JP2015125135A - Impedance measurement method and device therefor - Google Patents

Impedance measurement method and device therefor Download PDF

Info

Publication number
JP2015125135A
JP2015125135A JP2013272386A JP2013272386A JP2015125135A JP 2015125135 A JP2015125135 A JP 2015125135A JP 2013272386 A JP2013272386 A JP 2013272386A JP 2013272386 A JP2013272386 A JP 2013272386A JP 2015125135 A JP2015125135 A JP 2015125135A
Authority
JP
Japan
Prior art keywords
resistance value
value
measuring means
measurement
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013272386A
Other languages
Japanese (ja)
Inventor
圭一 田口
Keiichi Taguchi
圭一 田口
力 山口
Tsutomu Yamaguchi
力 山口
英彰 若松
Hideaki Wakamatsu
英彰 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2013272386A priority Critical patent/JP2015125135A/en
Publication of JP2015125135A publication Critical patent/JP2015125135A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a more accurate Q value by eliminating the effect of a contact resistance component due to a measurement-use contact terminal in measuring the impedance of an element to be measured by 2-terminal measurement and obtaining a Q value from the effective-value component and reactance component of the measured impedance.SOLUTION: In obtaining a Q value which is a ratio between the effective-resistance value and reactance value of an element to be measured that includes an inductance component, a first direct-current resistance value Rdc4 of the element to be measured is measured by 4-terminal measurement, and a second direct-current resistance value Rdc2 of the element to be measured is measured by 2-terminal measurement, with an effective-resistance value Rs and an inductance value L also measured. A contact resistance Rc of a contact terminal at the time of 2-terminal measurement is calculated from a difference between the first direct-current resistance value Rdc4 and the second direct-current resistance value Rdc2 (Rdc2-Rdc4). The contact resistance Rc is subtracted from the effective-resistance value Rs (Rs-Rc) to calculate a corrected effective-resistance value Rs', and the Q value (=ωL/Rs') of the element to be measured is obtained from the corrected effective-resistance value Rs' and the inductance value L.

Description

本発明は、被測定素子の実効抵抗値とリアクタンス値との比であるQ値を測定するインピーダンス測定方法およびその装置に関し、さらに詳しく言えば、測定に用いられる接触端子の接触抵抗による影響を排除してより正確なQ値を得る技術に関するものである。   The present invention relates to an impedance measuring method and apparatus for measuring a Q value that is a ratio of an effective resistance value and a reactance value of a device under test, and more specifically, eliminates the influence of contact resistance of a contact terminal used for measurement. Thus, the present invention relates to a technique for obtaining a more accurate Q value.

通常、被測定素子のインピーダンス測定にはLCRメータが用いられ、被測定素子のインピーダンスZは、実効抵抗成分をRs,リアクタンス成分をXとして、Z=Rs+jXで表され、Q値は、Q=X/Rsにより求められる。インダクタンス測定の場合には、Z=Rs+jωLで、Q=ωL/Rs(ω:角周波数)となる。   Usually, an LCR meter is used to measure the impedance of the device under test. The impedance Z of the device under test is expressed as Z = Rs + jX, where Rs is the effective resistance component and X is the reactance component, and the Q value is Q = X / Rs. In the case of inductance measurement, Z = Rs + jωL, and Q = ωL / Rs (ω: angular frequency).

特許文献1には、高周波測定時における回路網の非線形による誤差を除去するため、同軸構造のインピーダンスが既知の基準デバイスLOAD1と、位相角が既知の基準デバイスLOAD2を用いて校正を行うことにより、Qの確度(位相の確度)を高確度で測定することが提案されている。   In Patent Document 1, in order to remove an error due to nonlinearity of a network at the time of high frequency measurement, calibration is performed using a reference device LOAD1 having a known impedance of a coaxial structure and a reference device LOAD2 having a known phase angle. It has been proposed to measure Q accuracy (phase accuracy) with high accuracy.

特開平7−198766号公報JP-A-7-198766

しかしながら、同軸構造で2端子測定となる高周波LCRメータでは、被測定素子と接触端子(フィクスチュアもしくはプローブピン)との接触による接触抵抗成分が測定値に含まれるため、校正に用いられる基準デバイスの精度を高めても、その接触抵抗成分によってQ値が不安定になる。これは、連続的に部品選別を行う自動検査ラインにおいて特に問題となる。   However, in a high-frequency LCR meter having a coaxial structure and two-terminal measurement, the contact resistance component due to contact between the element to be measured and the contact terminal (fixture or probe pin) is included in the measurement value. Even if the accuracy is increased, the Q value becomes unstable due to the contact resistance component. This is a particular problem in an automatic inspection line that continuously selects parts.

したがって、本発明の課題は、2端子測定で被測定素子のインピーダンスを測定し、その実効値成分とリアクタンス成分とからQ値を求めるにあたって、測定用接触端子による接触抵抗成分の影響を排除してより正確なQ値を求めることにある。   Therefore, the problem of the present invention is to eliminate the influence of the contact resistance component due to the measurement contact terminal when measuring the impedance of the element under measurement by two-terminal measurement and obtaining the Q value from the effective value component and the reactance component. The purpose is to obtain a more accurate Q value.

上記課題を解決するため、本発明のインピーダンス測定方法は、インダクタンス成分を含む被測定素子の実効抵抗値とリアクタンス値との比であるQ値を求めるインピーダンス測定方法において、4端子測定により、上記被測定素子の第1直流抵抗値Rdc4を測定する第1ステップと、2端子測定により、上記被測定素子の実効抵抗値Rsおよびインダクタンス値Lを測定するとともに、第2直流抵抗値Rdc2を測定する第2ステップと、上記第2直流抵抗値Rdc2と上記第1直流抵抗値Rdc4との差分(Rdc2−Rdc4)から上記2端子測定時における接触端子の接触抵抗Rcを算出する第3ステップと、上記実効抵抗値Rsから上記接触抵抗Rcを減算(Rs−Rc)して、補正実効抵抗値Rs’を算出する第4ステップと、上記補正実効抵抗値Rs’と上記インダクタンス値Lとから、上記被測定素子のQ値(ωL/Rs’:ωは角周波数)を求める第4ステップとを実行することを特徴としている。   In order to solve the above-described problem, the impedance measurement method of the present invention is an impedance measurement method for obtaining a Q value that is a ratio of an effective resistance value and a reactance value of an element to be measured including an inductance component. The first step of measuring the first DC resistance value Rdc4 of the measuring element and the two-terminal measurement measure the effective resistance value Rs and the inductance value L of the measured element, and the second DC resistance value Rdc2 is measured. Two steps, a third step of calculating the contact resistance Rc of the contact terminal at the time of the two-terminal measurement from the difference (Rdc2−Rdc4) between the second DC resistance value Rdc2 and the first DC resistance value Rdc4, and the effective A fourth step of calculating the corrected effective resistance value Rs ′ by subtracting the contact resistance Rc from the resistance value Rs (Rs−Rc); 'From and the inductance value L, Q value of the measuring element (.omega.L / Rs' the correction effective resistance Rs: omega is the angular frequency) is characterized by performing a fourth step of obtaining a.

