JP2015124792A - Gear device - Google Patents

Gear device Download PDF

Info

Publication number
JP2015124792A
JP2015124792A JP2013267757A JP2013267757A JP2015124792A JP 2015124792 A JP2015124792 A JP 2015124792A JP 2013267757 A JP2013267757 A JP 2013267757A JP 2013267757 A JP2013267757 A JP 2013267757A JP 2015124792 A JP2015124792 A JP 2015124792A
Authority
JP
Japan
Prior art keywords
gear
pin
external
eccentric
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013267757A
Other languages
Japanese (ja)
Inventor
康人 石原
Yasuto Ishihara
康人 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2013267757A priority Critical patent/JP2015124792A/en
Publication of JP2015124792A publication Critical patent/JP2015124792A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a gear device capable of reducing a load acting between an eccentric portion and an external gear.SOLUTION: A reduction gear 1 includes an external gear 12 relatively rotatably supported through a bearing 32 at an outer periphery of an eccentric portion 22 of a cam shaft 11, an internal gear 14 engaged with a part of the external gear 12, and a carrier 15 having a plurality of pin members 53 circumferentially arranged around an axis L1 of a shaft portion 21 of the cam shaft 11. The external gear 12 is provided with a plurality of pin holes 33 arranged in the circumferential direction around its center O2. Hole gears 34 are integrally formed on inner peripheries of the pin holes 33. Each pin member 53 includes a pin body 61, and a bearing 62 disposed on an outer periphery of the pin body 61, and a pin gear 65 is integrally formed on an outer ring of the bearing 62. Further the cam shaft 11 is provided with auxiliary gears 16, 17 engaged with the pin gear 65 integrally rotatably on the same shaft as the axis L1.

Description

本発明は、歯車装置に関する。   The present invention relates to a gear device.

従来、減速機等に用いられる歯車装置として、偏心揺動型(ハイポサイクロイド型)の遊星歯車装置が知られている(例えば、特許文献1)。この種の歯車装置を用いた減速機は、丸棒状の軸部に円板状の偏心部が形成されたカムシャフトと、偏心部の外周に軸受を介して相対回転可能に設けられた外歯車と、カムシャフトの軸部と同軸上に固定された内歯車と、外歯車に設けられた複数のピン通孔にそれぞれ挿入された複数のピン部材を有するキャリヤとを備えている。そして、カムシャフトに回転が入力されて偏心部が軸部の軸線周りを偏心回転することにより、外歯車がハイポサイクロイド曲線を描く態様で揺動(公転)しつつ内歯車と外歯車との歯数差に応じて自転し、この自転分がキャリヤから出力される。   2. Description of the Related Art Conventionally, an eccentric oscillating type (hypocycloid type) planetary gear device is known as a gear device used in a reduction gear or the like (for example, Patent Document 1). A reduction gear using this type of gear device includes a camshaft in which a disc-shaped eccentric portion is formed on a round rod-shaped shaft portion, and an external gear provided on the outer periphery of the eccentric portion so as to be relatively rotatable via a bearing. And an internal gear fixed coaxially with the shaft portion of the camshaft, and a carrier having a plurality of pin members respectively inserted into a plurality of pin through holes provided in the external gear. Then, rotation is input to the camshaft, and the eccentric portion rotates eccentrically around the axis of the shaft portion, so that the external gear is swung (revolved) in a manner of drawing a hypocycloid curve, while the teeth of the internal gear and the external gear are The motor rotates according to the number difference, and the rotation is output from the carrier.

特開2012−223081号公報Japanese Patent Laid-Open No. 2012-223081

ところが、上記のように外歯車は、偏心部の偏心回転によって揺動しつつ自転するため、偏心部から外歯車には、比較的大きな負荷が作用する。そのため、偏心部及び外歯車が損傷し易く、特に上記従来のように偏心部と外歯車との間に軸受が設けられた構成では、該軸受が損傷し易いという問題があった。   However, as described above, the external gear rotates while being oscillated by the eccentric rotation of the eccentric portion, so that a relatively large load acts on the external gear from the eccentric portion. For this reason, the eccentric portion and the external gear are easily damaged, and particularly in the configuration in which the bearing is provided between the eccentric portion and the external gear as in the conventional case, there is a problem that the bearing is easily damaged.

本発明は、上記問題点を解決するためになされたものであって、その目的は、偏心部と外歯車との間に作用する負荷を低減できる歯車装置を提供することにある。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a gear device that can reduce a load acting between an eccentric portion and an external gear.

上記課題を解決する歯車装置は、基準軸線としての軸線を有し、前記基準軸線周りに回転可能であるとともに、前記基準軸線に対して所定量偏心した位置に軸線を有する偏心部が設けられた偏心部材と、前記基準軸線と同軸上に配置された内歯車と、前記偏心部に設けられ、前記偏心部材の回転によって揺動しつつ前記内歯車と噛合する外歯車と、前記基準軸線周りに回転可能であるとともに、周方向に並んで配置された複数のピン部材を有するキャリヤとを備え、前記外歯車には、周方向に並んで配置され、前記ピン部材が挿入される複数のピン通孔が形成されたものであって、前記各ピン通孔に固定され、複数の内歯を有する通孔歯車と、前記各ピン部材周りに該各ピン部材と相対回転可能に設けられ、前記各内歯の一部と噛合する複数の外歯を有するピン歯車と、前記基準軸線と同軸上で前記偏心部材と一体回転可能に設けられ、前記ピン歯車の各外歯の一部と噛合する複数の外歯を有する補助歯車を備えたことを要旨とする。   A gear device that solves the above-described problem has an axis as a reference axis, is rotatable around the reference axis, and is provided with an eccentric portion having an axis at a position offset by a predetermined amount with respect to the reference axis. An eccentric member, an internal gear arranged coaxially with the reference axis, an external gear provided in the eccentric portion and meshing with the internal gear while being oscillated by the rotation of the eccentric member, and around the reference axis And a carrier having a plurality of pin members arranged side by side in the circumferential direction, and a plurality of pin passages arranged in the circumferential direction and inserted into the external gear. A hole is formed, and is fixed to each pin through hole, provided with a through hole gear having a plurality of internal teeth, and provided around each pin member so as to be relatively rotatable with each pin member. Plural meshing with part of internal teeth A pin gear having external teeth; and an auxiliary gear having a plurality of external teeth that are provided coaxially with the reference axis so as to rotate integrally with the eccentric member and mesh with a part of each external tooth of the pin gear. This is the gist.

上記構成によれば、ピン歯車は通孔歯車及びピン歯車と噛合しており、例えば内歯車を固定し、偏心部材に回転を入力した場合に、通孔歯車及び補助歯車からそれぞれ同じ方向のトルクを受ける。そのため、偏心部材に回転を入力した場合に、外歯車には、偏心部のみからではなく、ピン歯車を介して補助歯車からもトルクが伝達されるようになる。これにより、偏心部と外歯車との間に作用する負荷を低減できる。   According to the above configuration, the pin gear meshes with the through-hole gear and the pin gear. For example, when the internal gear is fixed and rotation is input to the eccentric member, the torque in the same direction from the through-hole gear and the auxiliary gear, respectively. Receive. Therefore, when rotation is input to the eccentric member, torque is transmitted to the external gear not only from the eccentric portion but also from the auxiliary gear via the pin gear. Thereby, the load which acts between an eccentric part and an external gear can be reduced.

上記歯車装置において、前記補助歯車は、該補助歯車の重心と前記外歯車の重心とを合成した合成重心が前記基準軸線上に位置するように、該補助歯車の重心の位置を調整する重心調整部を備えることが好ましい。   In the above gear device, the auxiliary gear adjusts the position of the center of gravity of the auxiliary gear so that the combined center of gravity of the center of gravity of the auxiliary gear and the center of gravity of the external gear is positioned on the reference axis. It is preferable to provide a part.

