JP2015133401A - Film deposition method and film deposition apparatus - Google Patents

Film deposition method and film deposition apparatus Download PDF

Info

Publication number
JP2015133401A
JP2015133401A JP2014004002A JP2014004002A JP2015133401A JP 2015133401 A JP2015133401 A JP 2015133401A JP 2014004002 A JP2014004002 A JP 2014004002A JP 2014004002 A JP2014004002 A JP 2014004002A JP 2015133401 A JP2015133401 A JP 2015133401A
Authority
JP
Japan
Prior art keywords
gas
film
film forming
hydrogen
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014004002A
Other languages
Japanese (ja)
Other versions
JP6277388B2 (en
Inventor
吉田 武史
Takeshi Yoshida
武史 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shinku Co Ltd
Original Assignee
Showa Shinku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shinku Co Ltd filed Critical Showa Shinku Co Ltd
Priority to JP2014004002A priority Critical patent/JP6277388B2/en
Publication of JP2015133401A publication Critical patent/JP2015133401A/en
Application granted granted Critical
Publication of JP6277388B2 publication Critical patent/JP6277388B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48471Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area being a ball bond, i.e. wedge-to-ball, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating

Abstract

PROBLEM TO BE SOLVED: To deposit on a metal surface, a film of a barrier layer having an improved cutoff function.SOLUTION: A film deposition method includes a step of depositing on a metal surface, a film of a barrier layer by plasma atomic layer deposition using oxygen gas and gaseous starting material forming an oxide film by reacting with oxygen plasma. In at least an initial stage of the film deposition step, the oxygen plasma containing hydrogen atoms in a composition is used.

Description

本発明は、金属表面にバリア層を形成する成膜方法および装置に関する。   The present invention relates to a film forming method and apparatus for forming a barrier layer on a metal surface.

近年、種々の分野で、発光装置にLED(Light Emitting Diode:発光ダイオード)が利用されている。LEDチップは、基板上にダイボンディングされ、ワイヤーでLEDチップと電極が電気的に接続されると共に、LEDチップを保護する透光性樹脂で周囲が被覆されている。   In recent years, LEDs (Light Emitting Diodes) have been used for light emitting devices in various fields. The LED chip is die-bonded on a substrate, the LED chip and the electrode are electrically connected by a wire, and the periphery is covered with a translucent resin that protects the LED chip.

LEDチップの光取出し効率を向上させる目的で、反射膜、反射電極膜、電極膜、または配線等の用途に銀膜が採用されることがある。しかし、銀膜を用いる場合、銀の硫化が大きな問題となる。LEDチップは透光性樹脂により封止されているが、大気中の硫化水素等が樹脂を介して進入し、銀膜を硫化して黒色化し、LEDの光出力が低下してしまう。銀膜の黒色化を防止する目的で、銀膜にバリア層を形成するものが、例えば特許文献1に開示されている。   In order to improve the light extraction efficiency of the LED chip, a silver film may be used for applications such as a reflective film, a reflective electrode film, an electrode film, or a wiring. However, when a silver film is used, silver sulfidation becomes a big problem. Although the LED chip is sealed with a translucent resin, hydrogen sulfide or the like in the atmosphere enters through the resin, and the silver film is sulfided to become black, so that the light output of the LED is lowered. For example, Patent Document 1 discloses that a barrier layer is formed on a silver film for the purpose of preventing blackening of the silver film.

また、LEDチップに関するものではないが、例えば特許文献2には、原子層堆積(ALD:Atomic Layer Deposition)法を用いて、銀の変色を保護する被覆を成膜することが開示されている。また、非特許文献1には、低温でのAlのALD成膜についての記載がある。さらに、有機金属ガスと酸素プラズマとを反応させて酸化膜を形成するプラズマ原子層堆積(Plasma enhanced ALD、以下、「PE−ALD」という)という技術も知られている。 Although not related to the LED chip, for example, Patent Document 2 discloses forming a coating that protects the discoloration of silver by using an atomic layer deposition (ALD) method. Non-Patent Document 1 describes the ALD film formation of Al 2 O 3 at a low temperature. Furthermore, a technique called plasma atomic layer deposition (hereinafter referred to as “PE-ALD”) in which an organic metal gas and oxygen plasma are reacted to form an oxide film is also known.

特開2010−239043号公報JP 2010-239043 A 特表2009−525406号公報Special table 2009-525406 gazette

M.D.Groner, F.H.Fabreguette, J.W.Elam, and S.M.George, “Low‐Temperature Al2O3 Atomic Layer Deposition”, Chem.Mater.2004,16,639‐645M.M. D. Groner, F.A. H. Fabregette, J.A. W. Elam, and S.M. M.M. George, “Low-Temperature Al 2 O 3 Atomic Layer Deposition”, Chem. Mater. 2004, 16, 639-645

特許文献1は、バリア層として、銀全体を被覆するように金属酸化膜を形成するものである。特許文献1の実施例に開示されるように、スパッタ法により金属酸化膜(バリア層)を形成することで、樹脂膜に比較して硫化水素等の硫化ガスの透過を低減することが可能となる。しかし、スパッタ法により成膜されたバリア層は、硫化ガスの透過を完全には遮断できず、時間経過ともに銀膜が黒色化してしまうことを避けられない。   In Patent Document 1, a metal oxide film is formed as a barrier layer so as to cover the entire silver. As disclosed in the example of Patent Document 1, by forming a metal oxide film (barrier layer) by a sputtering method, it is possible to reduce permeation of a sulfide gas such as hydrogen sulfide as compared with a resin film. Become. However, the barrier layer formed by sputtering cannot completely block the permeation of sulfide gas, and it is inevitable that the silver film becomes black over time.

遮断性向上を目的とし、バリア層を高温成膜することが考えられる。特許文献2に記載されたALD法においても、低温では非特許文献1に示されるように低密度の膜しか得らないことから、安定な膜を得るには、高温で処理することが必要である。しかし、LEDは高温環境に耐えられないため、LEDチップへの高温成膜によるバリア層形成は現実的でない。   For the purpose of improving the barrier property, it is conceivable to form a barrier layer at a high temperature. Even in the ALD method described in Patent Document 2, only a low-density film can be obtained at a low temperature as shown in Non-Patent Document 1, so that it is necessary to process at a high temperature in order to obtain a stable film. is there. However, since the LED cannot withstand a high temperature environment, formation of a barrier layer by high temperature film formation on the LED chip is not realistic.

