JP2015131750A - Highly reactive hydrated lime and production method of the same, and exhaust gas treatment agent - Google Patents

Highly reactive hydrated lime and production method of the same, and exhaust gas treatment agent Download PDF

Info

Publication number
JP2015131750A
JP2015131750A JP2014162901A JP2014162901A JP2015131750A JP 2015131750 A JP2015131750 A JP 2015131750A JP 2014162901 A JP2014162901 A JP 2014162901A JP 2014162901 A JP2014162901 A JP 2014162901A JP 2015131750 A JP2015131750 A JP 2015131750A
Authority
JP
Japan
Prior art keywords
slaked lime
sodium
pore volume
water
lime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014162901A
Other languages
Japanese (ja)
Other versions
JP5895035B2 (en
Inventor
一夫 山下
Kazuo Yamashita
一夫 山下
達夫 高野
Tatsuo Takano
達夫 高野
徹也 森川
Tetsuya Morikawa
徹也 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okutama Kogyo Co Ltd
Original Assignee
Okutama Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53899313&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2015131750(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Okutama Kogyo Co Ltd filed Critical Okutama Kogyo Co Ltd
Priority to JP2014162901A priority Critical patent/JP5895035B2/en
Publication of JP2015131750A publication Critical patent/JP2015131750A/en
Application granted granted Critical
Publication of JP5895035B2 publication Critical patent/JP5895035B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide highly reactive hydrated lime having a low COD value, and a large BET specific surface area and pore volume.SOLUTION: Hydrated lime is provided which is obtained by hydrating caustic lime with hydration water. The hydrated lime is produced by adding in hydration one or more kinds of sodium compound selected from water glass, sodium hydroxide, sodium carbonate, sodium fluoride, and sodium silicofluoride. The hydrated lime has a COD value of 30 mg or less measured according to JIS K0102,17, a BET specific surface area of 25 m/g or more, and/or a pore volume of 0.15 cm/g or more. The water glass is especially suitable as the sodium compound. The water glass of 0.5-1.5 wt.% is preferably added to the caustic lime.

Description

本発明は、反応性が高く酸性ガス等の排ガスの処理剤等として好適な高反応消石灰とその製造方法に関する。   The present invention relates to highly reactive slaked lime that is highly reactive and suitable as a treatment agent for exhaust gas such as acid gas, and a method for producing the same.

生石灰を消化することにより得られる消石灰は、ゴミ焼却炉等において排ガス煙道に投入することによって酸性ガスを除去する排ガス処理剤としても広く用いられている。   Slaked lime obtained by digesting quick lime is widely used as an exhaust gas treatment agent that removes acidic gas by putting it in an exhaust gas flue in a garbage incinerator or the like.

消石灰はBET比表面積や細孔容積が大きいほど酸性ガスとの反応性が高いことから、BET比表面積や細孔容積が大きい消石灰が排ガス処理剤として利用されており、このような高反応性消石灰を製造する方法が種々提案されている。具体的には、生石灰を消化水で消化する際に添加物としてオキシカルボン酸、エタノールアミン類、エチレングリコール等を用いる方法や、ヒドロキシル基を有する有機化合物と二酸化ケイ素を含有する無機化合物とを組み合わせる方法などが提案されている(例えば特許文献1、2)。また消化の際の添加物として、二酸化ケイ素等の無機化合物のみを用いる方法もあるが(例えば特許文献3)、無機物のみを用いた場合には、上記有機化合物を用いた方法に比べ、得られる消石灰のBET比表面積が小さい。   Since slaked lime has higher reactivity with acidic gas as the BET specific surface area and pore volume are larger, slaked lime with larger BET specific surface area and pore volume is used as an exhaust gas treatment agent. Various methods have been proposed for manufacturing the. Specifically, when digesting quicklime with digestion water, a method using oxycarboxylic acid, ethanolamines, ethylene glycol or the like as an additive, or combining an organic compound having a hydroxyl group with an inorganic compound containing silicon dioxide Methods have been proposed (for example, Patent Documents 1 and 2). In addition, there is a method using only an inorganic compound such as silicon dioxide as an additive during digestion (for example, Patent Document 3). However, when only an inorganic material is used, the method is obtained as compared with the method using the organic compound. The BET specific surface area of slaked lime is small.

ところで排ガス煙道に投入されて酸性ガスと反応した後の消石灰は、埋め立て処理される場合が多い。埋め立て後の消石灰は、雨水等に晒されることになるため、溶出水中に環境汚染物質を含まないことが要求される。特にCOD(化学的酸素要求量)が低いことが要求される。   By the way, the slaked lime after being put into the exhaust gas flue and reacting with the acid gas is often landfilled. Since slaked lime after landfill is exposed to rainwater and the like, it is required that the elution water does not contain environmental pollutants. In particular, low COD (chemical oxygen demand) is required.

特開2012−66976号公報JP 2012-66976 A 特開2013−166676号公報JP 2013-166676 A 特開2011−116573号公報JP 2011-116573 A

上述した特許文献1に記載される技術では、消化時に添加物として有機化合物のみを用いる場合に比べ、約半分程度に溶出水中のCODを低減することができるが、その場合でもCODは数10ppm(mg/L)のオーダーであり十分に低いとは言えない。一方、特許文献3に記載されるように、無機化合物のみを用いた場合にはCOD値は低くなるが、添加物として用いる無機化合物の量をある程度多くしないと、BET比表面積が大きい消石灰を得ることは難しい。また添加物である無機化合物の量を多くした場合には、得られる消石灰には無機化合物の含有量が多く、結果として消石灰の含有量が少なくなるため、酸性ガスとの反応性を向上することができない。   In the technique described in Patent Document 1 described above, COD in the elution water can be reduced by about half compared to the case where only an organic compound is used as an additive during digestion, but even in that case, the COD is several tens of ppm ( mg / L) and cannot be said to be sufficiently low. On the other hand, as described in Patent Document 3, when only an inorganic compound is used, the COD value is lowered, but if the amount of the inorganic compound used as an additive is not increased to some extent, slaked lime having a large BET specific surface area is obtained. It ’s difficult. In addition, when the amount of the inorganic compound as an additive is increased, the obtained slaked lime has a higher content of inorganic compound, resulting in a decrease in the content of slaked lime, thereby improving the reactivity with acidic gas. I can't.

本発明は、上記課題を解決するためになされたものであり、COD値が低く且つBET比表面積、細孔容積の大きい高反応性消石灰を提供することを課題とする。   This invention is made | formed in order to solve the said subject, and makes it a subject to provide the highly reactive slaked lime with a low COD value, a BET specific surface area, and a large pore volume.

上記課題を解決するため、本発明者らは、生石灰を消化して消石灰を製造する際に用いる添加物として、水ガラス等を含むナトリウム化合物を用いた場合に、BET比表面積および細孔容積の大きい消石灰が得られることを見出し、本発明に至ったものである。   In order to solve the above-mentioned problems, the present inventors have used BET specific surface area and pore volume when using a sodium compound containing water glass or the like as an additive used when digesting quick lime to produce slaked lime. The present inventors have found that large slaked lime can be obtained and have reached the present invention.

