JP2015122159A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2015122159A
JP2015122159A JP2013264190A JP2013264190A JP2015122159A JP 2015122159 A JP2015122159 A JP 2015122159A JP 2013264190 A JP2013264190 A JP 2013264190A JP 2013264190 A JP2013264190 A JP 2013264190A JP 2015122159 A JP2015122159 A JP 2015122159A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
particles
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013264190A
Other languages
Japanese (ja)
Other versions
JP6238060B2 (en
Inventor
高志 木下
Takashi Kinoshita
高志 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013264190A priority Critical patent/JP6238060B2/en
Publication of JP2015122159A publication Critical patent/JP2015122159A/en
Application granted granted Critical
Publication of JP6238060B2 publication Critical patent/JP6238060B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery arranged so that the occurrence of the unevenness in a salt concentration of a nonaqueous electrolyte can be suppressed.SOLUTION: A lithium ion secondary battery provided according to the present invention comprises: an electrode body including a positive electrode, a negative electrode and a separator; and a nonaqueous electrolyte. In the secondary battery, the negative electrode includes negative electrode active material particles. The negative electrode active material particles are composite particles formed by plating core particles with a metal. Further, the metal used for the metal plating is a metal which occludes no Li ion. In the composite particles, the percentage of metal plating is 11-35% based on a specific surface area.

Description

本発明はリチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery.

リチウムイオン二次電池は、軽量で高エネルギー密度が得られることから、例えば、車両駆動用の高出力電源として好ましく利用されている。上記リチウムイオン二次電池は典型的には、正極、負極およびセパレータを備える電極体と非水電解液とを含む構成を有する。この種の二次電池に関する従来技術を開示する文献として、例えば特許文献1が挙げられる。特許文献1には、上記二次電池の放電電力が上限値を超えないように該放電を制御する制御装置に関する技術文献であり、電解液中の塩濃度の偏りを考慮して、ハイレート充放電による劣化(いわゆるハイレート劣化)を抑制することが開示されている。   Lithium ion secondary batteries are preferably used as, for example, a high-output power source for driving a vehicle because they are lightweight and have a high energy density. The lithium ion secondary battery typically has a configuration including an electrode body including a positive electrode, a negative electrode, and a separator, and a non-aqueous electrolyte. As a document disclosing the prior art regarding this type of secondary battery, for example, Patent Document 1 is cited. Patent Document 1 is a technical document regarding a control device that controls the discharge so that the discharge power of the secondary battery does not exceed the upper limit value, and takes into account the uneven concentration of salt in the electrolyte solution, and high-rate charge / discharge It is disclosed that the deterioration due to the above (so-called high-rate deterioration) is suppressed.

特開2013−225397号公報JP 2013-225397 A

上記ハイレート劣化が発生する原因として、例えば次のようなことが考えられる。すなわち、ハイレート充放電を継続的に行うと、発熱による電解液の体積膨張や電極体の膨張によるポンプ効果等の影響で、電極体(特に負極)から電解液が排出される。その結果、電解液中の塩濃度にムラが生じる。この塩濃度ムラにより抵抗が上昇し、ハイレート劣化が発生していると考えられる。つまり、上記塩濃度ムラを抑制することができれば、ハイレート劣化を抑制する有効な手段となり得る。そこで、本発明者は鋭意検討したところ、上記塩濃度ムラの発生が電池の自己発熱(ジュール熱)に起因しており、特に、負極における発熱が上記塩濃度ムラの発生に大きく影響していることを知得した。さらに負極における電子抵抗を低減する手段を種々検討した結果、上記塩濃度ムラの発生を抑制し得る有効な手段を見出し、本発明を完成するに至った。   As the cause of the high rate deterioration, for example, the following may be considered. That is, when high-rate charge / discharge is continuously performed, the electrolyte is discharged from the electrode body (particularly the negative electrode) due to the effects of the volume expansion of the electrolyte due to heat generation and the pump effect due to the expansion of the electrode body. As a result, the salt concentration in the electrolytic solution is uneven. It is considered that the resistance increases due to this salt concentration unevenness and high-rate deterioration occurs. That is, if the salt concentration unevenness can be suppressed, it can be an effective means for suppressing high rate deterioration. Therefore, the present inventor has intensively studied, and as a result, the occurrence of the salt concentration unevenness is caused by the self-heating of the battery (Joule heat). I knew that. Furthermore, as a result of various studies on means for reducing the electronic resistance in the negative electrode, an effective means capable of suppressing the occurrence of the salt concentration unevenness has been found, and the present invention has been completed.