上記構成によれば、外歯車の重心と補助歯車の重心とを合成した合成重心が基準軸線と同軸上に位置するため、外歯車の揺動に伴う振動の発生を抑制できる。
上記歯車装置において、前記偏心部材には、複数の前記偏心部が設けられ、前記複数の偏心部には、前記偏心部材の回転によって揺動回転しつつ前記内歯車と噛合する前記外歯車がそれぞれ設けられるものであって、前記複数の偏心部は、前記複数の外歯車のうちの一と他の一とが前記基準軸線周りに90°よりも大きくずれて設けられることが好ましい。
According to the above configuration, the combined center of gravity obtained by combining the center of gravity of the external gear and the center of gravity of the auxiliary gear is positioned on the same axis as the reference axis, so that it is possible to suppress the occurrence of vibration associated with the swinging of the external gear.
In the gear device, the eccentric member includes a plurality of the eccentric portions, and the outer gears that mesh with the internal gear while being oscillated and rotated by the rotation of the eccentric member are respectively provided in the plurality of eccentric portions. Preferably, the plurality of eccentric portions are provided such that one and the other of the plurality of external gears are shifted from each other by more than 90 ° around the reference axis.

ここで、通孔歯車及びピン歯車を設けない従来の構成では、外歯車からキャリヤに伝達される回転(トルク)は、ピン通孔がピン部材を外歯車の自転分だけ周方向に押すことでそのほとんどが伝達される。つまり、ピン通孔の内周面がピン部材に対してキャリヤの回転方向後方側で接触することにより、ピン通孔からピン部材に前記回転方向に略沿った方向の押圧力が作用する。しかし、外歯車と内歯車との噛合位置近傍のピン通孔では、ピン部材に対して前記回転方向の側方で接触することになり、ピン部材をほとんど押圧しない。したがって、外歯車と内歯車との噛合位置に応じて一部のピン部材に加わる負担が大きくなることから、ピン部材に要求される強度が高くなり、例えばピン部材を小型化することが困難になる。   Here, in the conventional configuration in which the through-hole gear and the pin gear are not provided, the rotation (torque) transmitted from the external gear to the carrier is caused by the pin through-hole pushing the pin member in the circumferential direction by the rotation of the external gear. Most of it is transmitted. That is, when the inner peripheral surface of the pin through hole comes into contact with the pin member on the rear side in the rotation direction of the carrier, a pressing force in a direction substantially along the rotation direction acts on the pin member from the pin through hole. However, in the pin through hole in the vicinity of the meshing position between the external gear and the internal gear, the pin member comes into contact with the side in the rotational direction and hardly presses the pin member. Therefore, the load applied to some of the pin members is increased according to the meshing position of the external gear and the internal gear, so that the strength required for the pin member is increased, and for example, it is difficult to downsize the pin member. Become.

この点、上記構成によれば、通孔歯車がピン歯車に対してキャリヤの回転方向の側方で噛合するとともに通孔歯車との噛合位置での接線方向が前記回転方向と平行に近い角度になるピン歯車に対して、一の外歯車がピン歯車に自転に応じた前記回転方向の押圧力を通孔歯車を介して付与するとき、該ピン歯車には、他の一の外歯車から通孔歯車を介して自転に応じた前記回転方向の押圧力が付与される。ここで、一の外歯車と他の一の外歯車とは、基準軸線周りに90°よりも大きくずれて設けられているため、一及び他の一の外歯車からピン歯車に作用する回転方向の押圧力は、該ピン歯車を互いに反対方向に回転させることになる。そのため、一及び他の一の外歯車からピン歯車に作用する回転方向の押圧力は、該ピン歯車の自転によって吸収されず、該ピン歯車を介してピン部材(キャリヤ)に作用することになる。これにより、トルク伝達に寄与するピン部材の数が増加するため、外歯車と内歯車との噛合位置に応じて一部のピン部材に大きな負担が加わることを抑制できる。したがって、各ピン部材に要求される強度を低くすることができ、その小型化を図ることができる。   In this regard, according to the above configuration, the through-hole gear meshes with the pin gear on the side in the carrier rotation direction, and the tangential direction at the meshing position with the through-hole gear is close to an angle parallel to the rotation direction. When an external gear applies a pressing force in the rotational direction corresponding to rotation to the pin gear via the hole gear, the pin gear is passed from the other external gear. A pressing force in the rotational direction corresponding to the rotation is applied through the hole gear. Here, since the one external gear and the other external gear are provided to be shifted from each other by more than 90 ° around the reference axis, the rotational direction acting on the pin gear from the one and other external gears Will cause the pin gears to rotate in opposite directions. Therefore, the pressing force in the rotational direction that acts on the pin gear from one and the other external gears is not absorbed by the rotation of the pin gear, but acts on the pin member (carrier) via the pin gear. . Thereby, since the number of pin members contributing to torque transmission increases, it can suppress that a big burden is added to some pin members according to the meshing position of an external gear and an internal gear. Therefore, the strength required for each pin member can be reduced, and the size can be reduced.

本発明によれば、偏心部と外歯車との間に作用する負荷を低減できる。   According to the present invention, the load acting between the eccentric part and the external gear can be reduced.

第1実施形態の減速機の軸方向に沿った断面図。Sectional drawing along the axial direction of the reduction gear of 1st Embodiment. 第1実施形態の減速機における外歯車と補助歯車との間を通る軸方向と直交した断面図(図1のA−A断面図)。Sectional drawing orthogonal to the axial direction which passes between between the external gear and the auxiliary gear in the reduction gear of 1st Embodiment (AA sectional drawing of FIG. 1). 第1実施形態の減速機における補助歯車と第1プレートとの間を通る軸方向と直交した断面図(図1のB−B断面図)。Sectional drawing orthogonal to the axial direction which passes between between the auxiliary gears and the 1st plate in the reduction gear of 1st Embodiment (BB sectional drawing of FIG. 1). 第2実施形態の減速機の軸方向に沿った断面図。Sectional drawing along the axial direction of the reduction gear of 2nd Embodiment. (a)は第2実施形態の減速機における外歯車と補助歯車との間を通る軸方向と直交した断面図(図4のC−C断面図)、(b)はピン部材近傍の拡大断面図。(A) is sectional drawing (CC sectional drawing of FIG. 4) orthogonal to the axial direction which passes between between the external gear and the auxiliary gear in the reduction gear of 2nd Embodiment, (b) is an expanded sectional view of the pin member vicinity. Figure. 第2実施形態の減速機の各ピン部材に作用する押圧力を示す模式図。The schematic diagram which shows the pressing force which acts on each pin member of the reduction gear of 2nd Embodiment.

(第1実施形態)
以下、歯車装置の第1実施形態を図面に従って説明する。
図1及び図2に示す歯車装置としての減速機1は、偏心揺動型(ハイポサイクロイド型)の遊星歯車機構を用いて構成されている。減速機1は、モータ2のモータ軸(図示略)と同軸上に配置されて回転駆動される偏心部材としてのカムシャフト11を備えている。また、減速機1は、カムシャフト11に相対回転可能に設けられた外歯車12と、外歯車12の一部と噛合する内歯車14と、カムシャフト11に入力された回転を出力するキャリヤ15とを備えている。さらに、減速機1は、カムシャフト11と一体回転可能に設けられた2つの補助歯車16,17を備えている。なお、以下の説明では、減速機1のモータ2側(図1中、左側)を軸方向一端側とし、モータ2と反対側(図1中、右側)を軸方向他端側とする。
(First embodiment)
Hereinafter, 1st Embodiment of a gear apparatus is described according to drawing.
A reduction gear 1 as a gear device shown in FIG. 1 and FIG. 2 is configured using an eccentric rocking type (hypocycloid type) planetary gear mechanism. The speed reducer 1 includes a camshaft 11 as an eccentric member that is arranged coaxially with a motor shaft (not shown) of the motor 2 and is rotationally driven. The speed reducer 1 includes an external gear 12 that is rotatably provided on the camshaft 11, an internal gear 14 that meshes with a part of the external gear 12, and a carrier 15 that outputs rotation input to the camshaft 11. And. Further, the speed reducer 1 includes two auxiliary gears 16 and 17 provided so as to be rotatable together with the camshaft 11. In the following description, the motor 2 side (left side in FIG. 1) of the reduction gear 1 is defined as one axial end side, and the opposite side (right side in FIG. 1) is defined as the other axial end side.

