state or the widened state of the intake passage 119b. The plate-like member 119f may be rotated using a gas flow.

(2)上記実施形態では、吸気経路19b内においては、流路抵抗切替器19eの板状部材19fの姿勢を回転によって変化させることで吸気経路19bを狭めて吸気抵抗を負荷するようになっているが、これには限られず、例えば、吸気経路19bを絞ることで吸気経路19bを狭めて吸気経路19bに吸気抵抗を負荷するようにしてもよいし、吸気経路19bを開閉する弁体を有し、弁体を駆動することで吸気経路19bを狭めて吸気経路19bに吸気抵抗を負荷するようにしてもよい。   (2) In the above embodiment, in the intake passage 19b, the posture of the plate member 19f of the flow path resistance switch 19e is changed by rotation to narrow the intake passage 19b and load the intake resistance. However, the present invention is not limited to this. For example, the intake passage 19b may be narrowed by narrowing the intake passage 19b so that the intake passage 19b is loaded with intake resistance, or a valve body that opens and closes the intake passage 19b is provided. Then, the intake path 19b may be narrowed by driving the valve body so that the intake path 19b is loaded with an intake resistance.

1…呼吸機能検査システム、3…流量センサ、5…脈波センサ、7…呼吸機能検査装置、7a…吸気信号取得部、7b…脈波信号取得部、7c…吸気量算出部、7d…胸腔内圧推定部、7e…呼吸機能検知部、9…表示部、11…呼吸器、13…呼吸器本体、15…マウスピース、17…フィルター、19…流路抵抗可変装置、19a…呼気経路、19b…吸気経路、19c,19d…チェックバルブ、19e…流路抵抗切替器、19f…板状部材、19g…軸、21…圧力取得ポート、119…流路抵抗可変装置、119a…呼気経路、119b…吸気経路、119c…チェックバルブ、119e…流路抵抗切替器、119f…板状部材、119g…軸。 DESCRIPTION OF SYMBOLS 1 ... Respiratory function test | inspection system, 3 ... Flow rate sensor, 5 ... Pulse wave sensor, 7 ... Respiratory function test apparatus, 7a ... Inspiration signal acquisition part, 7b ... Pulse wave signal acquisition part, 7c ... Inhalation amount calculation part, 7d ... Chest cavity Internal pressure estimation unit, 7e ... Respiratory function detection unit, 9 ... Display unit, 11 ... Respirator, 13 ... Respiratory body, 15 ... Mouthpiece, 17 ... Filter, 19 ... Variable flow resistance device, 19a ... Exhalation path, 19b ... Intake path, 19c, 19d ... Check valve, 19e ... Flow resistance switch, 19f ... Plate member, 19g ... Shaft, 21 ... Pressure acquisition port, 119 ... Flow resistance variable device, 119a ... Exhalation path, 119b ... Intake path, 119c ... check valve, 119e ... flow path resistance switch, 119f ... plate member, 119g ... shaft.

Claims (10)