上記被測定素子が、例えば有芯コイルのように直流磁化されるインダクタ素子である場合には、上記第1ステップの4端子測定よりも先に上記第2ステップの2端子測定を実行し、その際の上記第2ステップの2端子測定では、先に上記実効抵抗値Rsおよび上記インダクタンス値Lを測定し、その後に上記第2直流抵抗値Rdc2を測定することが好ましい。   When the element to be measured is an inductor element that is DC magnetized, for example, a cored coil, the two-terminal measurement of the second step is performed prior to the four-terminal measurement of the first step, In the two-terminal measurement in the second step, it is preferable to measure the effective resistance value Rs and the inductance value L first, and then measure the second DC resistance value Rdc2.

また、本発明のインピーダンス測定装置は、インダクタンス成分を含む被測定素子の実効抵抗値とリアクタンス値との比であるQ値を求める機能を有するインピーダンス測定装置において、第1測定手段と第2測定手段とを含み、上記第1測定手段で4端子測定により上記被測定素子の第1直流抵抗値Rdc4が測定され、上記第2測定手段で上記被測定素子について、2端子測定により第2直流抵抗値Rdc2と、実効抵抗値Rsおよびインダクタンス値Lとが測定され、上記第2測定手段は、上記第2直流抵抗値Rdc2と上記第1直流抵抗値Rdc4との差分(Rdc2−Rdc4)から上記2端子測定時における接触端子の接触抵抗Rcを算出するとともに、上記実効抵抗値Rsから上記接触抵抗Rcを減算(Rs−Rc)して、補正実効抵抗値Rs’を算出し、上記補正実効抵抗値Rs’と上記インダクタンス値Lとから、上記被測定素子のQ値(ωL/Rs’:ωは角周波数)を求めることを特徴としている。   The impedance measuring apparatus of the present invention is an impedance measuring apparatus having a function of obtaining a Q value that is a ratio of an effective resistance value and reactance value of an element to be measured including an inductance component. The first measuring means and the second measuring means. The first DC resistance value Rdc4 of the element to be measured is measured by four-terminal measurement by the first measuring means, and the second DC resistance value is measured by two-terminal measurement of the element to be measured by the second measuring means. Rdc2, an effective resistance value Rs, and an inductance value L are measured, and the second measuring means determines the two terminals from the difference (Rdc2-Rdc4) between the second DC resistance value Rdc2 and the first DC resistance value Rdc4. The contact resistance Rc of the contact terminal at the time of measurement is calculated, and the contact resistance Rc is subtracted from the effective resistance value Rs (Rs-Rc) to compensate. 'It is calculated, and the correction effective resistance value Rs' effective resistance value Rs from the above inductance value L, Q value of the measuring element (ωL / Rs': ω is the angular frequency) is characterized by determining the.

本発明の好ましい態様によると、上記第2測定手段にはLCRメータが含まれ、上記LCRメータにより、上記第2直流抵抗値Rdc2,上記実効抵抗値Rsおよび上記インダクタンス値Lが測定される。   According to a preferred aspect of the present invention, the second measuring means includes an LCR meter, and the second DC resistance value Rdc2, the effective resistance value Rs, and the inductance value L are measured by the LCR meter.

また、本発明の好ましい態様によると、上記第1測定手段と上記第2測定手段は、所定の通信手段を介して接続されており、上記第1測定手段から上記第1直流抵抗値Rdc4が上記第2測定手段に送信される。   According to a preferred aspect of the present invention, the first measuring means and the second measuring means are connected via a predetermined communication means, and the first DC resistance value Rdc4 from the first measuring means is It is transmitted to the second measuring means.

別の態様として、上記第1測定手段および上記第2測定手段を制御する制御部を備え、上記第2測定手段に代えて上記制御部が、上記第2直流抵抗値Rdc2と上記第1直流抵抗値Rdc4との差分(Rdc2−Rdc4)から上記2端子計測時における接触端子の接触抵抗Rcを算出するとともに、上記実効抵抗値Rsから上記接触抵抗Rcを減算(Rs−Rc)して、補正実効抵抗値Rs’を算出し、上記補正実効抵抗値Rs’と上記インダクタンス値Lとから、上記被測定素子のQ値(ωL/Rs’:ωは角周波数)を求めるようにしてもよく、このような態様も本発明に含まれる。   As another aspect, a control unit for controlling the first measurement unit and the second measurement unit is provided, and the control unit replaces the second measurement unit with the second DC resistance value Rdc2 and the first DC resistance. The contact resistance Rc of the contact terminal at the time of the two-terminal measurement is calculated from the difference (Rdc2−Rdc4) from the value Rdc4, and the contact resistance Rc is subtracted (Rs−Rc) from the effective resistance value Rs to correct the effective value. The resistance value Rs ′ may be calculated, and the Q value (ωL / Rs ′: ω is an angular frequency) of the element to be measured may be obtained from the corrected effective resistance value Rs ′ and the inductance value L. Such an embodiment is also included in the present invention.

また、上記第1測定手段と上記第2測定手段とが、上記被測定素子の選別ラインに組み込まれており、上記第1測定手段が上記選別ラインの上流側、上記第2測定手段が上記選別ラインの下流側に配置され、上記第1測定手段での上記4端子測定が先に行われ、その後に上記第2測定手段での上記2端子測定が行われる態様も本発明に含まれる。   The first measuring means and the second measuring means are incorporated in the selection line of the element to be measured, the first measuring means is upstream of the sorting line, and the second measuring means is the sorting line. An aspect in which the four-terminal measurement is performed first by the first measurement unit and the two-terminal measurement is performed by the second measurement unit after that is arranged downstream of the line is also included in the present invention.

上記被測定素子が、例えば有芯コイルのように直流磁化されるインダクタ素子である場合には、上記第2測定手段が上記選別ラインの上流側、上記第1測定手段が上記選別ラインの下流側に配置され、上記第2測定手段での上記2端子測定では、先に上記実効抵抗値Rsおよび上記インダクタンス値Lが測定され、その後に上記第2直流抵抗値Rdc2が測定され、上記第2測定手段による測定に続いて、上記第1測定手段で上記4端子測定が行われるようにすることが好ましい。   When the element to be measured is an inductor element that is DC magnetized, such as a cored coil, the second measuring means is upstream of the sorting line, and the first measuring means is downstream of the sorting line. In the two-terminal measurement by the second measuring means, the effective resistance value Rs and the inductance value L are measured first, and then the second DC resistance value Rdc2 is measured, and the second measurement is performed. Following the measurement by the means, the four-terminal measurement is preferably performed by the first measurement means.