詳しくは、カムシャフト11は、モータ軸と同軸上に配置される丸棒状の軸部21、及び軸部21の途中に設けられた円板状の偏心部22を有している。偏心部22は、軸部21の基準軸線としての軸線L1に対して所定量偏心した位置に軸線L2を有している。そして、カムシャフト11は、軸部21の軸方向一端部が図示しないモータ軸と同軸上で一体回転可能に連結されるようになっている。   Specifically, the camshaft 11 includes a round bar-shaped shaft portion 21 disposed coaxially with the motor shaft, and a disc-shaped eccentric portion 22 provided in the middle of the shaft portion 21. The eccentric portion 22 has an axis L2 at a position eccentric by a predetermined amount with respect to an axis L1 as a reference axis of the shaft portion 21. The camshaft 11 is connected such that one axial end portion of the shaft portion 21 is coaxially connected to a motor shaft (not shown) so as to be integrally rotatable.

外歯車12は、円板状に形成されている。外歯車12の外周面には、径方向外側に突出する複数の外歯12aが形成されている。外歯車12の中央には、軸方向に貫通した中央孔31が形成されている。そして、外歯車12は、中央孔31に設けられた軸受32を介して偏心部22の外周に相対回転可能に設けられている。なお、外歯車12の重心は、軸部21の軸線L1に対して偏心部22の軸線L2が偏心した側(図1及び図2中、上側)に位置している。   The external gear 12 is formed in a disk shape. On the outer peripheral surface of the external gear 12, a plurality of external teeth 12a protruding outward in the radial direction are formed. A central hole 31 penetrating in the axial direction is formed in the center of the external gear 12. And the external gear 12 is provided in the outer periphery of the eccentric part 22 through the bearing 32 provided in the center hole 31 so that relative rotation is possible. The center of gravity of the external gear 12 is located on the side where the axis L2 of the eccentric portion 22 is eccentric with respect to the axis L1 of the shaft portion 21 (the upper side in FIGS. 1 and 2).

また、外歯車12における中央孔31と外歯12aとの間の部分には、その中心O2周りに周方向に間隔を空けて形成された複数のピン通孔33が形成されている。ピン通孔33は、丸孔状に形成された円孔からなり、外歯車12の中心O2を中心とする円上に配置されている。そして、ピン通孔33の内周面には、それぞれ径方向内側に突出する複数の内歯が通孔内歯34aとして軸方向全体に亘って形成されている。つまり、本実施形態の外歯車12におけるピン通孔33には、通孔歯車34が一体形成されている。   A plurality of pin through-holes 33 are formed around the center O2 at intervals in the circumferential direction at a portion between the central hole 31 and the external teeth 12a in the external gear 12. The pin through-hole 33 is a circular hole formed in a round hole shape, and is arranged on a circle centered on the center O2 of the external gear 12. A plurality of internal teeth projecting radially inward are formed on the inner peripheral surface of the pin through-hole 33 as the through-hole internal teeth 34a over the entire axial direction. That is, the through-hole gear 34 is integrally formed in the pin through-hole 33 in the external gear 12 of the present embodiment.

内歯車14は、円筒状に形成されている。内歯車14の内周面における軸方向中央部には、径方向内側に突出する複数の内歯14aが形成されている。そして、内歯車14は、その中心O1が軸部21の軸線L1と同軸上に配置されており、内歯14aの一部と外歯12aの一部とが噛合している。なお、内歯14aの歯数は、外歯12aの歯数よりも多く設定されている。また、本実施形態の外歯12a、及び内歯14aには、それぞれ歯すじが軸線と平行な平歯のインボリュート歯形が採用されている。図1に示すように、内歯車14には、軸方向両側に突出する円筒状の延出部41,42がそれぞれ形成されている。そして、内歯車14の軸方向一端側の延出部41には、モータ2を収容する円筒状の収容部材(図示略)が連結されるとともに、軸方向他端側の延出部42には円板状の蓋部材(図示略)が連結されるようになっている。   The internal gear 14 is formed in a cylindrical shape. A plurality of internal teeth 14 a projecting radially inward are formed at the axially central portion of the inner peripheral surface of the internal gear 14. The center O1 of the internal gear 14 is arranged coaxially with the axis L1 of the shaft portion 21, and a part of the internal teeth 14a and a part of the external teeth 12a mesh with each other. The number of teeth of the inner teeth 14a is set to be larger than the number of teeth of the outer teeth 12a. Further, in the external teeth 12a and the internal teeth 14a of the present embodiment, flat tooth involute tooth shapes each having a tooth line parallel to the axis are employed. As shown in FIG. 1, the internal gear 14 is formed with cylindrical extending portions 41 and 42 projecting on both sides in the axial direction. A cylindrical housing member (not shown) for housing the motor 2 is connected to the extending portion 41 on the one axial end side of the internal gear 14, and the extending portion 42 on the other axial end side is connected to the extending portion 42 on the other axial end side. A disk-shaped lid member (not shown) is connected.

キャリヤ15は、外歯車12の軸方向一端側に配置された第1プレート51と、外歯車12の軸方向他端側に配置された第2プレート52と、ピン通孔33に挿通された状態で第1プレート51と第2プレート52とを前記基準軸線としての軸線L1周りに一体回転可能に連結するピン部材53とを備えている。   The carrier 15 is inserted through the pin through hole 33, the first plate 51 disposed on one end side in the axial direction of the external gear 12, the second plate 52 disposed on the other end side in the axial direction of the external gear 12. And a pin member 53 that connects the first plate 51 and the second plate 52 around the axis L1 as the reference axis so as to be integrally rotatable.

第1プレート51は、円板状に形成されている。第1プレート51の中央には、貫通孔54が形成されている。そして、第1プレート51は、その外周と内歯車14の軸方向一端側の延出部41との間に設けられた軸受55a、及び貫通孔54とカムシャフト11の軸部21の外周との間に設けられた軸受55bにより内歯車14及びカムシャフト11に対して相対回転可能に支持されている。   The first plate 51 is formed in a disc shape. A through hole 54 is formed in the center of the first plate 51. The first plate 51 includes a bearing 55 a provided between the outer periphery of the first plate 51 and the extending portion 41 on one end side in the axial direction of the internal gear 14, and the through hole 54 and the outer periphery of the shaft portion 21 of the camshaft 11. A bearing 55b provided therebetween is supported so as to be rotatable relative to the internal gear 14 and the camshaft 11.

第2プレート52は、円板状に形成されている。第2プレート52の中央には、貫通孔56が形成されている。そして、第2プレート52は、その外周と内歯車14の軸方向他端側の延出部42との間に設けられた軸受57a、及び貫通孔56とカムシャフト11の軸部21の外周との間に設けられた軸受57bにより内歯車14及びカムシャフト11に対して相対回転可能に支持されている。なお、第2プレート52の軸方向他端側には、図示しない車輪のホイール等の出力部材が連結されるようになっている。   The second plate 52 is formed in a disc shape. A through hole 56 is formed in the center of the second plate 52. The second plate 52 includes a bearing 57 a provided between the outer periphery of the second plate 52 and the extending portion 42 on the other axial end side of the internal gear 14, and the outer periphery of the through hole 56 and the shaft portion 21 of the camshaft 11. Are supported so as to be rotatable relative to the internal gear 14 and the camshaft 11. An output member such as a wheel of a wheel (not shown) is connected to the other axial end of the second plate 52.

