JP2015125347A - Thin-film transistor, thin-film transistor manufacturing method, and display device using thin-film transistor - Google Patents

Thin-film transistor, thin-film transistor manufacturing method, and display device using thin-film transistor Download PDF

Info

Publication number
JP2015125347A
JP2015125347A JP2013270793A JP2013270793A JP2015125347A JP 2015125347 A JP2015125347 A JP 2015125347A JP 2013270793 A JP2013270793 A JP 2013270793A JP 2013270793 A JP2013270793 A JP 2013270793A JP 2015125347 A JP2015125347 A JP 2015125347A
Authority
JP
Japan
Prior art keywords
film transistor
insulating film
thin
common electrode
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013270793A
Other languages
Japanese (ja)
Other versions
JP6211416B2 (en
Inventor
龍洙 鄭
Young-Soo Jung
龍洙 鄭
佐藤 治
Osamu Sato
治 佐藤
ヒヨン、カク
Hui Yeong Kwak
ヨンソク、チョイ
Yong Seok Choi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Display Co Ltd
Original Assignee
LG Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Display Co Ltd filed Critical LG Display Co Ltd
Priority to JP2013270793A priority Critical patent/JP6211416B2/en
Publication of JP2015125347A publication Critical patent/JP2015125347A/en
Application granted granted Critical
Publication of JP6211416B2 publication Critical patent/JP6211416B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a thin-film transistor, a thin-film transistor manufacturing method and a display device using the thin-film transistor which are capable of realizing process simplification, cost reduction, productivity improvement for a display element having an FFS structure.SOLUTION: Instead of forming an interlayer dielectric of silicon nitride using a vacuum film formation device, an interlayer dielectric (7b) between a common electrode (8) and a pixel electrode (9) is formed by applying a photosensitive organic insulating film with permittivity of 4 or more.

Description

本発明は、コモン電極とピクセル電極との間の層間絶縁膜材料を工夫することで、工程の簡略化、コストの削減、および生産性向上を実現する薄膜トランジスタ、薄膜トランジスタの製造方法、および薄膜トランジスタを用いた表示装置に関する。   The present invention uses a thin film transistor, a method for manufacturing a thin film transistor, and a thin film transistor that achieves simplification of processes, reduction of cost, and improvement of productivity by devising an interlayer insulating film material between a common electrode and a pixel electrode. Related to the display device.

図3は、従来の薄膜トランジスタの積層構造を示す断面図である。図3に示すように、従来の薄膜トランジスタは、ガラス基板101の上に、ゲート電極102、ゲート絶縁膜103、アモルファスシリコン(a−Si)104、ソース/ドレイン電極105、バッファ層106、第1の層間絶縁膜107a、コモン電極108、第2の層間絶縁膜107b、およびピクセル電極109が順次積層されて構成されている。   FIG. 3 is a cross-sectional view showing a conventional laminated structure of thin film transistors. As shown in FIG. 3, the conventional thin film transistor includes a gate electrode 102, a gate insulating film 103, amorphous silicon (a-Si) 104, a source / drain electrode 105, a buffer layer 106, a first electrode on a glass substrate 101. The interlayer insulating film 107a, the common electrode 108, the second interlayer insulating film 107b, and the pixel electrode 109 are sequentially stacked.

図4は、従来の薄膜トランジスタにおいて、第1の層間絶縁膜107aの上に、コモン電極108、第2の層間絶縁膜107b、およびピクセル電極109を形成する工程を示した説明図である。従来の薄膜トランジスタでは、コモン電極108とピクセル電極109の間の第2の層間絶縁膜107bとして、SiNx(窒化シリコン)が用いられている。   FIG. 4 is an explanatory diagram showing a process of forming the common electrode 108, the second interlayer insulating film 107b, and the pixel electrode 109 on the first interlayer insulating film 107a in the conventional thin film transistor. In the conventional thin film transistor, SiNx (silicon nitride) is used as the second interlayer insulating film 107 b between the common electrode 108 and the pixel electrode 109.

図4に示す工程の詳細を説明する。まず始めに、ステップB1(コモン電極の形成工程)において、第1の層間絶縁膜107aの上にコモン電極108を成膜する。その上にフォトレジストを塗布し、フォトマスクを介して露光を行い、現像液の中に浸し、フォトレジストの現像を行う。その後、コモン電極をエッチング工程でパターニングした後、剥離工程でフォトレジストを剥離する。   Details of the process shown in FIG. 4 will be described. First, in step B1 (common electrode formation step), the common electrode 108 is formed on the first interlayer insulating film 107a. A photoresist is applied thereon, exposed through a photomask, dipped in a developer, and the photoresist is developed. Then, after patterning the common electrode in the etching process, the photoresist is stripped in the stripping process.

次に、第2の層間絶縁膜107bとしてSiNx(窒化シリコン)を成膜し、その上にフォトレジストを塗布した後、フォトマスクを介して露光し、現像液の中に浸して、フォトレジストを現像する。現像後、ポストベークを行い、フォトレジストを硬化させた後、エッチング工程でSiNxをパターニングし、その後、フォトレジストを剥離する。   Next, a SiNx (silicon nitride) film is formed as the second interlayer insulating film 107b, and a photoresist is applied thereon, then exposed through a photomask, immersed in a developer, and the photoresist is applied. develop. After the development, post baking is performed to cure the photoresist, and then the SiNx is patterned in an etching process, and then the photoresist is peeled off.

さらに、ピクセル電極109としてITOを成膜し、成膜後、ITO上にフォトレジストを塗布し、フォトマスクを介して露光した後、現像液に浸し、フォトレジストを現像する。現像後、ポストベーク工程でフォトレジストを硬化させた後、エッチング工程でITOをパターニングする。最後に、剥離工程でフォトレジストを剥離し、TFTが完成する。   Further, an ITO film is formed as the pixel electrode 109, and after the film formation, a photoresist is applied onto the ITO, exposed through a photomask, and then immersed in a developer to develop the photoresist. After development, the photoresist is cured in a post-bake process, and then ITO is patterned in an etching process. Finally, the photoresist is stripped in a stripping process to complete the TFT.

特開平06−061490号公報Japanese Patent Laid-Open No. 06-061490 特開平07−066415号公報Japanese Patent Application Laid-Open No. 07-066415

しかしながら、従来技術には、以下のような課題がある。
第2の層間絶縁膜107bとして用いられるSiNxは、真空装置を使用して成膜を行う必要がある。また、従来技術によるTFT形成工程は、上記の通り工程数が非常に多い。これらの理由により、初期投資やランニングコストが高くなるという問題があった。
However, the prior art has the following problems.
SiNx used as the second interlayer insulating film 107b needs to be formed using a vacuum apparatus. In addition, as described above, the number of steps in the conventional TFT forming process is very large. For these reasons, there has been a problem that initial investment and running cost are increased.

このような課題に対し、工程簡略化およびコスト削減のため 、SiNx成膜の代わりに第2の層間絶縁膜に有機絶縁樹脂を塗布することが提案された(例えば、特許文献1、2参照)。しかしながら、一般的な有機絶縁膜の誘電率は、3〜4程度で、SiNxよりも誘電率が低いため、残像が発生してしまう、あるいは駆動電圧が上昇してしまうという問題が発生する。   In order to simplify the process and reduce costs, it has been proposed to apply an organic insulating resin to the second interlayer insulating film instead of the SiNx film formation (for example, see Patent Documents 1 and 2). . However, a general organic insulating film has a dielectric constant of about 3 to 4, which is lower than that of SiNx, and thus causes a problem that an afterimage is generated or a driving voltage is increased.

本発明は、前記のような課題を解決するためになされたものであり、第2の層間絶縁膜として高誘電率の感光性塗布型絶縁膜を用いることによって、工程の簡略化、コストの削減、および生産性向上を実現することのできる薄膜トランジスタ、薄膜トランジスタの製造方法、および薄膜トランジスタを用いた表示装置を得ることを目的とする。   The present invention has been made to solve the above-described problems. By using a photosensitive coating insulating film having a high dielectric constant as the second interlayer insulating film, the process is simplified and the cost is reduced. It is an object of the present invention to obtain a thin film transistor capable of realizing improvement in productivity, a method for manufacturing the thin film transistor, and a display device using the thin film transistor.

本発明に係る薄膜トランジスタは、絶縁層を介してコモン電極とピクセル電極が配置されることを特徴とするフリンジフィールドスイッチング(Fringe Field Switching:FFS)構造を有する薄膜トランジスタにおいて、コモン電極とピクセル電極との間の層間絶縁膜が、誘電率4以上の有機絶縁膜を塗布することで形成されているものである。   A thin film transistor according to the present invention is a thin film transistor having a fringe field switching (FFS) structure in which a common electrode and a pixel electrode are disposed through an insulating layer. The interlayer insulating film is formed by applying an organic insulating film having a dielectric constant of 4 or more.

また、本発明に係る薄膜トランジスタの製造方法は、コモン電極とピクセル電極との間の層間絶縁膜が、誘電率4以上の有機絶縁膜を塗布することで形成されている薄膜トランジスタの製造方法であって、コモン電極の上に、有機絶縁膜を塗布する絶縁膜形成工程と、絶縁膜形成工程により塗布された有機絶縁膜をマスクとして、コモン電極をエッチングするエッチング工程と、有機絶縁膜をリフロー処理することで、エッチング工程でエッチングされたコモン電極の端部を有機絶縁膜で覆うポストベーク工程と、ポストベーク工程の後に、ピクセル電極を成膜形成するピクセル電極形成工程とを有するものである。   The thin film transistor manufacturing method according to the present invention is a thin film transistor manufacturing method in which an interlayer insulating film between a common electrode and a pixel electrode is formed by applying an organic insulating film having a dielectric constant of 4 or more. , An insulating film forming step of applying an organic insulating film on the common electrode, an etching step of etching the common electrode using the organic insulating film applied by the insulating film forming step as a mask, and a reflow treatment of the organic insulating film Thus, the method includes a post-bake step of covering the end portion of the common electrode etched in the etching step with an organic insulating film, and a pixel electrode formation step of forming a pixel electrode after the post-bake step.

本発明によれば、真空装置を使用して形成される第2の層間絶縁膜であるSiNxの代替として、塗布型の感光性高誘電率縁膜材料を使用することにより、工程の簡略化、コストの削減、および生産性向上を実現することのできる薄膜トランジスタ、薄膜トランジスタの製造方法、および薄膜トランジスタを用いた表示装置を得ることができる。   According to the present invention, as a substitute for SiNx, which is a second interlayer insulating film formed using a vacuum apparatus, a coating type photosensitive high dielectric constant edge film material is used, thereby simplifying the process, A thin film transistor capable of realizing cost reduction and productivity improvement, a method for manufacturing the thin film transistor, and a display device using the thin film transistor can be obtained.

本発明の実施の形態1における薄膜トランジスタの積層構造を示す断面図である。It is sectional drawing which shows the laminated structure of the thin-film transistor in Embodiment 1 of this invention. 本実施の形態1の薄膜トランジスタにおいて、第1の層間絶縁膜の上に、コモン電極、第2の層間絶縁膜、およびピクセル電極を形成する工程を示した説明図である。FIG. 6 is an explanatory diagram showing a process of forming a common electrode, a second interlayer insulating film, and a pixel electrode on the first interlayer insulating film in the thin film transistor of the first embodiment. 従来の薄膜トランジスタの積層構造を示す断面図である。It is sectional drawing which shows the laminated structure of the conventional thin-film transistor. 従来の薄膜トランジスタにおいて、第1の層間絶縁膜の上に、コモン電極、第2の層間絶縁膜、およびピクセル電極を形成する工程を示した説明図である。In the conventional thin-film transistor, it is explanatory drawing which showed the process of forming a common electrode, a 2nd interlayer insulation film, and a pixel electrode on the 1st interlayer insulation film.

以下、本発明の薄膜トランジスタ、薄膜トランジスタの製造方法、および薄膜トランジスタを用いた表示装置の好適な実施の形態につき図面を用いて説明する。   Hereinafter, preferred embodiments of a thin film transistor, a method of manufacturing a thin film transistor, and a display device using the thin film transistor of the present invention will be described with reference to the drawings.

実施の形態1.
図1は、本発明の実施の形態1における薄膜トランジスタの積層構造を示す断面図である。図1に示すように、本実施の形態1における薄膜トランジスタは、ガラス基板1の上に、ゲート電極2、ゲート絶縁膜3、アモルファスシリコン(a−Si)4、ソース/ドレイン電極5、バッファ層6、第1の層間絶縁膜7a、コモン電極8、第2の層間絶縁膜7b、およびピクセル電極9が順次積層されて構成されている。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing a laminated structure of a thin film transistor according to Embodiment 1 of the present invention. As shown in FIG. 1, the thin film transistor according to the first embodiment has a gate electrode 2, a gate insulating film 3, amorphous silicon (a-Si) 4, a source / drain electrode 5, and a buffer layer 6 on a glass substrate 1. The first interlayer insulating film 7a, the common electrode 8, the second interlayer insulating film 7b, and the pixel electrode 9 are sequentially stacked.

図2は、本実施の形態1の薄膜トランジスタにおいて、第1の層間絶縁膜7aの上に、コモン電極8、第2の層間絶縁膜7b、およびピクセル電極9を形成する工程を示した説明図である。本実施の形態1における薄膜トランジスタの各層の積層順序は、従来の薄膜トランジスタと基本的に同じであるが、第2の層間絶縁膜に関して、以下のような違いがある。   FIG. 2 is an explanatory diagram showing a process of forming the common electrode 8, the second interlayer insulating film 7b, and the pixel electrode 9 on the first interlayer insulating film 7a in the thin film transistor of the first embodiment. is there. The stacking order of the layers of the thin film transistor in the first embodiment is basically the same as that of the conventional thin film transistor, but there are the following differences with respect to the second interlayer insulating film.

従来の薄膜トランジスタでは、コモン電極108とピクセル電極109の間の第2の層間絶縁膜107bとして、SiNx(窒化シリコン)が用いられていた。これに対して、本実施の形態1の薄膜トランジスタでは、コモン電極8とピクセル電極9の間の第2の層間絶縁膜7bとして、感光性高誘電率有機絶縁膜が用いられている。そして、本実施の形態1では、この感光性高誘電率有機絶縁膜を塗布することで第2の層間絶縁膜7bを形成することを技術的特徴としており、この結果、真空成膜装置を不要とすることができる。   In the conventional thin film transistor, SiNx (silicon nitride) is used as the second interlayer insulating film 107 b between the common electrode 108 and the pixel electrode 109. In contrast, in the thin film transistor of the first embodiment, a photosensitive high dielectric constant organic insulating film is used as the second interlayer insulating film 7b between the common electrode 8 and the pixel electrode 9. The first embodiment has a technical feature in that the second interlayer insulating film 7b is formed by applying this photosensitive high dielectric constant organic insulating film, and as a result, no vacuum film forming apparatus is required. It can be.

図2に示す工程の詳細を説明する。まず始めに、ステップA1(コモン電極/第2の層間絶縁膜の形成工程)において、第1の層間絶縁膜7aの上にコモン電極8を成膜する。その後、真空成膜装置を用いることなく、第2の層間絶縁膜7bである感光性高誘電率有機絶縁膜をコモン電極8の上に塗布する。次に、感光性高誘電率有機絶縁膜7bをフォトマスクを介して露光し、現像工程で前記絶縁膜を現像する。その後、第2の層間絶縁膜7bをマスクとして、コモン電極8をエッチング工程でパターニングする。   Details of the process shown in FIG. 2 will be described. First, in step A1 (common electrode / second interlayer insulating film forming step), the common electrode 8 is formed on the first interlayer insulating film 7a. Thereafter, a photosensitive high dielectric constant organic insulating film, which is the second interlayer insulating film 7b, is applied on the common electrode 8 without using a vacuum film forming apparatus. Next, the photosensitive high dielectric constant organic insulating film 7b is exposed through a photomask, and the insulating film is developed in a developing process. Thereafter, the common electrode 8 is patterned by an etching process using the second interlayer insulating film 7b as a mask.

次に、ポストベーク工程により、感光性高誘電率有機絶縁膜7bをリフロー処理することで、エッチング工程でエッチングされたコモン電極8の端部を、感光性高誘電率有機絶縁膜7bで覆うことができる。   Next, the end portion of the common electrode 8 etched in the etching process is covered with the photosensitive high dielectric constant organic insulating film 7b by performing a reflow process on the photosensitive high dielectric constant organic insulating film 7b by a post baking process. Can do.

その後、ステップA2(ピクセル電極の形成工程)において、ピクセル電極9を成膜した後、その上にフォトレジストを塗布し、フォトマスクを介して露光を行い、現像液の中に浸し、フォトレジストを現像する。更に、ピクセル電極9をエッチング工程でパターニングした後、剥離工程でフォトレジストを剥離し、TFTが完成する。なお、ポストベーク工程で、コモン電極8の端部を、感光性高誘電率有機絶縁膜7bで適切に覆うことができなかった場合、ピクセル電極9の成膜時にコモン電極8とピクセル電極9がショートする問題が生じる。   Thereafter, in step A2 (pixel electrode forming step), after the pixel electrode 9 is formed, a photoresist is applied thereon, exposed through a photomask, immersed in a developer, and the photoresist is applied. develop. Further, after patterning the pixel electrode 9 in the etching process, the photoresist is stripped in the stripping process, thereby completing the TFT. If the end of the common electrode 8 cannot be properly covered with the photosensitive high dielectric constant organic insulating film 7b in the post-bake process, the common electrode 8 and the pixel electrode 9 are not formed when the pixel electrode 9 is formed. The problem of short-circuiting occurs.

ここで、本発明の技術的特徴である、第2の層間絶縁膜7bとして使用する感光性高誘電率有機絶縁膜について、補足説明する。本実施の形態1における感光性高誘電率有機絶縁膜の誘電率εは、ε≧4としている。この理由は、一例として、ε=3程度の誘電率とした場合には、寄生キャパシタの影響でフリッカが生じたり、分極が起きにくく残像が発生したり、駆動電圧が上昇したりする問題が発生することによる。   Here, the photosensitive high dielectric constant organic insulating film used as the second interlayer insulating film 7b, which is a technical feature of the present invention, will be supplementarily described. The dielectric constant ε of the photosensitive high dielectric constant organic insulating film in the first embodiment is ε ≧ 4. This is because, for example, when the dielectric constant is about ε = 3, there are problems that flickering occurs due to the influence of parasitic capacitors, polarization is difficult to occur, an afterimage is generated, and driving voltage is increased. By doing.

また、従来の薄膜トランジスタにおいて、第2の層間絶縁膜107bとして採用していたSiNxの誘電率は、6.7であるが、本実施の形態1の薄膜トランジスタにおいて、第2の層間絶縁膜7bとして採用した感光性高誘電率有機絶縁膜の誘電率は、4以上であれば、特性劣化が抑えられることを確認済みである。   In addition, the dielectric constant of SiNx used as the second interlayer insulating film 107b in the conventional thin film transistor is 6.7, but is used as the second interlayer insulating film 7b in the thin film transistor of the first embodiment. It has been confirmed that the deterioration of characteristics can be suppressed when the dielectric constant of the photosensitive high dielectric constant organic insulating film is 4 or more.

第2の層間絶縁膜7bとして使用する樹脂に、酸化金属ナノ粒子を分散させることで、感光性高誘電率有機絶縁膜の誘電率を高めることができ、所望の4以上の誘電率を得ることができる。   By dispersing metal oxide nanoparticles in the resin used as the second interlayer insulating film 7b, the dielectric constant of the photosensitive high dielectric constant organic insulating film can be increased, and a desired dielectric constant of 4 or more can be obtained. Can do.

また、感光性高誘電率有機絶縁膜を用いた薄膜トランジスタを適用した液晶表示装置において、従来の透明であったSiNxを用いた薄膜トランジスタを適用した液晶表示装置と同等の表示性能を確保するためには、感光性高誘電率有機絶縁膜として、透過率が90%以上の透明樹脂を採用することが適切である。   In addition, in a liquid crystal display device to which a thin film transistor using a photosensitive high dielectric constant organic insulating film is applied, in order to ensure the same display performance as a liquid crystal display device to which a conventional thin film transistor using SiNx is applied. As the photosensitive high dielectric constant organic insulating film, it is appropriate to employ a transparent resin having a transmittance of 90% or more.

また、本実施の形態1における高誘電率有機絶縁膜としては、ネガ型、ポジ型のいずれの感光性樹脂も採用することができる。   In addition, as the high dielectric constant organic insulating film in the first embodiment, any of negative-type and positive-type photosensitive resins can be employed.

また、ステップA1で説明したリフロー処理としては、200℃以上の温度で行うことが適切であることを確認済みである。   In addition, it has been confirmed that the reflow process described in step A1 is appropriate to be performed at a temperature of 200 ° C. or higher.

また、ステップA1の現像工程とコモン電極エッチング工程間に、ミドルベーク工程による加熱処理を加えることもできる。このような加熱処理により、その後のコモン電極エッチング工程における高誘電有機絶縁膜7bのエッチング液耐性を高めることができる。また、その後のポストベーク工程の熱により高誘電有機絶縁膜7bが適切にリフローできるように、このミドルベーク工程の温度は、例えば、150℃とし、ポストベーク工程よりも低い温度で行う必要がある。   Further, a heat treatment by a middle baking process can be added between the developing process and the common electrode etching process in step A1. Such heat treatment can increase the resistance of the high dielectric organic insulating film 7b to the etching solution in the subsequent common electrode etching step. In addition, the temperature of the middle baking process is set to 150 ° C., for example, so that the high dielectric organic insulating film 7b can be appropriately reflowed by the heat of the subsequent post baking process.

以上のように、実施の形態1によれば、コモン電極とピクセル電極との間の層間絶縁膜を、誘電率が4以上の感光性高誘電率有機絶縁膜を塗布することで形成している。この結果、真空成膜装置を不要にできるとともに、製造工程が簡素化され、コストの削減、および生産性向上を実現することができる。   As described above, according to the first embodiment, the interlayer insulating film between the common electrode and the pixel electrode is formed by applying a photosensitive high dielectric constant organic insulating film having a dielectric constant of 4 or more. . As a result, a vacuum film forming apparatus can be dispensed with, the manufacturing process is simplified, and cost reduction and productivity improvement can be realized.

また、コモン電極とピクセル電極との間の層間絶縁膜として、無機材料から樹脂材料へ変更した本発明の薄膜トランジスタを採用することで、Flexible Displayに適用することができる。   Further, by adopting the thin film transistor of the present invention in which the inorganic material is changed to the resin material as the interlayer insulating film between the common electrode and the pixel electrode, it can be applied to a flexible display.

また、コモン電極とピクセル電極との間の層間絶縁膜は、ネガ型、ポジ型のいずれの感光性樹脂も採用することができ、設計の自由度を増大することができる。   In addition, as the interlayer insulating film between the common electrode and the pixel electrode, either negative type or positive type photosensitive resin can be adopted, and the degree of freedom in design can be increased.

また、200℃以上の温度でリフロー処理を行うことで、コモン電極の端部を感光性高誘電率絶縁樹脂で覆うことができ、コモン電極とピクセル電極のショートを防止できる。   Further, by performing the reflow treatment at a temperature of 200 ° C. or higher, the end portion of the common electrode can be covered with a photosensitive high dielectric constant insulating resin, and a short circuit between the common electrode and the pixel electrode can be prevented.

1 ガラス基板、2 ゲート電極、3 ゲート絶縁膜、4 アモルファスシリコン、5 ソース/ドレイン電極、6 バッファ層、7a 第1の層間絶縁膜、7b 第2の層間絶縁膜、8 コモン電極、9 ピクセル電極。   1 glass substrate, 2 gate electrode, 3 gate insulating film, 4 amorphous silicon, 5 source / drain electrode, 6 buffer layer, 7a first interlayer insulating film, 7b second interlayer insulating film, 8 common electrode, 9 pixel electrode .

Claims (10)

絶縁層を介してコモン電極とピクセル電極が配置されることを特徴とするフリンジフィールドスイッチング(Fringe Field Switching:FFS)構造を有する薄膜トランジスタにおいて、
前記コモン電極と前記ピクセル電極との間の層間絶縁膜が、誘電率4以上の有機絶縁膜を塗布することで形成されている
薄膜トランジスタ。
In a thin film transistor having a fringe field switching (FFS) structure in which a common electrode and a pixel electrode are disposed through an insulating layer,
A thin film transistor in which an interlayer insulating film between the common electrode and the pixel electrode is formed by applying an organic insulating film having a dielectric constant of 4 or more.
請求項1に記載の薄膜トランジスタにおいて、
前記層間絶縁膜は、ネガ型あるいはポジ型のいずれかの感光性樹脂である
薄膜トランジスタ。
The thin film transistor according to claim 1, wherein
The interlayer insulating film is a negative or positive photosensitive resin.
請求項1または2に記載の薄膜トランジスタにおいて、
前記層間絶縁膜は、誘電率を4以上とするために、酸化金属ナノ粒子が分散されている
薄膜トランジスタ。
The thin film transistor according to claim 1 or 2,
The interlayer insulating film is a thin film transistor in which metal oxide nanoparticles are dispersed so as to have a dielectric constant of 4 or more.
請求項1から3のいずれか1項に記載の薄膜トランジスタにおいて、
前記層間絶縁膜は、透過率が90%以上の透明樹脂である
薄膜トランジスタ。
The thin film transistor according to any one of claims 1 to 3,
The interlayer insulating film is a transparent resin having a transmittance of 90% or more.
コモン電極とピクセル電極との間の層間絶縁膜が、誘電率4以上の有機絶縁膜を塗布することで形成されている薄膜トランジスタの製造方法であって、
前記コモン電極の上に、前記有機絶縁膜を塗布する絶縁膜形成工程と、
前記絶縁膜形成工程により塗布された前記有機絶縁膜をマスクとして、前記コモン電極をエッチングするエッチング工程と、
前記有機絶縁膜をリフロー処理することで、前記エッチング工程でエッチングされた前記コモン電極の端部を前記有機絶縁膜で覆うポストベーク工程と、
前記ポストベーク工程の後に、ピクセル電極を成膜形成するピクセル電極形成工程と
を有する薄膜トランジスタの製造方法。
A method of manufacturing a thin film transistor, wherein an interlayer insulating film between a common electrode and a pixel electrode is formed by applying an organic insulating film having a dielectric constant of 4 or more,
An insulating film forming step of applying the organic insulating film on the common electrode;
An etching step of etching the common electrode using the organic insulating film applied in the insulating film forming step as a mask;
A post-baking step of covering the end portion of the common electrode etched in the etching step with the organic insulating film by reflowing the organic insulating film;
A pixel electrode forming step of forming a pixel electrode into a film after the post-baking step.
請求項5に記載の薄膜トランジスタの製造方法において、
前記ポストベーク工程における前記リフロー処理は、200℃以上の温度で行われる
薄膜トランジスタの製造方法。
In the manufacturing method of the thin-film transistor of Claim 5,
The said reflow process in the said post-baking process is performed at the temperature of 200 degreeC or more. The manufacturing method of a thin-film transistor.
請求項5または6に記載の薄膜トランジスタの製造方法において、
前記絶縁膜形成工程の後であり、前記エッチング工程の前に、ミドルベーク工程を有する
薄膜トランジスタの製造方法。
In the manufacturing method of the thin-film transistor of Claim 5 or 6,
A method for manufacturing a thin film transistor, comprising a middle baking step after the insulating film forming step and before the etching step.
請求項7に記載の薄膜トランジスタの製造方法において、
前記ミドルベーク工程の温度は、前記ポストベーク工程の温度よりも低い
薄膜トランジスタの製造方法。
In the manufacturing method of the thin-film transistor of Claim 7,
The temperature of the middle baking process is lower than the temperature of the post baking process.
請求項5から8のいずれか1項に記載の薄膜トランジスタの製造方法において、
前記ポストベーク工程の前に前記エッチング工程を行う
薄膜トランジスタの製造方法。
In the manufacturing method of the thin-film transistor of any one of Claim 5 to 8,
The manufacturing method of the thin-film transistor which performs the said etching process before the said post-baking process.
請求項1から4のいずれか1項の薄膜トランジスタを用いた表示装置。   A display device using the thin film transistor according to claim 1.
JP2013270793A 2013-12-27 2013-12-27 Thin film transistor manufacturing method Active JP6211416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013270793A JP6211416B2 (en) 2013-12-27 2013-12-27 Thin film transistor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013270793A JP6211416B2 (en) 2013-12-27 2013-12-27 Thin film transistor manufacturing method

Publications (2)

Publication Number Publication Date
JP2015125347A true JP2015125347A (en) 2015-07-06
JP6211416B2 JP6211416B2 (en) 2017-10-11

Family

ID=53536065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013270793A Active JP6211416B2 (en) 2013-12-27 2013-12-27 Thin film transistor manufacturing method

Country Status (1)

Country Link
JP (1) JP6211416B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02234123A (en) * 1989-03-07 1990-09-17 Citizen Watch Co Ltd Production of thin-film diode in liquid crystal display device
JP2000250072A (en) * 1999-02-26 2000-09-14 Matsushita Electric Ind Co Ltd Manufacture of liquid crystal image display device, and semiconductor device for image display device
CN101231947A (en) * 2007-01-19 2008-07-30 东京毅力科创株式会社 Reflux processing method and method for manufacturing tft
JP2009103775A (en) * 2007-10-22 2009-05-14 Hitachi Displays Ltd Liquid crystal display device
JP2009229890A (en) * 2008-03-24 2009-10-08 Epson Imaging Devices Corp Liquid crystal device and electronic equipment
US20100181569A1 (en) * 2008-07-02 2010-07-22 Samsung Electronics Co., Ltd. Display device and manufacturing method of the same
US20120146889A1 (en) * 2010-12-10 2012-06-14 Yun Hee Kwak Liquid crystal display
JP2013205435A (en) * 2012-03-27 2013-10-07 Jsr Corp Array substrate, liquid crystal display element, radiation-sensitive resin composition and method for manufacturing array substrate
WO2014163115A1 (en) * 2013-04-05 2014-10-09 Jsr株式会社 Array substrate, liquid crystal display element, and radiation-sensitive resin composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02234123A (en) * 1989-03-07 1990-09-17 Citizen Watch Co Ltd Production of thin-film diode in liquid crystal display device
JP2000250072A (en) * 1999-02-26 2000-09-14 Matsushita Electric Ind Co Ltd Manufacture of liquid crystal image display device, and semiconductor device for image display device
CN101231947A (en) * 2007-01-19 2008-07-30 东京毅力科创株式会社 Reflux processing method and method for manufacturing tft
JP2009103775A (en) * 2007-10-22 2009-05-14 Hitachi Displays Ltd Liquid crystal display device
JP2009229890A (en) * 2008-03-24 2009-10-08 Epson Imaging Devices Corp Liquid crystal device and electronic equipment
US20100181569A1 (en) * 2008-07-02 2010-07-22 Samsung Electronics Co., Ltd. Display device and manufacturing method of the same
US20120146889A1 (en) * 2010-12-10 2012-06-14 Yun Hee Kwak Liquid crystal display
JP2013205435A (en) * 2012-03-27 2013-10-07 Jsr Corp Array substrate, liquid crystal display element, radiation-sensitive resin composition and method for manufacturing array substrate
WO2014163115A1 (en) * 2013-04-05 2014-10-09 Jsr株式会社 Array substrate, liquid crystal display element, and radiation-sensitive resin composition

Also Published As

Publication number Publication date
JP6211416B2 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
TWI553837B (en) Method for fabricating display panel
US8895987B2 (en) Array substrate for fringe field switching mode liquid crystal display device and method of fabricating the same
KR102080065B1 (en) Thin film transistor array substrate and method for fabricating the same
KR102248645B1 (en) Thin Film Transistor Substrate Having Metal Oxide Semiconductor and Manufacturing Method Thereof
KR101431136B1 (en) Method of manufacturing thin film transistor substrate
KR101255512B1 (en) Method For Fabricating Thin Film Transistor Array Substrate
US20160370621A1 (en) Array substrate, manufacturing method thereof and liquid crystal display
KR102127781B1 (en) Thin film transistor array substrate and method for fabricating the same
US9685556B2 (en) Thin film transistor and preparation method therefor, array substrate, and display apparatus
US9761617B2 (en) Method for manufacturing array substrate, array substrate and display device
JP6521534B2 (en) Thin film transistor, method of manufacturing the same, array substrate and display device
KR20180098621A (en) Method for manufacturing low-temperature polysilicon array substrate
KR102318054B1 (en) TFT substrate and manufacturing method thereof
US9305945B2 (en) TFT array substrate, manufacturing method of the same and display device
KR101415484B1 (en) Organic tft array substrate and manufacture method thereof
WO2014121562A1 (en) Tn-type array substrate and manufacturing method therefor, and display device
EP2757589A2 (en) Methods for fabricating a thin film transistor and an array substrate
US9741861B2 (en) Display device and method for manufacturing the same
US10950716B2 (en) Metal oxide TFT, manufacturing method thereof, and display device
WO2014117444A1 (en) Array substrate and manufacturing method thereof, display device
WO2018040795A1 (en) Array substrate and manufacturing method therefor, and display panel and manufacturing method therefor
JP6211416B2 (en) Thin film transistor manufacturing method
JP2002250935A (en) Method for manufacturing matrix substrate for liquid crystal
TWI569456B (en) Thin film transistor and manufacturing method thereof
JP2013092613A (en) Liquid crystal display device, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170913

R150 Certificate of patent or registration of utility model

Ref document number: 6211416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250