本発明によれば、4端子測定により、被測定素子の第1直流抵抗値Rdc4を測定し、2端子測定により、被測定素子の実効抵抗値Rsおよびインダクタンス値Lを測定するとともに、第2直流抵抗値Rdc2を測定し、第2直流抵抗値Rdc2と第1直流抵抗値Rdc4との差分(Rdc2−Rdc4)から2端子測定時における接触端子の接触抵抗Rcを算出し、実効抵抗値Rsから接触抵抗Rcを減算(Rs−Rc)して、補正実効抵抗値Rs’を算出し、補正実効抵抗値Rs’とインダクタンス値Lとから、被測定素子のQ値を求めるようにしたことにより、測定用接触端子による接触抵抗成分の影響を排除してより正確なQ値を求めることができる。   According to the present invention, the first DC resistance value Rdc4 of the element to be measured is measured by four-terminal measurement, the effective resistance value Rs and the inductance value L of the element to be measured are measured by two-terminal measurement, and the second DC The resistance value Rdc2 is measured, the contact resistance Rc of the contact terminal at the time of two-terminal measurement is calculated from the difference (Rdc2−Rdc4) between the second DC resistance value Rdc2 and the first DC resistance value Rdc4, and the contact resistance Rc is calculated from the effective resistance value Rs. The resistance Rc is subtracted (Rs−Rc) to calculate the corrected effective resistance value Rs ′, and the Q value of the element to be measured is calculated from the corrected effective resistance value Rs ′ and the inductance value L. It is possible to obtain a more accurate Q value by eliminating the influence of the contact resistance component due to the contact terminals for use.

また、4端子測定よりも先に2端子測定を実行し、その際の2端子測定では、被測定素子の実効抵抗値Rsおよびインダクタンス値Lを測定した後、被測定素子の第2直流抵抗値Rdc2を測定するようにし、その後において、4端子測定により被測定素子の第1直流抵抗値Rdc4を測定することにより、被測定素子が例えば有芯コイルのような直流磁化されるインダクタ素子であっても、より正確に被測定素子のインダクタンス値LとQ値とを得ることができる。   Further, the two-terminal measurement is performed prior to the four-terminal measurement. In the two-terminal measurement at that time, after measuring the effective resistance value Rs and the inductance value L of the element to be measured, the second DC resistance value of the element to be measured is measured. By measuring Rdc2, and then measuring the first DC resistance value Rdc4 of the device under test by 4-terminal measurement, the device under test is a DC magnetized inductor element such as a cored coil. In addition, the inductance value L and Q value of the element to be measured can be obtained more accurately.

本発明によるインピーダンス測定装置の第1実施形態を示す模式図。The schematic diagram which shows 1st Embodiment of the impedance measuring apparatus by this invention. 上記第1実施形態の動作説明用のフローチャート。The flowchart for operation | movement description of the said 1st Embodiment. (a)4端子測定法を示す等価回路図、(b)2端子測定法を示す等価回路図。(A) Equivalent circuit diagram showing 4-terminal measurement method, (b) Equivalent circuit diagram showing 2-terminal measurement method. 本発明によるインピーダンス測定装置の第2実施形態を示す模式図。The schematic diagram which shows 2nd Embodiment of the impedance measuring apparatus by this invention. 上記第2実施形態の動作説明用のフローチャート。The flowchart for operation | movement description of the said 2nd Embodiment.

次に、図1ないし図5により、本発明の実施形態について説明するが、本発明はこれに限定されるものではない。   Next, an embodiment of the present invention will be described with reference to FIGS. 1 to 5, but the present invention is not limited to this.

まず、図1を参照して、第1実施形態に係るインピーダンス測定装置1Aは、制御部としてのコントローラ10と、第1測定手段20と、第2測定手段30とを備え、連続的に部品選別を行う自動検査ラインに組み込まれている。   First, referring to FIG. 1, the impedance measuring apparatus 1A according to the first embodiment includes a controller 10 as a control unit, a first measuring means 20, and a second measuring means 30, and continuously selects parts. Built in automatic inspection line.

この実施形態において、選別される部品(被測定素子)は、コイルを有するインダクタ素子Dで、インダクタ素子Dは、図示しない搬送手段により図1の左側(上流側)から右側(下流側)に向けて所定の時間間隔をもって順次流される。   In this embodiment, the part to be selected (element to be measured) is an inductor element D having a coil, and the inductor element D is directed from the left side (upstream side) to the right side (downstream side) in FIG. Are sequentially flown at predetermined time intervals.

第1測定手段20には、4端子測定法による直流抵抗計が用いられる。また、第2測定手段30には、測定周波数が例えば100MHz以上である高周波LCRメータが用いられる。コントローラ10は、CPUやマイクロコンピュータ等からなり、各測定手段20,30の測定トリガタイミングの制御やインダクタ素子Dの良否選別等を行う。   For the first measuring means 20, a DC resistance meter based on a four-terminal measuring method is used. The second measurement means 30 is a high frequency LCR meter whose measurement frequency is 100 MHz or more, for example. The controller 10 is composed of a CPU, a microcomputer, etc., and controls the measurement trigger timing of each of the measuring means 20, 30 and selects the quality of the inductor element D.

この第1実施形態において、第1測定手段20は、上記自動検査ラインの上流側の第1測定ステージ(4端子測定ステージ)に配置され、第2測定手段30は、その下流側の第2測定ステージ(2端子測定ステージ)に配置されている。第1測定手段20と第2測定手段30は、所定の通信配線を介して接続されている。通信は無線で行われてもよく、また、コントローラ10を介して行われてもよい。   In the first embodiment, the first measuring means 20 is disposed on the first measurement stage (four-terminal measurement stage) on the upstream side of the automatic inspection line, and the second measuring means 30 is the second measurement on the downstream side. It is arranged on a stage (two-terminal measurement stage). The first measuring means 20 and the second measuring means 30 are connected via a predetermined communication wiring. Communication may be performed wirelessly or may be performed via the controller 10.

図2のフローチャートを併せて参照して、インダクタ素子Dの接触抵抗を排除したQ値を求めるにあたって、この第1実施形態では、まず、ステップST201で、第1測定手段20での4端子測定により、インダクタ素子Dの直流抵抗値Rdc4が測定され、続くステップST202で、測定された直流抵抗値Rdc4が上記通信配線を介して第2測定手段30のLCRメータに送信される。   With reference to the flowchart of FIG. 2 as well, in obtaining the Q value excluding the contact resistance of the inductor element D, in the first embodiment, first, in step ST201, the first measuring means 20 performs the four-terminal measurement. The DC resistance value Rdc4 of the inductor element D is measured, and in the subsequent step ST202, the measured DC resistance value Rdc4 is transmitted to the LCR meter of the second measuring means 30 through the communication wiring.

図3(a)に示すように、4端子測定では、電流供給側の2本のプローブP1,P4と、電圧検出側の2本のプローブP2,P3の4本の測定用接触子が用いられるが、電圧検出側のプローブP2,P3の接触抵抗R2,R3は、電圧計Vの内部抵抗RV(通常1〜10GΩ程度)に比べて無視できる程度に小さいため、接触抵抗R2,R3の影響をほとんど受けない正確な直流抵抗値(第1直流抵抗値)Rdc4が測定される。   As shown in FIG. 3A, in the four-terminal measurement, four measuring contacts, that is, two probes P1 and P4 on the current supply side and two probes P2 and P3 on the voltage detection side are used. However, since the contact resistances R2 and R3 of the probes P2 and P3 on the voltage detection side are negligibly small compared to the internal resistance RV (usually about 1 to 10 GΩ) of the voltmeter V, the influence of the contact resistances R2 and R3 is affected. An accurate DC resistance value (first DC resistance value) Rdc4 that is hardly received is measured.

第1測定手段20で測定を終えたインダクタ素子Dは、第2測定ステージの第2測定手段30に搬送され、ステップST301として、LCRメータの2端子測定により、インダクタ素子Dの直流抵抗値(第2直流抵抗値)Rdc2が測定される。この直流抵抗値Rdc2の測定は、コンタクトチェックも兼ねて行われる。   The inductor element D that has been measured by the first measuring means 20 is transported to the second measuring means 30 of the second measurement stage, and in step ST301, the DC resistance value (first value) of the inductor element D is measured by two-terminal measurement of the LCR meter. 2 DC resistance value) Rdc2 is measured. The measurement of the DC resistance value Rdc2 is also performed as a contact check.

その後のステップST302で、LCRメータにより、インダクタ素子Dの実効抵抗値Rsとインダクタンス値Lの測定が行われる。上記ステップST301で行われるLCRメータの2端子測定は、図3(b)に示す等価回路で行われる。   In subsequent step ST302, the effective resistance value Rs and the inductance value L of the inductor element D are measured by the LCR meter. The two-terminal measurement of the LCR meter performed in step ST301 is performed by the equivalent circuit shown in FIG.

この等価回路において、電流計Aの内部抵抗RAは、レンジによって異なるが、通常1〜10Ω程度であるため、電圧計Vの読み値に対する影響はほとんど無視でき、また、インダクタ素子Dの抵抗値が、プローブP1,P4の接触抵抗R1,R4よりもはるかに大きい場合には、接触抵抗R1,R4による影響も無視できる。   In this equivalent circuit, the internal resistance RA of the ammeter A varies depending on the range, but is usually about 1 to 10Ω, so the influence on the reading value of the voltmeter V can be almost ignored, and the resistance value of the inductor element D is When the contact resistances R1 and R4 of the probes P1 and P4 are much larger, the influence of the contact resistances R1 and R4 can be ignored.

しかしながら、そうではない場合には、上記ステップST301で行われるLCRメータの2端子測定によるインダクタ素子Dの直流抵抗値Rdc2には、プローブP1,P4の接触抵抗R1,R4が含まれることになる。   However, if this is not the case, the DC resistance value Rdc2 of the inductor element D based on the two-terminal measurement of the LCR meter performed in step ST301 includes the contact resistances R1 and R4 of the probes P1 and P4.

そこで、この第1実施形態では、ステップST303において、上記ステップST301で測定されたインダクタ素子Dの直流抵抗値Rdc2に含まれているプローブP1,P4による接触抵抗R1,R4をRcとして、直流接触抵抗Rcを次式(1)、
Rc=Rdc2−Rdc4…(1)
により求める。
Therefore, in the first embodiment, in step ST303, the contact resistances R1, R4 by the probes P1, P4 included in the DC resistance value Rdc2 of the inductor element D measured in step ST301 are set as Rc, and the DC contact resistance is set. Rc is represented by the following formula (1),
Rc = Rdc2-Rdc4 (1)
Ask for.

この直流接触抵抗Rcは、実質的に周波数特性依存性がないことから、ステップST304において、インダクタンス素子Dの実効抵抗値Rsと直流接触抵抗Rcとから、補正実効抵抗値Rs’を次式(2)、
Rs’=Rs−Rc…(2)
により求める。
Since this DC contact resistance Rc has substantially no frequency characteristic dependence, in step ST304, the corrected effective resistance value Rs ′ is calculated from the effective resistance value Rs of the inductance element D and the DC contact resistance Rc by the following equation (2). ),
Rs ′ = Rs−Rc (2)
Ask for.

そして、次段のステップST305で、補正実効抵抗値Rs’とインダクタンス値Lとから、インダクタ素子DのQ値を次式(3)、
Q=ωL/Rs’…(3)
により求める(ωは角周波数)。
Then, in the next step ST305, the Q value of the inductor element D is calculated from the corrected effective resistance value Rs ′ and the inductance value L by the following equation (3),
Q = ωL / Rs ′ (3)
(Ω is an angular frequency).

これにより、2端子測定での接触抵抗Rcの影響を除いたQ値を得ることができる。このQ値と、好ましくはその算出基礎データとしてのインダクタンス値Lは、第2測定手段30からコントローラ10に送信され、コントローラ10は、Q値および/またはインダクタンス値Lに基づいて、インダクタ素子Dの良否判定を行い、不良(NG)であれば、第2測定手段30もしくは第2測定手段30の下流側にある図示しない選別ステージに排除信号を出力し、不良品を検査ラインから排除する。   Thereby, the Q value excluding the influence of the contact resistance Rc in the two-terminal measurement can be obtained. The Q value and preferably the inductance value L as the calculation basic data are transmitted from the second measuring means 30 to the controller 10, and the controller 10 determines the inductor element D based on the Q value and / or the inductance value L. A pass / fail judgment is made, and if it is defective (NG), a rejection signal is output to the second measuring means 30 or a sorting stage (not shown) downstream of the second measuring means 30 to reject the defective product from the inspection line.

なお、第1測定手段20にて測定された直流抵抗値Rdc4、第2測定手段30にて測定された直流抵抗値Rdc2,実効抵抗値Rs,インダクタンス値Lをそれぞれコントローラ10に与え、コントローラ10において、接触抵抗Rc,補正実効抵抗値Rs’およびQ値を求めるようにしてもよい。   The DC resistance value Rdc4 measured by the first measuring means 20, the DC resistance value Rdc2, the effective resistance value Rs, and the inductance value L measured by the second measuring means 30 are given to the controller 10, respectively. The contact resistance Rc, the corrected effective resistance value Rs ′, and the Q value may be obtained.

ところで、上記第1実施形態では、第1測定手段20→第2測定手段30の順で測定が行われることから、上記被測定素子が、例えば有芯コイルのように直流磁化されるインダクタ素子Dである場合、第1測定手段20での4端子測定時にインダクタ素子Dが磁化され、これにより、第2測定手段30で測定されるインダクタンス値Lが変動し、Q値も磁化による影響を受けることがある。   By the way, in the first embodiment, since the measurement is performed in the order of the first measuring means 20 → the second measuring means 30, the measured element is an inductor element D that is DC magnetized, for example, like a cored coil. In this case, the inductor element D is magnetized at the time of four-terminal measurement by the first measuring means 20, whereby the inductance value L measured by the second measuring means 30 fluctuates and the Q value is also affected by the magnetization. There is.

このような問題は、第1測定手段20による第1測定ステージと第2測定手段30による第2測定ステージとの間に、消磁ステージを介在させることにより解決されるが、時間がかかるばかりでなく、自動検査ラインの構成も複雑になるため好ましくない。   Such a problem can be solved by interposing a demagnetization stage between the first measurement stage by the first measurement unit 20 and the second measurement stage by the second measurement unit 30. Since the configuration of the automatic inspection line becomes complicated, it is not preferable.

そこで、図4に示すように、本発明の第2実施形態に係るインピーダンス測定装置1Bでは、上記第1実施形態における第1測定手段20と第2測定手段30の配置を入れ替えて、先に第1測定ステージとして第2測定手段30により測定を行い、その後に第2測定ステージとして第1測定手段20により測定を行うようにしている。第1測定手段20、第2測定手段30の各構成は、上記第1実施形態と同じであってよい。   Therefore, as shown in FIG. 4, in the impedance measuring apparatus 1B according to the second embodiment of the present invention, the arrangement of the first measuring means 20 and the second measuring means 30 in the first embodiment is switched, and the first Measurement is performed by the second measurement unit 30 as one measurement stage, and then measurement is performed by the first measurement unit 20 as a second measurement stage. Each structure of the 1st measurement means 20 and the 2nd measurement means 30 may be the same as the said 1st Embodiment.

すなわち、この第2実施形態においては、第1測定ステージが2端子測定ステージ、第2測定ステージが4端子測定ステージであり、まず、第1測定ステージの第2測定手段30において、LCRメータの2端子測定により、インダクタ素子D(有芯コイル)の実効抵抗値Rsとインダクタンス値Lの測定が行われ、その後に、インダクタ素子Dの直流抵抗値(第2直流抵抗値)Rdc2が測定される。   That is, in the second embodiment, the first measurement stage is a two-terminal measurement stage, and the second measurement stage is a four-terminal measurement stage. First, in the second measurement means 30 of the first measurement stage, 2 of the LCR meter. By the terminal measurement, the effective resistance value Rs and the inductance value L of the inductor element D (core coil) are measured, and then the DC resistance value (second DC resistance value) Rdc2 of the inductor element D is measured.

そして、第2測定手段30にて測定されたこれらの測定値(Rdc2,L,Rs)は、第2測定手段30が備えている図示しないメモリに記憶される。   These measured values (Rdc2, L, Rs) measured by the second measuring means 30 are stored in a memory (not shown) provided in the second measuring means 30.

次に、インダクタ素子Dは、第2測定手段30から第2測定ステージの第1測定手段20に搬送され、次なる測定として、4端子測定によりインダクタ素子Dの直流抵抗値(第1直流抵抗値)Rdc4が測定され、この直流抵抗値Rdc4が第1測定手段20から第2測定手段30に送信される。   Next, the inductor element D is transported from the second measurement means 30 to the first measurement means 20 of the second measurement stage, and as a next measurement, the DC resistance value (first DC resistance value) of the inductor element D is measured by four-terminal measurement. ) Rdc4 is measured, and this DC resistance value Rdc4 is transmitted from the first measuring means 20 to the second measuring means 30.

第2測定手段30は、第1測定手段20からの直流抵抗値Rdc4を受信すると、先に行った同じインダクタ素子Dの測定値(Rdc2,L,Rs)をメモリから読み出し、上記第1実施形態と同じく、直流接触抵抗Rc(=Rdc2−Rdc4)を算出し、さらに補正実効抵抗値Rs’(=Rs−Rc)を算出したのち、インダクタ素子DのQ値をQ=ωL/Rs’により求める。   When receiving the DC resistance value Rdc4 from the first measuring means 20, the second measuring means 30 reads the previously measured values (Rdc2, L, Rs) of the same inductor element D from the memory, and the first embodiment described above. Similarly, after calculating the direct current contact resistance Rc (= Rdc2−Rdc4) and further calculating the corrected effective resistance value Rs ′ (= Rs−Rc), the Q value of the inductor element D is obtained by Q = ωL / Rs ′. .

ここで、図5のフローチャートを併せて参照して、この第2実施形態の自動検査ラインでの動作について説明する。第2測定手段30でn番目のインダクタ素子Dnを測定しているとき、そのm個前で第2測定手段30により測定済みのインダクタ素子Dn−mが第1測定手段20で測定されているものとする。   Here, the operation in the automatic inspection line of the second embodiment will be described with reference to the flowchart of FIG. When the n-th inductor element Dn is measured by the second measuring means 30, the first measuring means 20 measures the inductor element Dn-m measured by the second measuring means 30 before m. And

第2測定手段30において、ステップST311〜ST315により、インダクタ素子Dnについて、LCRメータの2端子測定により、最初に交流の実効抵抗値Rs(Dn)およびインダクタンス値L(Dn)が測定され、その後に、直流抵抗値Rdc2(Dn)が測定され、これらの測定値(直流抵抗値Rdc2(Dn),実効抵抗値Rs(Dn),L(Dn))がメモリに記憶される。   In the second measuring means 30, in steps ST311 to ST315, the AC effective resistance value Rs (Dn) and the inductance value L (Dn) are first measured for the inductor element Dn by the two-terminal measurement of the LCR meter. The DC resistance value Rdc2 (Dn) is measured, and these measured values (DC resistance value Rdc2 (Dn), effective resistance value Rs (Dn), L (Dn)) are stored in the memory.

これと並行して、第1測定手段20では、ステップST211〜ST214により、4端子測定によりインダクタ素子Dn−mの直流抵抗値Rdc4(Dn−m)が測定され、第2測定手段30に送信される。   In parallel with this, in the first measuring means 20, the DC resistance value Rdc4 (Dn-m) of the inductor element Dn-m is measured by the four-terminal measurement in steps ST211 to ST214 and transmitted to the second measuring means 30. The

第2測定手段30は、ステップST321で、インダクタ素子Dn−mの直流抵抗値Rdc4(Dn−m)を受信すると、続くステップST322で、インダクタ素子Dn−mについて先に行った測定による測定値(直流抵抗値Rdc2(Dn−m),実効抵抗値Rs(Dn−m),L(Dn−m))をメモリから読み出す。   When the second measuring means 30 receives the DC resistance value Rdc4 (Dn-m) of the inductor element Dn-m in step ST321, in the subsequent step ST322, the second measuring means 30 measures the measured value by the measurement performed previously on the inductor element Dn-m ( DC resistance value Rdc2 (Dn-m), effective resistance value Rs (Dn-m), and L (Dn-m)) are read from the memory.

そして、ステップST323で、インダクタ素子Dn−mの直流接触抵抗Rc(Dn−m)を次式(1a)、
Rc(Dn−m)=Rdc2(Dn−m)−Rdc4(Dn−m)…(1a)
より算出する。
In step ST323, the DC contact resistance Rc (Dn-m) of the inductor element Dn-m is expressed by the following equation (1a),
Rc (Dn−m) = Rdc2 (Dn−m) −Rdc4 (Dn−m) (1a)
Calculate from

続いて、ステップST324で、インダクタ素子Dn−mの補正実効抵抗値Rs’(Dn−m)を次式(2a)、
Rs’(Dn−m)=Rs(Dn−m)−Rc(Dn−m)…(2a)
より算出する。
Subsequently, in step ST324, the corrected effective resistance value Rs ′ (Dn−m) of the inductor element Dn−m is expressed by the following equation (2a),
Rs ′ (Dn−m) = Rs (Dn−m) −Rc (Dn−m) (2a)
Calculate from

そして、ステップST325で、接触抵抗を排除したインダクタ素子Dn−mのQ(Dn−m)を次式(3a)、
Q(Dn−m)=ωL(Dn−m)/Rs’(Dn−m)…(3a)
により求める(ωは角周波数)。
In step ST325, Q (Dn-m) of the inductor element Dn-m excluding the contact resistance is expressed by the following equation (3a),
Q (Dn−m) = ωL (Dn−m) / Rs ′ (Dn−m) (3a)
(Ω is an angular frequency).

これにより、上記第1実施形態と同様に、2端子測定での接触抵抗Rcの影響を除いたQ値を得ることができる。なお、上記第2実施形態では、第1測定ステージの第2測定手段30で、n番目のインダクタ素子Dnを測定しているとき、第2測定ステージの第1測定手段10で、そのm個前のインダクタ素子Dn−mを測定するようにしているが、その変数mは、第2測定手段30のメモリ容量の範囲内において任意に選択されてよい。   As a result, the Q value excluding the influence of the contact resistance Rc in the two-terminal measurement can be obtained as in the first embodiment. In the second embodiment, when the n-th inductor element Dn is measured by the second measurement unit 30 of the first measurement stage, the m-th previous measurement is performed by the first measurement unit 10 of the second measurement stage. The inductor element Dn-m is measured, but the variable m may be arbitrarily selected within the range of the memory capacity of the second measuring means 30.

また、ステップST325で求められたQ値は、上記第1実施形態と同様に、第2測定手段30からコントローラ10に送信され、コントローラ10は、Q値に基づいてインダクタ素子Dの良否判定を行い、不良(NG)であれば、第1測定手段20もしくは第1測定手段20の下流側にある図示しない選別ステージに排除信号を出力し、不良品を検査ラインから排除する。   Further, the Q value obtained in step ST325 is transmitted from the second measuring means 30 to the controller 10 as in the first embodiment, and the controller 10 determines the quality of the inductor element D based on the Q value. If it is defective (NG), an exclusion signal is output to the first measuring means 20 or a selection stage (not shown) on the downstream side of the first measuring means 20, and the defective products are excluded from the inspection line.

また、上記第1実施形態と同様に、第2測定手段30にて測定された直流抵抗値Rdc2,実効抵抗値Rs,インダクタンス値Lおよび第1測定手段20にて測定された直流抵抗値Rdc4を、それぞれコントローラ10に与え、コントローラ10において、接触抵抗Rc,補正実効抵抗値Rs’およびQ値を求めるようにしてもよい。   Similarly to the first embodiment, the DC resistance value Rdc2, the effective resistance value Rs, the inductance value L, and the DC resistance value Rdc4 measured by the first measuring means 20 are measured by the second measuring means 30. These values may be supplied to the controller 10, and the controller 10 may determine the contact resistance Rc, the corrected effective resistance value Rs ′, and the Q value.

また、上記第1,第2の各実施形態において、上記直流接触抵抗Rcがインダクタンス測定周波数における実効抵抗と一致しない場合には、同じインダクタ素子Dについて、あらかじめ何度か測定して補正係数αを求めておくとよい。   In the first and second embodiments, when the DC contact resistance Rc does not match the effective resistance at the inductance measurement frequency, the same inductor element D is measured several times in advance and the correction coefficient α is set. It is good to ask.

その一例として、直流接触抵抗Rcのα倍が交流実効抵抗値になると仮定して、上記式(2)により、
Rs’=Rs−αRc、したがって次式(4)が導かれる。
Rs−Rs’=α(Rdc2−Rdc4)…(4)
As an example, assuming that α times the DC contact resistance Rc is an AC effective resistance value,
Rs ′ = Rs−αRc, and therefore the following formula (4) is derived.
Rs−Rs ′ = α (Rdc2−Rdc4) (4)

上記式(4)において、左辺の(Rs−Rs’)は実効抵抗値の接触抵抗を表し、右辺は直流接触抵抗のα倍を表している。ここで、テストフィクスチュアを使用して安定した低い接触抵抗で測定したときの実効抵抗値をRs’の定数とし、4端子測定で測定した直流抵抗値をRdc4の定数とする。   In the above formula (4), (Rs−Rs ′) on the left side represents the contact resistance of the effective resistance value, and the right side represents α times the DC contact resistance. Here, the effective resistance value when measured with a stable low contact resistance using a test fixture is the constant of Rs', and the DC resistance value measured by the four-terminal measurement is the constant of Rdc4.

同一の試料(インダクタ素子D)を2端子測定の第2測定手段30で、プローブP1,P4を接触し直しながら複数回にわたってRs,Rdc2を測定し、
(直流接触抵抗値,実効抵抗の接触抵抗)=(Rdc2−Rdc4,Rs−Rs’)
をプロットし、最小二乗法等により近似曲線を求めて補正係数αを得る。
The same sample (inductor element D) is measured by the second measuring means 30 for two-terminal measurement while measuring Rs and Rdc2 multiple times while recontacting the probes P1 and P4.
(DC contact resistance value, effective resistance contact resistance) = (Rdc2−Rdc4, Rs−Rs ′)
, And an approximate curve is obtained by the least square method or the like to obtain a correction coefficient α.

1A,1B インピーダンス測定装置
10 コントローラ(制御部)
20 第1測定手段(4端子測定)
30 第2測定手段(2端子測定)
D 被測定素子(インダクタ素子)
1A, 1B Impedance measurement device 10 Controller (control unit)
20 First measurement means (4-terminal measurement)
30 Second measuring means (2-terminal measurement)
D Element to be measured (inductor element)

Claims (8)

インダクタンス成分を含む被測定素子の実効抵抗値とリアクタンス値との比であるQ値を求めるインピーダンス測定方法において、
4端子測定により、上記被測定素子の第1直流抵抗値Rdc4を測定する第1ステップと、
2端子測定により、上記被測定素子の実効抵抗値Rsおよびインダクタンス値Lを測定するとともに、第2直流抵抗値Rdc2を測定する第2ステップと、
上記第2直流抵抗値Rdc2と上記第1直流抵抗値Rdc4との差分(Rdc2−Rdc4)から上記2端子測定時における接触端子の接触抵抗Rcを算出する第3ステップと、
上記実効抵抗値Rsから上記接触抵抗Rcを減算(Rs−Rc)して、補正実効抵抗値Rs’を算出する第4ステップと、
上記補正実効抵抗値Rs’と上記インダクタンス値Lとから、上記被測定素子のQ値(ωL/Rs’:ωは角周波数)を求める第4ステップと、
を実行することを特徴とするインピーダンス測定方法。
In an impedance measurement method for obtaining a Q value that is a ratio between an effective resistance value and a reactance value of an element to be measured including an inductance component,
A first step of measuring the first DC resistance value Rdc4 of the device under test by four-terminal measurement;
A second step of measuring an effective resistance value Rs and an inductance value L of the element under measurement by a two-terminal measurement, and a second DC resistance value Rdc2;
A third step of calculating a contact resistance Rc of the contact terminal during the two-terminal measurement from a difference (Rdc2-Rdc4) between the second DC resistance value Rdc2 and the first DC resistance value Rdc4;
A fourth step of subtracting the contact resistance Rc from the effective resistance value Rs (Rs−Rc) to calculate a corrected effective resistance value Rs ′;
A fourth step of obtaining a Q value (ωL / Rs ′: ω is an angular frequency) of the device under test from the corrected effective resistance value Rs ′ and the inductance value L;
An impedance measurement method comprising:
上記第1ステップの4端子測定よりも先に上記第2ステップの2端子測定を実行し、その際の上記第2ステップの2端子測定では、先に上記実効抵抗値Rsおよび上記インダクタンス値Lを測定し、その後に上記第2直流抵抗値Rdc2を測定することを特徴とする請求項1に記載のインピーダンス測定方法。   Prior to the four-terminal measurement of the first step, the two-terminal measurement of the second step is performed. In the two-terminal measurement of the second step, the effective resistance value Rs and the inductance value L are first set. The impedance measuring method according to claim 1, wherein the second DC resistance value Rdc2 is measured after the measurement. インダクタンス成分を含む被測定素子の実効抵抗値とリアクタンス値との比であるQ値を求める機能を有するインピーダンス測定装置において、
第1測定手段と第2測定手段とを含み、上記第1測定手段で4端子測定により上記被測定素子の第1直流抵抗値Rdc4が測定され、
上記第2測定手段で上記被測定素子について、2端子測定により第2直流抵抗値Rdc2と、実効抵抗値Rsおよびインダクタンス値Lとが測定され、
上記第2測定手段は、上記第2直流抵抗値Rdc2と上記第1直流抵抗値Rdc4との差分(Rdc2−Rdc4)から上記2端子測定時における接触端子の接触抵抗Rcを算出するとともに、上記実効抵抗値Rsから上記接触抵抗Rcを減算(Rs−Rc)して、補正実効抵抗値Rs’を算出し、上記補正実効抵抗値Rs’と上記インダクタンス値Lとから、上記被測定素子のQ値(ωL/Rs’:ωは角周波数)を求めることを特徴とするインピーダンス測定装置。
In an impedance measuring apparatus having a function of obtaining a Q value that is a ratio between an effective resistance value and reactance value of an element to be measured including an inductance component,
A first measuring means and a second measuring means, wherein the first measuring means measures the first DC resistance value Rdc4 of the device under test by four-terminal measurement;
The second measuring means measures the second DC resistance value Rdc2, the effective resistance value Rs, and the inductance value L by the two-terminal measurement for the element to be measured.
The second measuring means calculates the contact resistance Rc of the contact terminal at the time of the two-terminal measurement from the difference (Rdc2-Rdc4) between the second DC resistance value Rdc2 and the first DC resistance value Rdc4, and the effective The contact resistance Rc is subtracted from the resistance value Rs (Rs−Rc) to calculate a corrected effective resistance value Rs ′. From the corrected effective resistance value Rs ′ and the inductance value L, the Q value of the element to be measured is calculated. (ΩL / Rs ′: ω is an angular frequency).
上記第2測定手段にはLCRメータが含まれ、上記LCRメータにより、上記第2直流抵抗値Rdc2,上記実効抵抗値Rsおよび上記インダクタンス値Lが測定されることを特徴とする請求項3に記載のインピーダンス測定装置。   The LCR meter is included in the second measuring means, and the second DC resistance value Rdc2, the effective resistance value Rs, and the inductance value L are measured by the LCR meter. Impedance measuring device. 上記第1測定手段と上記第2測定手段は、所定の通信手段を介して接続されており、上記第1測定手段から上記第1直流抵抗値Rdc4が上記第2測定手段に送信されることを特徴とする請求項3または4に記載のインピーダンス測定装置。   The first measuring means and the second measuring means are connected via a predetermined communication means, and the first DC resistance value Rdc4 is transmitted from the first measuring means to the second measuring means. The impedance measuring apparatus according to claim 3 or 4, characterized by the above. 上記第1測定手段および上記第2測定手段を制御する制御部を備え、上記第2測定手段に代えて上記制御部が、上記第1直流抵抗値Rdc2と上記第2直流抵抗値Rdc4との差分(Rdc2−Rdc4)から上記2端子計測時における接触端子の接触抵抗Rcを算出するとともに、上記実効抵抗値Rsから上記接触抵抗Rcを減算(Rs−Rc)して、補正実効抵抗値Rs’を算出し、上記補正実効抵抗値Rs’と上記インダクタンス値Lとから、上記被測定素子のQ値(ωL/Rs’:ωは角周波数)を求めることを特徴とする請求項3ないし5のいずれか1項に記載のインピーダンス測定装置。   A control unit for controlling the first measurement unit and the second measurement unit, wherein the control unit replaces the second measurement unit with a difference between the first DC resistance value Rdc2 and the second DC resistance value Rdc4; The contact resistance Rc of the contact terminal at the time of the two-terminal measurement is calculated from (Rdc2−Rdc4), and the contact resistance Rc is subtracted (Rs−Rc) from the effective resistance value Rs to obtain the corrected effective resistance value Rs ′. 6. The Q value (ωL / Rs ′: where ω is an angular frequency) of the element to be measured is calculated and calculated from the corrected effective resistance value Rs ′ and the inductance value L. The impedance measuring device according to claim 1. 上記第1測定手段と上記第2測定手段とが、上記被測定素子の選別ラインに組み込まれており、上記第1測定手段が上記選別ラインの上流側、上記第2測定手段が上記選別ラインの下流側に配置され、上記第1測定手段での上記4端子測定が先に行われ、その後に上記第2測定手段での上記2端子測定が行われることを特徴とする請求項3ないし6のいずれか1項に記載のインピーダンス測定装置。   The first measuring means and the second measuring means are incorporated in the selection line of the element to be measured, the first measuring means is upstream of the selection line, and the second measurement means is the selection line. 7. The apparatus according to claim 3, wherein the four-terminal measurement by the first measuring means is performed first, and the two-terminal measurement by the second measuring means is subsequently performed. The impedance measuring device according to any one of the above. 上記第1測定手段と上記第2測定手段とが、上記被測定素子の選別ラインに組み込まれており、上記第2測定手段が上記選別ラインの上流側、上記第1測定手段が上記選別ラインの下流側に配置され、上記第2測定手段での上記2端子測定では、先に上記実効抵抗値Rsおよび上記インダクタンス値Lが測定され、その後に上記第2直流抵抗値Rdc2が測定され、上記第2測定手段による測定に続いて、上記第1測定手段で上記4端子測定が行われることを特徴とする請求項3ないし6のいずれか1項に記載のインピーダンス測定装置。   The first measuring means and the second measuring means are incorporated in the selection line of the element to be measured, the second measuring means is upstream of the sorting line, and the first measuring means is the sorting line. In the two-terminal measurement, which is arranged on the downstream side and is performed by the second measuring means, the effective resistance value Rs and the inductance value L are measured first, and then the second DC resistance value Rdc2 is measured. The impedance measuring apparatus according to any one of claims 3 to 6, wherein the four-terminal measurement is performed by the first measuring means following the measurement by the two measuring means.
JP2013272386A 2013-12-27 2013-12-27 Impedance measurement method and device therefor Pending JP2015125135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013272386A JP2015125135A (en) 2013-12-27 2013-12-27 Impedance measurement method and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013272386A JP2015125135A (en) 2013-12-27 2013-12-27 Impedance measurement method and device therefor