図1及び図2に示すように、各ピン部材53は、円柱状に形成されたピン本体61と、ピン本体61の外周に設けられた軸受62とを備えている。本実施形態の軸受62には、ニードルベアリングが採用されている。軸受62の軸方向に沿った長さは、外歯車12の軸方向に沿った長さよりも長く設定されており、その軸方向両端部がピン通孔33から突出している。また、軸受62(外輪)の外周面には、径方向外側に突出する複数の外歯がピン外歯65aとして軸方向全体に亘って形成されている。つまり、本実施形態の軸受62の外輪には、ピン歯車65が一体形成されている。なお、ピン外歯65aの歯数は、通孔内歯34aの歯数よりも少なく設定されている。また、本実施形態の各通孔内歯34a、及び各ピン外歯65aには、その歯すじが軸線と平行な平歯のインボリュート歯形が採用されている。   As shown in FIGS. 1 and 2, each pin member 53 includes a pin main body 61 formed in a columnar shape, and a bearing 62 provided on the outer periphery of the pin main body 61. A needle bearing is adopted as the bearing 62 of the present embodiment. The length of the bearing 62 along the axial direction is set to be longer than the length of the external gear 12 along the axial direction, and both end portions in the axial direction protrude from the pin through-holes 33. A plurality of external teeth projecting radially outward are formed on the outer peripheral surface of the bearing 62 (outer ring) as pin external teeth 65a over the entire axial direction. That is, the pin gear 65 is integrally formed on the outer ring of the bearing 62 of the present embodiment. The number of teeth of the pin outer teeth 65a is set to be smaller than the number of teeth of the through-hole inner teeth 34a. Further, in each of the through-hole inner teeth 34a and each pin outer tooth 65a of the present embodiment, a flat tooth involute tooth profile whose teeth are parallel to the axis is adopted.

各ピン部材53は、外歯車12のピン通孔33内に挿通された状態で、カムシャフト11の軸線L1を中心とした円上に配置されており、ボルト66,67によって第1及び第2プレート51,52と一体回転可能に連結されている。これにより、ピン外歯65aの一部と通孔内歯34aの一部とが噛合している。具体的には、ピン歯車65の通孔歯車34に対する噛合位置とピン通孔33の中心との関係は、外歯車12の内歯車14に対する噛合位置と内歯車14の中心O1との関係と略180°ずれた逆位相の関係となっている。   Each pin member 53 is disposed on a circle centered on the axis L1 of the camshaft 11 in a state of being inserted into the pin through-hole 33 of the external gear 12, and the first and second bolts 66 and 67 are used as first and second bolts. The plates 51 and 52 are connected so as to be rotatable together. Thereby, a part of pin external tooth 65a and a part of through-hole internal tooth 34a mesh. Specifically, the relationship between the meshing position of the pin gear 65 with respect to the through-hole gear 34 and the center of the pin through-hole 33 is substantially the same as the relationship between the meshing position of the external gear 12 with respect to the internal gear 14 and the center O1 of the internal gear 14. The phase relationship is 180 ° shifted.

図1及び図3に示すように、補助歯車16,17は、外歯車12の軸方向両側に配置されており、それぞれ円板状に形成されている。補助歯車16,17の中央には、それぞれ貫通孔71,72が形成されている。貫通孔71,72の内周には、断面四角形状のキー溝73,74が形成されている。一方、カムシャフト11の軸部21には、キー溝73,74と対向するキー溝75,76が形成されている。なお、本実施形態のキー溝75,76は、軸線L1周りに互いに略180°ずれた位置に形成されている。そして、補助歯車16と軸部21との間には、キー溝73,75に嵌合する四角柱状のキー部材77が挿入され、補助歯車17と軸部21との間には、キー溝74,76に嵌合する四角柱状のキー部材78が挿入されている。これにより、補助歯車16,17は、カムシャフト11と一体回転可能に連結されている。そして、補助歯車16,17の外周面には、径方向外側に突出する複数の外歯が補助外歯16a,17aとしてそれぞれ形成されている。ここで、内歯車14、外歯車12、通孔歯車34、ピン歯車65及び補助歯車16,17の諸元は、次式を満たすように設定されている。   As shown in FIGS. 1 and 3, the auxiliary gears 16 and 17 are disposed on both sides of the external gear 12 in the axial direction, and are each formed in a disk shape. Through holes 71 and 72 are formed in the centers of the auxiliary gears 16 and 17, respectively. Key grooves 73 and 74 having a quadrangular cross section are formed on the inner periphery of the through holes 71 and 72. On the other hand, the shaft portion 21 of the camshaft 11 is formed with key grooves 75 and 76 facing the key grooves 73 and 74. Note that the key grooves 75 and 76 of the present embodiment are formed at positions shifted from each other by approximately 180 ° around the axis L1. A square columnar key member 77 that fits in the key grooves 73 and 75 is inserted between the auxiliary gear 16 and the shaft portion 21, and a key groove 74 is inserted between the auxiliary gear 17 and the shaft portion 21. , 76 is inserted into a quadrangular columnar key member 78. Thus, the auxiliary gears 16 and 17 are connected to the camshaft 11 so as to be integrally rotatable. A plurality of external teeth protruding radially outward are formed on the outer peripheral surfaces of the auxiliary gears 16 and 17 as auxiliary external teeth 16a and 17a, respectively. Here, the specifications of the internal gear 14, the external gear 12, the through-hole gear 34, the pin gear 65, and the auxiliary gears 16 and 17 are set so as to satisfy the following equation.

(Z1−Z2)/m1=(Z3−Z4)/m2 (1)
Z3=Z5 (2)
なお、「Z1」は内歯車14の歯数、「Z2」は外歯車12の歯数、「Z3」は通孔歯車34の歯数、「Z4」はピン歯車65の歯数、「Z5」は補助歯車16,17の歯数をそれぞれ示す。また、「m1」は内歯車14及び外歯車12のモジュール、「m2」は通孔歯車34、ピン歯車65及び補助歯車16,17のモジュールをそれぞれ示す。
(Z1-Z2) / m1 = (Z3-Z4) / m2 (1)
Z3 = Z5 (2)
"Z1" is the number of teeth of the internal gear 14, "Z2" is the number of teeth of the external gear 12, "Z3" is the number of teeth of the through-hole gear 34, "Z4" is the number of teeth of the pin gear 65, and "Z5" Indicates the number of teeth of the auxiliary gears 16 and 17, respectively. “M1” indicates a module of the internal gear 14 and the external gear 12, and “m2” indicates a module of the through-gear 34, the pin gear 65, and the auxiliary gears 16 and 17, respectively.

また、補助歯車16,17には、周方向に延びる円弧溝状の重心調整部としての空洞部81,82が形成されている。空洞部81,82は、補助歯車16,17において、軸部21の軸線L1に対して偏心部22の軸線L2が偏心した側の領域に形成されている。これにより、補助歯車16,17の重心がそれぞれ軸部21の軸線L1に対して偏心部22の軸線L2と反対側に位置しており、補助歯車16,17の重心と上記外歯車12の重心とを合成した合成重心が軸線L1上に位置している。   Further, the auxiliary gears 16 and 17 are formed with hollow portions 81 and 82 as arc-shaped groove-shaped gravity center adjusting portions extending in the circumferential direction. The cavities 81 and 82 are formed in regions of the auxiliary gears 16 and 17 on the side where the axis L2 of the eccentric portion 22 is eccentric with respect to the axis L1 of the shaft portion 21. As a result, the center of gravity of the auxiliary gears 16 and 17 is located on the opposite side of the axis L2 of the eccentric portion 22 with respect to the axis L1 of the shaft portion 21, and the center of gravity of the auxiliary gears 16 and 17 and the center of gravity of the external gear 12 described above. And the combined center of gravity is positioned on the axis L1.

