JP2015124791A - Gear device - Google Patents

Gear device Download PDF

Info

Publication number
JP2015124791A
JP2015124791A JP2013267756A JP2013267756A JP2015124791A JP 2015124791 A JP2015124791 A JP 2015124791A JP 2013267756 A JP2013267756 A JP 2013267756A JP 2013267756 A JP2013267756 A JP 2013267756A JP 2015124791 A JP2015124791 A JP 2015124791A
Authority
JP
Japan
Prior art keywords
pin
gear
gears
axis
external
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013267756A
Other languages
Japanese (ja)
Inventor
康人 石原
Yasuto Ishihara
康人 石原
Original Assignee
株式会社ジェイテクト
Jtekt Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテクト, Jtekt Corp filed Critical 株式会社ジェイテクト
Priority to JP2013267756A priority Critical patent/JP2015124791A/en
Publication of JP2015124791A publication Critical patent/JP2015124791A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a gear device capable of miniaturizing a pin member.SOLUTION: A reduction gear 1 includes two external gears 12, 13 relatively rotatably supported by eccentric portions 22, 23 of a cam shaft 11, an internal gear 14 engaged with a part of the external gears 12, 13, and a carrier having a plurality of pin members 53 circumferentially arranged around an axis L1 of a shaft portion 21 of the cam shaft 11. The eccentric portions 22, 23 respectively have axes L2, L3 on positions shifted approximately by 180° to each other around the axis L1 of the shaft portion 21. The external gears 12, 13 are provided with a plurality of pin holes 35, 36 arranged in the circumferential direction around their centers O2, O3. Hole gears 37, 38 are integrally formed on inner peripheries of the pin holes 35, 36. Each pin member 53 includes a pin body 61, and a bearing 62 disposed on an outer periphery of the pin body 61, and a pin gear 65 is integrally formed on an outer ring of the bearing 62.