反応性スパッタを利用することで比較的低温で金属酸化膜を形成することができるが、成膜中に導入される酸素ガスにより銀膜が酸化するという問題がある。黒色化防止を目的とするバリア層の形成に起因して銀膜が黒色化してしまっては、バリア層を形成する意味がない。酸素プラズマを用いるPE−ALDも同様に、銀膜の酸化を避けることができない。   Although the metal oxide film can be formed at a relatively low temperature by using reactive sputtering, there is a problem that the silver film is oxidized by oxygen gas introduced during the film formation. If the silver film is blackened due to the formation of a barrier layer for the purpose of preventing blackening, there is no point in forming the barrier layer. Similarly, PE-ALD using oxygen plasma cannot avoid oxidation of the silver film.

本発明者は、以上の課題を解決するため、特許文献1や非特許文献1に示された原料ガスと水とを用いるALDによって第1のバリア層を成膜し、その後に、原料ガスと酸素プラズマによって第2のバリア層を成膜する方法および装置を発明し、先に特許出願した(特願2013−096384、本願出願時未公開、以下「先の出願」という)。   In order to solve the above problems, the present inventor forms a first barrier layer by ALD using the source gas and water shown in Patent Document 1 and Non-Patent Document 1, and thereafter, the source gas and A method and apparatus for forming a second barrier layer by oxygen plasma was invented, and a patent application was filed earlier (Japanese Patent Application No. 2013-096384, unpublished at the time of filing this application, hereinafter referred to as “previous application”).

本願発明は、遮断機能の高いバリア層を成膜することが可能な新たな成膜方法および装置、ならびにそのようなバリア層が形成された電子デバイスを提供することを目的とする。   An object of the present invention is to provide a new film forming method and apparatus capable of forming a barrier layer having a high blocking function, and an electronic device on which such a barrier layer is formed.

本発明の第一の側面によると、酸素プラズマと反応して酸化膜を形成する原料ガスと酸素ガスとを用い、プラズマ原子層堆積によって金属の表面にバリア層を成膜する工程を含み、この成膜する工程の少なくとも初期に、酸素プラズマとして、組成に水素原子を含むもの(以下、「水素含有酸素プラズマ」という)を用いることを特徴とする成膜方法が提供される。   According to a first aspect of the present invention, the method includes a step of forming a barrier layer on the surface of a metal by plasma atomic layer deposition using a source gas that reacts with oxygen plasma to form an oxide film and oxygen gas. There is provided a film forming method characterized by using, as an oxygen plasma, one containing a hydrogen atom in the composition (hereinafter referred to as “hydrogen-containing oxygen plasma”) at least in the initial stage of the film forming step.

この成膜方法は、成膜対象となる金属が銀Ag、あるいは少なくともその一部が銀Agである金属の場合に特に有効であり、成膜中の酸素と水素の量を調整することで、銀の黒色化を防止しながら、その表面にバリア層を形成することができる。また、銀以外の金属に対しても、その金属の酸化を防止しながら、遮断機能の高いバリア層を成膜することができる。また、成膜時の温度を比較的低温に抑えることができるので、樹脂パッケージを用いる場合であっても樹脂の劣化を抑制することができる。   This film forming method is particularly effective when the metal to be formed is silver Ag, or at least a part of which is silver Ag. By adjusting the amounts of oxygen and hydrogen during film formation, While preventing silver blackening, a barrier layer can be formed on the surface. In addition, a barrier layer having a high blocking function can be formed on a metal other than silver while preventing oxidation of the metal. Further, since the temperature during film formation can be suppressed to a relatively low temperature, deterioration of the resin can be suppressed even when a resin package is used.

水素含有酸素プラズマを生成するには、酸素ガスに加えて水素ガスHを用いることが望ましい。水HOを用いることもできる。 In order to generate hydrogen-containing oxygen plasma, it is desirable to use hydrogen gas H 2 in addition to oxygen gas. Water H 2 O can also be used.

原料ガスとしては、有機金属化合物を用いることができる。たとえば、トリメチルアルミニウム(TMA)などの有機アルミニウム化合物を用いて、酸化アルミニムAl、のバリア層を成膜することができる。また、原料ガスとして有機チタン化合物を用いることで、酸化チタンTiOバリア層を成膜できる。原料ガスとして有機シリコン化合物を用いることで、酸化シリコンSiOバリア層を成膜できる。 As the source gas, an organometallic compound can be used. For example, a barrier layer of aluminum oxide Al 2 O 3 can be formed using an organoaluminum compound such as trimethylaluminum (TMA). Further, by using an organic titanium compound as the raw material gas can deposit a titanium oxide TiO 2 barrier layer. By using an organic silicon compound as a source gas, a silicon oxide SiO 2 barrier layer can be formed.

本発明の第二の側面によると、少なくとも表面の一部に金属層が設けられた対象物を収容する成膜室と、成膜室内を真空雰囲気に維持する排気装置と、酸素プラズマと反応して酸化膜を形成する原料ガスおよび反応ガスとしての酸素ガスを成膜室内に導入するガス導入手段と、組成に水素原子を含む材料を成膜室内に導入する水素導入手段と、成膜室内に高周波電力を印加してプラズマを生成させる高周波電源と、ガス導入手段、水素導入手段および高周波電源を制御する制御部とを備え、制御部は、ガス導入手段を制御して成膜室へ原料ガスおよび酸素ガスを導入するとともに、高周波電源を制御して、プラズマ原子層堆積により金属層の表面にバリア層を成膜させる制御を実行し、さらに、この成膜させる制御の少なくとも初期に、成膜室への酸素ガスの導入に伴って、水素導入手段を制御して組成に水素原子を含む材料を成膜室へ導入する制御を実行することを特徴とする成膜装置が提供される。   According to the second aspect of the present invention, a film forming chamber for storing an object having a metal layer provided on at least a part of its surface, an exhaust device for maintaining the film forming chamber in a vacuum atmosphere, and a reaction with oxygen plasma. A gas introducing means for introducing a source gas for forming an oxide film and an oxygen gas as a reaction gas into the film forming chamber; a hydrogen introducing means for introducing a material containing a hydrogen atom in the composition into the film forming chamber; A high-frequency power source that applies high-frequency power to generate plasma, and a control unit that controls the gas introduction unit, the hydrogen introduction unit, and the high-frequency power source, and the control unit controls the gas introduction unit to supply a source gas to the film formation chamber And oxygen gas are introduced, and the high-frequency power source is controlled to control the deposition of the barrier layer on the surface of the metal layer by plasma atomic layer deposition, and at least at the initial stage of the deposition control With the introduction of oxygen gas into the film forming apparatus is provided which is characterized in that performs a control process for introducing a material containing hydrogen atoms in the composition to control the hydrogen introducing means into the deposition chamber.