次に、本実施形態のアクチュエータの動作(作用)について説明する。
カムシャフト11が回転すると、外歯車12は、内歯車14との噛合位置を周方向に移動させることにより外歯12aの軌跡がそれぞれハイポサイクロイド曲線を描く態様で揺動(公転)しつつ、外歯12aと内歯14aとの歯数差に応じて自転(中心O2周りに回転)する。このとき、通孔歯車34とピン歯車65との噛合位置は、各軸受62の外輪がピン部材53の中心周りに回転することにより、外歯車12の揺動に合わせて該外歯車12と内歯車14との噛合位置に対して上記逆位相となる関係を保ちつつ周方向に移動する。そして、外歯車12の自転が各ピン部材53に伝達されることで、カムシャフト11の回転が減速されつつ反転されてキャリヤ15から出力される。詳しくは、外歯車12は、通孔歯車34がピン歯車65に対してキャリヤ15の回転方向後方側で噛合するとともに該ピン歯車65との噛合位置での接線方向がキャリヤ15の回転方向に対して直角に近い角度となる通孔歯車34を介して、ピン部材53を回転方向に押圧することで、自転分の回転をピン部材53に伝達する。
Next, the operation (action) of the actuator of this embodiment will be described.
When the camshaft 11 is rotated, the external gear 12 is moved (revolved) in such a manner that the locus of the external teeth 12a draws a hypocycloid curve by moving the meshing position with the internal gear 14 in the circumferential direction. It rotates (rotates around the center O2) according to the number of teeth difference between the teeth 12a and the internal teeth 14a. At this time, the meshing position of the through-hole gear 34 and the pin gear 65 is such that the outer ring of each bearing 62 rotates around the center of the pin member 53, so It moves in the circumferential direction while maintaining the relationship that is in the opposite phase to the meshing position with the gear 14. Then, the rotation of the external gear 12 is transmitted to each pin member 53, whereby the rotation of the camshaft 11 is reversed while being decelerated and output from the carrier 15. Specifically, in the external gear 12, the through-hole gear 34 meshes with the pin gear 65 on the rear side in the rotation direction of the carrier 15, and the tangential direction at the meshing position with the pin gear 65 is relative to the rotation direction of the carrier 15. The rotation of the rotation is transmitted to the pin member 53 by pressing the pin member 53 in the rotation direction through the through-hole gear 34 having a substantially right angle.

ここで、カムシャフト11が時計回りに回転した場合、ピン歯車65は、外歯車12の揺動に応じて通孔歯車34からトルクを受けて反時計回り、すなわちカムシャフト11と反対方向に回転する。また、ピン歯車65は、カムシャフト11の回転に応じて補助歯車16,17からトルクを受けて反時計回りに回転する。つまり、ピン歯車65は、通孔歯車34及び補助歯車16,17から同じ方向のトルクを受ける。そのため、カムシャフト11が回転した場合に、外歯車12には、偏心部22のみからではなく、ピン歯車65を介して補助歯車16,17からもトルクが伝達されるようになる。これにより、本実施形態の外歯車12は、偏心部22の偏心回転及び補助歯車16,17の回転によって、揺動しつつ自転する。   Here, when the camshaft 11 rotates clockwise, the pin gear 65 receives torque from the through-hole gear 34 according to the swing of the external gear 12 and rotates counterclockwise, that is, in the direction opposite to the camshaft 11. To do. Further, the pin gear 65 receives torque from the auxiliary gears 16 and 17 in accordance with the rotation of the camshaft 11 and rotates counterclockwise. That is, the pin gear 65 receives torque in the same direction from the through-hole gear 34 and the auxiliary gears 16 and 17. Therefore, when the camshaft 11 rotates, torque is transmitted to the external gear 12 not only from the eccentric portion 22 but also from the auxiliary gears 16 and 17 via the pin gear 65. Thereby, the external gear 12 of the present embodiment rotates while swinging due to the eccentric rotation of the eccentric portion 22 and the rotation of the auxiliary gears 16 and 17.

次に、本実施形態の効果について記載する。
(1)各ピン通孔33に通孔歯車34を形成するとともに、ピン部材53の軸受62にピン歯車65を形成し、カムシャフト11にピン歯車65と噛合する補助歯車16,17を一体回転可能に設けたため、外歯車12が偏心部22の偏心回転及び補助歯車16,17の回転によって揺動しつつ自転するようになる。これにより、偏心部22と外歯車12との間に作用する負荷を低減でき、軸受32の損傷を低減できる。
Next, the effect of this embodiment will be described.
(1) The through-hole gear 34 is formed in each pin through-hole 33, the pin gear 65 is formed in the bearing 62 of the pin member 53, and the auxiliary gears 16, 17 meshing with the pin gear 65 are integrally rotated with the camshaft 11. Since the external gear 12 is provided, the external gear 12 rotates while being oscillated by the eccentric rotation of the eccentric portion 22 and the rotation of the auxiliary gears 16 and 17. Thereby, the load which acts between the eccentric part 22 and the external gear 12 can be reduced, and damage to the bearing 32 can be reduced.

(2)補助歯車16,17に、補助歯車16,17の重心と外歯車12の重心とを合成した合成重心が軸線L1上に位置するように、補助歯車16,17の重心の位置を調整する空洞部81,82を形成したため、外歯車12の揺動に伴う振動の発生を抑制できる。   (2) The position of the center of gravity of the auxiliary gears 16 and 17 is adjusted so that the combined center of gravity obtained by combining the auxiliary gears 16 and 17 with the center of gravity of the auxiliary gears 16 and 17 and the center of gravity of the external gear 12 is positioned on the axis L1. Since the hollow portions 81 and 82 to be formed are formed, it is possible to suppress the occurrence of vibration accompanying the swinging of the external gear 12.

(第2実施形態)
次に、第2実施形態を図面に従って説明する。なお、説明の便宜上、同一の構成については上記第1実施形態と同一の符号を付してその説明を省略する。
(Second Embodiment)
Next, a second embodiment will be described with reference to the drawings. For convenience of explanation, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

図4及び図5(a),(b)に示すように、本実施形態のカムシャフト11には、偏心部22に隣接してもう1つ偏心部91が形成されている。偏心部91は、偏心部22と同一形状とされており、軸部21の軸線L1に対して所定量偏心するとともに該軸線L1周りに偏心部22の軸線L2から略180°ずれた位置に軸線L3を有している。   As shown in FIGS. 4, 5 (a), and 5 (b), another eccentric portion 91 is formed adjacent to the eccentric portion 22 in the camshaft 11 of the present embodiment. The eccentric portion 91 has the same shape as the eccentric portion 22, is eccentric by a predetermined amount with respect to the axis L 1 of the shaft portion 21, and has an axis line at a position displaced about 180 ° from the axis L 2 of the eccentric portion 22 around the axis L 1. L3.

減速機1は、外歯車12に加え、偏心部91の外周に軸受92を介して相対回転可能に設けられた外歯車93を備えている。なお、外歯車93は、外歯車12と同一形状に形成されており、複数の外歯93a、中央孔94、ピン通孔95、複数の通孔内歯96a及び通孔歯車96を有している。   In addition to the external gear 12, the speed reducer 1 includes an external gear 93 provided on the outer periphery of the eccentric portion 91 via a bearing 92 so as to be relatively rotatable. The external gear 93 is formed in the same shape as the external gear 12, and includes a plurality of external teeth 93 a, a center hole 94, a pin through hole 95, a plurality of through hole internal teeth 96 a, and a through hole gear 96. Yes.

つまり、2つの外歯車12,93の中心O2,O3は、それぞれ偏心部22,91の軸線L2,L3上に位置しており、2つの外歯車12,93は、カムシャフト11の軸線L1(内歯車42の中心O1)周りに互いに略180°回転した位置に配置されている。また、ピン歯車65の通孔歯車96に対する噛合位置とピン通孔95の中心との関係は、外歯車93の内歯車14に対する噛合位置と内歯車14の中心O1との関係と略180°ずれた逆位相の関係となっている。これにより、通孔歯車34,96とピン歯車65との噛合位置での接線方向がキャリヤ15の回転方向と平行に近い角度になるピン歯車65(図6中、上側及び下側に位置するピン歯車65y,65z)には、環状に配置された各ピン部材53の内側(軸線L1側)及び外側(軸線L1と反対側)の双方から通孔歯車34,96が噛合している。なお、本実施形態の補助歯車16,17には、空洞部81,82が形成されていない。   That is, the centers O2, O3 of the two external gears 12, 93 are positioned on the axis lines L2, L3 of the eccentric portions 22, 91, respectively, and the two external gears 12, 93 are connected to the axis line L1 ( Arranged at positions rotated by approximately 180 ° around the center O1) of the internal gear 42. Further, the relationship between the meshing position of the pin gear 65 with respect to the through-hole gear 96 and the center of the pin through-hole 95 is shifted by approximately 180 ° from the relationship between the meshing position of the external gear 93 with respect to the internal gear 14 and the center O1 of the internal gear 14. The relationship is antiphase. As a result, the pin gear 65 (the pins positioned on the upper side and the lower side in FIG. 6) have a tangential direction at the meshing position of the through-hole gears 34 and 96 and the pin gear 65 close to the rotation direction of the carrier 15. The through-hole gears 34 and 96 are engaged with the gears 65y and 65z from both the inner side (axis L1 side) and the outer side (opposite side of the axis L1) of each pin member 53 arranged in an annular shape. In addition, the cavity parts 81 and 82 are not formed in the auxiliary gears 16 and 17 of this embodiment.

次に、本実施形態のアクチュエータの動作(作用)について説明する。
本実施形態の減速機1は、上記第1実施形態と同様に作動し、外歯車12,93は、偏心部22,91の偏心回転及び補助歯車16,17の回転によって、揺動しつつ自転する。そして、外歯車12,93の自転が各ピン部材53に伝達されることで、カムシャフト11の回転が減速されつつ反転されてキャリヤ15から出力される。つまり、カムシャフト11が時計回りに回転した場合、キャリヤ15は反時計回りに回転する。
Next, the operation (action) of the actuator of this embodiment will be described.
The speed reducer 1 according to the present embodiment operates in the same manner as in the first embodiment, and the external gears 12 and 93 rotate while swinging due to the eccentric rotation of the eccentric portions 22 and 91 and the rotation of the auxiliary gears 16 and 17. To do. Then, the rotation of the external gears 12, 93 is transmitted to each pin member 53, whereby the rotation of the camshaft 11 is reversed while being decelerated and output from the carrier 15. That is, when the camshaft 11 rotates clockwise, the carrier 15 rotates counterclockwise.

詳しくは、図6に示すように、外歯車12,93は、通孔歯車34,96がピン歯車65に対してキャリヤ15の回転方向後方側で噛合するとともに該ピン歯車65との噛合位置での接線方向がキャリヤ15の回転方向に対して直角に近い角度となる通孔歯車34,96(ピン通孔33,95)を介して、それぞれ単独でピン部材53を回転方向に押圧することで、自転分の回転をピン部材53に伝達する。具体的には、図6において太線の矢印で示すように、外歯車12における右側に位置する通孔歯車34xからピン部材53(ピン歯車65x)に単独で回転方向の押圧力が作用し、外歯車93における左側に位置する通孔歯車96xからピン部材53(ピン歯車65x)に単独で回転方向の押圧力が作用する。   Specifically, as shown in FIG. 6, the external gears 12 and 93 are configured so that the through-hole gears 34 and 96 mesh with the pin gear 65 on the rear side in the rotation direction of the carrier 15 and at the meshed position with the pin gear 65. By pressing the pin member 53 in the rotational direction independently through the through-hole gears 34 and 96 (pin through-holes 33 and 95) whose tangential direction is close to a right angle with respect to the rotational direction of the carrier 15. The rotation of the rotation is transmitted to the pin member 53. Specifically, as indicated by a thick arrow in FIG. 6, a pressing force in the rotational direction acts on the pin member 53 (pin gear 65x) alone from the through-hole gear 34x located on the right side of the external gear 12, and the external gear 12 A pressing force in the rotational direction acts solely on the pin member 53 (pin gear 65x) from the through-hole gear 96x located on the left side of the gear 93.

さらに、外歯車12,93と内歯車14との噛合位置近傍のピン通孔33,95では、本実施形態の外歯車12,93は、互い協働することにより、通孔歯車34,96がピン歯車65に対して前記回転方向の側方で噛合するとともにピン歯車65との噛合位置での接線方向がキャリヤ15の回転方向と平行に近い角度になる通孔歯車34,96を介してピン部材53を回転方向に押圧することで、自転分の回転をピン部材53に伝達する。   Further, in the pin through holes 33 and 95 in the vicinity of the meshing position between the external gears 12 and 93 and the internal gear 14, the external gears 12 and 93 of the present embodiment cooperate with each other so that the through gears 34 and 96 are connected. The pin is engaged with the pin gear 65 via the through-hole gears 34 and 96 that mesh with the side in the rotational direction and whose tangential direction at the meshing position with the pin gear 65 is an angle close to the rotational direction of the carrier 15. By rotating the member 53 in the rotation direction, rotation of the rotation is transmitted to the pin member 53.

具体的には、図6において太線の矢印で示すように、外歯車12における上側に位置する通孔歯車34yからピン歯車65yに軸線L1側の位置で回転方向の押圧力が作用する。このとき、外歯車93における上側に位置する通孔歯車96yからピン歯車65yに軸線L1と反対側の位置で回転方向の押圧力が作用する。また、外歯車12における下側に位置する通孔歯車34zからピン歯車65zに軸線L1と反対側の位置で回転方向の押圧力が作用する。このとき、外歯車93における下側に位置する通孔歯車96zからピン歯車65zに軸線L1側の位置で回転方向の押圧力が作用する。つまり、外歯車12,93からピン歯車65に作用する回転方向の押圧力は、該ピン歯車65を互いに反対方向に回転させることになる。そのため、外歯車12,93から図6の上側及び下側に位置する各ピン歯車65に作用する回転方向の押圧力は、該ピン歯車65の自転によって吸収されず、該ピン歯車65を介してピン部材53(キャリヤ15)に作用することになる。これにより、全てのピン部材53が外歯車12,93からキャリヤ15へのトルク伝達に寄与することになる。   Specifically, as indicated by a thick arrow in FIG. 6, a pressing force in the rotational direction acts on the pin gear 65y from the through-hole gear 34y located on the upper side of the external gear 12 at the position on the axis L1 side. At this time, a pressing force in the rotational direction acts on the pin gear 65y from the through-hole gear 96y located on the upper side of the external gear 93 at a position opposite to the axis L1. Further, a pressing force in the rotational direction acts on the pin gear 65z from the through-hole gear 34z located on the lower side of the external gear 12 at a position opposite to the axis L1. At this time, a pressing force in the rotational direction acts on the pin gear 65z from the lower through-hole gear 96z in the external gear 93 at a position on the axis L1 side. That is, the pressing force in the rotational direction acting on the pin gear 65 from the external gears 12 and 93 causes the pin gear 65 to rotate in opposite directions. Therefore, the pressing force in the rotational direction acting on the pin gears 65 located on the upper side and the lower side in FIG. 6 from the external gears 12 and 93 is not absorbed by the rotation of the pin gear 65, and is transmitted via the pin gear 65. It acts on the pin member 53 (carrier 15). As a result, all the pin members 53 contribute to torque transmission from the external gears 12 and 93 to the carrier 15.

次に、本実施形態の効果について記載する。なお、本実施形態では、上記第1実施形態の(1)の効果に加えて以下の効果を有する。
(3)各ピン通孔33,95に通孔歯車34,96を形成するとともに、ピン部材53の軸受62にピン歯車65を形成し、外歯車12,93をカムシャフト11の軸線L1周りに互いに180°回転した位置に配置することで、上記のようにトルク伝達に関与するピン部材53の数が増加するため、各ピン部材53に加わる負担を低減できる。したがって、各ピン部材53に要求される強度を低くすることができ、その小型化を図ることができる。
Next, the effect of this embodiment will be described. In addition to the effect (1) of the first embodiment, the present embodiment has the following effect.
(3) The through-hole gears 34 and 96 are formed in the pin through-holes 33 and 95, the pin gear 65 is formed in the bearing 62 of the pin member 53, and the external gears 12 and 93 are arranged around the axis L1 of the camshaft 11. Since the number of pin members 53 involved in torque transmission increases as described above by arranging them at positions rotated by 180 ° relative to each other, the burden on each pin member 53 can be reduced. Therefore, the strength required for each pin member 53 can be reduced, and the size can be reduced.