Description

本発明は、歯車装置に関する。   The present invention relates to a gear device.
従来、減速機等に用いられる歯車装置として、偏心揺動型(ハイポサイクロイド型)の遊星歯車装置が知られている(例えば、特許文献1)。
例えば図6に示すように、特許文献1に記載される形式の歯車装置71は、丸棒状の軸部72、及び軸部72の途中に隣接して設けられた2つの円板状の偏心部73,74を有するカムシャフト75を備えている。偏心部73,74は、軸部72の軸線L5に対して所定量偏心するとともに該軸線L5周りで略180°ずれた位置にそれぞれ軸線L6,L7を有している。また、歯車装置71は、偏心部73,74の外周に軸受76,77を介して相対回転可能に設けられる2つの外歯車78,79と、軸部72と同軸上に固定された内歯車81と、各外歯車78,79に設けられた複数のピン通孔82,83にそれぞれ挿入された複数のピン部材84を有するキャリヤ(図示略)とを備えている。これにより、外歯車78,79は、内歯車81に対して偏心して配置されており、外歯車78,79に形成された複数の外歯78a,79aの一部が内歯車81に形成された複数の内歯81aの一部と噛合している。また、ピン部材84は、円柱状のピン本体85と、ピン本体85の外周に設けられた軸受86とからなり、軸受86の外周がピン通孔82,83の内周面の一部と接触することで、外歯車78,79との間でトルクを伝達可能となっている。なお、ピン部材84(軸受86)のピン通孔82,83の内周面に対する接触位置と該ピン通孔82,83の中心との関係は、外歯車78,79の内歯車81に対する噛み合い位置と内歯車81の中心との関係と略180°ずれた逆位相の関係となっている。
2. Description of the Related Art Conventionally, an eccentric oscillating type (hypocycloid type) planetary gear device is known as a gear device used in a reduction gear or the like (for example, Patent Document 1).
For example, as shown in FIG. 6, a gear device 71 of the type described in Patent Document 1 includes a round bar-shaped shaft portion 72 and two disc-shaped eccentric portions provided adjacent to the middle of the shaft portion 72. A camshaft 75 having 73 and 74 is provided. The eccentric portions 73 and 74 are decentered by a predetermined amount with respect to the axis L5 of the shaft portion 72 and have axes L6 and L7 at positions shifted by about 180 ° around the axis L5. Further, the gear device 71 includes two external gears 78 and 79 provided on the outer circumferences of the eccentric portions 73 and 74 via bearings 76 and 77 and an internal gear 81 fixed coaxially with the shaft portion 72. And a carrier (not shown) having a plurality of pin members 84 inserted into a plurality of pin through holes 82 and 83 provided in the external gears 78 and 79, respectively. Thus, the external gears 78 and 79 are arranged eccentrically with respect to the internal gear 81, and a part of the plurality of external teeth 78 a and 79 a formed on the external gears 78 and 79 is formed on the internal gear 81. It meshes with some of the plurality of internal teeth 81a. The pin member 84 includes a cylindrical pin main body 85 and a bearing 86 provided on the outer periphery of the pin main body 85, and the outer periphery of the bearing 86 contacts a part of the inner peripheral surface of the pin through holes 82 and 83. As a result, torque can be transmitted between the external gears 78 and 79. The relationship between the contact position of the pin member 84 (bearing 86) with respect to the inner peripheral surfaces of the pin through holes 82 and 83 and the center of the pin through holes 82 and 83 is the meshing position of the external gears 78 and 79 with the internal gear 81. And the relationship between the center of the internal gear 81 and the relationship of the opposite phase shifted by about 180 °.
こうした歯車装置71では、カムシャフト75に時計回りの回転が入力されると、外歯車78,79は、内歯車81との噛合位置を周方向に時計回りに移動させることにより外歯78a,79aの軌跡がハイポサイクロイド曲線を描く態様で揺動(公転)しつつ、内歯81aと外歯78a,79aの歯数差に応じて自転(外歯車78,79の中心周りに回転)する。このとき、ピン部材84とピン通孔82,83の内周面との接触位置は、外歯車78,79の揺動に合わせて該外歯車78,79と内歯車81との噛み合い位置に対して上記逆位相となる関係を保ちつつ周方向に時計回りに移動し、外歯車78,79の自転分だけピン通孔82,83を介してピン部材84に回転が伝達される。これにより、カムシャフト75に入力された回転が減速されつつ、反転されてキャリヤから出力される。   In such a gear device 71, when clockwise rotation is input to the camshaft 75, the external gears 78 and 79 move the meshing positions with the internal gear 81 clockwise in the circumferential direction, thereby external teeth 78 a and 79 a. Oscillates (revolves) in a manner that draws a hypocycloid curve, and rotates (rotates around the center of the external gears 78, 79) according to the difference in the number of teeth between the internal teeth 81a and the external teeth 78a, 79a. At this time, the contact position between the pin member 84 and the inner peripheral surfaces of the pin through holes 82 and 83 is in relation to the meshing position of the external gears 78 and 79 and the internal gear 81 in accordance with the swinging of the external gears 78 and 79. Thus, while maintaining the relationship of the above-mentioned reverse phase, the lens moves clockwise in the circumferential direction, and the rotation is transmitted to the pin member 84 through the pin through holes 82 and 83 by the amount of rotation of the external gears 78 and 79. Thereby, the rotation input to the camshaft 75 is reversed and output from the carrier while being decelerated.
特開2012−223081号公報Japanese Patent Laid-Open No. 2012-223081 特開2013−129311号公報JP2013-129511A
ところで、外歯車78,79からキャリヤに伝達される回転(トルク)は、ピン通孔82,83の内周面がピン部材84を外歯車78,79の自転分だけ周方向に押すことでそのほとんどが伝達される。つまり、ピン通孔82,83の内周面がピン部材84に対してキャリヤの回転方向後方側で接触することにより、図6において太線の矢印で示すように、ピン通孔82,83からピン部材84に前記回転方向に略沿った方向の押圧力が作用する。   By the way, the rotation (torque) transmitted from the external gears 78 and 79 to the carrier is achieved by the inner peripheral surfaces of the pin through holes 82 and 83 pushing the pin member 84 in the circumferential direction by the rotation of the external gears 78 and 79. Most are communicated. That is, as the inner peripheral surfaces of the pin through holes 82 and 83 come into contact with the pin member 84 on the rear side in the rotation direction of the carrier, as shown by the thick arrows in FIG. A pressing force in a direction substantially along the rotation direction acts on the member 84.
しかし、外歯車78,79と内歯車81との噛合位置近傍のピン通孔82,83では、ピン部材84に対して前記回転方向の側方で接触することになり、ピン部材84をほとんど押圧しない。したがって、外歯車78,79と内歯車81との噛合位置に応じて一部のピン部材84に加わる負担が大きくなることから、ピン部材84に要求される強度が高くなる。その結果、例えばピン部材84を小型化することが困難であるという問題があった。   However, the pin through holes 82 and 83 in the vicinity of the meshing position between the external gears 78 and 79 and the internal gear 81 are in contact with the pin member 84 at the side in the rotational direction, and almost press the pin member 84. do not do. Therefore, the load applied to some of the pin members 84 in accordance with the meshing positions of the external gears 78 and 79 and the internal gear 81 is increased, so that the strength required for the pin members 84 is increased. As a result, there is a problem that it is difficult to downsize the pin member 84, for example.
なお、こうした問題は、外歯車が偏心部の外周に相対回転可能に設けられて揺動する形式の歯車装置に限らず、内歯車が偏心部の内周に相対回転可能に設けられて揺動する形式の歯車装置(例えば、特許文献2)であっても、同様に生じ得る。   Such a problem is not limited to the gear device of the type in which the outer gear is provided on the outer periphery of the eccentric portion so as to be relatively rotatable, and the inner gear is provided on the inner periphery of the eccentric portion so as to be relatively rotatable. The same type of gear device (for example, Patent Document 2) may occur.
本発明は、上記問題点を解決するためになされたものであって、その目的は、ピン部材の小型化を図ることのできる歯車装置を提供することにある。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a gear device that can reduce the size of a pin member.
上記課題を解決する歯車装置は、基準軸線としての軸線を有し、前記基準軸線周りに回転可能であるとともに、前記基準軸線に対して所定量偏心した位置にそれぞれ軸線を有する複数の偏心部が設けられた偏心部材と、前記基準軸線と同軸上に配置された基準歯車と、前記各偏心部に設けられ、前記偏心部材の回転によって揺動しつつ前記基準歯車と噛合する揺動歯車と、前記基準軸線周りに回転可能であるとともに、周方向に並んで配置された複数のピン部材を有するキャリヤとを備え、前記各揺動歯車には、周方向に並んで配置され、前記ピン部材が挿入される複数のピン通孔が形成されたものであって、前記各ピン通孔に固定され、複数の内歯を有する通孔歯車と、前記各ピン部材周りに該各ピン部材と相対回転可能に設けられ、前記各内歯の一部と噛合する複数の外歯を有するピン歯車とを備え、前記複数の偏心部は、前記複数の揺動歯車のうちの一と他の一とが前記基準軸線周りに90°よりも大きくずれて設けられたことを要旨とする。   A gear device that solves the above-described problems has an axis as a reference axis, is rotatable around the reference axis, and has a plurality of eccentric portions each having an axis at a position offset from the reference axis by a predetermined amount. An eccentric member provided, a reference gear disposed coaxially with the reference axis, a swing gear provided at each of the eccentric portions and meshing with the reference gear while swinging by rotation of the eccentric member; And a carrier having a plurality of pin members arranged side by side in the circumferential direction and rotatable around the reference axis, each swing gear being arranged side by side in the circumferential direction, A plurality of pin through holes to be inserted are formed, the through gears are fixed to the pin through holes and have a plurality of internal teeth, and the pin members are rotated around the pin members. Possible, said A pin gear having a plurality of external teeth meshing with a part of the inner teeth, wherein the plurality of eccentric portions are configured such that one of the plurality of swing gears and the other one are 90 ° around the reference axis. The gist is that it was provided with a larger displacement than the above.