すなわち本発明の高反応性消石灰は、生石灰を消化水により消化して得られる消石灰であって、消化時に、水ガラス、水酸化ナトリウム、炭酸ナトリウム、フッ化ナトリウム、ケイフッ化ナトリウムから選ばれる一種以上のナトリウム化合物を添加することにより製造され、JIS K0102 17により測定したCOD値が30mg/L以下であり、BET比表面積が25m/g以上および/または1000Å以下の細孔容積が0.15cm/g以上の消石灰である。また本発明の高反応性消石灰は、100〜400Åの細孔の細孔容積が0.1cm/g以上である。 That is, the highly reactive slaked lime of the present invention is slaked lime obtained by digesting quick lime with digested water, and at the time of digestion, one or more selected from water glass, sodium hydroxide, sodium carbonate, sodium fluoride, sodium silicofluoride In which the COD value measured by JIS K010217 is 30 mg / L or less, the BET specific surface area is 25 m 2 / g or more and / or the pore volume of 1000 Å or less is 0.15 cm 3 / G or more slaked lime. In the highly reactive slaked lime of the present invention, the pore volume of pores of 100 to 400 mm is 0.1 cm 3 / g or more.

また本発明の排ガス処理剤は、上記高反応性消石灰を含むものである。   Moreover, the exhaust gas treating agent of the present invention contains the highly reactive slaked lime.

また本発明の消石灰の製造方法は、粉末状又は粒子状の生石灰に消化水を加え反応するステップと、前記反応するステップにおいて、消化水又は反応系に、添加剤として、実質的な量の有機化合物を含まず、水ガラス、水酸化ナトリウム、炭酸ナトリム、フッ化ナトリウム、ケイフッ化ナトリウムから選ばれる一種以上のナトリウム化合物を添加するステップと、反応後の消石灰を乾燥するステップと、を含む。
「実質的な量の有機化合物を含まず」とは、不可避的に含まれることになる有機物あるいはCOD値に影響を与えない程度の微量な有機物の混入あるいは添加を除外する趣旨ではないことを明確にしたものである。
In the method for producing slaked lime of the present invention, in the step of reacting by adding digested water to powdered or particulate quicklime, and in the step of reacting, the digested water or the reaction system contains a substantial amount of organic as an additive. A step of adding one or more sodium compounds selected from water glass, sodium hydroxide, sodium carbonate, sodium fluoride, and sodium silicofluoride without containing a compound, and drying the slaked lime after the reaction are included.
“Contains no substantial amount of organic compounds” clearly does not mean that organic substances that are inevitably contained or organic substances that are inevitable to be mixed or added so as not to affect the COD value are excluded. It is a thing.

本発明の消石灰の製造方法において、好適には、乾燥ステップは100℃以上の熱風を送りながら行う。   In the method for producing slaked lime of the present invention, the drying step is preferably performed while sending hot air of 100 ° C. or higher.

本発明の消石灰は、CODが低く、しかもBET比表面積、細孔容積が大きく反応性が高く、HClやSOxを含む酸性ガス処理剤として好適である。特に100〜400Åの細孔の細孔容積が0.1cm/g以上であることにより、高いSOx捕捉効果が得られる。 The slaked lime of the present invention has a low COD, a high BET specific surface area, a large pore volume and high reactivity, and is suitable as an acidic gas treating agent containing HCl and SO x . In particular, when the pore volume of pores of 100 to 400 mm is 0.1 cm 3 / g or more, a high SO x trapping effect can be obtained.

本発明の消石灰製造方法の概要を示す図。The figure which shows the outline | summary of the slaked lime manufacturing method of this invention. (a)は本発明(実施例1)の高反応性消石灰の走査型電子顕微鏡(SEM)写真を示す図、(b)はJIS特号消石灰のSEM写真を示す図である。(A) is a figure which shows the scanning electron microscope (SEM) photograph of the highly reactive slaked lime of this invention (Example 1), (b) is a figure which shows the SEM photograph of JIS special name slaked lime. 水ガラス添加率を変えた場合の消石灰のBET比表面積の違いを示すグラフ。The graph which shows the difference in the BET specific surface area of slaked lime when the water glass addition rate is changed. 水ガラス添加率を変えた場合の消石灰の細孔容積の違いを示すグラフ。The graph which shows the difference in the pore volume of slaked lime when the water glass addition rate is changed. 排ガス処理剤を評価するための試験装置を示す図。The figure which shows the test apparatus for evaluating an exhaust gas processing agent.

以下、本発明の高反応性消石灰とその製造方法の実施形態を説明する。
本発明の高反応性消石灰は、生石灰を消化して製造されるものであるが、消化の際に特定の添加物を用いることにより、極めて低いCOD値でありながら、BET比表面積や細孔容積が大きいことが特徴である。まず、本発明の高反応性消石灰の製造方法について説明する。
Hereinafter, the embodiment of the highly reactive slaked lime of the present invention and the manufacturing method thereof will be described.
The highly reactive slaked lime of the present invention is produced by digesting quick lime, but by using a specific additive during digestion, the BET specific surface area and pore volume can be obtained while having a very low COD value. Is characterized by a large. First, the manufacturing method of the highly reactive slaked lime of this invention is demonstrated.

原料となる生石灰としては、石灰岩や貝などを焼成したものを用いることができ、純度は95%以上のものが好ましい。また生石灰のCOD値は10mg/L以下であることが好ましい。一般に石灰岩や貝を焼成することにより得られる生石灰のCOD値は、約1mg/L程度であるが、有機系の粉砕助剤を用いた場合には、それより高くなる。その場合にも、COD値が10mg/L以下であれば、低COD値の消石灰とすることができる。生石灰の形状は、粉末状のものを用いることが望ましい。粉末の粒子径は、特に限定されるものではないが、600μm以下であることが好ましい。   As the raw lime used as a raw material, calcinated limestone or shellfish can be used, and the purity is preferably 95% or more. Moreover, it is preferable that the COD value of quicklime is 10 mg / L or less. In general, the COD value of quicklime obtained by firing limestone or shellfish is about 1 mg / L, but is higher when an organic grinding aid is used. Even in this case, if the COD value is 10 mg / L or less, slaked lime with a low COD value can be obtained. As for the shape of quicklime, it is desirable to use a powdery thing. The particle diameter of the powder is not particularly limited, but is preferably 600 μm or less.

このような生石灰に水(消化水)を加え、消化反応を行う。消化水は、生石灰100重量部に対し、100重量部前後、例えば90〜110重量部程度用いる。消化水の温度は60℃以下であることが好ましく、常温(25℃)〜60℃とすることがより好ましい。なお消化水として一般的に用いられる工業用水のCOD値は数mg/L〜8mg/L程度である。   Water (digested water) is added to such quicklime to perform a digestion reaction. Digested water is used at around 100 parts by weight, for example, about 90 to 110 parts by weight with respect to 100 parts by weight of quicklime. The temperature of digestion water is preferably 60 ° C. or less, and more preferably from room temperature (25 ° C.) to 60 ° C. The COD value of industrial water generally used as digestion water is about several mg / L to 8 mg / L.