被検者の呼吸機能を検査する呼吸機能検査システム(1)であって、
被検者の呼気が通過する呼気経路(19a)と被検者の吸気が通過する吸気経路(19b)とを有する呼吸経路(11)と、
前記吸気経路(19b)を通過する被検者の吸気の流量を検出する流量センサ(3)と、
被検者の脈波を検出する脈波センサ(5)と、
前記流量センサ(3)が検出した被検者の吸気の流量と前記脈波センサ(5)が検出した被検者の脈波とに基づいて被検者の呼吸機能を検査する呼吸機能検査部(7)と、を備え、
前記吸気経路(19b)には、被検者が吸気を行うときに吸気を抑制する抵抗である吸気抵抗を負荷する抵抗負荷部(19e)が設けられていること
を特徴とする呼吸機能検査システム(1)。
A respiratory function test system (1) for testing the respiratory function of a subject,
A breathing path (11) having an expiration path (19a) through which the subject's exhalation passes and an inspiration path (19b) through which the subject's inspiration passes;
A flow rate sensor (3) for detecting a flow rate of a subject's intake air passing through the intake path (19b);
A pulse wave sensor (5) for detecting the pulse wave of the subject;
Respiratory function testing unit for examining the respiratory function of the subject based on the inspiratory flow rate of the subject detected by the flow sensor (3) and the pulse wave of the subject detected by the pulse wave sensor (5) (7)
The respiratory function test system characterized in that the intake path (19b) is provided with a resistance load section (19e) for loading an intake resistance, which is a resistance for suppressing intake when the subject inhales. (1).
請求項1に記載の呼吸機能検査システム(1)において、
前記抵抗負荷部(19e)は、前記吸気経路(19b)を狭めることで前記吸気経路(19b)に前記吸気抵抗を負荷すること
を特徴とする呼吸機能検査システム(1)。
In the respiratory function test system (1) according to claim 1,
The respiratory function test system (1), wherein the resistance load section (19e) loads the intake resistance on the intake path (19b) by narrowing the intake path (19b).
請求項2に記載の呼吸機能検査システム(1)において、
前記抵抗負荷部(19e)は、前記吸気経路(19b)を絞ることで前記吸気経路(19b)を狭めて前記吸気経路(19b)に前記吸気抵抗を負荷すること
を特徴とする呼吸機能検査システム(1)。
In the respiratory function test system (1) according to claim 2,
The resistance load section (19e) narrows the intake path (19b) by narrowing the intake path (19b), and loads the intake resistance on the intake path (19b). (1).
請求項2に記載の呼吸機能検査システム(1)において、
前記抵抗負荷部(19e)は、前記吸気経路(19b)内でその姿勢を変更可能な板状部材(19f)を有し、前記板状部材(19f)の姿勢を変化させることで前記吸気経路(19b)を狭めて前記吸気経路(19b)に前記吸気抵抗を負荷すること
を特徴とする呼吸機能検査システム(1)。
In the respiratory function test system (1) according to claim 2,
The resistance load portion (19e) has a plate-like member (19f) whose posture can be changed in the intake passage (19b), and the intake passage is changed by changing the posture of the plate-like member (19f). Respiratory function test system (1), wherein (19b) is narrowed and the inspiratory resistance is loaded on the inspiratory path (19b).
請求項2に記載の呼吸機能検査システム(1)において、
前記抵抗負荷部(19e)は、前記吸気経路(19b)を開閉する弁体(19d)を有し、前記弁体(19d)を駆動することで前記吸気経路(19b)を狭めて前記吸気経路(19b)に前記吸気抵抗を負荷すること
を特徴とする呼吸機能検査システム(1)。
In the respiratory function test system (1) according to claim 2,
The resistance load section (19e) has a valve body (19d) that opens and closes the intake path (19b), and drives the valve body (19d) to narrow the intake path (19b), thereby reducing the intake path. A respiratory function test system (1), wherein the inhalation resistance is loaded on (19b).
請求項1〜請求項5の何れか1項に記載の呼吸機能検査システム(1)において、
前記吸気経路(19b)においては、前記抵抗負荷部(19e)が、被検者が呼吸を行うときに気道にて呼吸を抑制する抵抗である気道抵抗よりも充分に大きな値の前記吸気抵抗を負荷する第一抵抗負荷状態と、前記気道抵抗よりも小さな値の前記吸気抵抗を負荷する第二抵抗負荷状態との間で切替が可能であり、
前記呼気経路(19a)においては、被検者が呼気を行うときに呼気を抑制する抵抗である呼気抵抗は前記気道抵抗よりも小さく保たれていること
を特徴とする呼吸機能検査システム(1)。
In the respiratory function test system (1) according to any one of claims 1 to 5,