Publications (1)

Publication Number Publication Date
JP2015125135A true JP2015125135A (en) 2015-07-06

Family

ID=53535919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013272386A Pending JP2015125135A (en) 2013-12-27 2013-12-27 Impedance measurement method and device therefor

Country Status (1)

Country Link
JP (1) JP2015125135A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019086460A (en) * 2017-11-09 2019-06-06 日置電機株式会社 Processor, checker and processing method
JP2019090757A (en) * 2017-11-16 2019-06-13 日置電機株式会社 Processing device, inspection device and processing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534398A (en) * 1991-03-06 1993-02-09 Fujitsu Ltd Detection method of resistance correction value for electric tester
JPH05312859A (en) * 1991-10-31 1993-11-26 Yokogawa Hewlett Packard Ltd Impedance meter
JP3003657U (en) * 1994-04-28 1994-10-25 アデックス株式会社 Impedance measuring device
JPH07198765A (en) * 1993-12-28 1995-08-01 Yokogawa Hewlett Packard Ltd Impedance meter
JP2004226105A (en) * 2003-01-20 2004-08-12 Murata Mfg Co Ltd Method for compensation of measurement error, method for quality decision of electronic component and electronic component characteristics measuring system
JP2005055231A (en) * 2003-07-31 2005-03-03 Rohm Co Ltd Method for inspecting on resistance in mos transistor
JP2008055209A (en) * 2007-11-15 2008-03-13 Yamato Scale Co Ltd Body fat meter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534398A (en) * 1991-03-06 1993-02-09 Fujitsu Ltd Detection method of resistance correction value for electric tester
JPH05312859A (en) * 1991-10-31 1993-11-26 Yokogawa Hewlett Packard Ltd Impedance meter
JPH07198765A (en) * 1993-12-28 1995-08-01 Yokogawa Hewlett Packard Ltd Impedance meter
JP3003657U (en) * 1994-04-28 1994-10-25 アデックス株式会社 Impedance measuring device
JP2004226105A (en) * 2003-01-20 2004-08-12 Murata Mfg Co Ltd Method for compensation of measurement error, method for quality decision of electronic component and electronic component characteristics measuring system
JP2005055231A (en) * 2003-07-31 2005-03-03 Rohm Co Ltd Method for inspecting on resistance in mos transistor
JP2008055209A (en) * 2007-11-15 2008-03-13 Yamato Scale Co Ltd Body fat meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019086460A (en) * 2017-11-09 2019-06-06 日置電機株式会社 Processor, checker and processing method
JP2019090757A (en) * 2017-11-16 2019-06-13 日置電機株式会社 Processing device, inspection device and processing method

Similar Documents

Publication Publication Date Title
JP2005148056A (en) Device and method for simulating battery tester using constant resistance load
JP6659349B2 (en) Mobile device tester for accurate inductive power measurement and calibration unit for this tester
JP2015125136A (en) Impedance measurement method and device therefor
CN110501572A (en) A kind of test method of Wheatstone bridge resistance
CN105102994A (en) Insulation inspection apparatus and insulation inspection method
CN106060749A (en) Calibration method for impedance test of electroacoustic device
JP2015125135A (en) Impedance measurement method and device therefor
CN205656293U (en) Oscilloprobe calibrating device
CN104808027A (en) Active probe card
CN107422192B (en) Audio equipment input impedance measuring method and device and measurement and verification method and device
JP6482784B2 (en) Identify defective electrical cables
CN105652056A (en) Self-adaptive compensation method of single-phase electric energy meter voltage change influence quantity
CN105372498B (en) Current divider impedance parameter for transient current measure determines method
TWI642945B (en) Inductance measurement apparatus and inductance measurement method
JP3558080B2 (en) Method of correcting measurement error, method of determining quality of electronic component, and electronic component characteristic measuring device
KR100815244B1 (en) ICT:in-circuit tester using compensation of internal resistance of switches for it and measurement methods thereof
KR101354031B1 (en) Impedance measurement apparatus
JP2011185625A (en) Inspection device
JP2011185884A (en) Method and apparatus for measuring dc bias-capacitance characteristic
JP2023507333A (en) Detecting the fundamental component of the current to gate energy consumption storage
US8810256B1 (en) Impedance meter calibration
TW201621333A (en) Tester for device, method of operating switching circuit, and method of testing device
JP2011247631A (en) Eddy current detection method and eddy current detection sensor
CN108020706A (en) A kind of current measuring device and electric current split-core type meter
JP5849923B2 (en) Impedance measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171026

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180912