上記構成によれば、通孔歯車がピン歯車に対してキャリヤの回転方向の側方で噛合するとともに通孔歯車との噛合位置での接線方向が前記回転方向と平行に近い角度になるピン歯車に対して、一の揺動歯車が自転に応じた前記回転方向の押圧力を通孔歯車を介して付与するとき、該ピン歯車には、他の一の揺動歯車から通孔歯車を介して自転に応じた前記回転方向の押圧力が付与される。ここで、一の揺動歯車と他の一の揺動歯車とは、基準軸線周りに90°よりも大きくずれて設けられているため、一及び他の一の揺動歯車からピン歯車に作用する回転方向の押圧力は、該ピン歯車を互いに反対方向に回転させることになる。そのため、一及び他の一の揺動歯車からピン歯車に作用する回転方向の押圧力は、該ピン歯車の自転によって吸収されず、該ピン歯車を介してピン部材(キャリヤ)に作用することになる。これにより、トルク伝達に寄与するピン部材の数が増加するため、揺動歯車と基準歯車との噛合位置に応じて一部のピン部材に大きな負担が加わることを抑制できる。したがって、各ピン部材に要求される強度を低くすることができ、その小型化を図ることができる。   According to the above configuration, the pin gear is engaged with the pin gear at the side in the rotation direction of the carrier with respect to the pin gear, and the tangential direction at the meshing position with the through gear is an angle close to the rotation direction. On the other hand, when one oscillating gear applies the pressing force in the rotational direction according to the rotation through the hole gear, the pin gear is connected to the pin gear from the other hole through the hole gear. Thus, a pressing force in the rotation direction according to the rotation is applied. Here, since the one oscillating gear and the other oscillating gear are provided to be shifted from each other by more than 90 ° around the reference axis, the one and other oscillating gears act on the pin gear. The pressing force in the rotating direction causes the pin gears to rotate in opposite directions. For this reason, the pressing force in the rotational direction acting on the pin gear from one and the other oscillating gear is not absorbed by the rotation of the pin gear, but acts on the pin member (carrier) via the pin gear. Become. Thereby, since the number of pin members contributing to torque transmission increases, it can suppress that a big burden is added to some pin members according to the meshing position of a rocking gear and a reference gear. Therefore, the strength required for each pin member can be reduced, and the size can be reduced.
上記歯車装置において、前記キャリヤには、周方向に隣り合う前記複数のピン部材が径方向内側寄りと径方向外側寄りとに交互に設けられ、前記各揺動歯車には、周方向に隣り合う前記複数のピン通孔が前記ピン部材に応じて径方向内側寄りと径方向外側寄りとに交互に設けられることが好ましい。   In the gear device, the carrier is provided with the plurality of pin members adjacent to each other in the circumferential direction alternately on the radially inner side and the radially outer side, and the swing gears are adjacent to each other in the circumferential direction. The plurality of pin through holes are preferably provided alternately on the radially inner side and the radially outer side depending on the pin member.
上記構成によれば、周方向に隣り合うピン通孔が径方向内側寄りと径方向外側寄りとに交互に設けられるため、外径の小さな外歯車でも隣り合うピン通孔間の距離を確保するとともにピン通孔の孔径を確保できる。これにより、外歯車の小型化を図ることができる。   According to the above configuration, since the pin through holes adjacent in the circumferential direction are alternately provided on the radially inner side and the radially outer side, the distance between the adjacent pin through holes is ensured even with an external gear having a small outer diameter. At the same time, the hole diameter of the pin through hole can be secured. Thereby, size reduction of an external gear can be achieved.
本発明によれば、ピン部材の小型化を図ることができる。   According to the present invention, the pin member can be reduced in size.
第1実施形態の減速機の軸方向に沿った断面図。Sectional drawing along the axial direction of the reduction gear of 1st Embodiment. (a)は第1実施形態の減速機における外歯車の端面を通る軸方向と直交した断面図(図1のA−A断面図)、(b)はピン部材近傍の拡大断面図。(A) is sectional drawing (AA sectional drawing of FIG. 1) orthogonal to the axial direction which passes along the end surface of the external gear in the reduction gear of 1st Embodiment, (b) is an expanded sectional view of a pin member vicinity. 第1実施形態の減速機の各ピン部材に作用する押圧力を示す模式図。The schematic diagram which shows the pressing force which acts on each pin member of the reduction gear of 1st Embodiment. 第2実施形態の減速機の軸方向に沿った断面図。Sectional drawing along the axial direction of the reduction gear of 2nd Embodiment. (a)は第2実施形態の減速機における外歯車の端面を通る軸方向と直交した断面図(図4のB−B断面図)、(b)はピン部材近傍の拡大断面図。(A) is sectional drawing (BB sectional drawing of FIG. 4) orthogonal to the axial direction which passes along the end surface of the external gear in the reduction gear of 2nd Embodiment, (b) is an expanded sectional view of a pin member vicinity. 従来の減速機の外歯車の端面を通る軸方向と直交した断面図。Sectional drawing orthogonal to the axial direction which passes along the end surface of the external gear of the conventional reduction gear.
(第1実施形態)
以下、歯車装置の第1実施形態を図面に従って説明する。
図1及び図2(a),(b)に示す歯車装置としての減速機1は、偏心揺動型(ハイポサイクロイド型)の遊星歯車機構を用いて構成されている。減速機1は、モータ2のモータ軸(図示略)と同軸上に配置されて回転駆動される偏心部材としてのカムシャフト11を備えている。また、減速機1は、カムシャフト11に相対回転可能に設けられた揺動歯車としての2つの外歯車12,13と、各外歯車12,13の一部と噛合する基準歯車としての内歯車14と、カムシャフト11に入力された回転を出力するキャリヤ15とを備えている。なお、以下の説明では、減速機1のモータ2側(図1中、左側)を軸方向一端側とし、モータ2と反対側(図1中、右側)を軸方向他端側とする。
(First embodiment)
Hereinafter, 1st Embodiment of a gear apparatus is described according to drawing.
A reduction gear 1 as a gear device shown in FIG. 1 and FIGS. 2A and 2B is configured using an eccentric oscillating type (hypocycloid type) planetary gear mechanism. The speed reducer 1 includes a camshaft 11 as an eccentric member that is arranged coaxially with a motor shaft (not shown) of the motor 2 and is rotationally driven. The speed reducer 1 includes two external gears 12 and 13 as swinging gears that are rotatably provided on the camshaft 11 and an internal gear as a reference gear that meshes with a part of each of the external gears 12 and 13. 14 and a carrier 15 that outputs the rotation input to the camshaft 11. In the following description, the motor 2 side (left side in FIG. 1) of the reduction gear 1 is defined as one axial end side, and the opposite side (right side in FIG. 1) is defined as the other axial end side.
詳しくは、カムシャフト11は、モータ軸と同軸上に配置される丸棒状の軸部21、及び軸部21の途中に隣接して設けられた2つの円板状の偏心部22,23を有している。2つの偏心部22,23は、軸部21の基準軸線としての軸線L1に対して所定量偏心するとともに該軸線L1周りに互いに略180°ずれた位置にそれぞれ軸線L2,L3を有している。そして、カムシャフト11は、軸部21の軸方向一端部が図示しないモータ軸と同軸上で一体回転可能に連結されるようになっている。   Specifically, the camshaft 11 has a round bar-shaped shaft portion 21 arranged coaxially with the motor shaft, and two disc-shaped eccentric portions 22 and 23 provided adjacent to the middle of the shaft portion 21. doing. The two eccentric portions 22 and 23 are decentered by a predetermined amount with respect to the axis L1 as the reference axis of the shaft portion 21 and have axes L2 and L3 at positions shifted by about 180 ° around the axis L1, respectively. . The camshaft 11 is connected such that one axial end portion of the shaft portion 21 is coaxially connected to a motor shaft (not shown) so as to be integrally rotatable.
外歯車12,13は、それぞれ円板状に形成されている。外歯車12,13の外周面には、それぞれ径方向外側に突出する複数の外歯12a,13aが形成されている。外歯車12,13の中央には、それぞれ軸方向に貫通した中央孔31,32が形成されている。そして、外歯車12,13は、中央孔31,32に設けられた軸受33,34を介して偏心部22,23の外周に相対回転可能にそれぞれ設けられている。つまり、2つの外歯車12,13の中心O2,O3は、それぞれ偏心部22,23の軸線L2,L3上に位置しており、2つの外歯車12,13は、カムシャフト11の軸線L1(後述する内歯車42の中心O1)周りに互いに略180°回転した位置に配置されている。   The external gears 12 and 13 are each formed in a disk shape. A plurality of external teeth 12a and 13a projecting radially outward are formed on the outer peripheral surfaces of the external gears 12 and 13, respectively. Central holes 31 and 32 penetrating in the axial direction are formed at the centers of the external gears 12 and 13, respectively. And the external gears 12 and 13 are provided in the outer periphery of the eccentric parts 22 and 23 through the bearings 33 and 34 provided in the center holes 31 and 32, respectively, so that relative rotation is possible. That is, the centers O2 and O3 of the two external gears 12 and 13 are positioned on the axis lines L2 and L3 of the eccentric portions 22 and 23, respectively, and the two external gears 12 and 13 are connected to the axis line L1 ( Arranged at positions rotated by about 180 ° around a center O1) of an internal gear 42 to be described later.