In the inspiratory path (19b), the resistance load section (19e) reduces the inspiratory resistance having a value sufficiently larger than the airway resistance, which is a resistance for suppressing breathing in the airway when the subject breathes. It is possible to switch between a first resistance load state to load and a second resistance load state to load the intake resistance having a value smaller than the airway resistance,
In the exhalation path (19a), the respiratory function test system (1) is characterized in that an exhalation resistance that is a resistance for suppressing exhalation when the subject exhales is kept smaller than the airway resistance. .
請求項6に記載の呼吸機能検査システム(1)において、
前記吸気経路(19b)においては、前記抵抗負荷部(19e)が、前記第一抵抗負荷状態であるときには前記吸気抵抗として15cmHO以上の抵抗を負荷し、一方、前記第二抵抗負荷状態であるときには前記吸気抵抗として3cmHO以下の抵抗を負荷し、
前記呼気経路(19a)においては、前記呼気抵抗として3cmHO以下の抵抗を負荷すること
を特徴とする呼吸機能検査システム(1)。
In the respiratory function test system (1) according to claim 6,
In the intake path (19b), when the resistance load portion (19e) is in the first resistance load state, a load of 15 cmH 2 O or more is loaded as the intake resistance, while in the second resistance load state. When there is a load of 3 cmH 2 O or less as the intake resistance,
In the exhalation path (19a), a respiratory function test system (1), wherein a resistance of 3 cmH 2 O or less is loaded as the exhalation resistance.
請求項6または請求項7に記載の呼吸機能検査システム(1)において、
前記吸気経路(19b)には、被検者の胸腔内圧および口腔内圧を計測するための圧力取得ポート(21)が設けられており、前記圧力取得ポート(21)は、前記抵抗負荷部(19e)が前記第一抵抗負荷状態であるときには胸腔内圧を計測するために利用可能であり、前記抵抗負荷部が前記第二抵抗負荷状態であるときには口腔内圧を計測するために利用可能であること
を特徴とする呼吸機能検査システム(1)。
In the respiratory function test system (1) according to claim 6 or 7,
The inhalation path (19b) is provided with a pressure acquisition port (21) for measuring the intrathoracic pressure and intraoral pressure of the subject, and the pressure acquisition port (21) is connected to the resistance load section (19e). ) Can be used to measure the intrathoracic pressure when in the first resistance load state, and can be used to measure the intraoral pressure when the resistance load portion is in the second resistance load state. Respiratory function test system (1).
請求項8に記載の呼吸機能検査システム(1)において、
前記圧力取得ポート(21)は、前記吸気経路(19b)における前記流量センサ(3)が被検者の吸気流量を検出する箇所よりも下流側に設けられていること
を特徴とする呼吸機能検査システム(1)。
In the respiratory function test system (1) according to claim 8,
The pressure acquisition port (21) is provided on the downstream side of a place where the flow rate sensor (3) in the intake path (19b) detects the intake flow rate of the subject. System (1).
請求項1〜請求項9の何れか1項に記載の呼吸機能検査システム(1)を構成する呼吸機能検査システム用の呼吸経路(11)。   A respiratory path (11) for a respiratory function test system that constitutes the respiratory function test system (1) according to any one of claims 1 to 9.
JP2014006847A 2014-01-17 2014-01-17 Respiratory function test system, Respiratory path for respiratory function test system Expired - Fee Related JP6098529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014006847A JP6098529B2 (en) 2014-01-17 2014-01-17 Respiratory function test system, Respiratory path for respiratory function test system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014006847A JP6098529B2 (en) 2014-01-17 2014-01-17 Respiratory function test system, Respiratory path for respiratory function test system