なお、上記各実施形態は、これを適宜変更した以下の態様にて実施することもできる。
・上記第1実施形態では、補助歯車16,17に空洞部81,82をそれぞれ形成し、その一部を軽量化することで外歯車12と補助歯車16,17の合成重心が軸線L1に位置するようにした。しかし、これに限らず、例えば補助歯車16,17におもりを設けることで、合成重心が軸線L1に位置するようにしてもよい。なお、補助歯車16,17に重心調整部を設けなくてもよい。また、上記第2実施形態において、補助歯車16,17に重心調整部を設けてもよい。
In addition, each said embodiment can also be implemented in the following aspects which changed this suitably.
In the first embodiment, the hollow portions 81 and 82 are formed in the auxiliary gears 16 and 17, respectively, and a portion thereof is reduced in weight so that the combined center of gravity of the external gear 12 and the auxiliary gears 16 and 17 is positioned on the axis L1. I tried to do it. However, the present invention is not limited to this. For example, the weight of the auxiliary gears 16 and 17 may be provided so that the combined center of gravity is positioned on the axis L1. The auxiliary gears 16 and 17 do not have to be provided with the center of gravity adjustment unit. In the second embodiment, the auxiliary gears 16 and 17 may be provided with a center of gravity adjustment unit.

・上記第2実施形態では、偏心部22,91の軸線L1,L2が軸部21の軸線L1周りに互いに略180°ずれるようにカムシャフト11を形成したが、これに限らず、少なくとも軸線L1周りに90°よりも大きくずれていれば、180°以下であってもよい。   In the second embodiment, the camshaft 11 is formed so that the axis lines L1 and L2 of the eccentric parts 22 and 91 are displaced from each other by about 180 ° around the axis line L1 of the shaft part 21, but the present invention is not limited thereto, and at least the axis line L1 It may be 180 ° or less as long as it is displaced more than 90 ° around.

・上記各実施形態では、各外歯12a,93a、各内歯14a、各通孔内歯34a,96a及び各ピン外歯65aを平歯としたが、これに限らず、斜歯としてもよい。この場合には、各外歯12a,93a、各内歯14a、各通孔内歯34a,96a及び各ピン外歯65aをそれぞれ歯すじが同一方向にねじられた斜歯とすることが好ましい。これにより、各外歯12a,93aと各内歯14aとの噛合位置で発生するスラスト力と、各通孔内歯34a,96aと各ピン外歯65aとの噛合位置で発生するスラスト力が互いに逆向きになる。そのため、各噛合位置から外歯車12,93に作動するスラスト力を相殺でき、外歯車12,93を軸方向から支持せずともよくなる。   In each of the above embodiments, the external teeth 12a and 93a, the internal teeth 14a, the through-hole internal teeth 34a and 96a, and the pin external teeth 65a are flat teeth. . In this case, it is preferable that the external teeth 12a and 93a, the internal teeth 14a, the through-hole internal teeth 34a and 96a, and the pin external teeth 65a are inclined teeth in which the streaks are twisted in the same direction. Thereby, the thrust force generated at the meshing position of the external teeth 12a, 93a and the internal teeth 14a and the thrust force generated at the meshing position of the through-hole internal teeth 34a, 96a and the pin external teeth 65a are mutually connected. Reverse. Therefore, the thrust force that acts on the external gears 12 and 93 from each meshing position can be offset, and the external gears 12 and 93 need not be supported from the axial direction.

・上記各実施形態において、各外歯12a,93a、各内歯14a、各通孔内歯34a,96a及び各ピン外歯65aを、例えばサイクロイド歯形としてもよい。
・上記各実施形態において、外歯車12,93、内歯車14、通孔歯車34,96、ピン歯車65及び補助歯車16,17を転位歯車として構成してもよい。この場合には、外歯車12,93及びピン歯車65の転位係数を互いに一致させるとともに、内歯車14及び通孔歯車34,96の転位係数を互いに一致させる必要がある。なお、補助歯車16,17の転位係数は、外歯車12,93及びピン歯車65の転位係数と同じ大きさで、かつ逆符号となる。一例としては、外歯車12,93及びピン歯車65の転位係数を「0.4」、内歯車14及び通孔歯車34,96の転位係数を「0」、補助歯車16,17の転位係数を「−0.4」とすることができる。
In each embodiment described above, the external teeth 12a and 93a, the internal teeth 14a, the through-hole internal teeth 34a and 96a, and the pin external teeth 65a may be, for example, a cycloid tooth profile.
In each of the above embodiments, the external gears 12, 93, the internal gear 14, the through-hole gears 34, 96, the pin gear 65, and the auxiliary gears 16, 17 may be configured as shift gears. In this case, it is necessary to make the shift coefficients of the external gears 12 and 93 and the pin gear 65 coincide with each other and make the shift coefficients of the internal gear 14 and the through-hole gears 34 and 96 match each other. The shift coefficients of the auxiliary gears 16 and 17 are the same as the shift coefficients of the external gears 12 and 93 and the pin gear 65, and have opposite signs. As an example, the shift coefficient of the external gears 12, 93 and the pin gear 65 is “0.4”, the shift coefficient of the internal gear 14 and the through-hole gears 34, 96 is “0”, and the shift coefficient of the auxiliary gears 16, 17 is It can be “−0.4”.

・上記各実施形態において、周方向に隣り合うピン部材53を径方向内側寄りと径方向外側寄りとに交互に設けるとともに、周方向に隣り合う通孔歯車34,96をピン部材53に応じて径方向内側寄りと径方向外側寄りとに交互に設けてもよい。なお、この場合には、例えば軸方向一端側に配置された補助歯車16と、径方向内側寄りに配置された通孔歯車34,96と、ピン歯車65と、外歯車12,93と、内歯車14との間、及び軸方向他端側に配置された補助歯車17と、径方向外側寄りに配置された通孔歯車34,96と、ピン歯車65と、外歯車12,93と内歯車14との間で、それぞれ上記(1),(2)式に示す諸元の関係を満たす必要がある。   In each of the above embodiments, the pin members 53 adjacent in the circumferential direction are alternately provided on the inner side in the radial direction and the outer side in the radial direction, and the through-hole gears 34 and 96 adjacent in the circumferential direction are provided according to the pin member 53. It may be provided alternately on the radially inner side and on the radially outer side. In this case, for example, the auxiliary gear 16 arranged on one end side in the axial direction, the through-hole gears 34 and 96 arranged on the radially inner side, the pin gear 65, the external gears 12 and 93, The auxiliary gear 17 disposed between the gear 14 and on the other end side in the axial direction, the through-hole gears 34 and 96 disposed on the outer side in the radial direction, the pin gear 65, the external gears 12 and 93, and the internal gear. 14, it is necessary to satisfy the relationship of the specifications shown in the above equations (1) and (2).

・上記各実施形態において、偏心部22,91と外歯車12,93との間に軸受32,92を介在させず、外歯車12,93の中央孔31,94が偏心部22,91の外周に相対回転可能に直接嵌合するようにしてもよい。   In each of the above embodiments, the bearings 32 and 92 are not interposed between the eccentric parts 22 and 91 and the external gears 12 and 93, and the center holes 31 and 94 of the external gears 12 and 93 are the outer circumferences of the eccentric parts 22 and 91. They may be directly fitted to each other so as to be relatively rotatable.

・上記各実施形態において、カムシャフト11を、外歯車12,93と同軸上に配置される偏心部材(偏心部22,91)と、偏心部材を内歯車14と同軸上で一体回転させるシャフトとに分割してもよい。この場合において、減速機1がシャフトを備えず、例えばモータ軸が偏心部材と一体回転可能に連結されるようにしてもよい。   In each of the above embodiments, the camshaft 11 includes an eccentric member (eccentric portions 22, 91) arranged coaxially with the external gears 12, 93, and a shaft that integrally rotates the eccentric member coaxially with the internal gear 14. You may divide into. In this case, the reduction gear 1 may not be provided with a shaft, and for example, the motor shaft may be coupled to the eccentric member so as to be integrally rotatable.