生石灰に消化水を加えて反応させる際に添加する添加物は、水ガラス(NaO・nSiO(n=2〜4))、水酸化ナトリウム、炭酸ナトリウム、フッ化ナトリウム、ケイフッ化ナトリウムから選ばれる一種以上のナトリウム化合物であり、有機化合物は含まない。これらの添加物を用いることにより、添加物を用いない場合に比べ大幅に生成する消石灰のBET比表面積および細孔容積を大きくすることができ、有機物を用いた場合とほぼ同等のBET比表面積とすることができる。これら無機化合物のうち、特に水ガラス、水酸化ナトリウム、炭酸ナトリムが好ましく、水ガラスを用いることが最も好ましい。添加物として、水ガラス又は炭酸ナトリムを用いることにより、生成する消石灰のBET比表面積を30m/g以上、細孔容積(0〜1000Åの細孔)を0.2cm/g以上とすることができる。また添加物として水ガラス又は水酸化ナトリウムを用いることにより、100〜400Åの細孔の細孔容積を0.1cm/g以上にすることができる。 Additives added when quick digestion is added to quick lime to react are water glass (Na 2 O · nSiO 2 (n = 2 to 4)), sodium hydroxide, sodium carbonate, sodium fluoride, sodium silicofluoride. It is one or more sodium compounds selected and does not contain organic compounds. By using these additives, the BET specific surface area and pore volume of the slaked lime generated can be greatly increased compared with the case where no additive is used, and the BET specific surface area is almost the same as when using an organic substance. can do. Among these inorganic compounds, water glass, sodium hydroxide, and sodium carbonate are particularly preferable, and water glass is most preferable. By using water glass or sodium carbonate as an additive, the slaked lime produced has a BET specific surface area of 30 m 2 / g or more and a pore volume (0 to 1000 Å pores) of 0.2 cm 3 / g or more. Can do. Moreover, by using water glass or sodium hydroxide as an additive, the pore volume of pores of 100 to 400 mm can be increased to 0.1 cm 3 / g or more.

無機化合物の添加量は、原料である生石灰に対し、好ましくは0.5重量%〜1.5重量%、より好ましくは0.6〜1.0重量%である。無機化合物は消化水に混合したものを反応系に添加してもよいし、消化水とは別に反応系に添加してもよい。   The addition amount of the inorganic compound is preferably 0.5% to 1.5% by weight, more preferably 0.6 to 1.0% by weight with respect to quick lime as a raw material. The inorganic compound mixed in digestion water may be added to the reaction system, or may be added to the reaction system separately from digestion water.

反応は図1に示すような撹拌機付きの反応装置(タンク)10に生石灰を投入した後、装置の上部に設置される水供給管11および薬剤供給管12からそれぞれ消化水と添加物を投入し、撹拌しながら反応を行う。或いは、消化水に所定の濃度となるように添加剤を溶解させたものを水供給管11から投入してもよい。反応時間は、投入する生石灰及び消化水の量によっても異なるが通常30〜60分程度である。反応終了後、得られた消石灰を乾燥装置20に移し、100〜110℃の熱風を送りながら乾燥させる。熱風乾燥の時間は15分以上、好ましくは20分以上である。熱風で乾燥することにより、生成する消石灰粒子が凝集するのを防止でき、比表面積が大きな粒子を得ることができる。また熱風で乾燥することにより、細孔中に含まれる水分を十分に除去することができ、細孔容積の大きな粒子を得ることができる。乾燥後の消石灰粉末は、用途等に応じて、分級し所望の平均粒子径消石灰を得ることができる。   In the reaction, quick lime is charged into a reactor (tank) 10 with a stirrer as shown in FIG. 1, and then digested water and additives are charged from a water supply pipe 11 and a chemical supply pipe 12 installed at the top of the apparatus, respectively. The reaction is carried out with stirring. Or you may throw in from the water supply pipe | tube 11 what dissolved the additive so that it might become a predetermined density | concentration in digestion water. The reaction time is usually about 30 to 60 minutes although it varies depending on the amount of quicklime and digested water to be added. After completion of the reaction, the obtained slaked lime is transferred to the drying device 20 and dried while sending hot air at 100 to 110 ° C. The hot air drying time is 15 minutes or longer, preferably 20 minutes or longer. By drying with hot air, the generated slaked lime particles can be prevented from aggregating, and particles having a large specific surface area can be obtained. Further, by drying with hot air, moisture contained in the pores can be sufficiently removed, and particles having a large pore volume can be obtained. The slaked lime powder after drying can be classified according to the use and the like to obtain a desired average particle size slaked lime.

本発明の消石灰の製造方法によれば、添加物として、実質的な量の有機化合物を用いずに無機化合物のみを用いることにより、製造される消石灰のCOD値をJIS特号消石灰と同程度に低く保つことができ、しかも上述した種類の無機化合物を用いることによって、BET比表面積および細孔容積の大きい消石灰を得ることができる。   According to the method for producing slaked lime of the present invention, by using only an inorganic compound as an additive without using a substantial amount of an organic compound, the COD value of the produced slaked lime is comparable to that of JIS special slaked lime. By using an inorganic compound of the type described above, slaked lime having a large BET specific surface area and a large pore volume can be obtained.

本発明の高反応性消石灰は、BET比表面積が25m/g以上、或いは細孔容積(0〜1000Åの細孔の容積)が0.15cm/g以上であり、COD値(JIS K0102 17により測定、以下同じ)が30mg/L以下である。COD値は、好ましくは20mg/L以下、より好ましくは10mg/L以下である。本発明の高反応性消石灰は、有機物の混入を制限した条件で製造することができ、好適には、上述した製造方法によって製造することができる。本発明の高反応性消石灰を排ガス処理剤として用いる場合、BET比表面積は好ましくは30m/g以上、細孔容積は0.20cm/g以上である。なおBET比表面積および細孔容積は、窒素ガス吸着法(BJH法)によって計測した値である。また本発明の高反応性消石灰は、好ましくは100〜400Åの細孔の細孔容積が0.1cm/g以上、より好ましくは0.15cm/g以上である。100〜400Åの細孔の細孔容積は、上述した製造方法において、添加物(無機化合物)の種類および添加量を調整することにより大きくすることができる。 The highly reactive slaked lime of the present invention has a BET specific surface area of 25 m 2 / g or more, or a pore volume (volume of 0 to 1000 細孔 pores) of 0.15 cm 3 / g or more, and has a COD value (JIS K0102 17 Is the same, and the same applies hereinafter) is 30 mg / L or less. The COD value is preferably 20 mg / L or less, more preferably 10 mg / L or less. The highly reactive slaked lime of the present invention can be manufactured under conditions that limit the mixing of organic substances, and can be preferably manufactured by the manufacturing method described above. When the highly reactive slaked lime of the present invention is used as an exhaust gas treating agent, the BET specific surface area is preferably 30 m 2 / g or more, and the pore volume is 0.20 cm 3 / g or more. The BET specific surface area and the pore volume are values measured by a nitrogen gas adsorption method (BJH method). Moreover, the highly reactive slaked lime of the present invention preferably has a pore volume of 100 to 400 Å pores of 0.1 cm 3 / g or more, more preferably 0.15 cm 3 / g or more. The pore volume of 100 to 400 mm pores can be increased by adjusting the type and amount of additive (inorganic compound) in the production method described above.

本発明の高反応性消石灰は、BET比表面積が大きいことから、HClやNOx、SOx等の酸性ガス等との反応性が高く、酸性ガス処理剤として好適である。また細孔容積が大きく、特に100〜400Åの細孔の細孔容積が大きいので、SOxの捕捉率が高く、SOx比率の高い排ガス処理に好適である。 Since the highly reactive slaked lime of the present invention has a large BET specific surface area, it has high reactivity with acidic gases such as HCl, NO x , and SO x and is suitable as an acidic gas treating agent. The large pore volume, especially since the pore volume of pores of 100~400Å large, high capture rate of SO x, it is preferable to higher exhaust gas treatment of SO x ratio.

本発明の高反応性消石灰のCOD値は30mg/L以下であり、製造過程やCOD測定までに不可避的に混入する有機物にも依存するため30mg/L以下の範囲で変動するが、製造工程において添加物として有機化合物を全く用いない場合には、3mg/L以下とすることが可能である。この値は、JIS特号消石灰のCOD(約1〜3mg/L)と同程度である。この値は、例えば特許文献2の実施例に記載された消石灰(添加剤としてジエチレングリコールとケイ酸ナトリウムを使用)のCOD値(=120mg/L)の1/40〜1/50であり十分に低い値であることがわかる。なおCOD値は、JIS K0102 17の工場排水試験法(試料を過マンガン酸カリウムで100 ℃ 、30 分間酸化したときに消費される酸素量を計測する)に準拠して測定した値である。   The COD value of the highly reactive slaked lime of the present invention is 30 mg / L or less, and it varies depending on the organic matter inevitably mixed up to the production process or COD measurement, so it varies within the range of 30 mg / L or less. When no organic compound is used as an additive, the amount can be 3 mg / L or less. This value is comparable to the JIS special slaked lime COD (about 1 to 3 mg / L). This value is, for example, 1/40 to 1/50 of the COD value (= 120 mg / L) of slaked lime (using diethylene glycol and sodium silicate as additives) described in the examples of Patent Document 2, which is sufficiently low It turns out that it is a value. The COD value is a value measured in accordance with JIS K010217 factory drainage test method (measures the amount of oxygen consumed when a sample is oxidized with potassium permanganate at 100 ° C. for 30 minutes).

上述した製造方法によって得られる高反応性消石灰の粒子径(メジアン径)は、5〜15μmであるが、本発明の高反応性消石灰を酸性ガス処理剤として用いる場合、メジアン径は好ましくは7〜10μmとする。   The particle diameter (median diameter) of the highly reactive slaked lime obtained by the above-described production method is 5 to 15 μm, but when the highly reactive slaked lime of the present invention is used as an acid gas treating agent, the median diameter is preferably 7 to 10 μm.

本発明の排ガス処理剤は、上述した高反応性消石灰を含むものである。特に高反応性消石灰として、BET比表面積が30m/g以上、細孔容積(1000Å以下)が0.22cm/g以上、細孔容積(100〜400Å)が0.1cm/g以上の高反応性消石灰を用いることが好ましい。このような高反応性消石灰は単独で排ガス処理剤としてもよいし、それ以外の排ガス処理剤や添加剤を混合して用いてもよい。それ以外の排ガス処理剤としては、例えば、活性炭、活性白土等が挙げられる。 The exhaust gas treating agent of the present invention contains the highly reactive slaked lime described above. Particularly highly reactive calcium hydroxide, BET specific surface area of 30 m 2 / g or more, a pore volume (1000 Å or less) 0.22 cm 3 / g or more, a pore volume (100~400A) is 0.1 cm 3 / g or more It is preferable to use highly reactive slaked lime. Such highly reactive slaked lime may be used alone as an exhaust gas treatment agent, or other exhaust gas treatment agents and additives may be mixed and used. Examples of other exhaust gas treatment agents include activated carbon and activated clay.

本発明の排ガス処理剤は、公知の排ガス処理剤と同様に、粉末状のものを例えばゴミ焼却施設の煙道に吹き込み、煙道を流れる酸性ガスと反応させる。排ガス処理剤の投入量は、排出されるガス中の酸性ガス濃度を考慮して適宜決められる。例えば家庭廃棄物を対象とするゴミ処理施設の焼却炉から排出される排ガスにおける酸性ガスの濃度は、SOで約30〜100ppm、HClで約200〜1000ppm程度であり、それら酸性ガスと反応する化学両論的な量の1〜2.5倍程度を排ガスの流速に合わせて投入する。反応後の排ガス処理剤は煙道に連結された集塵機によって飛灰として回収される。 The exhaust gas treating agent of the present invention, like the known exhaust gas treating agent, blows a powdery material into, for example, a flue of a garbage incineration facility and reacts with an acid gas flowing through the flue. The input amount of the exhaust gas treating agent is appropriately determined in consideration of the acid gas concentration in the exhausted gas. For example, the concentration of acidic gas in exhaust gas discharged from an incinerator of a garbage disposal facility for household waste is about 30 to 100 ppm for SO 2 and about 200 to 1000 ppm for HCl, and reacts with these acidic gases. About 1 to 2.5 times the stoichiometric amount is added according to the flow rate of the exhaust gas. The exhaust gas treating agent after the reaction is recovered as fly ash by a dust collector connected to the flue.

本発明の排ガス処理剤は、BET比表面積および細孔容積が大きく、HClやSO等の酸性ガスと反応し高い除去率を達成できる。特に100〜400Åの細孔容積が大きいことからSOの捕捉率が高い。従って比較的少ない量で高い排ガス処理を行うことができるため、最終処理物である飛灰の量を減らすことができる。またCOD値が低いので、飛灰を埋め立てた場合にも溶出水中のCODが低く、環境を汚染する可能性が低い。 The exhaust gas treating agent of the present invention has a large BET specific surface area and pore volume, and can react with an acidic gas such as HCl and SO x to achieve a high removal rate. Especially capture rate of the SO x is higher the larger the pore volume of 100~400A. Therefore, since a high exhaust gas treatment can be performed with a relatively small amount, the amount of fly ash that is the final treated product can be reduced. Moreover, since the COD value is low, even when fly ash is reclaimed, the COD in the elution water is low, and the possibility of polluting the environment is low.

以下、本発明の実施例を説明する。以下の実施例において、「%」、「部」は特に断らない限り重量基準である。   Examples of the present invention will be described below. In the following examples, “%” and “parts” are based on weight unless otherwise specified.

<実施例1>
図1に示すような反応装置に、生石灰(奥多摩工業社製粉末生石灰)500gを投入し、反応装置の上部から水ガラスを含む消化水を500g投入し、撹拌しながら反応を進行させた。水ガラスの添加量は生石灰1kgに対し4g(0.8%)とした。約30分反応させた後、乾燥装置において、熱風(温度:110℃)で20分乾燥し、水分量が1%以下、粒度(メジアン径)10μmの消石灰を得た。
<Example 1>
500 g of quick lime (powder quicklime manufactured by Okutama Kogyo Co., Ltd.) was added to the reaction apparatus as shown in FIG. 1, 500 g of digested water containing water glass was added from the top of the reaction apparatus, and the reaction was allowed to proceed while stirring. The amount of water glass added was 4 g (0.8%) per 1 kg of quicklime. After reacting for about 30 minutes, in a drying apparatus, it was dried with hot air (temperature: 110 ° C.) for 20 minutes to obtain slaked lime having a water content of 1% or less and a particle size (median diameter) of 10 μm.

この消石灰の電子顕微鏡(SEM)写真を図2(a)に示す。参考例としてJIS特号消石灰のSEM写真を併せて図2(b)に示す。図2からわかるように、実施例1の消石灰は参考例の消石灰に比べ、粒度が細かく、粒子表面に細かい凹凸が観察された。また得られた消石灰のBET比表面積、細孔容積(1000Å以下)、細孔容積(100〜400Å)をそれぞれ窒素ガス吸着法(BJH法)によって計測した。またJIS K0102 17の工場排水試験法によりCOD値を測定した。結果を表1に示す。   An electron microscope (SEM) photograph of this slaked lime is shown in FIG. As a reference example, an SEM photograph of JIS special slaked lime is shown in FIG. As can be seen from FIG. 2, the slaked lime of Example 1 was finer than the reference slaked lime, and fine irregularities were observed on the particle surface. Further, the BET specific surface area, pore volume (1000 Å or less), and pore volume (100 to 400 Å) of the obtained slaked lime were measured by a nitrogen gas adsorption method (BJH method). Further, the COD value was measured by the factory drainage test method of JIS K0102 17. The results are shown in Table 1.

<実施例2〜5>
生石灰を消化する際に添加する添加物として、水ガラスの代わりに、水酸化ナトリウム、炭酸ナトリウム、フッ化ナトリウム、ケイフッ化ナトリウムを用い、それ以外は実施例1と同様に消石灰を製造した。
<Examples 2 to 5>
Slaked lime was produced in the same manner as in Example 1 except that sodium hydroxide, sodium carbonate, sodium fluoride, and sodium silicofluoride were used instead of water glass as an additive to be added when digesting quicklime.

これら実施例2〜5について計測したBET比表面積、細孔容積の値、メジアン径、及びCOD値を、実施例1の値とともに表1に示す。

Figure 2015131750
The BET specific surface area, pore volume value, median diameter, and COD value measured for Examples 2 to 5 are shown in Table 1 together with the values of Example 1.
Figure 2015131750

表1に示す結果からもわかるように、添加剤としてナトリウム化合物を用いることにより、BET比表面積が25m/g以上、細孔容積(0〜1000Å)が0.18cm/g以上の消石灰が得られ、特に水ガラス、炭酸ナトリウムを用いた場合にBET比表面積が30m/g以上で細孔容積(0〜1000Å)が0.2cm/g以上の消石灰が得られた。また水ガラス、水酸化ナトリウムを用いた場合に、細孔容積(100〜400Å)が0.14cm/g以上の消石灰が得られた。総合すると水ガラスを用いた場合に最もよい結果が得られた。またCODについては、JIS特号消石灰のCOD(1.1〜2.2mg/L)と同等かそれ以下であり、市販されている3種類の高反応性消石灰のCOD(170、350、570mg/L)に比べ大幅に低かった。 As can be seen from the results shown in Table 1, slaked lime having a BET specific surface area of 25 m 2 / g or more and a pore volume (0 to 1000 kg) of 0.18 cm 3 / g or more can be obtained by using a sodium compound as an additive. In particular, when water glass and sodium carbonate were used, slaked lime having a BET specific surface area of 30 m 2 / g or more and a pore volume (0 to 1000 cm) of 0.2 cm 3 / g or more was obtained. Moreover, when water glass and sodium hydroxide were used, slaked lime having a pore volume (100 to 400 kg) of 0.14 cm 3 / g or more was obtained. Overall, the best results were obtained when water glass was used. Moreover, about COD, it is equal to or less than COD (1.1-2.2 mg / L) of JIS special name slaked lime, and COD (170, 350, 570 mg / L) of three types of commercially available highly reactive slaked lime. L) was significantly lower than L).

<実施例6〜9、比較例1>
生石灰に対する水ガラスの添加量を、0.4%、0.6%、1.0%、1.5%と変化させて、それ以外は実施例1と同様に消石灰を製造した。また比較例1として、添加剤を添加せず、それ以外は実施例1と同様に消石灰を製造した。実施例6〜9の消石灰の水分量、粒度は実施例1とほぼ同様であった。
<Examples 6 to 9, Comparative Example 1>
Slaked lime was produced in the same manner as in Example 1 except that the amount of water glass added to quicklime was changed to 0.4%, 0.6%, 1.0%, and 1.5%. Further, as Comparative Example 1, slaked lime was produced in the same manner as in Example 1 except that no additive was added. The water content and particle size of the slaked lime of Examples 6 to 9 were almost the same as those of Example 1.

これら実施例6〜9および比較例1について計測したBET比表面積、細孔容積の値を表2に示す。また実施例1、6〜9のBET比表面積、細孔容積の結果を図3および図4に示す。

Figure 2015131750
Table 2 shows the BET specific surface area and the pore volume values measured for Examples 6 to 9 and Comparative Example 1. The results of BET specific surface area and pore volume of Examples 1 and 6 to 9 are shown in FIG. 3 and FIG.
Figure 2015131750

表2および図3に示す結果から明らかなように、水ガラスの添加量を0.4%から0.6%に変化させたときに、BET比表面積は急激に増加し、0.6%以上ではBET比表面積が33m/g以上の高い値を示した。これにより添加物としての水ガラスの添加は、約0.5%に境に臨界的効果が得られることが確認された。 As is apparent from the results shown in Table 2 and FIG. 3, when the amount of water glass added was changed from 0.4% to 0.6%, the BET specific surface area increased sharply and became 0.6% or more. The BET specific surface area showed a high value of 33 m 2 / g or more. As a result, it was confirmed that the addition of water glass as an additive has a critical effect at about 0.5%.

細孔容積(1000Å以下)については、表2および図4に示すように、いずれも0.20cm/g以上の大きい値を示したが、水ガラスの添加量が1%を超えると細孔容積が小さくなる傾向がみられ、1%以下とすることで0.22cm/g以上の大きい値が得られることが確認された。特に100〜400Åの細孔容積については、水ガラスの添加量が比較的少ないほうが大きくなる傾向がみられ、1%未満で0.14cm/g以上の大きい値が得られた。なお実施例6〜9及び比較例1のCOD値は、実施例1とほぼ同じであった。 As shown in Table 2 and FIG. 4, the pore volume (less than 1000 liters) showed a large value of 0.20 cm 3 / g or more, but when the added amount of water glass exceeded 1%, the pore volume The tendency for the volume to decrease was observed, and it was confirmed that a large value of 0.22 cm 3 / g or more could be obtained by setting it to 1% or less. In particular, with respect to the pore volume of 100 to 400 mm, there was a tendency that the amount of water glass added was relatively small, and a large value of 0.14 cm 3 / g or more was obtained at less than 1%. The COD values of Examples 6 to 9 and Comparative Example 1 were almost the same as those of Example 1.