Publications (2)

Publication Number Publication Date
JP2015134080A true JP2015134080A (en) 2015-07-27
JP6098529B2 JP6098529B2 (en) 2017-03-22

Family

ID=53766435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014006847A Expired - Fee Related JP6098529B2 (en) 2014-01-17 2014-01-17 Respiratory function test system, Respiratory path for respiratory function test system

Country Status (1)

Country Link
JP (1) JP6098529B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022429A1 (en) * 2015-08-06 2017-02-09 株式会社デンソー Breathing function examining instrument
WO2017022428A1 (en) * 2015-08-06 2017-02-09 株式会社デンソー Intrathoracic pressure calculation device and intrathoracic pressure calculation method
KR20180095753A (en) * 2017-02-17 2018-08-28 경운대학교 산학협력단 A Portable Measuring Device of Respiration
CN112914551A (en) * 2021-01-20 2021-06-08 南通大学附属医院 Multifunctional measuring device for respiratory system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05200016A (en) * 1992-01-29 1993-08-10 Shinichi Konno Apparatus and method for measuring airway resistance
JPH06343623A (en) * 1993-03-10 1994-12-20 Christian Bellmark Jean Method and device for monitoring pulmonary function of subject
JP2002017696A (en) * 2000-07-05 2002-01-22 Denso Corp Method and apparatus for monitoring breathing state
JP2002355227A (en) * 2001-03-30 2002-12-10 Denso Corp Instrument and method to predict intrathoracic pressure
JP2010142594A (en) * 2008-12-22 2010-07-01 Nippon Koden Corp Respiratory function measuring apparatus
JP2012022182A (en) * 2010-07-15 2012-02-02 Fukuda Sangyo:Kk Appliance and device for experiencing copd
JP2012187292A (en) * 2011-03-11 2012-10-04 Fukuda Sangyo:Kk Breathing function test device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05200016A (en) * 1992-01-29 1993-08-10 Shinichi Konno Apparatus and method for measuring airway resistance
JPH06343623A (en) * 1993-03-10 1994-12-20 Christian Bellmark Jean Method and device for monitoring pulmonary function of subject
JP2002017696A (en) * 2000-07-05 2002-01-22 Denso Corp Method and apparatus for monitoring breathing state
JP2002355227A (en) * 2001-03-30 2002-12-10 Denso Corp Instrument and method to predict intrathoracic pressure
JP2010142594A (en) * 2008-12-22 2010-07-01 Nippon Koden Corp Respiratory function measuring apparatus
JP2012022182A (en) * 2010-07-15 2012-02-02 Fukuda Sangyo:Kk Appliance and device for experiencing copd
JP2012187292A (en) * 2011-03-11 2012-10-04 Fukuda Sangyo:Kk Breathing function test device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022429A1 (en) * 2015-08-06 2017-02-09 株式会社デンソー Breathing function examining instrument
WO2017022428A1 (en) * 2015-08-06 2017-02-09 株式会社デンソー Intrathoracic pressure calculation device and intrathoracic pressure calculation method
JP2017029638A (en) * 2015-08-06 2017-02-09 株式会社デンソー Intrathoracic pressure calculation apparatus and intrathoracic pressure calculation method
JP2017029637A (en) * 2015-08-06 2017-02-09 株式会社デンソー Respiratory function examination apparatus
CN107613865A (en) * 2015-08-06 2018-01-19 株式会社电装 Intrathoracic pressure computing device and intrathoracic pressure computational methods
GB2553448A (en) * 2015-08-06 2018-03-07 Denso Corp Intrathoracic pressure calculation device and intrathoracic pressure calculation method
CN107920777A (en) * 2015-08-06 2018-04-17 株式会社电装 Respiratory function test device
GB2555999A (en) * 2015-08-06 2018-05-16 Denso Corp Breathing function examining instrument
KR20180095753A (en) * 2017-02-17 2018-08-28 경운대학교 산학협력단 A Portable Measuring Device of Respiration
KR101962723B1 (en) * 2017-02-17 2019-08-01 경운대학교 산학협력단 A Portable Measuring Device of Respiration
CN112914551A (en) * 2021-01-20 2021-06-08 南通大学附属医院 Multifunctional measuring device for respiratory system
CN112914551B (en) * 2021-01-20 2023-07-04 南通大学附属医院 Multifunctional measuring device for respiratory system

Also Published As

Publication number Publication date
JP6098529B2 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
JP6993005B2 (en) Pulmonary function test device and its method
JP6247217B2 (en) Detection of mouth breathing in early expiration
US8808193B2 (en) Regional oxygen uptake/perfusion measuring device and method
US8740808B2 (en) Adaptive temperature sensor for breath monitoring device
EP2844144B1 (en) Piezoelectric beam bending actuated device for measuring respiratory system impedance
JP6600460B2 (en) Airway impedance measurement integrated with respiratory therapy device
US20070123792A1 (en) System and method for determining airway obstruction
US20090306529A1 (en) Adaptive temperature sensor for breath monitoring device
US20090306528A1 (en) Adaptive temperature sensor for breath monitoring device
US20100036266A1 (en) Device and method for detecting heart beats using airway pressure
JP2017512556A (en) Selection, segmentation and analysis of exhaled breaths for assessment of airway disorders
CA2602870A1 (en) Method and apparatus for diagnosing respiratory disorders and determining the degree of exacerbations
TWI645835B (en) Breathing airflow detecting device, method and application thereof
JP6098529B2 (en) Respiratory function test system, Respiratory path for respiratory function test system
CN109906054A (en) Using P0.1System and method for estimating respiratory muscle pressure and respiratory mechanics using strategies
JP5861665B2 (en) Respiratory function testing device, program, and recording medium
CN112089933A (en) Method for dynamically measuring and calculating respiratory mechanics parameters based on breathing machine
KR102352876B1 (en) Spirometer
US20080243019A1 (en) Respiratory function measuring equipment and storage medium
CN209018736U (en) A kind of mouth and nose airflow detecting device
Davis et al. Measurement of dynamic lung mechanics in infants
JP2009125567A (en) Information monitoring device in living body and monitoring method
CN213046880U (en) Novel hand-held type nose resistance test device
Davis et al. Respiratory mechanics
Hammer et al. Pulmonary function testing in the neonatal and paediatric intensive care unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170206

R151 Written notification of patent or utility model registration

Ref document number: 6098529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees