JP2015128756A - Decontamination method of contaminated ground - Google Patents

Decontamination method of contaminated ground Download PDF

Info

Publication number
JP2015128756A
JP2015128756A JP2014002067A JP2014002067A JP2015128756A JP 2015128756 A JP2015128756 A JP 2015128756A JP 2014002067 A JP2014002067 A JP 2014002067A JP 2014002067 A JP2014002067 A JP 2014002067A JP 2015128756 A JP2015128756 A JP 2015128756A
Authority
JP
Japan
Prior art keywords
ground
contaminated
layer
soil
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014002067A
Other languages
Japanese (ja)
Other versions
JP6366275B2 (en
Inventor
芳章 萩野
Yoshiaki Hagino
芳章 萩野
福永 和久
Kazuhisa Fukunaga
和久 福永
和宏 野口
Kazuhiro Noguchi
和宏 野口
英一郎 今安
Eiichiro Imayasu
英一郎 今安
信彦 山下
Nobuhiko Yamashita
信彦 山下
知也 新村
Tomoya Niimura
知也 新村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Fudo Tetra Corp
Nippon Steel Engineering Co Ltd
Original Assignee
Osaka Gas Co Ltd
Fudo Tetra Corp
Nippon Steel and Sumikin Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Fudo Tetra Corp, Nippon Steel and Sumikin Engineering Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2014002067A priority Critical patent/JP6366275B2/en
Publication of JP2015128756A publication Critical patent/JP2015128756A/en
Application granted granted Critical
Publication of JP6366275B2 publication Critical patent/JP6366275B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a decontamination method of contaminated ground which can apply an electric restoration method regardless of soil of the ground, and can remove and separate heavy metals.SOLUTION: A decontamination method of contaminated ground is a method to decontaminate polluted ground with hazardous materials, and includes: a step I using an agitating apparatus, churning and kneading the contaminated soil while injecting water if necessary, penetrating or drawing out to an appointed depth, and making uniform muddy ground; and a step II providing anodes and cathodes in an appointed gap in the muddy ground provided in the step I, and decontaminating it by electric restoration.

Description

本発明は、重金属で汚染された汚染地盤を浄化する方法に関するものである。   The present invention relates to a method for purifying contaminated ground contaminated with heavy metals.

工場廃水物等によって汚染された地盤には、カドミウム、六価クロム、鉛、ヒ素、ホウ素、シアン等の重金属が含まれていることがあり、このような汚染地盤をそのまま放置すると、該地盤中に含まれる重金属が地下水等を介して環境に拡散する危険性がある。   Ground contaminated by industrial wastewater may contain heavy metals such as cadmium, hexavalent chromium, lead, arsenic, boron, and cyanide. If such contaminated ground is left as it is, There is a risk that heavy metals contained in the water will diffuse into the environment through groundwater.

従来、重金属で汚染された地盤は、掘削除去して場外において所定の処理を施し、廃棄処分する方法、あるいは原位置で不溶化あるいは封じ込む方法が知られている。場外に廃棄処分する方法は、掘削に伴い振動、騒音、土壌飛散等が発生し、周辺環境への影響が大であり、且つ処分コストが高いという問題がある。また、原位置で不溶化又は封じ込む方法は、汚染を根絶するものではなく、依然として重金属汚染のリスクを抱えたままである。   Conventionally, there are known methods of excavating and removing ground contaminated with heavy metals, performing predetermined treatment outside the site, and disposing them, or insolubilizing or confining them in situ. The method of disposal outside the site has problems that vibration, noise, soil scattering, etc. occur during excavation, which has a large impact on the surrounding environment and is expensive. Also, in-situ insolubilization or containment methods do not eradicate contamination and still carry the risk of heavy metal contamination.

また、水や薬剤などの洗浄水を地中に循環させ土の間隙や土粒子に吸着している重金属を回収する原位置フラッシング(ソイルフラッシング)も知られているが、シルト・粘土などの透水性の悪い地盤には適用できない。砂層、シルト・粘土層等の土質を問わず重金属汚染土壌の原位置浄化技術として唯一、電気修復法(特開2004−25149号公報等多数)が知られている。電気修復法は、汚染地盤に削孔後、挿入した陽極、陰極間に直流電圧を印加することにより発生する、電気分解、電気浸透及び電気泳動の3種類の現象により、陽及び陰にイオン化した重金属等を陽極及び陰極に移動、濃縮して分離、除去する方法である。   In-situ flushing (soil flushing) is also known, in which washing water such as water and chemicals is circulated in the ground to collect heavy metals adsorbed on the soil gaps and soil particles. It cannot be applied to bad ground. The only in-situ purification technique for heavy metal-contaminated soils, regardless of the soil type such as sand layer, silt / clay layer, etc., is known as an electrical restoration method (Japanese Patent Laid-Open No. 2004-25149, etc.). The electrorepair method is positively and negatively ionized by three types of phenomena, electrolysis, electroosmosis and electrophoresis, which are generated by applying a DC voltage between the inserted anode and cathode after drilling into the contaminated ground. In this method, heavy metals and the like are moved to the anode and cathode, concentrated, separated and removed.

特開2004−25149号公報JP 2004-25149 A

しかしながら、従来の電気修復法は、不飽和地盤、含水比の低い地盤あるいは地下水流速の早い地盤へ適用した場合、重金属の分離、除去が十分ではないという問題があった。すなわち、従来、電気修復法は十分に機能していない。   However, when the conventional electrical restoration method is applied to unsaturated ground, low moisture content ground or groundwater flow velocity, there is a problem that separation and removal of heavy metals are not sufficient. That is, conventionally, the electrical repair method does not function sufficiently.

従って、本発明の目的は、地盤の土質を問わず、電気修復法が適用でき、重金属の分離、除去が可能な汚染地盤の浄化方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for purifying contaminated ground, which can apply an electrical restoration method and can separate and remove heavy metals regardless of the soil quality.

かかる実情において、本発明者等は鋭意検討を行った結果、電気修復法を適用する地盤を、撹拌装置を使用し、該汚染土壌に対して必要に応じて水を注入しながら撹拌混練して得られる均一な泥状地盤とすれば、上記従来の課題を解決できることを見出し、本発明を完成するに至った。   In such a situation, the present inventors have intensively studied, and as a result, the ground to which the electric restoration method is applied is stirred and kneaded using a stirrer while injecting water into the contaminated soil as necessary. The present inventors have found that the above-described conventional problems can be solved if the obtained uniform mud ground is used, and the present invention has been completed.

すなわち、本発明は、有害物質で汚染された地盤を浄化する方法であって、撹拌装置を使用し、該汚染土壌を撹拌混練し、所定の深度まで貫入又は引き抜き、均一な泥状地盤を形成するI工程と、I工程で得られた該泥状地盤中に所定の間隔で陽極と陰極を設置し、電気修復による浄化を行うII工程と、を行うことを特徴とする汚染土壌の浄化方法を提供するものである。   That is, the present invention is a method for purifying ground contaminated with harmful substances, using a stirrer, stirring and kneading the contaminated soil, penetrating to or pulling out to a predetermined depth to form a uniform muddy ground. A method for purifying contaminated soil, comprising: I step to be performed; and II step of performing purification by electrical restoration by installing an anode and a cathode at predetermined intervals in the mud ground obtained in I step Is to provide.

本発明によれば、地盤の土質を問わず、電気修復法が適用でき、重金属の分離、除去が可能となる。   According to the present invention, an electric restoration method can be applied regardless of the soil quality of the ground, and heavy metals can be separated and removed.

本発明の実施の形態における汚染土壌の浄化方法のI工程を説明する図である。It is a figure explaining I process of the purification method of contaminated soil in embodiment of this invention. 本発明の実施の形態における汚染土壌の浄化方法のII工程を説明する図である。It is a figure explaining II process of the purification method of the contaminated soil in embodiment of this invention. 参考例における浄化の対象互層地盤のボーリング簡略柱状図である。It is a boring simplified columnar figure of the target alternate layer ground in the reference example. 図3の符号A部の粒径加積曲線を示す。The particle size accumulation curve of the code | symbol A part of FIG. 3 is shown. 図3の符号B部の粒径加積曲線を示す。The particle size accumulation curve of the code | symbol B part of FIG. 3 is shown. 図3の符号C部の粒径加積曲線を示す。The particle size accumulation curve of the code | symbol C part of FIG. 3 is shown. 図3の符号D部の粒径加積曲線を示す。The particle size accumulation curve of the code | symbol D part of FIG. 3 is shown. 汚染土壌の浄化方法を説明する図である。It is a figure explaining the purification method of contaminated soil.

次に、本発明の実施の形態における汚染土壌の浄化方法を図1及び図2を参照して説明する。本発明において、浄化の対象となる地盤Zは、有害物質で汚染された地盤であればよく、特にカドミウム、六価クロム、鉛、ヒ素、ホウ素、シアン等の重金属で汚染されている地盤が本発明の効果が顕著に表れる。 Next, a method for purifying contaminated soil in the embodiment of the present invention will be described with reference to FIGS. In the present invention, the ground Z 1 to be purified may be any ground that is contaminated with harmful substances, and in particular, the ground that is contaminated with heavy metals such as cadmium, hexavalent chromium, lead, arsenic, boron, and cyan. The effect of the present invention is remarkably exhibited.

汚染地盤Zとしては、砂地盤、シルト・粘土地盤および互層地盤が挙げられる。砂地盤は、砂の粒子同士が凝集しており、このままでは電気修復法を適用しても、有害物質である重金属の分離、除去は十分ではない。また、シルト・粘土地盤は、均一な間隙は生じておらず、このままでは電気修復法を適用しても、有害物質である重金属の分離、除去は十分ではない。 Examples of the contaminated ground Z 1 include sand ground, silt / clay ground, and alternate layer ground. In the sand ground, sand particles are agglomerated, and even if the electric restoration method is applied as it is, separation and removal of heavy metals which are harmful substances are not sufficient. In addition, the silt / clay ground does not have a uniform gap, and even if the electrical restoration method is applied as it is, separation and removal of heavy metals that are harmful substances are not sufficient.