本発明によると、遮断機能の高いバリア層を成膜することができ、そのようなバリア層が設けられた電子デバイスを提供することができる。   According to the present invention, a barrier layer having a high blocking function can be formed, and an electronic device provided with such a barrier layer can be provided.

本発明の第1の実施の形態に係るALD装置の構成を示す図である。It is a figure which shows the structure of the ALD apparatus which concerns on the 1st Embodiment of this invention. 図1に示すALD装置の制御部による成膜制御の流れを示すフローチャートである。2 is a flowchart showing a flow of film formation control by a control unit of the ALD apparatus shown in FIG. 1. 本発明の第2の実施の形態に係るALD装置の構成を示す図である。It is a figure which shows the structure of the ALD apparatus which concerns on the 2nd Embodiment of this invention. 成膜方法の異なるバリア層の水蒸気透過率の測定結果例を示す図である。It is a figure which shows the example of a measurement result of the water-vapor-permeation rate of the barrier layer from which the film-forming method differs. 酸素ガスと水素ガスの流量比を変えてバリア層が形成されたAgの反射率の測定結果例を示す図である。It is a figure which shows the example of a measurement result of the reflectance of Ag in which the flow rate ratio of oxygen gas and hydrogen gas was changed and the barrier layer was formed. 図1または図3に示す装置で形成されたバリア層を有する電子デバイスの断面図である。It is sectional drawing of the electronic device which has a barrier layer formed with the apparatus shown in FIG. 1 or FIG.

図1は、本発明の第1の実施の形態に係る成膜装置としてのALD装置の構成を示す図である。以下では、銀膜上にバリア層として酸化アルミニウムAlを形成する場合を例に説明する。 FIG. 1 is a diagram showing a configuration of an ALD apparatus as a film forming apparatus according to the first embodiment of the present invention. Hereinafter, it will be explained as an example the case of forming aluminum oxide Al 2 O 3 as a barrier layer on the silver film.

図1に示すALD装置は、成膜室1と、成膜対象である基板2(被成膜面に銀膜を含む)と、排気装置3と、ガスシャワー4と、プラズマ生成用の高周波電源5と、給気部6〜9と、制御部10と、を備える。成膜室1は、少なくとも表面の一部に金属層が設けられた対象物である基板2を収容する。排気装置3は、成膜室に連接され、成膜室1内を真空雰囲気に維持する。高周波電源5は、成膜室1内に高周波電力を印加してプラズマを生成させる。給気部6、7は、成膜室1に連設され、酸素プラズマと反応して酸化膜を形成する原料ガスおよび反応ガスとしての酸素Oガスを成膜室1内に導入するガス導入手段を構成する。給気部8は、成膜室1に連設され、組成に水素原子を含む材料を成膜室1内に導入する水素導入手段を構成する。給気部9は、成膜室1に連設され、成膜室1内に不活性ガスを導入する。この実施の形態では、原料ガスをトリメチルアルミニウム(TMA)とし、水素を含む材料として水素Hを用いる。不活性ガスとしては、例えばアルゴンを用いる。制御部10は、CPU、RAMおよびROM等から構成されており、高周波電源5および吸気部6〜9を含むALD装置の動作全般を制御する。 An ALD apparatus shown in FIG. 1 includes a film formation chamber 1, a substrate 2 to be formed (including a silver film on a film formation surface), an exhaust device 3, a gas shower 4, and a high-frequency power source for generating plasma. 5, air supply units 6 to 9, and control unit 10. The film forming chamber 1 accommodates a substrate 2 that is an object provided with a metal layer on at least a part of its surface. The exhaust device 3 is connected to the film forming chamber and maintains the inside of the film forming chamber 1 in a vacuum atmosphere. The high frequency power source 5 applies high frequency power to the film forming chamber 1 to generate plasma. The gas supply units 6 and 7 are connected to the film forming chamber 1 and introduce gas into the film forming chamber 1 for introducing a source gas that reacts with oxygen plasma to form an oxide film and an oxygen O 2 gas as a reactive gas. Configure the means. The air supply unit 8 is connected to the film forming chamber 1 and constitutes hydrogen introduction means for introducing a material containing hydrogen atoms in the composition into the film forming chamber 1. The air supply unit 9 is connected to the film forming chamber 1 and introduces an inert gas into the film forming chamber 1. In this embodiment, the source gas is trimethylaluminum (TMA), and hydrogen H 2 is used as a material containing hydrogen. For example, argon is used as the inert gas. The control unit 10 includes a CPU, a RAM, a ROM, and the like, and controls the overall operation of the ALD apparatus including the high frequency power supply 5 and the intake units 6 to 9.

ガスシャワー4は、基板2に対向配置され、高周波電源5に接続される。成膜対象に対面するガスシャワー4により、成膜対象面に対してガスの流れを均等に生成することができる。また、ガスシャワー4に高周波電力を印加することにより、成膜室1内部にプラズマが生成される。図1に示す実施形態では成膜室1および基板2を接地するものとしているが、新たな高周波電源を設けて、基板2に高周波電力を印加してもよい。   The gas shower 4 is disposed to face the substrate 2 and is connected to the high frequency power source 5. By the gas shower 4 facing the film formation target, a gas flow can be evenly generated with respect to the film formation target surface. Further, plasma is generated inside the film forming chamber 1 by applying high frequency power to the gas shower 4. In the embodiment shown in FIG. 1, the film formation chamber 1 and the substrate 2 are grounded. However, a new high frequency power source may be provided to apply high frequency power to the substrate 2.