また、外歯車12,13における中央孔31,32と外歯12a,13aとの間の部分には、その中心O2,O3周りに周方向に間隔を空けて形成された複数のピン通孔35,36が形成されている。ピン通孔35,36は、それぞれ丸孔状に形成され、外歯車12,13の中心O2,O3を中心とする円上に配置されている。そして、ピン通孔35,36の内周面には、それぞれ径方向内側に突出する複数の内歯が通孔内歯37a,38aとして軸方向全体に亘って形成されている。つまり、本実施形態の外歯車12,13におけるピン通孔35,36には、通孔歯車37,38が一体形成されている。   In addition, a plurality of pin through holes 35 formed in the portions between the central holes 31 and 32 and the external teeth 12a and 13a in the external gears 12 and 13 are spaced around the centers O2 and O3 in the circumferential direction. , 36 are formed. The pin through holes 35 and 36 are each formed in a round hole shape, and are arranged on a circle centered on the centers O2 and O3 of the external gears 12 and 13. A plurality of internal teeth protruding radially inward are formed on the inner peripheral surfaces of the pin through holes 35 and 36 over the entire axial direction as through hole internal teeth 37a and 38a. That is, the through-hole gears 37 and 38 are integrally formed in the pin through-holes 35 and 36 in the external gears 12 and 13 of the present embodiment.
内歯車14は、円筒状に形成されている。内歯車14の内周面における軸方向中央部には、径方向内側に突出する複数の内歯14aが形成されている。そして、内歯車14は、その中心O1が軸部21の軸線L1と同軸上に配置されており、内歯14aの一部と外歯12a,13aの一部とが噛合している。なお、内歯14aの歯数は、外歯12a,13aの歯数よりも多く設定されている。また、本実施形態の外歯12a,13a、及び内歯14aには、それぞれ歯すじが軸線と平行な平歯のインボリュート歯形が採用されている。図1に示すように、内歯車14には、軸方向両側に突出する円筒状の延出部41,42がそれぞれ形成されている。そして、内歯車14の軸方向一端側の延出部41には、モータ2を収容する円筒状の収容部材(図示略)が連結されるとともに、軸方向他端側の延出部42には、円板状の蓋部材(図示略)が連結されるようになっている。   The internal gear 14 is formed in a cylindrical shape. A plurality of internal teeth 14 a projecting radially inward are formed at the axially central portion of the inner peripheral surface of the internal gear 14. The center O1 of the internal gear 14 is arranged coaxially with the axis L1 of the shaft portion 21, and a part of the internal teeth 14a and a part of the external teeth 12a and 13a mesh with each other. The number of teeth of the inner teeth 14a is set to be larger than the number of teeth of the outer teeth 12a and 13a. Further, for the external teeth 12a, 13a and the internal teeth 14a of the present embodiment, flat tooth involute tooth profiles each having a tooth line parallel to the axis are employed. As shown in FIG. 1, the internal gear 14 is formed with cylindrical extending portions 41 and 42 projecting on both sides in the axial direction. A cylindrical housing member (not shown) for housing the motor 2 is connected to the extending portion 41 on the one axial end side of the internal gear 14, and the extending portion 42 on the other axial end side is connected to the extending portion 42 on the other axial end side. A disc-shaped lid member (not shown) is connected.
キャリヤ15は、外歯車12,13の軸方向一端側に配置された第1プレート51と、外歯車12,13の軸方向他端側に配置された第2プレート52と、ピン通孔35,36に挿通された状態で第1プレート51と第2プレート52とを前記基準軸線としての軸線L1周りに一体回転可能に連結するピン部材53とを備えている。   The carrier 15 includes a first plate 51 disposed on one end side in the axial direction of the external gears 12, 13, a second plate 52 disposed on the other end side in the axial direction of the external gears 12, 13, a pin through hole 35, A pin member 53 that connects the first plate 51 and the second plate 52 around the axis L1 serving as the reference axis so as to be integrally rotatable.
第1プレート51は、円板状に形成されている。第1プレート51の中央には、貫通孔54が形成されている。そして、第1プレート51は、その外周と内歯車14の軸方向一端側の延出部41との間に設けられた軸受55a、及び貫通孔54とカムシャフト11の軸部21の外周との間に設けられた軸受55bにより内歯車14及びカムシャフト11に対して相対回転可能に支持されている。   The first plate 51 is formed in a disc shape. A through hole 54 is formed in the center of the first plate 51. The first plate 51 includes a bearing 55 a provided between the outer periphery of the first plate 51 and the extending portion 41 on one end side in the axial direction of the internal gear 14, and the through hole 54 and the outer periphery of the shaft portion 21 of the camshaft 11. A bearing 55b provided therebetween is supported so as to be rotatable relative to the internal gear 14 and the camshaft 11.
第2プレート52は、円板状に形成されている。第2プレート52の中央には、貫通孔56が形成されている。そして、第2プレート52は、その外周と内歯車14の軸方向他端側の延出部42との間に設けられた軸受57a、及び貫通孔56とカムシャフト11の軸部21の外周との間に設けられた軸受57bにより内歯車14及びカムシャフト11に対して相対回転可能に支持されている。なお、第2プレート52の軸方向他端側には、図示しない車輪のホイール等の出力部材が連結されるようになっている。   The second plate 52 is formed in a disc shape. A through hole 56 is formed in the center of the second plate 52. The second plate 52 includes a bearing 57 a provided between the outer periphery of the second plate 52 and the extending portion 42 on the other axial end side of the internal gear 14, and the outer periphery of the through hole 56 and the shaft portion 21 of the camshaft 11. Are supported so as to be rotatable relative to the internal gear 14 and the camshaft 11. An output member such as a wheel of a wheel (not shown) is connected to the other axial end of the second plate 52.
図1及び図2(a),(b)に示すように、各ピン部材53は、円柱状に形成されたピン本体61と、ピン本体61の外周に設けられた軸受62とを備えている。本実施形態の軸受62には、ニードルベアリングが採用されている。軸受62の軸方向に沿った長さは、外歯車12,13の軸方向に沿った長さの合計と略等しく設定されている。また、軸受62(外輪)の外周面には、径方向外側に突出する複数の外歯がピン外歯65aとして軸方向全体に亘って形成されている。つまり、本実施形態の軸受62の外輪には、ピン歯車65が一体形成されている。なお、ピン外歯65aの歯数は、通孔内歯37a,38aの歯数よりも少なく設定されている。また、本実施形態の各通孔内歯37a,38a、及び各ピン外歯65aには、その歯すじが軸線と平行な平歯のインボリュート歯形が採用されている。   As shown in FIGS. 1 and 2A and 2B, each pin member 53 includes a pin body 61 formed in a columnar shape and a bearing 62 provided on the outer periphery of the pin body 61. . A needle bearing is adopted as the bearing 62 of the present embodiment. The length of the bearing 62 along the axial direction is set to be approximately equal to the total length of the external gears 12 and 13 along the axial direction. A plurality of external teeth projecting radially outward are formed on the outer peripheral surface of the bearing 62 (outer ring) as pin external teeth 65a over the entire axial direction. That is, the pin gear 65 is integrally formed on the outer ring of the bearing 62 of the present embodiment. The number of teeth of the pin outer teeth 65a is set to be smaller than the number of teeth of the through-hole inner teeth 37a and 38a. Further, in each of the through-hole inner teeth 37a and 38a and each pin outer tooth 65a of the present embodiment, a flat tooth involute tooth profile whose tooth line is parallel to the axis is adopted.
各ピン部材53は、外歯車12,13のピン通孔35,36内に挿通された状態で、カムシャフト11の軸線L1を中心とした円上に配置されており、ボルト66,67によって第1及び第2プレート51,52と一体回転可能に連結されている。これにより、ピン外歯65aの一部と通孔内歯37a,38aの一部とが噛合している。具体的には、ピン歯車65の通孔歯車37に対する噛合位置とピン通孔35の中心との関係は、外歯車12の内歯車14に対する噛合位置と内歯車14の中心O1との関係と略180°ずれた逆位相の関係となっている。また、ピン歯車65の通孔歯車38に対する噛合位置とピン通孔36の中心との関係は、外歯車13の内歯車14に対する噛合位置と内歯車14の中心O1との関係と略180°ずれた逆位相の関係となっている。これにより、通孔歯車37,38とピン歯車65との噛合位置での接線方向がキャリヤ15の回転方向と平行に近い角度になるピン歯車65(図3中、上側及び下側に位置するピン歯車65y,65z)には、環状に配置された各ピン部材53の内側(軸線L1側)及び外側(軸線L1と反対側)の双方から通孔内歯37a,38aが噛合している。   Each pin member 53 is arranged on a circle centered on the axis L1 of the camshaft 11 in a state of being inserted into the pin through holes 35 and 36 of the external gears 12 and 13, and is fixed by bolts 66 and 67. The first and second plates 51 and 52 are coupled to be rotatable together. Thereby, a part of pin external tooth 65a and a part of through-hole internal teeth 37a and 38a mesh. Specifically, the relationship between the meshing position of the pin gear 65 with respect to the through-hole gear 37 and the center of the pin through-hole 35 is substantially the same as the relationship between the meshing position of the external gear 12 with respect to the internal gear 14 and the center O1 of the internal gear 14. The phase relationship is 180 ° shifted. Further, the relationship between the meshing position of the pin gear 65 with respect to the through-hole gear 38 and the center of the pin through-hole 36 is shifted by approximately 180 ° from the relationship between the meshing position of the external gear 13 with respect to the internal gear 14 and the center O1 of the internal gear 14. The relationship is antiphase. As a result, the pin gear 65 (the pins positioned on the upper side and the lower side in FIG. 3) are such that the tangential direction at the meshing position of the through-hole gears 37 and 38 and the pin gear 65 is close to the rotation direction of the carrier 15. The through-hole inner teeth 37a and 38a are meshed with the gears 65y and 65z from both the inside (axis L1 side) and the outside (side opposite to the axis L1) of each pin member 53 arranged in an annular shape.
次に、本実施形態のアクチュエータの動作(作用)について説明する。
図3に示すように、カムシャフト11が時計回りに回転すると、外歯車12,13は、内歯車14との噛合位置を周方向に時計回りに移動させることにより外歯12a,13aの軌跡がそれぞれハイポサイクロイド曲線を描く態様で揺動(公転)しつつ、外歯12a,13aと内歯14aとの歯数差に応じて自転(中心O2,O3周りに回転)する。このとき、通孔歯車37,38とピン歯車65との噛合位置は、各軸受62の外輪がピン部材53の中心周りに回転することにより、外歯車12,13の揺動に合わせて該外歯車12,13と内歯車14との各噛合位置に対して上記逆位相となる関係を保ちつつ周方向に時計回りに移動する。そして、各外歯車12,13の自転が各ピン部材53に伝達されることで、カムシャフト11の回転が減速されつつ反転されてキャリヤ15から出力される。つまり、キャリヤ15が反時計回りに回転する。
Next, the operation (action) of the actuator of this embodiment will be described.
As shown in FIG. 3, when the camshaft 11 rotates clockwise, the external gears 12 and 13 move the meshing position with the internal gear 14 clockwise in the circumferential direction, thereby causing the trajectories of the external teeth 12a and 13a to move. Each of them rotates (revolves around the centers O2 and O3) in accordance with the difference in the number of teeth between the external teeth 12a and 13a and the internal teeth 14a while swinging (revolving) in a manner of drawing a hypocycloid curve. At this time, the meshing positions of the through-hole gears 37 and 38 and the pin gear 65 are adjusted so that the outer ring of each bearing 62 rotates around the center of the pin member 53 so that the outer gears 12 and 13 are swung. It moves in the clockwise direction in the circumferential direction while maintaining the above-mentioned relationship of opposite phases with respect to the meshing positions of the gears 12 and 13 and the internal gear 14. Then, the rotation of the external gears 12 and 13 is transmitted to the pin members 53, so that the rotation of the camshaft 11 is reversed while being decelerated and output from the carrier 15. That is, the carrier 15 rotates counterclockwise.
詳しくは、外歯車12,13は、通孔歯車37,38がピン歯車65に対してキャリヤ15の回転方向後方側で噛合するとともに該ピン歯車65との噛合位置での接線方向がキャリヤ15の回転方向に対して直角に近い角度となる通孔歯車37,38(ピン通孔35,36)を介して、それぞれ単独でピン部材53を回転方向に押圧することで、自転分の回転をピン部材53に伝達する。具体的には、図3において太線の矢印で示すように、外歯車12における右側に位置する通孔歯車37xからピン部材53(ピン歯車65x)に単独で回転方向の押圧力が作用し、外歯車13における左側に位置する通孔歯車38xからピン部材53(ピン歯車65x)に単独で回転方向の押圧力が作用する。   Specifically, in the external gears 12 and 13, the through-hole gears 37 and 38 mesh with the pin gear 65 on the rear side in the rotation direction of the carrier 15 and the tangential direction at the meshing position with the pin gear 65 is the carrier 15. The pin member 53 is independently pressed in the rotation direction through the through-hole gears 37 and 38 (pin through-holes 35 and 36) having an angle close to a right angle with respect to the rotation direction. This is transmitted to the member 53. Specifically, as indicated by a thick arrow in FIG. 3, a pressing force in the rotational direction acts on the pin member 53 (pin gear 65x) independently from the through-hole gear 37x located on the right side of the external gear 12, and the external gear 12 A pressing force in the rotational direction acts solely on the pin member 53 (pin gear 65x) from the through-hole gear 38x located on the left side of the gear 13.
さらに、外歯車12,13と内歯車14との噛合位置近傍のピン通孔35,36では、本実施形態の外歯車12,13は、互い協働することにより、通孔歯車37,38がピン歯車65に対して前記回転方向の側方で噛合するとともにピン歯車65との噛合位置での接線方向がキャリヤ15の回転方向と平行に近い角度になる通孔歯車37,38を介してピン部材53を回転方向に押圧することで、自転分の回転をピン部材53に伝達する。   Further, in the pin through holes 35 and 36 in the vicinity of the meshing position between the external gears 12 and 13 and the internal gear 14, the external gears 12 and 13 of the present embodiment cooperate with each other, whereby the through gears 37 and 38 are formed. The pin gear 65 is engaged with the pin gear 65 via the through-hole gears 37 and 38 that mesh with the side in the rotational direction and whose tangential direction at the meshing position with the pin gear 65 is an angle close to the rotational direction of the carrier 15. By rotating the member 53 in the rotation direction, rotation of the rotation is transmitted to the pin member 53.
具体的には、図3において太線の矢印で示すように、外歯車12における上側に位置する通孔歯車37yからピン歯車65yに軸線L1側の位置で回転方向の押圧力が作用する。このとき、外歯車13における上側に位置する通孔歯車38yからピン歯車65yに軸線L1と反対側の位置で回転方向の押圧力が作用する。また、外歯車12における下側に位置する通孔歯車37zからピン歯車65zに軸線L1と反対側の位置で回転方向の押圧力が作用する。このとき、外歯車13における下側に位置する通孔歯車38zからピン歯車65zに軸線L1側の位置で回転方向の押圧力が作用する。つまり、外歯車12,13からピン歯車65に作用する回転方向の押圧力は、該ピン歯車65を互いに反対方向に回転させることになる。そのため、外歯車12,13から図3の上側及び下側に位置する各ピン歯車65に作用される回転方向の押圧力は、該ピン歯車65の自転によって吸収されず、該ピン歯車65を介してピン部材53(キャリヤ15)に作用することになる。これにより、全てのピン部材53が外歯車12,13からキャリヤ15へのトルク伝達に寄与することになる。   Specifically, as indicated by a thick arrow in FIG. 3, a pressing force in the rotational direction acts on the pin gear 65y from the through-hole gear 37y located on the upper side of the external gear 12 at the position on the axis L1 side. At this time, a pressing force in the rotational direction acts on the pin gear 65y from the through-hole gear 38y located on the upper side of the external gear 13 at a position opposite to the axis L1. Further, a pressing force in the rotational direction acts on the pin gear 65z from the through-hole gear 37z positioned on the lower side of the external gear 12 at a position opposite to the axis L1. At this time, a pressing force in the rotational direction acts on the pin gear 65z from the through-hole gear 38z located on the lower side of the external gear 13 at the position on the axis L1 side. That is, the pressing force in the rotation direction acting on the pin gear 65 from the external gears 12 and 13 causes the pin gear 65 to rotate in opposite directions. Therefore, the pressing force in the rotational direction applied to the pin gears 65 positioned on the upper side and the lower side in FIG. 3 from the external gears 12 and 13 is not absorbed by the rotation of the pin gear 65, but via the pin gear 65. This acts on the pin member 53 (carrier 15). Thereby, all the pin members 53 contribute to torque transmission from the external gears 12 and 13 to the carrier 15.
次に、本実施形態の効果について記載する。
(1)各ピン通孔35,36に通孔歯車37,38を形成するとともに、ピン部材53の軸受62にピン歯車65を形成し、外歯車12,13をカムシャフト11の軸線L1周りに互いに180°回転した位置に配置することで、上記のようにトルク伝達に関与するピン部材53の数が増加するため、各ピン部材53に加わる負担を低減できる。したがって、各ピン部材53に要求される強度を低くすることができ、その小型化を図ることができる。
Next, the effect of this embodiment will be described.
(1) The through-hole gears 37 and 38 are formed in the pin through-holes 35 and 36, the pin gear 65 is formed in the bearing 62 of the pin member 53, and the external gears 12 and 13 are moved around the axis L1 of the camshaft 11. Since the number of pin members 53 involved in torque transmission increases as described above by arranging them at positions rotated by 180 ° relative to each other, the burden on each pin member 53 can be reduced. Therefore, the strength required for each pin member 53 can be reduced, and the size can be reduced.
(第2実施形態)
次に、第2実施形態を図面に従って説明する。なお、説明の便宜上、同一の構成については上記第1実施形態と同一の符号を付してその説明を省略する。
(Second Embodiment)
Next, a second embodiment will be described with reference to the drawings. For convenience of explanation, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
図4及び図5(a),(b)に示すように、周方向に隣り合うピン通孔35,36は、外歯車12,13において、それぞれ径方向内側寄りと径方向外側寄りとに交互に形成されている。径方向内側寄りに配置された各ピン通孔35,36は、それぞれ外歯車12,13の中心O1,O2を中心とする小さな円上に配置され、径方向外側寄りに配置された各ピン通孔35,36は、それぞれ外歯車12,13の中心O1,O2を中心とする前記小さな円よりも大きな円上に配置されている。   As shown in FIGS. 4 and 5 (a) and 5 (b), the pin through holes 35 and 36 adjacent to each other in the circumferential direction are alternately arranged at the radially inner side and radially outer side in the external gears 12 and 13, respectively. Is formed. The pin through holes 35 and 36 arranged on the inner side in the radial direction are arranged on small circles centering on the centers O1 and O2 of the external gears 12 and 13, respectively, and the pin passages arranged on the outer side in the radial direction. The holes 35 and 36 are arranged on a circle larger than the small circle centered on the centers O1 and O2 of the external gears 12 and 13, respectively.
各ピン部材53は、第1及び第2プレート51,52間において、ピン通孔35,36に応じて径方向内側寄りと径方向外側寄りとに周方向に交互に配置されている。径方向内側寄りに配置された各ピン部材53は、それぞれ内歯車14の中心O1を中心とする小さな円上に配置され、径方向内側寄りに配置された上記ピン通孔35,36に挿通されている。また、径方向外側寄り各ピン部材53は、それぞれ内歯車14の中心O1を中心とする前記小さな円よりも大きな円上に配置され、径方向外側寄りに配置された上記ピン通孔35,36に挿通されている。そして、各通孔歯車37,38と各ピン歯車65との噛合位置は、上記第1実施形態と同様に、内歯車14と外歯車12,13との噛合位置と略180°ずれた逆位相の関係となっている。なお、本実施形態では、上記第1実施形態と同様にカムシャフト11からキャリヤ15にトルクが伝達される。   The pin members 53 are alternately arranged in the circumferential direction between the first and second plates 51 and 52, depending on the pin through holes 35 and 36, radially inward and radially outward. Each pin member 53 arranged on the inner side in the radial direction is arranged on a small circle centering on the center O1 of the internal gear 14, and is inserted into the pin through holes 35, 36 arranged on the inner side in the radial direction. ing. Further, each pin member 53 radially outward is disposed on a circle larger than the small circle centered on the center O1 of the internal gear 14, and the pin through-holes 35, 36 disposed radially outward. Is inserted. The meshing positions of the through-hole gears 37 and 38 and the pin gears 65 are opposite in phase to each other by approximately 180 ° from the meshing positions of the internal gear 14 and the external gears 12 and 13, as in the first embodiment. It has become a relationship. In the present embodiment, torque is transmitted from the camshaft 11 to the carrier 15 as in the first embodiment.
次に、本実施形態の効果について記載する。なお、本実施形態では、上記第1実施形態の(1)の効果に加えて以下の効果を有する。
(2)周方向に隣り合うピン通孔35,36を径方向内側寄りと径方向外側寄りとに交互に設けたため、外径の小さな外歯車12,13でも隣り合うピン通孔35,36(通孔歯車37,38)間の距離を確保するとともに、ピン通孔35,36の孔径を確保できる。これにより、外歯車12,13の小型化を図ることができる。
Next, the effect of this embodiment will be described. In addition to the effect (1) of the first embodiment, the present embodiment has the following effect.
(2) Since the pin through holes 35 and 36 adjacent to each other in the circumferential direction are alternately provided on the inner side in the radial direction and the outer side in the radial direction, the adjacent pin through holes 35 and 36 ( While ensuring the distance between the through-hole gears 37 and 38), the hole diameter of the pin through-holes 35 and 36 is securable. Thereby, size reduction of the external gears 12 and 13 can be achieved.
なお、上記各実施形態は、これを適宜変更した以下の態様にて実施することもできる。
・上記各実施形態では、各外歯12a,13a、各内歯14a、各通孔内歯37a,38a及び各ピン外歯65aを平歯としたが、これに限らず、斜歯としてもよい。この場合には、各外歯12a,13a、各内歯14a、各通孔内歯37a,38a及び各ピン外歯65aをそれぞれ歯すじが同一方向にねじられた斜歯とすることが好ましい。これにより、各外歯12a,13aと各内歯14aとの噛合位置で発生するスラスト力と、各通孔内歯37a,38aと各ピン外歯65aとの噛合位置で発生するスラスト力が互いに逆向きになる。そのため、各噛合位置から外歯車12,13に作動するスラスト力を相殺でき、外歯車12,13を軸方向から支持せずともよくなる。
In addition, each said embodiment can also be implemented in the following aspects which changed this suitably.
In each of the above embodiments, the external teeth 12a and 13a, the internal teeth 14a, the through-hole internal teeth 37a and 38a, and the pin external teeth 65a are flat teeth, but the present invention is not limited thereto, and may be inclined teeth. . In this case, it is preferable that the external teeth 12a and 13a, the internal teeth 14a, the through-hole internal teeth 37a and 38a, and the pin external teeth 65a are inclined teeth in which the streaks are twisted in the same direction. Thereby, the thrust force generated at the meshing position of the external teeth 12a, 13a and the internal teeth 14a and the thrust force generated at the meshing position of the through-hole internal teeth 37a, 38a and the pin external teeth 65a are mutually connected. Reverse. Therefore, the thrust force that acts on the external gears 12 and 13 from each meshing position can be offset, and the external gears 12 and 13 need not be supported from the axial direction.
・上記各実施形態において、各外歯12a,13a、各内歯14a、各通孔内歯37a,38a及び各ピン外歯65aを、例えばサイクロイド歯形としてもよい。
・上記各実施形態において、カムシャフト11を、外歯車12,13と同軸上に配置される偏心部材(偏心部22,23)と、偏心部材を内歯車14と同軸上で一体回転させるシャフトとに分割してもよい。この場合において、減速機1がシャフトを備えず、例えばモータ軸が偏心部材と一体回転可能に連結されるようにしてもよい。
In each of the above embodiments, the external teeth 12a and 13a, the internal teeth 14a, the through-hole internal teeth 37a and 38a, and the pin external teeth 65a may be, for example, a cycloid tooth profile.
In each of the above embodiments, the camshaft 11 includes an eccentric member (eccentric portions 22 and 23) arranged coaxially with the external gears 12 and 13, and a shaft that integrally rotates the eccentric member coaxially with the internal gear 14. You may divide into. In this case, the reduction gear 1 may not be provided with a shaft, and for example, the motor shaft may be coupled to the eccentric member so as to be integrally rotatable.
・上記各実施形態において、ピン通孔35,36の内周面に通孔内歯37a,38aを一体形成せず、別部材からなる通孔歯車をピン通孔35,36に固定してもよい。同様に、軸受62にピン外歯65aを一体形成せず、別部材からなるピン歯車を外輪に固定してもよい。   In each of the above-described embodiments, the through-hole internal teeth 37a and 38a are not integrally formed on the inner peripheral surface of the pin through-holes 35 and 36, and a through-hole gear made of another member is fixed to the pin through-holes 35 and 36. Good. Similarly, the pin outer teeth 65a may not be integrally formed with the bearing 62, and a pin gear made of another member may be fixed to the outer ring.
・上記各実施形態では、減速機1が2つの外歯車12,13を備える構成としたが、これに限らず、3つ以上の外歯車を備える構成としてもよい。
・上記各実施形態では、偏心部22,23の軸線L1,L2が、軸部21の軸線L1周りに互いに略180°ずれるようにカムシャフト11を形成したが、これに限らず、少なくとも軸線L1周りに90°よりも大きくずれていれば、180°以下であってもよい。
In each of the above embodiments, the speed reducer 1 is configured to include the two external gears 12 and 13, but is not limited thereto, and may be configured to include three or more external gears.
In each of the above embodiments, the camshaft 11 is formed such that the axis lines L1 and L2 of the eccentric parts 22 and 23 are shifted from each other by about 180 ° around the axis line L1 of the shaft part 21. It may be 180 ° or less as long as it is displaced more than 90 ° around.
・上記各実施形態では、外歯車12,13を偏心部22,23の外周に相対回転可能に設けた揺動歯車とする形式の歯車装置に対して通孔歯車37,38及びピン歯車65を設ける構成を適用した。しかし、これに限らず、複数の内歯車を揺動歯車とする形式の歯車装置(例えば、特許文献2)に対して通孔歯車37,38及びピン歯車65を設ける構成を適用してもよい。   In each of the above embodiments, the through-gear gears 37 and 38 and the pin gear 65 are used for a gear device in which the external gears 12 and 13 are oscillating gears provided on the outer circumferences of the eccentric portions 22 and 23 so as to be relatively rotatable. The configuration to be applied was applied. However, the present invention is not limited thereto, and a configuration in which the through-hole gears 37 and 38 and the pin gear 65 are provided to a gear device (for example, Patent Document 2) in which a plurality of internal gears are oscillating gears may be applied. .
・上記各実施形態では、歯車装置を減速機1として用いたが、例えばキャリヤ15に回転を入力し、カムシャフト11から増速した回転を出力する増速機として用いてもよい。   In each of the above-described embodiments, the gear device is used as the speed reducer 1. However, for example, the gear device may be used as a speed increaser that inputs rotation to the carrier 15 and outputs increased rotation from the camshaft 11.
1…減速機(歯車装置)、11…カムシャフト(偏心部材)、12,13…外歯車(揺動歯車)、12a,13a…外歯、14…内歯車(基準歯車)、14a…内歯、15…キャリヤ、22,23…偏心部、35,36…ピン通孔、37,38…通孔歯車、37a,38a…通孔内歯、53…ピン部材、65…ピン歯車、65a…ピン外歯、L1〜L3…軸線、O1〜O3…中心。   DESCRIPTION OF SYMBOLS 1 ... Reduction gear (gear apparatus), 11 ... Cam shaft (eccentric member), 12, 13 ... External gear (oscillating gear), 12a, 13a ... External tooth, 14 ... Internal gear (reference gear), 14a ... Internal tooth , 15 ... carrier, 22, 23 ... eccentric part, 35, 36 ... pin through hole, 37, 38 ... through gear, 37a, 38a ... through tooth, 53 ... pin member, 65 ... pin gear, 65a ... pin External teeth, L1 to L3 ... axis, O1 to O3 ... center.

Claims (2)

  1. 基準軸線としての軸線を有し、前記基準軸線周りに回転可能であるとともに、前記基準軸線に対して所定量偏心した位置にそれぞれ軸線を有する複数の偏心部が設けられた偏心部材と、
    前記基準軸線と同軸上に配置された基準歯車と、
    前記各偏心部に設けられ、前記偏心部材の回転によって揺動しつつ前記基準歯車と噛合する揺動歯車と、
    前記基準軸線周りに回転可能であるとともに、周方向に並んで配置された複数のピン部材を有するキャリヤとを備え、
    前記各揺動歯車には、周方向に並んで配置され、前記ピン部材が挿入される複数のピン通孔が形成された歯車装置であって、
    前記各ピン通孔に固定され、複数の内歯を有する通孔歯車と、
    前記各ピン部材周りに該各ピン部材と相対回転可能に設けられ、前記各内歯の一部と噛合する複数の外歯を有するピン歯車とを備え、
    前記複数の偏心部は、前記複数の揺動歯車のうちの一と他の一とが前記基準軸線周りに90°よりも大きくずれて設けられたことを特徴とする歯車装置。
    An eccentric member having an axis as a reference axis, rotatable around the reference axis, and provided with a plurality of eccentric portions each having an axis at a position eccentric from the reference axis by a predetermined amount;
    A reference gear disposed coaxially with the reference axis;
    An oscillating gear that is provided at each of the eccentric parts and meshes with the reference gear while oscillating by the rotation of the eccentric member;
    A carrier having a plurality of pin members arranged around the reference axis and arranged side by side in the circumferential direction;
    Each of the oscillating gears is a gear device that is arranged side by side in the circumferential direction and has a plurality of pin through holes into which the pin members are inserted.
    A through-hole gear fixed to each pin through-hole and having a plurality of internal teeth;
    A pin gear having a plurality of external teeth provided around the pin members so as to be relatively rotatable with the pin members and meshing with a part of the internal teeth;
    The gear unit, wherein the plurality of eccentric portions are provided such that one of the plurality of oscillating gears and the other one are shifted from each other by more than 90 ° around the reference axis.
  2. 請求項1に記載の歯車装置において、
    前記キャリヤには、周方向に隣り合う前記複数のピン部材が径方向内側寄りと径方向外側寄りとに交互に設けられ、
    前記各揺動歯車には、周方向に隣り合う前記複数のピン通孔が前記ピン部材に応じて径方向内側寄りと径方向外側寄りとに交互に設けられたことを特徴とする歯車装置。
    The gear device according to claim 1, wherein
    In the carrier, the plurality of pin members adjacent in the circumferential direction are alternately provided on the radially inner side and the radially outer side,
    Each of the oscillating gears is provided with a plurality of pin through holes that are adjacent to each other in the circumferential direction alternately on the radially inner side and on the radially outer side according to the pin member.
JP2013267756A 2013-12-25 2013-12-25 Gear device Pending JP2015124791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013267756A JP2015124791A (en) 2013-12-25 2013-12-25 Gear device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013267756A JP2015124791A (en) 2013-12-25 2013-12-25 Gear device