互層地盤は、砂層とシルト・粘土層の2層構造を含む地盤、特に、砂層とシルト・粘土層と砂層の3層構造を含む地盤であり、通常、表層側の砂層の上には、礫混じり砂を主体とする盛土層が存在していてもよい。シルト・粘土層は、シルト層又は粘土層あるいはシルトと粘土が混在する層を言う。互層地盤は、そのままで、電気修復法を適用すると、電極間隔、使用電流密度および土質により浄化期間が左右されるため、シルト・粘土層の土質に合わせると砂層には過剰設計となり、砂層に合わせると浄化期間が長くなる。   Alternating ground is ground that includes a two-layer structure of sand, silt and clay, and in particular, that includes a three-layer structure of sand, silt, clay and sand. An embankment layer mainly composed of mixed sand may exist. The silt / clay layer is a silt layer or a clay layer or a layer in which silt and clay are mixed. If the electrical restoration method is applied to the alternate-layered ground as it is, the purification period depends on the electrode spacing, current density used, and soil quality. And the purification period becomes longer.

本発明において、I工程は、撹拌装置1を使用し、汚染土壌Zに対して必要に応じて水を注入しながら撹拌混練し、所定の深度まで貫入又は引き抜き、均一な泥状地盤Zを形成する工程である。撹拌装置1としては、深層混合処理工法や地中柱状杭造成工法で使用される公知の撹拌翼11を備える撹拌装置1、公知のトレンチャーあるいは公知の水噴射撹拌装置を使用することができる。撹拌翼11を備える撹拌装置1における撹拌翼11としては、両翼(2枚)の2段羽根又は3段羽根の水平撹拌翼が好適である。このような撹拌装置1を使用することで、汚染土壌Zを所定の深度及び所定の径で撹拌混合することができる。なお、符号2は、水供給装置である。以下、撹拌翼11を備える撹拌装置1を使用する場合の浄化方法について説明する。 In the present invention, the step I uses the agitator 1 and agitates and kneads the water in the contaminated soil Z 1 while injecting water as necessary, penetrates or pulls out to a predetermined depth, and forms a uniform mud ground Z 2. Is a step of forming. As the stirrer 1, a stirrer 1 equipped with a known stirrer blade 11, a known trencher, or a known water jet agitator used in a deep mixing treatment method or an underground columnar pile construction method can be used. As the stirring blade 11 in the stirring device 1 including the stirring blade 11, a two-stage blade of two blades (two) or a horizontal stirring blade of a three-stage blade is preferable. By using such a stirring device 1, it can be stirred mixing contaminated soil Z 1 at a predetermined depth and predetermined diameter. Reference numeral 2 denotes a water supply device. Hereinafter, the purification method in the case of using the stirring apparatus 1 provided with the stirring blade 11 is demonstrated.

I工程において、撹拌装置1の回転軸12の軸芯を汚染土壌Zの撹拌混練地点の中心に一致させる。次いで、撹拌装置1を駆動し撹拌翼11を回転させながら回転軸12を地中に貫入させる。この際、必要に応じて加水しながら撹拌混練する。必要に応じて加水しながら撹拌混練することで、泥状の超軟弱地盤を形成することができる。なお、加水量は、土壌に含まれる含水率および撹拌領域を考慮して決定されるが、撹拌混練地盤に対して、概ね最大で30体積%である。 In Step I, to match the axis of the rotary shaft 12 of the stirring device 1 in the center of the agitation mixing point contaminated soil Z 1. Next, the rotating shaft 12 is penetrated into the ground while the stirring device 1 is driven to rotate the stirring blade 11. At this time, stirring and kneading while adding water as necessary. A mud ultra-soft ground can be formed by stirring and kneading while adding water as necessary. In addition, although the amount of water is determined in consideration of the moisture content contained in the soil and the stirring region, it is approximately 30% by volume at maximum with respect to the stirring and kneading ground.

撹拌混練は、貫入時又は引き抜き時あるいは貫入時と引き抜き時の両時であり、好ましくは貫入時と引き抜き時の両時である。貫入速度及び引き抜き速度は、均一性の高い混練物を得るための好適な速度として決定すればよい。このような操作により、砂地盤やシルト・粘土地盤であれば、凝集粒子が解され、粒子間隙間が均一に存在する泥状地盤が得られる。また、互層地盤であれば、礫、細粒土及び粗粒土が十分に撹拌され、粒子間隙間が均一に存在する泥状地盤が得られる。互層地盤の撹拌混練区域は、砂層、シルト・粘土層の区別がなくなり、超軟弱の土壌となる。   The stirring and kneading is at the time of penetration or at the time of withdrawal or at the time of penetration and at the time of withdrawal, preferably both at the time of penetration and at the time of withdrawal. The penetration speed and the drawing speed may be determined as suitable speeds for obtaining a highly uniform kneaded product. By such an operation, if it is sand ground, silt / clay ground, aggregated particles are solved, and a muddy ground having a uniform inter-particle gap is obtained. Moreover, if it is an alternating layer ground, gravel, fine-grained soil, and coarse-grained soil will fully be stirred, and the muddy ground in which the clearance gap between particle | grains exists uniformly will be obtained. The agitation and kneading zone of the alternate-layered ground eliminates the distinction between sand layers and silt / clay layers, resulting in ultra-soft soil.