吸気部6は、原料ガスであるTMAの供給源に接続される。吸気部7は、反応ガスである酸素ガスの供給源に接続される。吸気部8は、水素供給源に接続される。吸気部9は、不活性ガスであるアルゴン供給源に接続される。原料ガス、反応ガス、水素ガス、および不活性ガスは、いずれもガスシャワー4から成膜室1内部に供給される。原料ガスの供給および停止は、吸気部6の開/閉により行う。   The intake section 6 is connected to a supply source of TMA that is a raw material gas. The intake section 7 is connected to a supply source of oxygen gas that is a reaction gas. The intake unit 8 is connected to a hydrogen supply source. The intake section 9 is connected to an argon supply source that is an inert gas. Source gas, reaction gas, hydrogen gas, and inert gas are all supplied from the gas shower 4 into the film forming chamber 1. The supply and stop of the source gas is performed by opening / closing the intake section 6.

制御部10は、給気部6、7を制御して成膜室へ原料ガスおよび酸素ガスを導入するとともに、高周波電源5を制御して、プラズマ原子層堆積により基板2の金属層表面にバリア層を成膜させる制御を実行する。さらに、制御部10は、この成膜させる制御の少なくとも初期に、成膜室1への酸素ガスの導入に伴って、給気部8を制御して組成に水素原子を含む材料を成膜室1へ導入する制御を実行する。これらの制御において、制御部10は、給気部6〜9および高周波電源5に信号を送信して、高周波電力の印加時間、ガス供給のタイミングを制御する。   The control unit 10 controls the air supply units 6 and 7 to introduce the source gas and the oxygen gas into the film forming chamber, and also controls the high frequency power source 5 to barrier the metal layer surface of the substrate 2 by plasma atomic layer deposition. Control to form a layer is executed. Further, the control unit 10 controls the air supply unit 8 with the introduction of oxygen gas into the film forming chamber 1 at least in the initial stage of the film forming control so that the material containing hydrogen atoms in the composition is formed in the film forming chamber. The control introduced to 1 is executed. In these controls, the control unit 10 transmits signals to the air supply units 6 to 9 and the high frequency power source 5 to control the application time of high frequency power and the timing of gas supply.

次に、バリア層の成膜工程について説明する。まず、基板2をセットし、給気部6および給気部9を開き、Alを含む原料ガスであるTMAと不活性ガスのアルゴンとを成膜室1内に導入する。本実施例では基板2を120℃に加熱する。TMA分子を基板2の表面に吸着させた後に、吸気部6を閉じ、原料ガスをパージする。その後、吸気部7、8を開き、成膜室1内に酸素ガスおよび水素ガスを供給する。次いで、ガスシャワー4に高周波電力を印加し、活性水素を含有する酸素プラズマ(水素含有酸素プラズマ)を生成し、基板2のTMA分子を酸化させてAlを形成する。酸素プラズマ中に水素ラジカルを含むことにより、銀膜が黒色化せず、かつバリア機能の高い緻密な膜を形成することができる。TMA分子の酸化は、高周波電力の印加時間により制御する。吸気部7を閉じて酸化ガスおよび水素ガスを成膜室1からパージした後、吸気部9は開いたまま、所望の膜厚になるまで、原料ガスの導入、パージ、酸化ガスおよび水素ガスの導入、高周波電極の印加、パージのサイクルを繰り返して継続する。 Next, the film formation process of a barrier layer is demonstrated. First, the substrate 2 is set, the air supply unit 6 and the air supply unit 9 are opened, and TMA which is a source gas containing Al and argon as an inert gas are introduced into the film forming chamber 1. In this embodiment, the substrate 2 is heated to 120 ° C. After the TMA molecules are adsorbed on the surface of the substrate 2, the intake portion 6 is closed and the source gas is purged. Thereafter, the intake portions 7 and 8 are opened, and oxygen gas and hydrogen gas are supplied into the film forming chamber 1. Next, high frequency power is applied to the gas shower 4 to generate oxygen plasma containing active hydrogen (hydrogen-containing oxygen plasma), and the TMA molecules of the substrate 2 are oxidized to form Al 2 O 3 . By containing hydrogen radicals in the oxygen plasma, the silver film is not blackened and a dense film having a high barrier function can be formed. The oxidation of TMA molecules is controlled by the application time of high frequency power. After the intake section 7 is closed and the oxidizing gas and the hydrogen gas are purged from the film forming chamber 1, the introduction of the source gas, the purge, the oxidizing gas and the hydrogen gas are continued until the desired thickness is obtained while the intake section 9 is kept open. The introduction, high-frequency electrode application, and purge cycles are repeated and continued.

図2は、バリア層の成膜工程における制御部10の制御の流れを示すフローチャートである。   FIG. 2 is a flowchart showing a control flow of the control unit 10 in the barrier layer forming process.

制御部10は、オペレータからの成膜開始の指示があると、給気部6,9に、原料ガスと不活性ガスの成膜室1内への導入を指示する(ステップS1,S2)。なお、図2では、フローチャートにおけるループを明確にするため、給気部6より先に給気部9へ指示するように記載している。給気部6,9への指示のタイミングは、同時でもよく、給気部6が先でもよい。続いて制御部10は、TMA分子が基板2の表面に吸着するまでの時間が経過した後、吸気部6に、ガスの供給停止を指示する(ステップS3)。続いて制御部10は、吸気部7、8に、酸素ガスおよび水素ガスの成膜室1内への供給を指示する(ステップS4)。次いで、制御部10は、高周波電源5をオンにし、ガスシャワー4に高周波電力を印加させる(ステップS5)。これにより、基板2のTMA分子が酸化し、Alが形成される。続いて、制御部10は、吸気部7、8に、酸素ガスおよび水素ガスの供給停止を指示する(ステップS6)。これにより、成膜室1から酸素ガスおよび水素ガスがパージされる。制御部10は、所望の膜厚が得られるまで、ステップS2〜S6の処理を繰り返す(ステップS7)。所望の膜厚が得られると、制御部10は、給気部9に不活性ガスの供給停止を指示し(ステップS8)、成膜制御を終了する。 When there is an instruction to start film formation from the operator, the control unit 10 instructs the air supply units 6 and 9 to introduce the source gas and the inert gas into the film formation chamber 1 (steps S1 and S2). In FIG. 2, the air supply unit 9 is instructed before the air supply unit 6 in order to clarify the loop in the flowchart. The timing of the instructions to the air supply units 6 and 9 may be simultaneous, or the air supply unit 6 may be first. Subsequently, after the time until the TMA molecules are adsorbed on the surface of the substrate 2 has elapsed, the control unit 10 instructs the intake unit 6 to stop supplying gas (step S3). Subsequently, the control unit 10 instructs the intake units 7 and 8 to supply oxygen gas and hydrogen gas into the film forming chamber 1 (step S4). Next, the control unit 10 turns on the high frequency power source 5 and applies high frequency power to the gas shower 4 (step S5). As a result, the TMA molecules of the substrate 2 are oxidized to form Al 2 O 3 . Subsequently, the control unit 10 instructs the intake units 7 and 8 to stop supplying oxygen gas and hydrogen gas (step S6). Thereby, oxygen gas and hydrogen gas are purged from the film forming chamber 1. The control unit 10 repeats the processes in steps S2 to S6 until a desired film thickness is obtained (step S7). When the desired film thickness is obtained, the control unit 10 instructs the air supply unit 9 to stop supplying the inert gas (step S8), and the film formation control ends.

本実施の形態によれば、吸気部6〜9の開閉および高周波電力の印加時間により、精度良く膜厚を制御することができる。また、基板2の成膜面が平面でなく凹凸面を有する場合であっても、膜の着き回りがよく、均一な膜を形成することができる。水素ガスの成膜室1への導入に関して、ここでは酸素ガスの導入に伴って毎回行うものとしたが、成膜の初期だけ行ってもよい。   According to the present embodiment, the film thickness can be accurately controlled by opening / closing the intake portions 6 to 9 and applying time of the high frequency power. Moreover, even when the film formation surface of the substrate 2 is not a flat surface but has an uneven surface, the film is well-fitted and a uniform film can be formed. Here, the introduction of hydrogen gas into the film formation chamber 1 is performed every time the oxygen gas is introduced, but it may be performed only at the initial stage of film formation.

以上の説明では、バリア層を形成する対象として銀を例に説明したが、他の酸化あるいは腐食しやすい金属に対しても、同様のバリア層を形成して、酸化性ガスや腐食性ガスを良好に遮断することができる。   In the above description, silver has been described as an example of the target for forming the barrier layer. However, a similar barrier layer is formed on other oxidizable or corrosive metals, and an oxidizing gas or a corrosive gas is used. It can block well.

また、以上の説明では、バリア層として酸化アルミニウムを成膜するものとしたが、酸化チタンや酸化シリコン等の酸化金属膜を形成してもよい。原料ガスは、トリメチルアルミニウム(TMA)に限定されるものではなく、目的のバリア層に合わせて適宜選択することができる。また、不活性ガスについても、アルゴンに限定されるものではなく、例えば窒素を用いてもよい。   In the above description, aluminum oxide is formed as the barrier layer, but a metal oxide film such as titanium oxide or silicon oxide may be formed. The source gas is not limited to trimethylaluminum (TMA) and can be appropriately selected according to the target barrier layer. Further, the inert gas is not limited to argon, and for example, nitrogen may be used.

基板2を成膜室1内にセットするには、図示していない搬送装置を用いて、成膜室1の真空雰囲気を維持したまま基板2を成膜室1内に搬入する。あるいは、成膜室1内に基板2を手動で搬入して設置し、その後に成膜室1内を所定の真空度まで真空排気してもよい。   In order to set the substrate 2 in the film formation chamber 1, the substrate 2 is carried into the film formation chamber 1 while maintaining the vacuum atmosphere in the film formation chamber 1 using a transfer device (not shown). Alternatively, the substrate 2 may be manually carried into the film formation chamber 1 and installed, and then the inside of the film formation chamber 1 may be evacuated to a predetermined degree of vacuum.

図3は、本発明の第2の実施の形態に係るALD装置の構成を示す図である。このALD装置は、成膜室20と、成膜対象である基板2と、排気装置3と、高周波コイル21と、プラズマ生成用の高周波電源5と、給気部6〜9と、制御部10と、を備える。給気部6〜9および排気装置3は成膜室1に連設されている。   FIG. 3 is a diagram showing a configuration of an ALD apparatus according to the second embodiment of the present invention. The ALD apparatus includes a film forming chamber 20, a substrate 2 to be formed, an exhaust device 3, a high frequency coil 21, a high frequency power source 5 for generating plasma, air supply units 6 to 9, and a control unit 10. And comprising. The air supply units 6 to 9 and the exhaust device 3 are connected to the film forming chamber 1.

図1に示すALD装置は、バリア層を成膜するために、容量結合プラズマを生成している。これに対して図3に示すALD装置は、高周波電極としてのガスシャワー4に代えてコイル21を配置し、誘導結合プラズマを生成する。すなわち、本実施の形態は、プラズマの生成方法が異なるだけで、第1の実施形態と実質的に同等の成膜工程でバリア層を成膜することができる。   The ALD apparatus shown in FIG. 1 generates capacitively coupled plasma in order to form a barrier layer. On the other hand, the ALD apparatus shown in FIG. 3 arranges the coil 21 instead of the gas shower 4 as a high frequency electrode and generates inductively coupled plasma. In other words, the present embodiment can form a barrier layer in substantially the same film formation process as that of the first embodiment, except that the plasma generation method is different.

図4は、成膜方法の異なるバリア層の水蒸気透過率の測定結果例を示す図である。縦軸が水蒸気透過率を示す。バリア層としては、100μmの厚さのPET(Polyethylene terephthalate)フィルム上(片面)に、Alを20nmの膜厚に成膜したものを用いている。成膜方法としては、
(1)原料ガスと水とを用いるALD(「H2O−ALD」という)、
(2)原料ガスと酸素プラズマによるPE−ALD(「PE−ALD(O2)」という)、
(3)原料ガスと水素含有酸素プラズマによるPE−ALD(「PE−ALD(O2/H2)」という)、
(4)原料ガスと水素含有酸素プラズマによるPE−ALDで一部成膜した後、原料ガスと酸素プラズマによるPE−ALDで成膜する方法(「PE−ALD(O2/H2→O2)という)
の4種類を用いた。比較のため、バリア層がない場合も示している(図には「PET」と示す)。
FIG. 4 is a diagram showing an example of measurement results of water vapor permeability of barrier layers with different film forming methods. The vertical axis represents the water vapor transmission rate. As the barrier layer, an Al 2 O 3 film having a thickness of 20 nm on a 100 μm thick PET (Polyethylene terephthalate) film (one surface) is used. As a film formation method,
(1) ALD using source gas and water (referred to as “H2O-ALD”),
(2) PE-ALD (referred to as “PE-ALD (O2)”) using source gas and oxygen plasma,
(3) PE-ALD (referred to as “PE-ALD (O2 / H2)”) using source gas and hydrogen-containing oxygen plasma,
(4) A method of forming a film by PE-ALD using a source gas and hydrogen-containing oxygen plasma, and then forming a film using PE-ALD using a source gas and oxygen plasma (referred to as “PE-ALD (O2 / H2 → O2)”).
The following four types were used. For comparison, a case without a barrier layer is also shown (shown as “PET” in the figure).