Publications (1)

Publication Number Publication Date
JP2015124791A true JP2015124791A (en) 2015-07-06

Family

ID=53535647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013267756A Pending JP2015124791A (en) 2013-12-25 2013-12-25 Gear device

Country Status (1)

Country Link
JP (1) JP2015124791A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109027145A (en) * 2018-07-27 2018-12-18 中冶华天工程技术有限公司 Composite multiple Eccentric Gear-drive speed change gear
KR20200059994A (en) * 2018-11-22 2020-05-29 염영수 Complex rotating shaft cycloid reducer
KR20200059989A (en) * 2018-11-22 2020-05-29 염영수 None slip rotating shaft single cycloid reducer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109027145A (en) * 2018-07-27 2018-12-18 中冶华天工程技术有限公司 Composite multiple Eccentric Gear-drive speed change gear
KR20200059994A (en) * 2018-11-22 2020-05-29 염영수 Complex rotating shaft cycloid reducer
KR20200059989A (en) * 2018-11-22 2020-05-29 염영수 None slip rotating shaft single cycloid reducer
KR102150763B1 (en) * 2018-11-22 2020-09-01 염영수 Complex rotating shaft cycloid reducer
KR102154504B1 (en) * 2018-11-22 2020-09-10 염영수 None slip rotating shaft single cycloid reducer

Similar Documents

Publication Publication Date Title
JP5533194B2 (en) Transmission gear unit
KR101066233B1 (en) Reduction gear
JP2008267596A (en) Eccentric gear mechanism and method of transferring turning force thereby
JP2004286044A (en) Internal gear swing type inner mesh planetary gear
WO2010047189A1 (en) Gear transmitting device
JP2018059556A (en) Cycloid speed reducer reduced in backlash
US10190666B2 (en) Differential device
JP2015124791A (en) Gear device
CN107709830B (en) Transmission device
JP2017025971A (en) Reduction gear
JP2011231801A (en) Speed change gear
CN102022479B (en) Eccentric cycloid type speed reducing mechanism
JP3844618B2 (en) Manufacturing method of internal tooth rocking body of internal tooth rocking type intermeshing planetary gear device
JP2015124792A (en) Gear device
JP6369274B2 (en) Inscribed mesh planetary gear mechanism
JP2015175380A (en) Speed reducer and actuator
JP4331483B2 (en) Motor built-in roller
JP2006046424A (en) Gear type continuously variable transmission
JP2015209871A (en) Eccentric oscillation type gear device
JP2019194486A (en) Speed reducer
JP2009068573A (en) Eccentric rocking type gear device
JP4373597B2 (en) Swing intermeshing planetary gear mechanism and angle transmission error reduction method
JP2014228104A (en) Continuously variable transmission
JP2007232119A (en) Differential rocking type reduction gear
JP2016211644A (en) Speed reducer