I工程においては、撹拌混練しつつ、保水剤、重金属を溶解させる薬剤あるいは重金属のイオン化を促進する薬剤を同時に投入してもよい。保水剤は、土木一般で使用される公知のものが使用できる。また、重金属を溶解させる薬剤及び重金属のイオン化を促進する薬剤は、電気修復法一般で使用される公知のものが使用できる。保水剤の添加は、地下水流速が早い地層では、地下水流側を遅くすることができ、また、不飽和などの含水比の少ない地層においては、十分な水分を保持することができる。なお、I工程において薬剤を投入する際、薬剤が水を含む場合、単独の水の注入を省略できる。この場合、薬剤中の水が、注入する水となる。また、I工程において、更にエジェクターにより空気撹拌を行うことが、エジェクターリフト効果により、均一化が図れる。   In step I, a water retention agent, a drug that dissolves heavy metals, or a drug that promotes ionization of heavy metals may be added simultaneously while stirring and kneading. As the water retention agent, known ones used in general civil engineering can be used. Moreover, the chemical | medical agent which dissolves a heavy metal, and the chemical | medical agent which accelerates | stimulates ionization of heavy metal can use the well-known thing used by the electrorepair method generally. The addition of the water retention agent can slow down the groundwater flow side in the formation where the groundwater flow velocity is fast, and can retain sufficient moisture in the formation where the water content ratio is low such as unsaturation. In addition, when inject | pouring a chemical | medical agent in I process, when a chemical | medical agent contains water, injection | pouring of single water can be skipped. In this case, water in the medicine becomes water to be injected. Further, in the step I, air stirring with an ejector can be made uniform due to the ejector lift effect.

I工程においては、撹拌装置1の撹拌混練により、柱状の地中混練体を得る(図1)。柱状の地中混練体は、原地盤土と水の混練物であり、盛土層に含まれる礫等を含んでいてもよい。なお、地中混練体は当然に有害物質を含んでいる。すなわち、柱状の地中混練体は、汚染地盤Z中に多数形成され、好ましくは、汚染区域全域に形成される。これにより、汚染領域全域を泥状地盤とすることができ、II工程の重金属浄化を確実に行える。柱状の地中混練体を汚染地盤Z中に多数形成する場合、ラップ施工で形成することが好ましい。すなわち、地中混練体は、汚染域全体に構築することが好ましい。これにより、汚染域内に地中混練体の未施工部分がなくなり、汚染地盤全域を効率的に泥状の超軟弱地盤Zとすることができる。本発明の地中混練体の形状は、例えば柱状杭、矩形状の壁体及びこれらの連続施工体、ラップ施工体である。 In step I, a columnar underground kneaded body is obtained by stirring and kneading in the stirring device 1 (FIG. 1). The columnar underground kneaded body is a kneaded product of raw ground soil and water, and may contain gravel or the like contained in the embankment layer. The underground kneaded body naturally contains harmful substances. That is, columnar ground kneading body, many are formed in the contaminated ground Z 1, and preferably, formed in the contaminated area throughout. Thereby, the whole contaminated area can be made into a muddy ground, and heavy metal purification in the II step can be performed reliably. If a large number forming a columnar ground kneaded material in the contaminated ground Z 1, it is preferably formed of a wrap construction. That is, the underground kneaded body is preferably constructed in the entire contaminated area. Thus, contamination region to eliminate the non-construction part of the ground kneaded material, contaminated ground whole can be efficiently muddy ultra soft ground Z 2. The shape of the underground kneaded body of the present invention is, for example, a columnar pile, a rectangular wall body, a continuous construction body, and a lap construction body.

I工程後、得られた撹拌混練地盤Zは、均一な泥状である。泥状とは、所謂しゃばしゃばな超軟弱地盤であり、均一とは、撹拌により当初地盤が練られ、大きな塊状物や大きな粒子凝集物が実質的に存在しないものを言い、また、粒子間隙間が概ね均一となったものを言う。均一な泥状地盤Zは、平均含水率が20%以上、好ましくは25%以上である。含水率のばらつき、すなわち、含水率の最大値と最小値の差は、6%以下が好ましく、特に3%以下であることが好ましい。また、加水量は、原地盤の含水量に応じて調整される。泥状地盤Zは、粒子間隙間が均一に形成されており、また、凝集粒子が解されており、II工程の電気修復法において、電気浸透および電気泳動を促進する。 After I step, stirring and kneading the ground Z 2 obtained is homogeneous slurry. Mud is a so-called fuzzy ultra-soft ground, and uniform means that the ground is initially kneaded by stirring and that there is substantially no large lump or large particle aggregate, This means that the gap is almost uniform. Homogeneous slurry ground Z 2 is the average water content of 20% or more, preferably 25% or more. The variation of the moisture content, that is, the difference between the maximum value and the minimum value of the moisture content is preferably 6% or less, and particularly preferably 3% or less. The amount of water added is adjusted according to the water content of the original ground. Muddy ground Z 2 are inter-particle gaps are uniformly formed, also agglomerated particles are understood, in the electrical repair method step II, to facilitate electroosmosis and electrophoresis.

II工程は、I工程で得られた泥状地盤中に所定の間隔で陽極と陰極を設置し、電気修復による浄化を行う工程である。電気修復法としては、例えば、特開2004−25149号公報に記載のような公知の方法が挙げられる。すなわち、図2に示すように、I工程で得られた泥状地盤に、削孔後、挿入した対の電極、陽極21および負極22間に直流電圧20を印加することにより発生する、電気分解、電気浸透、電気泳動の各現象により、亜鉛イオン、銅イオン、鉛イオン等の陽イオン重金属Y、Y2+を陰極に、シアンイオン、クロムイオン等の陰イオン重金属Xを陽極に移動、濃縮して分離、除去するものである。すなわち、I工程後の汚染地盤は、原地盤土と水の懸濁状物であり、汚染地盤の粒子間隙水は均一に分布しており、水分子への電子の授受により、電気分解反応が効果的に起き、重金属は間隙水中に溶解する。また、解された個々の土粒子の表面に、重金属は静電力により吸着されており、陽イオン及び水は、効率的に陰極に移動できる。
(参考例)
ボーリング調査及び土質調査により、互層地盤(試験地盤)を選定した。その互層地盤のボーリング簡略柱状図を図3に示す。図3の地盤は、表面より深さ方向に対して、盛土(礫混じり砂)層、盛土(礫混じり砂)層、盛土(シルト質砂)層、埋土(細砂)層、埋土(粘土)層、埋土(砂)層を有するものであった。この中、盛土(シルト質砂)層(符号;A)の粒径加積曲線を図4に示し、埋土(細砂)層(符号;B)の粒径加積曲線を図5に示し、埋土(粘土)層上部(符号;C)の粒径加積曲線を図6に示し、埋土(粘土砂)層下部(符号;D)の粒径加積曲線を図7に示した。また、この地盤の地下水位は−1.2mの位置であった。また、盛土(シルト質砂)層(符号;A)の含水率は14.8%であり、埋土(粘土)層上部(符号;C)の含水率は38.0%であり、深度6.0mの砂層の含水率は20.7%であった。
Step II is a step in which an anode and a cathode are installed at a predetermined interval in the mud ground obtained in Step I, and purification is performed by electrical restoration. Examples of the electrical repair method include known methods as described in JP-A-2004-25149. That is, as shown in FIG. 2, the electrolysis generated by applying a DC voltage 20 between the inserted pair of electrodes, the anode 21 and the negative electrode 22 after drilling, in the mud ground obtained in the step I. , Cation heavy metals Y + and Y 2+ such as zinc ion, copper ion and lead ion are moved to the cathode, and anion heavy metals X such as cyan ion and chromium ion are moved to the anode by each phenomenon of electroosmosis and electrophoresis, It is concentrated and separated and removed. That is, the contaminated ground after Step I is a suspension of raw ground soil and water, and the interstitial water in the contaminated ground is uniformly distributed, and the electrolysis reaction is caused by the transfer of electrons to water molecules. Effectively occurs, heavy metals dissolve in pore water. In addition, heavy metals are adsorbed by electrostatic force on the surfaces of the individual soil particles that have been dissolved, and the cations and water can efficiently move to the cathode.
(Reference example)
The alternate ground (test ground) was selected by the boring survey and soil survey. FIG. 3 shows a simplified boring column diagram of the alternate layer ground. The ground shown in Fig. 3 has an embankment (sand mixed with gravel) layer, an embankment (sand mixed with gravel) layer, an embankment (silty sand) layer, a buried (fine sand) layer, Clay) layer and buried (sand) layer. Among these, the particle size accumulation curve of the embankment (silty sand) layer (symbol; A) is shown in FIG. 4, and the particle size accumulation curve of the buried soil (fine sand) layer (symbol; B) is shown in FIG. FIG. 6 shows the particle size accumulation curve of the upper part of the buried soil (clay) layer (symbol; C), and FIG. 7 shows the particle size accumulation curve of the lower part of the buried soil (clay sand) layer (symbol; D). . The groundwater level of this ground was -1.2m. In addition, the moisture content of the embankment (silty sand) layer (sign; A) is 14.8%, the moisture content of the upper part of the buried (clay) layer (sign; C) is 38.0%, and the depth is 6 The water content of the 0.0 m sand layer was 20.7%.

次いで、両翼3段の撹拌翼を備える撹拌装置を使用し、上記互層地盤に対して、20体積%の加水をしながら貫入時と引き抜き時に撹拌混練することで、直径1.3mの地中混練体を形成した。なお、撹拌装置は、表層より撹拌しつつ貫入し、実質的な撹拌混練区域は、深度2mから7mまでの5mとした。なお、撹拌混練時間は20分であった。なお、回転軸の回転速度は、貫入時19rpm、引き抜き時は38rpm、貫入速度は0.4m/分〜0.7m/分、引き抜き速度は0.6〜1.1m/分であった。   Next, using a stirrer equipped with a three-stage stirring blade on both blades, the above-mentioned alternate layer ground is stirred and kneaded at the time of intrusion and withdrawing while adding 20% by volume of water, so that the ground is kneaded at 1.3 m in diameter. Formed body. The stirring device penetrated from the surface layer while stirring, and the substantial stirring and kneading zone was 5 m from a depth of 2 m to 7 m. The stirring and kneading time was 20 minutes. The rotational speed of the rotating shaft was 19 rpm when penetrating, 38 rpm when pulling, the penetrating speed was 0.4 m / min to 0.7 m / min, and the pulling speed was 0.6 to 1.1 m / min.

次いで、地中混練体の深さ方向のA、B、C及びD地点における土壌を採取し、粒度分析を行った。また、深度6.0mの砂層の土壌を採取し、含水率を測定した。地中混練体における盛土(シルト質砂)層(符号;A)該当部分の粒径加積曲線を図4に示し、地中混練体における埋土(細砂)層(符号;B)該当部分の粒径加積曲線を図5に示し、地中混練体における埋土(粘土)層上部(符号;C)該当部分の粒径加積曲線を図6に示し、地中混練体における埋土(砂)層下部(符号;D)該当部分の粒径加積曲線を図7に示した。なお、符号A〜Dで示される各層の撹拌混練前後の粒度分析は、同じ互層地盤区域中の他の異なる3箇所でも行ったが、それぞれ同様の粒径加積曲線を示した。   Next, soil at points A, B, C, and D in the depth direction of the underground kneaded body was collected and subjected to particle size analysis. Moreover, the soil of the sand layer of depth 6.0m was extract | collected, and the moisture content was measured. The particle size accumulation curve of the corresponding portion of the embankment (silty sand) layer (symbol; A) in the underground kneaded body is shown in FIG. 4, and the corresponding portion of the buried (fine sand) layer (symbol; B) in the underground kneaded body 5 shows the particle size accumulation curve, and FIG. 6 shows the particle size accumulation curve of the upper part (sign: C) of the buried (clay) layer in the underground kneaded body. The particle size accumulation curve at the lower part of the (sand) layer (symbol: D) is shown in FIG. In addition, although the particle size analysis before and behind stirring kneading | mixing of each layer shown by code | symbol AD was performed also in three different different places in the same alternating layer ground area, each showed the same particle size accumulation curve.

図5のB点の結果から、細砂層は、均質な細砂であったものが、撹拌混練により、不均質で粗粒を含むものとなったことが判る。また、図6及び図7のC点及びD点の結果から、粘土層は、均質な高塑性粘土のものが、撹拌混練により、粗粒を含むものとなったことが判る。また、撹拌混練物の上方部は下方部より不均質で粗粒を多く含むものであったが、概ね土粒子間隙が均一に形成されたものであった。なお、盛土(シルト質砂)層(符号;A)の含水率は25.6%であり、埋土(粘土)層上部(符号;C)の含水率は25.2%であり、深度6.0mの砂層の含水率は26.2%であった。この互層地盤における含水率の最大値と最小値の差(バラツキ)は、1.0%であった。また、I工程の撹拌混練の際、保水剤を投入した場合、盛土(シルト質砂)層(符号;A)の含水率は29.0%であり、埋土(粘土)層上部(符号;C)の含水率は30.6%であり、深度6.0mの砂層の含水率は25.4%であった。この互層地盤における含水率の最大値と最小値の差(バラツキ)は、5.2%であった。このように、加水混練により、互層地盤は、劇的な組成変化をもたらすものであった。
(ラップ施工された地中混練体)
図8に示すように、7本の直径1.3m、深度2〜7mまでの5mの高さの地中混練体を、直径約3.5mの仮想汚染地盤域Yにラップ施工した。ラップ施工された地中混練体は、中央の1本の柱状地中混練体に対して、円周方向に並ぶ6本の柱状地中混練体をラップ施工したものである。
From the result of point B in FIG. 5, it can be seen that the fine sand layer was homogeneous fine sand but became non-homogeneous and coarse particles by stirring and kneading. Moreover, it can be seen from the results of points C and D in FIGS. 6 and 7 that the clay layer was made of a homogeneous high-plastic clay and contained coarse particles by stirring and kneading. Moreover, although the upper part of the stirring kneaded material was heterogeneous and contained more coarse particles than the lower part, the soil particle gap was generally formed uniformly. In addition, the moisture content of the embankment (silty sand) layer (sign; A) is 25.6%, the moisture content of the upper part of the buried (clay) layer (sign; C) is 25.2%, and the depth is 6 The water content of the 0.0 m sand layer was 26.2%. The difference (variation) between the maximum value and the minimum value of the moisture content in this alternating layer ground was 1.0%. In addition, when a water retention agent is added during the stirring and kneading in the step I, the water content of the embankment (silty sand) layer (sign; A) is 29.0%, and the upper part of the buried (clay) layer (sign; The water content of C) was 30.6%, and the water content of the sand layer at a depth of 6.0 m was 25.4%. The difference (variation) between the maximum value and the minimum value of the moisture content in this alternate layer ground was 5.2%. Thus, the alternate layer ground caused dramatic composition change by the hydro-kneading.
(Underground kneaded body with lapping)
As shown in FIG. 8, seven underground kneaded bodies having a height of 5 m having a diameter of 1.3 m and a depth of 2 to 7 m were lapped on a virtual contaminated ground area Y having a diameter of about 3.5 m. The underground kneaded body subjected to wrapping is obtained by lapping six columnar underground kneaded bodies arranged in the circumferential direction with respect to one central columnar underground kneaded body.

上記の参考例から、撹拌混練後の互層地盤は、大きな塊状や大きな土粒子凝集体が殆どなく、土粒子間隙が均一に形成されたものであった。このため、電気修復法においては、イオン化が促進され、重金属が移動し易いものであることは明白である。   From the above reference example, the alternating layer ground after stirring and kneading had almost no large lumps or large soil particle aggregates, and the soil particle gaps were uniformly formed. For this reason, in the electric repair method, it is clear that ionization is promoted and heavy metals are easy to move.

本発明によれば、地盤の土質を問わず、電気修復法が適用でき、重金属の分離、除去が可能となる。このため、浄化後の跡地利用の用途も広がる。   According to the present invention, an electric restoration method can be applied regardless of the soil quality of the ground, and heavy metals can be separated and removed. For this reason, the use of the site after purification is also expanded.

1 撹拌装置
2 水供給装置
3 互層地盤
10 地中混練体
33、35 砂層
34 シルト・粘土層
DESCRIPTION OF SYMBOLS 1 Stirring apparatus 2 Water supply apparatus 3 Alternating ground 10 Underground kneading body 33, 35 Sand layer 34 Silt and clay layer

Claims (8)

有害物質で汚染された地盤を浄化する方法であって、撹拌装置を使用し、該汚染土壌を撹拌混練し、所定の深度まで貫入又は引き抜き、均一な泥状地盤を形成するI工程と、I工程で得られた該泥状地盤中に所定の間隔で陽極と陰極を設置し、電気修復による浄化を行うII工程と、を行うことを特徴とする汚染土壌の浄化方法。   A method of purifying the ground contaminated with harmful substances, using an agitator, agitating and kneading the contaminated soil, penetrating or withdrawing to a predetermined depth to form a uniform muddy ground, A method for purifying contaminated soil, comprising: a step II in which an anode and a cathode are installed at predetermined intervals in the muddy ground obtained in the step, and purification is performed by electrical restoration. 該I工程の撹拌混練は、該汚染土壌に対して水を注入しながら行うことを特徴とする請求項1記載の汚染土壌の浄化方法。   The method for purifying contaminated soil according to claim 1, wherein the stirring and kneading in the step I is performed while water is poured into the contaminated soil. 該I工程で得られた泥状地盤は、含水率20%以上であることを特徴とする請求項1又は2記載の汚染土壌の浄化方法。   The method for purifying contaminated soil according to claim 1 or 2, wherein the muddy ground obtained in step I has a water content of 20% or more. 該I工程において、更に保水剤を投入することを特徴とする請求項1〜3のいずれか1項に記載の汚染地盤の浄化方法。   The method for purifying contaminated ground according to any one of claims 1 to 3, wherein a water retention agent is further added in the step I. 該I工程において、更にエジェクターにより空気撹拌を行うことを特徴とする請求項1〜4のいずれか1項に記載の汚染地盤の浄化方法。   The method for purifying contaminated ground according to any one of claims 1 to 4, wherein in the step I, air agitation is further performed by an ejector. 該I工程は、汚染地盤に対して、ラップ施工を行なうことを特徴とする請求項1〜5のいずれか1項に記載の汚染地盤の浄化方法。   The method for purifying contaminated ground according to any one of claims 1 to 5, wherein the step I performs lapping on the contaminated ground. 該I工程において、該泥状地盤は、汚染地盤全域に形成することを特徴とする請求項1〜6のいずれか1項に記載の汚染地盤の浄化方法。   The method for purifying contaminated ground according to any one of claims 1 to 6, wherein in the step I, the muddy ground is formed over the entire contaminated ground. 該汚染地盤は、砂層とシルト・粘土層の互層地盤であることを特徴とする請求項1〜7のいずれか1項に記載の汚染地盤の浄化方法。   The method for purifying contaminated ground according to any one of claims 1 to 7, wherein the contaminated ground is an alternating layer ground of a sand layer and a silt / clay layer.
JP2014002067A 2014-01-09 2014-01-09 Purification method for contaminated ground Active JP6366275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014002067A JP6366275B2 (en) 2014-01-09 2014-01-09 Purification method for contaminated ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014002067A JP6366275B2 (en) 2014-01-09 2014-01-09 Purification method for contaminated ground

Publications (2)

Publication Number Publication Date
JP2015128756A true JP2015128756A (en) 2015-07-16
JP6366275B2 JP6366275B2 (en) 2018-08-01

Family

ID=53759950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014002067A Active JP6366275B2 (en) 2014-01-09 2014-01-09 Purification method for contaminated ground

Country Status (1)

Country Link
JP (1) JP6366275B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106583025A (en) * 2017-01-10 2017-04-26 昆明理工大学 Tailing heavy metal pollutant electrokimtic and precipitated combined remediation method
CN107844642A (en) * 2017-10-25 2018-03-27 中国科学院沈阳应用生态研究所 A kind of inhomogeneous field construction method laid based on encryption electrode iteration
CN117456239A (en) * 2023-10-25 2024-01-26 江苏省无锡探矿机械总厂有限公司 Drilling machine equipment monitoring system and method for soil remediation
CN117456239B (en) * 2023-10-25 2024-05-14 江苏省无锡探矿机械总厂有限公司 Drilling machine equipment monitoring system and method for soil remediation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06218355A (en) * 1992-12-14 1994-08-09 Monsanto Co Method of restoring contaminated soil in site
JPH105737A (en) * 1996-06-26 1998-01-13 Taisei Corp Method for execution of soil remediation and device therefor
JP2001038360A (en) * 1999-07-29 2001-02-13 Nishimatsu Constr Co Ltd Underground type purification structure and purification method
JP2003311256A (en) * 2002-04-22 2003-11-05 Mitsuhiro Minamimagoe Construction method for removing toxic substance in sandy stratum by electro-osmotic pumping method
JP2004305963A (en) * 2003-04-09 2004-11-04 Rikogaku Shinkokai Method for purifying contaminated ground
JP2007307432A (en) * 2006-03-24 2007-11-29 Nishimatsu Constr Co Ltd Removing method and apparatus for heavy metal, and cleaning method and apparatus for contaminated soil

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06218355A (en) * 1992-12-14 1994-08-09 Monsanto Co Method of restoring contaminated soil in site
JPH105737A (en) * 1996-06-26 1998-01-13 Taisei Corp Method for execution of soil remediation and device therefor
JP2001038360A (en) * 1999-07-29 2001-02-13 Nishimatsu Constr Co Ltd Underground type purification structure and purification method
JP2003311256A (en) * 2002-04-22 2003-11-05 Mitsuhiro Minamimagoe Construction method for removing toxic substance in sandy stratum by electro-osmotic pumping method
JP2004305963A (en) * 2003-04-09 2004-11-04 Rikogaku Shinkokai Method for purifying contaminated ground
JP2007307432A (en) * 2006-03-24 2007-11-29 Nishimatsu Constr Co Ltd Removing method and apparatus for heavy metal, and cleaning method and apparatus for contaminated soil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106583025A (en) * 2017-01-10 2017-04-26 昆明理工大学 Tailing heavy metal pollutant electrokimtic and precipitated combined remediation method
CN107844642A (en) * 2017-10-25 2018-03-27 中国科学院沈阳应用生态研究所 A kind of inhomogeneous field construction method laid based on encryption electrode iteration
CN107844642B (en) * 2017-10-25 2021-03-16 中国科学院沈阳应用生态研究所 Non-uniform electric field construction method based on encrypted electrode iterative layout
CN117456239A (en) * 2023-10-25 2024-01-26 江苏省无锡探矿机械总厂有限公司 Drilling machine equipment monitoring system and method for soil remediation
CN117456239B (en) * 2023-10-25 2024-05-14 江苏省无锡探矿机械总厂有限公司 Drilling machine equipment monitoring system and method for soil remediation

Also Published As

Publication number Publication date
JP6366275B2 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
US10835938B1 (en) System and method for rapid reclamation of saline-sodic and heavy metal contaminated soils
KR100193917B1 (en) Raw Remedies for Contaminated Bicomponent Soil
US6207114B1 (en) Reactive material placement technique for groundwater treatment
WO2016086287A1 (en) Electrokinetic soil remediation
JP6366275B2 (en) Purification method for contaminated ground
KR20160026596A (en) An deep wing mixing vibratinal agitator for hardening ground and the deep wing mixing method thereof
JP2014073464A (en) Contaminated soil decontamination method in shield method
KR101275378B1 (en) Hybrid type soil washing method using in-situ complexly contaminated soil agitation
JP7007054B2 (en) How to build foundation piles in the ground including contaminated soil layer
JP2014074309A (en) Construction method of underground structure
JP2005007242A (en) Method for cleaning soil contaminated with organic chlorine compound in situ
KR101410469B1 (en) Agitating apparatus and hybrid type soil washing method for in-situ complexly contaminated soil using Agitating apparatus
JP2003094023A (en) Solidification treatment method for contaminated soil
KR101130314B1 (en) Slime treatment device and method for grouting construction
JP2009056356A (en) Clarification method of contaminated soil
CN206550129U (en) A kind of soil and underground water solid phase shallow-layer stirs in situ chemical oxidation repair system
JP4135909B2 (en) Purification method for contaminated ground
JP4713777B2 (en) Purification method for poorly permeable ground
KR101852138B1 (en) Agitating apparatus and hybrid type soil washing method for in-situ complexly contaminated soil using Agitating apparatus
JP6463929B2 (en) Purification method for contaminated soil
JP2005161171A (en) Soil pollution cleaning structure and method for the same
Simon et al. Groundwater remediation using active and passive processes
JP4177155B2 (en) Purification body construction method
JP2017196620A (en) Contaminated soil purifying method and system in shield method
JP2004321863A (en) Original position cleaning apparatus for polluted soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180703

R150 Certificate of patent or registration of utility model

Ref document number: 6366275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250