図4に示すように、バリア層が無いPETでは水蒸気透過率が6.04g/m・dayであるのに対し、H2O−ALDによるバリア層を設けることで、水蒸気透過率が0.47g/m・dayに低下する。さらに、PE−ALD(O2)によるバリア層では、水蒸気透過率が0.09g/m・dayとなり、水素ガスを用いたPE−ALDでは、水蒸気透過率が0.08g/m・dayとなっている。PE−ALD(O2/H2)とPE−ALD(O2/H2→O2)とでは、水蒸気透過率の違いは見られなかった。水素含有酸素プラズマと反応させながらPE−ALDを行うことで、他の方法で成膜された同じ厚さのAlバリア層に比較して、水蒸気に対して優れた遮断性を示すバリア層が得られることがわかる。図4に示す測定結果は、硫化水素等の硫化ガスに対する遮断性を示すものではない。しかし、水蒸気以外のガスに対しても、同様の傾向があると考えられる。 As shown in FIG. 4, the water vapor transmission rate of PET without a barrier layer is 6.04 g / m 2 · day, whereas the water vapor transmission rate is 0.47 g / m 2 by providing a barrier layer of H 2 O-ALD. It decreases to m 2 · day. Furthermore, in the barrier layer made of PE-ALD (O2), the water vapor transmission rate is 0.09 g / m 2 · day, and in PE-ALD using hydrogen gas, the water vapor transmission rate is 0.08 g / m 2 · day. It has become. No difference in water vapor transmission rate was observed between PE-ALD (O2 / H2) and PE-ALD (O2 / H2-> O2). By performing PE-ALD while reacting with a hydrogen-containing oxygen plasma, the barrier exhibits an excellent barrier property against water vapor as compared to an Al 2 O 3 barrier layer having the same thickness formed by another method. It can be seen that a layer is obtained. The measurement results shown in FIG. 4 do not indicate the barrier property against sulfur gas such as hydrogen sulfide. However, it is considered that the same tendency exists for gases other than water vapor.

図5は、酸素ガスと水素ガスの流量比を変えてバリア層が形成されたAgの反射率の測定結果例を示す図である。縦軸が波長460nmにおける反射率を示し、横軸は、酸素ガスと水素ガスの流量比を示す。酸素ガスと水素ガスの総流量は200sccmとし、Alバリア層を25nmの厚さに成膜した。図5にはまた、H2O−ALDとPE−ALD(O2)の2段階で同じ厚さのAlバリア層を成膜した場合の反射率(図には「2Step」として示す)と、バリア層がないAg単独の反射率も示す。 FIG. 5 is a diagram showing an example of measurement results of the reflectance of Ag in which a barrier layer is formed by changing the flow rate ratio of oxygen gas and hydrogen gas. The vertical axis represents the reflectance at a wavelength of 460 nm, and the horizontal axis represents the flow ratio of oxygen gas to hydrogen gas. The total flow rate of oxygen gas and hydrogen gas was 200 sccm, and an Al 2 O 3 barrier layer was formed to a thickness of 25 nm. FIG. 5 also shows the reflectance (shown as “2Step” in the figure) when an Al 2 O 3 barrier layer having the same thickness is formed in two stages of H 2 O-ALD and PE-ALD (O 2). The reflectivity of Ag alone without a barrier layer is also shown.

図5に示すように、水素ガスを利用せずに酸素ガスのみでバリア層を成膜した場合の反射率は、58.4であった。一方、水素ガスの流量を20sccm(酸素ガスの流量は180sccm)としてバリア層を成膜した場合には、反射率が91.0と大幅に増加した。水素ガスの流量が30,40,50,60,70の場合のそれぞれの反射率は、91.7,93.8,94.5,94.1,93.8であった。H2O−ALDとPE−ALD(O2)の2段階で成膜した場合の反射率は、93.9であった。Ag単独の反射率は、96.3であった。この測定結果から、酸素ガス対水素ガスの流量比は、160/40以上の範囲が望ましいことがわかる。すなわち、酸素ガスに対して水素ガスを1/4以上の範囲で反応させることがよい。酸素ガスに対して水素ガスは3/4以下の範囲で反応させることがよい。   As shown in FIG. 5, the reflectance when the barrier layer was formed only with oxygen gas without using hydrogen gas was 58.4. On the other hand, when the barrier layer was formed with a hydrogen gas flow rate of 20 sccm (oxygen gas flow rate of 180 sccm), the reflectivity increased significantly to 91.0. The respective reflectances when the flow rate of hydrogen gas was 30, 40, 50, 60, and 70 were 91.7, 93.8, 94.5, 94.1, and 93.8. The reflectivity when the film was formed in two stages of H 2 O-ALD and PE-ALD (O 2) was 93.9. The reflectance of Ag alone was 96.3. From this measurement result, it can be seen that the flow rate ratio of oxygen gas to hydrogen gas is preferably 160/40 or more. That is, it is preferable to react hydrogen gas with oxygen gas in a range of 1/4 or more. Hydrogen gas is preferably reacted with oxygen gas in a range of 3/4 or less.

上述の実施の形態では基板温度120℃でバリア層を形成するものとしたが、バリア層は200℃以下、より好ましくは150℃以下で形成することが望ましい。   In the above embodiment, the barrier layer is formed at a substrate temperature of 120 ° C., but the barrier layer is desirably formed at 200 ° C. or less, more preferably 150 ° C. or less.