<実施例10〜13>
生石灰に対する水ガラスの添加量は実施例1と同様(0.8%)にし、生石灰に対する消化水の比率(重量比)を0.9、0.95、1.05、1.1と変化させて、それ以外は実施例1と同様に消石灰を製造した。得られた消石灰の水分量、粒度は実施例1とほぼ同様であった。
<Examples 10 to 13>
The amount of water glass added to quicklime is the same as in Example 1 (0.8%), and the ratio (weight ratio) of digested water to quicklime is changed to 0.9, 0.95, 1.05, and 1.1. Otherwise, slaked lime was produced in the same manner as in Example 1. The water content and particle size of the obtained slaked lime were almost the same as in Example 1.

これら実施例10〜13について計測したBET比表面積、細孔容積の値を表3に示す。参考のために実施例1の値を併せて表3に示す。

Figure 2015131750
Table 3 shows the BET specific surface area and pore volume values measured for Examples 10-13. The values of Example 1 are also shown in Table 3 for reference.
Figure 2015131750

表3に示す結果からわかるように、生石灰に対する消化水の割合(水比)は、1:1前後であればBET比表面積および細孔容積がともに大きい消石灰が得られることがわかった。なお細孔は乾燥の際に水分が抜けていくことで形成されると考えられ、乾燥前に適切な水が存在することが必要であるが、水比が大きすぎると凝集が起こりやすくなり、比表面積や細孔容積が小さくなると考えられる。本発明の消石灰の製造方法では、所定のナトリウム化合物を用いるとともに適切な水比とすることにより、凝集を起こすことなく反応が進み、且つ細孔容積の大きい高反応性の消石灰を得ることができる。   As can be seen from the results shown in Table 3, it was found that slaked lime having a large BET specific surface area and a large pore volume can be obtained if the ratio (water ratio) of digested water to quick lime is around 1: 1. The pores are thought to be formed by the loss of moisture during drying, and it is necessary that appropriate water is present before drying, but if the water ratio is too large, aggregation tends to occur, It is considered that the specific surface area and pore volume are reduced. In the method for producing slaked lime according to the present invention, a highly reactive slaked lime having a large pore volume can be obtained by using a predetermined sodium compound and setting an appropriate water ratio so that the reaction proceeds without causing aggregation. .

<実施例14>
用いる原料の割合は実施例1と同じにして、量だけを実施例1の約3000倍にした工場規模で、それ以外は実施例1と同様に消石灰を製造した。製造条件は同じでロットが異なるサンプル(実施例14−1〜14−3)について計測したBET比表面積、細孔容積、メジアン径及びCOD値を表4に示す。

Figure 2015131750
<Example 14>
The ratio of the raw material to be used was the same as that in Example 1, and the slaked lime was produced in the same manner as in Example 1 except that the amount was about 3000 times that of Example 1 and the rest was the same. Table 4 shows the BET specific surface area, pore volume, median diameter, and COD value measured for samples (Examples 14-1 to 14-3) having the same production conditions but different lots.
Figure 2015131750

表4の結果からわかるように、ロットによるバラツキはあるが、工場規模で製造した場合、BET比表面積が向上した。またCOD値については、規模の増加に伴い、実施例1等に比べ増加したものの、いずれも10mg/L以下であり、従来の高反応性消石灰に比べ、十分に低かった。   As can be seen from the results in Table 4, there are variations due to lots, but when manufactured on a factory scale, the BET specific surface area was improved. Moreover, although the COD value increased with the increase in scale as compared with Example 1 and the like, all were 10 mg / L or less, which was sufficiently lower than the conventional highly reactive slaked lime.

<排ガス処理剤の実施例>
実施例で作成した消石灰を排ガス処理剤として使用した場合の効果を評価するために、図5に示すような試験装置50を用意した。この試験装置50は、ガス混合部51と、ガス混合部51と加熱導管55で接続された反応部52とを有し、ガス混合部51には、不図示の酸性ガス含有ガス供給源と水分含有ガス供給源とに接続された加熱導管55が接続され、排ガスを模した混合ガスを反応部52に送るようになっている。反応部52は、内部に、酸性ガス処理剤を耐熱性の網状部材内に固定した酸性ガス処理剤固定層53が設けられ、反応部52に導入された混合ガスは、酸性ガス処理剤固定層53を通過する際に、酸性ガス処理剤と反応し、反応後のガスが反応部52から排出される。また反応部52には加熱装置56が設置されており、酸性ガス処理剤固定層53を所定の温度に加熱できるように構成されている。
<Examples of exhaust gas treatment agent>
In order to evaluate the effect when using the slaked lime prepared in the example as an exhaust gas treating agent, a test apparatus 50 as shown in FIG. 5 was prepared. The test apparatus 50 includes a gas mixing unit 51, and a reaction unit 52 connected to the gas mixing unit 51 and a heating conduit 55. The gas mixing unit 51 includes an acid gas-containing gas supply source (not shown) and moisture. A heating conduit 55 connected to the contained gas supply source is connected, and a mixed gas imitating exhaust gas is sent to the reaction section 52. The reaction section 52 is provided therein with an acid gas treatment agent fixing layer 53 in which an acid gas treatment agent is fixed in a heat-resistant mesh member, and the mixed gas introduced into the reaction section 52 is an acid gas treatment agent fixing layer. When passing through 53, it reacts with the acid gas treating agent, and the reacted gas is discharged from the reaction section 52. The reaction unit 52 is provided with a heating device 56 so that the acidic gas treating agent fixing layer 53 can be heated to a predetermined temperature.