・上記各実施形態において、ピン通孔33,95の内周面に通孔内歯34a,96aを一体形成せず、別部材からなる通孔歯車をピン通孔33,95に固定してもよい。同様に、軸受62の外輪にピン外歯65aを一体形成せず、別部材からなるピン歯車を外輪に固定してもよい。   In each of the above embodiments, the through-hole internal teeth 34a and 96a are not integrally formed on the inner peripheral surfaces of the pin through-holes 33 and 95, and a through-hole gear made of another member is fixed to the pin through-holes 33 and 95. Good. Similarly, the pin outer teeth 65a may not be formed integrally with the outer ring of the bearing 62, and a pin gear made of another member may be fixed to the outer ring.

・上記第1実施形態において減速機1が外歯車を2つ以上、上記第2実施形態において減速機1が外歯車を3つ以上備える構成としてもよい。また、上記各実施形態において、減速機1が補助歯車を1つだけ、又は3つ以上備える構成としてもよい。   In the first embodiment, the speed reducer 1 may have two or more external gears, and in the second embodiment, the speed reducer 1 may have three or more external gears. Moreover, in each said embodiment, it is good also as a structure with which the reduction gear 1 is equipped with only one auxiliary gear, or three or more.

・上記各実施形態では、歯車装置を減速機1として用いたが、例えばキャリヤ15に回転を入力し、カムシャフト11から増速した回転を出力する増速機として用いてもよい。   In each of the above-described embodiments, the gear device is used as the speed reducer 1. However, for example, the gear device may be used as a speed increaser that inputs rotation to the carrier 15 and outputs increased rotation from the camshaft 11.

1…減速機、11…カムシャフト(偏心部材)、12,93…外歯車、12a,93a…外歯、14…内歯車、14a…内歯、15…キャリヤ、16,17…補助歯車、16a,17a…補助外歯、22,91…偏心部、33,95…ピン通孔、34,96…通孔歯車、34a,96a…通孔内歯、53…ピン部材、65…ピン歯車、65a…ピン外歯、81,82…空洞部(重心調整部)、L1〜L3…軸線、O1〜O3…中心。   DESCRIPTION OF SYMBOLS 1 ... Reduction gear, 11 ... Cam shaft (eccentric member), 12, 93 ... External gear, 12a, 93a ... External tooth, 14 ... Internal gear, 14a ... Internal gear, 15 ... Carrier, 16, 17 ... Auxiliary gear, 16a , 17a ... auxiliary external teeth, 22, 91 ... eccentric part, 33, 95 ... pin through hole, 34, 96 ... through hole gear, 34a, 96a ... through hole internal tooth, 53 ... pin member, 65 ... pin gear, 65a ... pin external teeth, 81, 82 ... cavity (center of gravity adjustment), L1-L3 ... axis, O1-O3 ... center.

Claims (3)

基準軸線としての軸線を有し、前記基準軸線周りに回転可能であるとともに、前記基準軸線に対して所定量偏心した位置に軸線を有する偏心部が設けられた偏心部材と、
前記基準軸線と同軸上に配置された内歯車と、
前記偏心部に設けられ、前記偏心部材の回転によって揺動しつつ前記内歯車と噛合する外歯車と、
前記基準軸線周りに回転可能であるとともに、周方向に並んで配置された複数のピン部材を有するキャリヤとを備え、
前記外歯車には、周方向に並んで配置され、前記ピン部材が挿入される複数のピン通孔が形成された歯車装置であって、
前記各ピン通孔に固定され、複数の内歯を有する通孔歯車と、
前記各ピン部材周りに該各ピン部材と相対回転可能に設けられ、前記各内歯の一部と噛合する複数の外歯を有するピン歯車と、
前記基準軸線と同軸上で前記偏心部材と一体回転可能に設けられ、前記ピン歯車の各外歯の一部と噛合する複数の外歯を有する補助歯車を備えたことを特徴とする歯車装置。
An eccentric member having an axis as a reference axis, rotatable around the reference axis, and provided with an eccentric portion having an axis at a position eccentric from the reference axis by a predetermined amount;
An internal gear disposed coaxially with the reference axis;
An external gear that is provided in the eccentric portion and that meshes with the internal gear while oscillating by rotation of the eccentric member;
A carrier having a plurality of pin members arranged around the reference axis and arranged side by side in the circumferential direction;
The external gear is a gear device that is arranged side by side in the circumferential direction and has a plurality of pin through holes into which the pin member is inserted,
A through-hole gear fixed to each pin through-hole and having a plurality of internal teeth;
A pin gear having a plurality of external teeth provided around the pin members so as to be relatively rotatable with the pin members and meshing with a part of the internal teeth;
A gear device comprising an auxiliary gear having a plurality of external teeth that are provided coaxially with the reference axis so as to rotate integrally with the eccentric member and mesh with a part of each external tooth of the pin gear.
請求項1に記載の歯車装置において、
前記補助歯車は、該補助歯車の重心と前記外歯車の重心とを合成した合成重心が前記基準軸線上に位置するように、該補助歯車の重心の位置を調整する重心調整部を備えたことを特徴とする歯車装置。
The gear device according to claim 1, wherein
The auxiliary gear includes a center-of-gravity adjustment unit that adjusts the position of the center of gravity of the auxiliary gear so that a composite center of gravity obtained by combining the center of gravity of the auxiliary gear and the center of gravity of the external gear is positioned on the reference axis. A gear device characterized by the above.
請求項1又は2に記載の歯車装置において、
前記偏心部材には、複数の前記偏心部が設けられ、
前記複数の偏心部には、前記偏心部材の回転によって揺動回転しつつ前記内歯車と噛合する前記外歯車がそれぞれ設けられるものであって、
前記複数の偏心部は、前記複数の外歯車のうちの一と他の一とが前記基準軸線周りに90°よりも大きくずれて設けられたことを特徴とする歯車装置。
The gear device according to claim 1 or 2,
The eccentric member is provided with a plurality of the eccentric portions,
The plurality of eccentric portions are respectively provided with the external gears that mesh with the internal gear while being swung and rotated by the rotation of the eccentric member,
The gear unit, wherein the plurality of eccentric portions are provided such that one of the plurality of external gears and the other one are shifted from each other by more than 90 ° around the reference axis.
JP2013267757A 2013-12-25 2013-12-25 Gear device Pending JP2015124792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013267757A JP2015124792A (en) 2013-12-25 2013-12-25 Gear device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013267757A JP2015124792A (en) 2013-12-25 2013-12-25 Gear device

Publications (1)

Publication Number Publication Date
JP2015124792A true JP2015124792A (en) 2015-07-06

Family

ID=53535648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013267757A Pending JP2015124792A (en) 2013-12-25 2013-12-25 Gear device

Country Status (1)

Country Link
JP (1) JP2015124792A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110242706A (en) * 2018-03-08 2019-09-17 纳博特斯克有限公司 Transmission device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110242706A (en) * 2018-03-08 2019-09-17 纳博特斯克有限公司 Transmission device

Similar Documents

Publication Publication Date Title
JP5533194B2 (en) Transmission gear unit
JP4818787B2 (en) Swing intermeshing planetary gear unit
JP5828321B2 (en) Transmission gear unit
WO2010047189A1 (en) Gear transmitting device
JP2001221298A (en) Eccentric rotary reduction gear
JP2018059556A (en) Cycloid speed reducer reduced in backlash
JP2023184669A (en) gear unit
JP2004286044A (en) Internal gear swing type inner mesh planetary gear
JP2016031081A (en) Differential gear
TWI431209B (en) Transmission mechanism having eccentric cam assemblies
WO2013008571A1 (en) Epicyclic reduction gear
JP2015124791A (en) Gear device
JP2015124792A (en) Gear device
JP7068102B2 (en) Hypocycloid reducer
JP6407678B2 (en) Power transmission device
JP2017025971A (en) Reduction gear
JP5951420B2 (en) Actuator
JP2015175380A (en) Speed reducer and actuator
JP2011231801A (en) Speed change gear
JP2017040312A (en) Reduction gear
JP2015209871A (en) Eccentric oscillation type gear device
JP2013249893A (en) Power transmission device
JP4331483B2 (en) Motor built-in roller
JP6100609B2 (en) Continuously variable transmission
JP2014005900A (en) Eccentric rocking gear device