図6は、上述の実施の形態を用いて形成されたバリア層を有する電子デバイスの断面図である。ここでは、電子デバイスとして、LED光源30を例に説明する。このLED光源30の基本構造は、バリア層が水素含有酸素プラズマを用いて成膜されたものであることを除いて、特許文献1に示されたものと同等である。すなわち、LED光源30は、基板31上に、Ag電極32,33を備える。これらのAg電極32,33は、図外の外部電極に接続される。Ag電極32,33上には、LED素子36が実装される。LED素子36の上面にバリア層34が設けられている。LED素子36の2つの電極は、一方がワイヤー37によりAg電極32に電気的に接続され、他方がワイヤー38によりAg電極33に電気的に接続される。LED光源30の周辺部にはパッケージ枠40が設けられ、このパッケージ枠40内は、LED素子36の周囲を囲むように、蛍光体が均一に練り込まれた封止材41で埋め込まれている。   FIG. 6 is a cross-sectional view of an electronic device having a barrier layer formed using the above-described embodiment. Here, the LED light source 30 will be described as an example of the electronic device. The basic structure of the LED light source 30 is the same as that shown in Patent Document 1 except that the barrier layer is formed using hydrogen-containing oxygen plasma. That is, the LED light source 30 includes Ag electrodes 32 and 33 on the substrate 31. These Ag electrodes 32 and 33 are connected to external electrodes not shown. An LED element 36 is mounted on the Ag electrodes 32 and 33. A barrier layer 34 is provided on the upper surface of the LED element 36. One of the two electrodes of the LED element 36 is electrically connected to the Ag electrode 32 via a wire 37, and the other is electrically connected to the Ag electrode 33 via a wire 38. A package frame 40 is provided around the LED light source 30, and the package frame 40 is embedded with a sealing material 41 in which phosphors are uniformly kneaded so as to surround the LED element 36. .

1、20 成膜室
2 基板
3 排気装置
4 ガスシャワー
5 高周波電源
6〜9 給気部
10 制御部
21 高周波コイル
30 LED光源
31 基板
32,33 Ag電極
34 バリア層
36 LED素子
37,38 ワイヤー
40 パッケージ枠
41 封止材
DESCRIPTION OF SYMBOLS 1,20 Film-forming chamber 2 Substrate 3 Exhaust device 4 Gas shower 5 High frequency power supply 6-9 Air supply unit 10 Control unit 21 High frequency coil 30 LED light source 31 Substrate 32, 33 Ag electrode 34 Barrier layer 36 LED element 37, 38 Wire 40 Package frame 41 Sealing material

Claims (8)

酸素プラズマと反応して酸化膜を形成する原料ガスと酸素ガスとを用い、プラズマ原子層堆積によって金属の表面にバリア層を成膜する工程を含み、
この成膜する工程の少なくとも初期に、前記酸素プラズマとして組成に水素原子を含むものを用いる
ことを特徴とする成膜方法。
Using a source gas that reacts with oxygen plasma to form an oxide film and oxygen gas, and includes forming a barrier layer on the surface of the metal by plasma atomic layer deposition;
A film forming method comprising using at least the initial stage of the film forming process, the oxygen plasma containing hydrogen atoms in the composition.
請求項1記載の成膜方法において、
前記酸素プラズマの生成時に前記酸素ガスに加えて水素ガスを用いる
ことを特徴とする成膜方法。
In the film-forming method of Claim 1,
A hydrogen deposition gas is used in addition to the oxygen gas when the oxygen plasma is generated.
請求項2記載の成膜方法において、前記酸素ガスに対して前記水素ガスを1/4以上の範囲で反応させることを特徴とする成膜方法。   The film forming method according to claim 2, wherein the hydrogen gas is reacted with the oxygen gas in a range of ¼ or more. 請求項1から3のいずれか1項記載の成膜方法において、前記金属は、電子素子と共に基板上に形成された金属膜であり、前記成膜する工程を、前記電子素子の機能が保たれる限界温度より低い基板温度で実行することを特徴とする成膜方法。   4. The film forming method according to claim 1, wherein the metal is a metal film formed on a substrate together with an electronic element, and the function of the electronic element is maintained in the film forming step. 5. The film forming method is performed at a substrate temperature lower than a limit temperature. 請求項4記載の成膜方法において、前記電子素子は発光ダイオードであることを特徴とする成膜方法。   5. The film forming method according to claim 4, wherein the electronic element is a light emitting diode. 請求項1から5のいずれか1項記載の成膜方法において、前記金属は少なくともその一部が銀Agであることを特徴とする成膜方法。   The film forming method according to claim 1, wherein at least a part of the metal is silver Ag. 請求項1から6のいずれか1項記載の成膜方法において、前記原料ガスとして有機アルミニウム化合物、有機チタン化合物および有機シリコン化合物から選択される1以上の化合物を用い、酸化アルミニムAl、酸化チタンTiOおよび酸化シリコンSiOから選択される1以上の酸化物で前記バリア層を成膜することを特徴とする成膜方法。 7. The film forming method according to claim 1, wherein at least one compound selected from an organoaluminum compound, an organotitanium compound, and an organosilicon compound is used as the source gas, and aluminum oxide Al 2 O 3 , A film forming method comprising forming the barrier layer with one or more oxides selected from titanium oxide TiO 2 and silicon oxide SiO 2 . 少なくとも表面の一部に金属層が設けられた対象物を収容する成膜室と、
前記成膜室内を真空雰囲気に維持する排気装置と、
酸素プラズマと反応して酸化膜を形成する原料ガスおよび反応ガスとしての酸素ガスを前記成膜室内に導入するガス導入手段と、
組成に水素原子を含む材料を前記成膜室内に導入する水素導入手段と、
前記成膜室内に高周波電力を印加してプラズマを生成させる高周波電源と、
前記ガス導入手段、前記水素導入手段および前記高周波電源を制御する制御部と
を備え、
前記制御部は、前記ガス導入手段を制御して前記成膜室へ前記原料ガスおよび前記酸素ガスを導入するとともに、前記高周波電源を制御して、プラズマ原子層堆積により前記金属層の表面にバリア層を成膜させる制御を実行し、さらに、この成膜させる制御の少なくとも初期に、前記成膜室への前記酸素ガスの導入に伴って、前記水素導入手段を制御して前記組成に水素原子を含む材料を前記成膜室へ導入する制御を実行する
ことを特徴とする成膜装置。
A film forming chamber for storing an object provided with a metal layer on at least a part of its surface;
An exhaust device for maintaining the film forming chamber in a vacuum atmosphere;
A gas introduction means for introducing a source gas that reacts with oxygen plasma to form an oxide film and an oxygen gas as a reaction gas into the film formation chamber;
A hydrogen introduction means for introducing a material containing a hydrogen atom into the film formation chamber;
A high frequency power source for generating plasma by applying high frequency power to the film forming chamber;
A controller for controlling the gas introduction means, the hydrogen introduction means, and the high-frequency power source,
The control unit controls the gas introduction unit to introduce the source gas and the oxygen gas into the film formation chamber, and also controls the high-frequency power source to barrier the surface of the metal layer by plasma atomic layer deposition. In addition, at least in the initial stage of the film formation control, the hydrogen introduction unit is controlled to introduce hydrogen atoms into the composition by introducing the oxygen gas into the film formation chamber. The film forming apparatus is characterized in that control is performed to introduce a material containing the material into the film forming chamber.
JP2014004002A 2014-01-14 2014-01-14 Deposition method Active JP6277388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014004002A JP6277388B2 (en) 2014-01-14 2014-01-14 Deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014004002A JP6277388B2 (en) 2014-01-14 2014-01-14 Deposition method