このような試験装置50を用いて、次のように混合ガスの処理を行った。
まず酸性ガス処理剤として実施例14−1の消石灰を373mg用い、固定相53の温度を325℃に設定した。またガス供給源からの導管及びガス混合部51から反応部52までの導管を約300℃に加熱した。この状態で、酸性ガス含有及びガス水分含有ガスをガス混合部51に供給して、酸性ガス成分(SO)1500ppm、水分8%の混合ガスとし、流量700mL/分で反応部52に供給し、約120分混合ガスを流した。反応部52から排出された反応後のガス中の酸性ガス成分(SO)を分析計(赤外線式ガス濃度分析計)54で測定した。酸性ガス除去率を以下の計算により求めた。結果を表5に示す。
[酸性ガス除去率]=
{([混合ガスに含まれる酸性ガス成分]−[反応後ガス中の酸性ガス成分])÷
[混合ガスに含まれる酸性ガス成分]}×100
Using such a test apparatus 50, the mixed gas was processed as follows.
First, 373 mg of the slaked lime of Example 14-1 was used as the acid gas treating agent, and the temperature of the stationary phase 53 was set to 325 ° C. The conduit from the gas supply source and the conduit from the gas mixing section 51 to the reaction section 52 were heated to about 300 ° C. In this state, an acidic gas containing gas and a gas moisture containing gas are supplied to the gas mixing unit 51 to obtain a mixed gas of 1500 ppm acidic gas component (SO 2 ) and 8% moisture, and supplied to the reaction unit 52 at a flow rate of 700 mL / min. The mixed gas was allowed to flow for about 120 minutes. The acid gas component (SO 2 ) in the gas after reaction discharged from the reaction section 52 was measured with an analyzer (infrared gas concentration analyzer) 54. The acid gas removal rate was determined by the following calculation. The results are shown in Table 5.
[Acid gas removal rate] =
{([Acid gas component contained in mixed gas]-[Acid gas component in reaction gas]) ÷
[Acid gas component contained in mixed gas]} × 100

参考例として、実施例14−1の消石灰に代えて、高反応性消石灰「タマカルク−スポンジアカル(TK−SP)」(BET比表面積45m/g、細孔容積(1000Å以下)0.20cm/g、COD150mg/L、奥多摩工業社製)を用い、それ以外は上記実施例と同様にして、酸性ガス除去率を求めた。結果を合わせて表5に示す。

Figure 2015131750
表5に示す結果からわかるように、従来の高反応性消石灰と同程度の酸性ガス除去率が得られた。 As a reference example, instead of the slaked lime of Example 14-1, highly reactive slaked lime “Tamacalc-Sponge Acal (TK-SP)” (BET specific surface area 45 m 2 / g, pore volume (1000 kg or less) 0.20 cm 3 / G, COD 150 mg / L, manufactured by Okutama Kogyo Co., Ltd.), and the acid gas removal rate was determined in the same manner as in the above Example. The results are shown in Table 5.
Figure 2015131750
As can be seen from the results shown in Table 5, an acid gas removal rate comparable to that of conventional highly reactive slaked lime was obtained.

本発明によれば、排ガス処理等に好適であり飛灰として廃棄された場合にも環境を汚染することがない高反応性消石灰が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the highly reactive slaked lime which is suitable for exhaust gas treatment etc. and does not pollute the environment even when discarded as fly ash is provided.

10・・・反応装置、11・・・消化水供給管、12・・・添加剤供給管、20・・・乾燥装置、50・・・試験装置。

DESCRIPTION OF SYMBOLS 10 ... Reaction apparatus, 11 ... Digestion water supply pipe | tube, 12 ... Additive supply pipe | tube, 20 ... Drying apparatus, 50 ... Test apparatus.

Claims (11)

生石灰を消化水により消化して得られる消石灰であって、消化時に、水ガラス、水酸化ナトリウム、炭酸ナトリウム、フッ化ナトリウム、ケイフッ化ナトリウムから選ばれる一種以上のナトリウム化合物を添加することにより製造され、JIS K0102 17により測定したCOD値が30mg/L以下、BET比表面積が25m/g以上である消石灰。 Slaked lime obtained by digesting quick lime with digested water, and is produced by adding one or more sodium compounds selected from water glass, sodium hydroxide, sodium carbonate, sodium fluoride, sodium silicofluoride during digestion. The slaked lime whose COD value measured by JISK0102 17 is 30 mg / L or less and whose BET specific surface area is 25 m 2 / g or more. 生石灰を消化水により消化して得られる消石灰であって、消化時に水ガラス、水酸化ナトリウム、炭酸ナトリウム、フッ化ナトリウム、ケイフッ化ナトリウムから選ばれる一種以上のナトリウム化合物を添加することにより製造され、JIS K0102 17により測定したCOD値が30mg/L以下、1000Å以下の細孔容積が0.15cm/g以上である消石灰。 Slaked lime obtained by digesting quick lime with digested water, manufactured by adding one or more sodium compounds selected from water glass, sodium hydroxide, sodium carbonate, sodium fluoride, sodium silicofluoride during digestion, Slaked lime having a COD value measured by JIS K0102 17 of 30 mg / L or less and a pore volume of 1000 kg or less of 0.15 cm 3 / g or more. 請求項1に記載の消石灰であって、1000Å以下の細孔容積が0.15cm/g以上である消石灰。 The slaked lime according to claim 1, wherein the pore volume of 1000 kg or less is 0.15 cm 3 / g or more. 請求項1ないし3のいずれか一項に記載の消石灰であって、100〜400Åの細孔の細孔容積が0.1cm/g以上である消石灰。 A slaked lime according to any one of claims 1 to 3 is the pore volume of pores of 100~400Å is 0.1 cm 3 / g or more slaked lime. 請求項1ないし3のいずれか一項に記載の消石灰であって、JIS K0102 17により測定したCOD値が3.0mg/L以下であることを特徴とする消石灰。   The slaked lime according to any one of claims 1 to 3, wherein the COD value measured according to JIS K010217 is 3.0 mg / L or less. 請求項1ないし3のいずれか一項に記載の消石灰であって、前記ナトリウム化合物が水ガラスであることを特徴とする消石灰。   The slaked lime according to any one of claims 1 to 3, wherein the sodium compound is water glass. 請求項1ないし6のいずれか一項に記載の消石灰を含む排ガス処理剤。   An exhaust gas treating agent comprising the slaked lime according to any one of claims 1 to 6. 粉末状の生石灰に消化水を加え反応するステップと、
前記反応するステップにおいて、消化水又は反応系に、添加剤として、実質的な量の有機化合物を含まず、水ガラス、水酸化ナトリウム、炭酸ナトリウム、フッ化ナトリウム、ケイフッ化ナトリウムから選ばれる一種以上のナトリウム化合物を添加するステップと、
反応後の消石灰を乾燥するステップと、を含む消石灰の製造方法。
A step of adding digested water to powdered quicklime and reacting,
In the reacting step, the digestion water or reaction system does not contain a substantial amount of an organic compound as an additive, and is one or more selected from water glass, sodium hydroxide, sodium carbonate, sodium fluoride, sodium silicofluoride Adding a sodium compound of
And drying the slaked lime after the reaction.
請求項8に記載の消石灰の製造方法であって、
前記乾燥するステップは、100℃以上の熱風を送りながら乾燥するステップを含むことを特徴とする消石灰の製造方法。
A method for producing slaked lime according to claim 8,
The drying step includes a step of drying while sending hot air of 100 ° C. or higher.
請求項8又は9に記載の消石灰の製造方法であって、
前記ナトリウム化合物を添加するステップは、消化水に添加するステップであることを特徴とする消石灰の製造方法。
A method for producing slaked lime according to claim 8 or 9,
The method for producing slaked lime is characterized in that the step of adding the sodium compound is a step of adding to the digested water.
請求項8に記載の消石灰の製造方法であって、前記ナトリウム化合物の添加量は、原料である生石灰の0.5〜1.5重量%であることを特徴とする消石灰の製造方法。   It is a manufacturing method of the slaked lime of Claim 8, Comprising: The addition amount of the said sodium compound is 0.5 to 1.5 weight% of the quicklime which is a raw material, The manufacturing method of the slaked lime characterized by the above-mentioned.
JP2014162901A 2013-12-13 2014-08-08 Highly reactive slaked lime, method for producing the same, and exhaust gas treating agent Active JP5895035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014162901A JP5895035B2 (en) 2013-12-13 2014-08-08 Highly reactive slaked lime, method for producing the same, and exhaust gas treating agent