Publications (2)

Publication Number Publication Date
JP2015133401A true JP2015133401A (en) 2015-07-23
JP6277388B2 JP6277388B2 (en) 2018-02-14

Family

ID=53900399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014004002A Active JP6277388B2 (en) 2014-01-14 2014-01-14 Deposition method

Country Status (1)

Country Link
JP (1) JP6277388B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019101061A1 (en) * 2019-01-16 2020-07-16 Infineon Technologies Ag METHOD FOR FORMING A LAYER STRUCTURE, LAYER STRUCTURE, METHOD FOR FORMING A CONTACT STRUCTURE, METHOD FOR FORMING A CHIP CASE AND CHIP CASE
JP2020113741A (en) * 2019-01-07 2020-07-27 日機装株式会社 Semiconductor light-emitting element and manufacturing method of semiconductor light-emitting element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008537979A (en) * 2005-03-21 2008-10-02 東京エレクトロン株式会社 System and method for plasma accelerated atomic layer deposition
JP2011159906A (en) * 2010-02-03 2011-08-18 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device
JP2011176330A (en) * 2006-01-17 2011-09-08 Hitachi Kokusai Electric Inc Method of producing semiconductor device, and substrate processing apparatus
JP2012069539A (en) * 2010-08-25 2012-04-05 Nichia Chem Ind Ltd Manufacturing method of light-emitting device
JP2013225653A (en) * 2012-03-22 2013-10-31 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device, substrate processing method, substrate processing apparatus, and program
JP2013254871A (en) * 2012-06-07 2013-12-19 Nichia Chem Ind Ltd Method of manufacturing light-emitting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008537979A (en) * 2005-03-21 2008-10-02 東京エレクトロン株式会社 System and method for plasma accelerated atomic layer deposition
JP2011176330A (en) * 2006-01-17 2011-09-08 Hitachi Kokusai Electric Inc Method of producing semiconductor device, and substrate processing apparatus
JP2011159906A (en) * 2010-02-03 2011-08-18 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device
JP2012069539A (en) * 2010-08-25 2012-04-05 Nichia Chem Ind Ltd Manufacturing method of light-emitting device
JP2013225653A (en) * 2012-03-22 2013-10-31 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device, substrate processing method, substrate processing apparatus, and program
JP2013254871A (en) * 2012-06-07 2013-12-19 Nichia Chem Ind Ltd Method of manufacturing light-emitting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020113741A (en) * 2019-01-07 2020-07-27 日機装株式会社 Semiconductor light-emitting element and manufacturing method of semiconductor light-emitting element
JP7312056B2 (en) 2019-01-07 2023-07-20 日機装株式会社 Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
DE102019101061A1 (en) * 2019-01-16 2020-07-16 Infineon Technologies Ag METHOD FOR FORMING A LAYER STRUCTURE, LAYER STRUCTURE, METHOD FOR FORMING A CONTACT STRUCTURE, METHOD FOR FORMING A CHIP CASE AND CHIP CASE
DE102019101061B4 (en) 2019-01-16 2022-02-17 Infineon Technologies Ag METHOD OF FORMING CONTACT STRUCTURE, METHOD OF FORMING CHIP PACKAGE AND CHIP PACKAGE
US11328935B2 (en) 2019-01-16 2022-05-10 Infineon Technologies Ag Method of forming a layer structure, layer structure, method of forming a contact structure, method of forming a chip package, and chip package

Also Published As

Publication number Publication date
JP6277388B2 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
JP5789149B2 (en) Atomic layer growth method and atomic layer growth apparatus
JP4866898B2 (en) Atomic layer growth equipment
KR101189495B1 (en) Method of manufacturing semiconductor device and substrate processing apparatus
JP6225837B2 (en) Film forming apparatus, film forming method, storage medium
JP6086933B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
US8946092B2 (en) Method of manufacturing semiconductor device, method of processing substrate and substrate processing apparatus
KR101749413B1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and program
TWI721271B (en) Method and device for depositing silicon nitride film
JP5651451B2 (en) Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus
KR101858345B1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and program
KR101761449B1 (en) Method and apparatus of forming metal compound film, and electronic product
KR20130135347A (en) Method for manufacturing semiconductor device, substrate processing method, and substrate processing apparatus
Selvaraj et al. Iron oxide grown by low-temperature atomic layer deposition
JP2014236148A (en) Apparatus for forming organic molecule film, and forming method
KR102314998B1 (en) Method and apparatus for forming silicon film
CN107204273A (en) Manufacture method, lining processor and the Method of processing a substrate of semiconductor devices
JP6277388B2 (en) Deposition method
JP5982045B2 (en) Semiconductor device manufacturing method, substrate processing method, substrate processing apparatus, and gas supply system
JP6145626B2 (en) Deposition method
JP6087023B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and recording medium
JP7314016B2 (en) Method for forming metal oxide thin film
JP2006147736A (en) Method and device for cvd
JP2023097610A (en) Film deposition method and film deposition apparatus
KR20030058045A (en) Method of forming high-k dielectric layer of semiconductor device
JP2014218691A (en) Method for producing layered structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171213

R150 Certificate of patent or registration of utility model

Ref document number: 6277388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250