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013258004 2013-12-13
JP2013258004 2013-12-13
JP2014162901A JP5895035B2 (en) 2013-12-13 2014-08-08 Highly reactive slaked lime, method for producing the same, and exhaust gas treating agent

Publications (2)

Publication Number Publication Date
JP2015131750A true JP2015131750A (en) 2015-07-23
JP5895035B2 JP5895035B2 (en) 2016-03-30

Family

ID=53899313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014162901A Active JP5895035B2 (en) 2013-12-13 2014-08-08 Highly reactive slaked lime, method for producing the same, and exhaust gas treating agent

Country Status (1)

Country Link
JP (1) JP5895035B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018527273A (en) * 2015-08-14 2018-09-20 エス.ア.ロイスト ルシェルシュ エ デヴロップマン Method for producing highly porous slaked lime and product obtained thereby
JP2020532412A (en) * 2017-09-06 2020-11-12 エス.ア.ロイスト ルシェルシュ エ デヴロップマン Method of treating exhaust gas in CDS exhaust gas treatment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102218339B1 (en) * 2020-10-20 2021-02-22 강원대학교산학협력단 Method for producing high purity slaked lime and using by-product gypsum

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002114543A (en) * 2000-10-06 2002-04-16 Yoshizawa Lime Industry Method for manufacturing highly reactive calcium hydroxide
JP2011116573A (en) * 2009-12-01 2011-06-16 Kotegawa Sangyo Kk Slaked lime, method for producing the same, and acidic gas removing agent
JP2012031043A (en) * 2010-06-28 2012-02-16 Oji Paper Co Ltd Slaked lime particles, light calcium carbonate and paper and coated paper using the same
JP2012066976A (en) * 2010-09-24 2012-04-05 Kotegawa Sangyo Kk Slaked lime, method of manufacturing slaked lime and sour gas remover
JP2012201571A (en) * 2011-03-28 2012-10-22 Mitsubishi Materials Corp Manufacturing facility for quicklime and manufacturing facility and manufacturing process for slaked lime
JP2013166676A (en) * 2012-02-16 2013-08-29 Kotegawa Sangyo Kk Slaked lime, method for producing slaked lime and acid gas removing agent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002114543A (en) * 2000-10-06 2002-04-16 Yoshizawa Lime Industry Method for manufacturing highly reactive calcium hydroxide
JP2011116573A (en) * 2009-12-01 2011-06-16 Kotegawa Sangyo Kk Slaked lime, method for producing the same, and acidic gas removing agent
JP2012031043A (en) * 2010-06-28 2012-02-16 Oji Paper Co Ltd Slaked lime particles, light calcium carbonate and paper and coated paper using the same
JP2012066976A (en) * 2010-09-24 2012-04-05 Kotegawa Sangyo Kk Slaked lime, method of manufacturing slaked lime and sour gas remover
JP2012201571A (en) * 2011-03-28 2012-10-22 Mitsubishi Materials Corp Manufacturing facility for quicklime and manufacturing facility and manufacturing process for slaked lime
JP2013166676A (en) * 2012-02-16 2013-08-29 Kotegawa Sangyo Kk Slaked lime, method for producing slaked lime and acid gas removing agent

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018527273A (en) * 2015-08-14 2018-09-20 エス.ア.ロイスト ルシェルシュ エ デヴロップマン Method for producing highly porous slaked lime and product obtained thereby
US10669199B2 (en) 2015-08-14 2020-06-02 S. A. Lhoist Recherche Et Developpement Process for manufacturing highly porous slaked lime and product thereby obtained
TWI699333B (en) * 2015-08-14 2020-07-21 比利時商耐斯赤理查發展公司 Process for manufacturing highly porous slaked lime and product thereby obtained
JP2020532412A (en) * 2017-09-06 2020-11-12 エス.ア.ロイスト ルシェルシュ エ デヴロップマン Method of treating exhaust gas in CDS exhaust gas treatment
JP7360378B2 (en) 2017-09-06 2023-10-12 エス.ア.ロイスト ルシェルシュ エ デヴロップマン Method of treating exhaust gas in CDS exhaust gas treatment

Also Published As

Publication number Publication date
JP5895035B2 (en) 2016-03-30

Similar Documents

Publication Publication Date Title
JP2004261658A (en) Method for absorbing/fixing carbon dioxide in combustion exhaust gas
Chang et al. CO2 capture by using blended hydraulic slag cement via a slurry reactor
US9409046B2 (en) Method for stabilization and/or fixation of leachable metals
CN110698174A (en) Lightweight sludge ceramsite, and preparation method and application thereof
US20170100618A1 (en) Stabilization of at least one heavy metal contained in a sodic fly ash using a water-soluble source of silicate and a material containing calcium and/or magnesium
JP5895035B2 (en) Highly reactive slaked lime, method for producing the same, and exhaust gas treating agent
CN102627308A (en) Method for producing micron-sized light spherical calcium carbonate by using high-calcium incineration fly ash
JP2008264627A (en) Waste treatment material and treatment method for detoxifying fly ash (soot and dust) and burned ash or the like
CN107002994B (en) Stabilization of sodium-containing fly ash of type F using calcium-based materials
JP2013202463A (en) Phosphorus recovery material, phosphorus recovery method and producing method of fertilizer
JP2007296414A (en) Detoxification treatment method of coal fly ash and detoxification treatment apparatus
JP5069153B2 (en) Porous purification material and purification method using porous filter using the same
JP2010051840A (en) Agent for treating flue gas, and method for treating flue gas
JP3692443B2 (en) Production method of hydro-glossular using coal gasification slag
JP5032755B2 (en) Soil treatment material and soil purification method using the same
JP3940157B1 (en) Incineration residue treatment method and incineration residue treatment product
JP5751689B2 (en) Exhaust gas treatment agent and method for producing the same
Wang et al. Emission and species distribution of mercury during thermal treatment of coal fly ash
KR101155104B1 (en) Preparation method of quicklime and hydrated lime for removing sulfur oxides using residual wastes of ground limestone for paper manufacture
Hu et al. Modification of multi-source industrial solid waste with porous materials to produce highly polymerizeosilica gel: Microstructure optimization and CO2 mineralization enhancement mechanism
Zaremba et al. Properties of the wastes produced in the semi-dry FGD installation
Wu et al. Alkali-activated materials without commercial activators: a review
JP2008093490A (en) Method for adsorbing sulfur oxide
CN107556040A (en) The method for producing foaming thermal-insulating
JP5147146B2 (en) Waste incineration fly ash treatment method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160229

R150 Certificate of patent or registration of utility model

Ref document number: 5895035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250