本発明の目的は、非水電解液の塩濃度ムラの発生を抑制し得るリチウムイオン二次電池を提供することである。   The objective of this invention is providing the lithium ion secondary battery which can suppress generation | occurrence | production of the salt concentration nonuniformity of a non-aqueous electrolyte.

上記目的を達成するため、本発明により、正極、負極およびセパレータを備えた電極体と、非水電解液と、を含むリチウムイオン二次電池が提供される。この二次電池において、前記負極は、負極活物質粒子を備える。また、前記負極活物質粒子は、コア粒子に対して金属めっき処理を施すことによって形成された複合粒子である。さらに、前記金属めっきに用いられる金属は、リチウムイオン非吸蔵性の金属である。そして、前記複合粒子における比表面積基準の金属めっき率は11%〜35%である。ここで、比表面積基準の金属めっき率は、めっき処理前のコア粒子の比表面積(BET比表面積。以下同じ。)をA[m/g]とし、めっき処理後の複合粒子の比表面積をB[m/g]としたとき、式:金属めっき率(%)=(A−B)/A×100;より求められる値である。
かかる構成によると、所定のめっき率で金属めっき処理が施された負極活物質粒子を用いることで、該活物質におけるLiイオンとの反応領域を良好に確保しつつ、負極の電子抵抗は有意に低減する。この抵抗低減によって電池の自己発熱が低く抑えられ、該自己発熱に起因する非水電解液の塩濃度ムラの発生が抑制される。
In order to achieve the above object, the present invention provides a lithium ion secondary battery comprising an electrode body including a positive electrode, a negative electrode, and a separator, and a non-aqueous electrolyte. In the secondary battery, the negative electrode includes negative electrode active material particles. The negative electrode active material particles are composite particles formed by performing metal plating on the core particles. Furthermore, the metal used for the metal plating is a lithium ion non-occlusion metal. And the metal plating rate on the basis of the specific surface area in the said composite particle is 11%-35%. Here, the metal plating rate based on the specific surface area is defined as A [m 2 / g], which is the specific surface area of the core particles before plating treatment (BET specific surface area; the same applies hereinafter), and the specific surface area of the composite particles after plating treatment. When B [m 2 / g], it is a value obtained from the formula: metal plating rate (%) = (A−B) / A × 100;
According to such a configuration, by using negative electrode active material particles that have been subjected to metal plating treatment at a predetermined plating rate, the electron resistance of the negative electrode is significantly increased while ensuring a good reaction region with Li ions in the active material. To reduce. Due to this reduction in resistance, the self-heating of the battery is kept low, and the occurrence of uneven salt concentration in the non-aqueous electrolyte due to the self-heating is suppressed.

また、この明細書によると、リチウムイオン二次電池用負極活物質が提供される。この活物質は、コア粒子に対して金属めっき処理を施すことによって形成された複合粒子である。また、前記金属めっきに用いられる金属は、Liイオン非吸蔵性の金属である。そして、前記複合粒子における比表面積基準の金属めっき率は11%〜35%である。   Moreover, according to this specification, the negative electrode active material for lithium ion secondary batteries is provided. This active material is composite particles formed by performing metal plating on the core particles. The metal used for the metal plating is a Li ion non-occlusion metal. And the metal plating rate on the basis of the specific surface area in the said composite particle is 11%-35%.

ここに開示されるリチウムイオン二次電池(以下「二次電池」と略す場合がある。)は、非水電解液の塩濃度ムラの発生が抑制されているので、ハイレートでの充放電に対する耐久性(ハイレートサイクル耐久性)に優れる。したがって、この特徴を活かして、ハイブリッド自動車(HV)やプラグインハイブリッド自動車(PHV)、電気自動車(EV)等のような車両の駆動電源として好適に利用され得る。本発明によると、ここに開示される二次電池(複数の電池が接続された組電池の形態であり得る。)を搭載した車両が提供される。   The lithium ion secondary battery disclosed herein (hereinafter sometimes abbreviated as “secondary battery”) suppresses the occurrence of uneven salt concentration in the non-aqueous electrolyte, and therefore is durable against charge / discharge at a high rate. Excellent (high-rate cycle durability). Therefore, taking advantage of this feature, it can be suitably used as a drive power source for vehicles such as hybrid vehicles (HV), plug-in hybrid vehicles (PHV), electric vehicles (EV) and the like. According to the present invention, there is provided a vehicle equipped with the secondary battery disclosed herein (which may be in the form of an assembled battery in which a plurality of batteries are connected).

一実施形態に係るリチウムイオン二次電池の模式断面図である。It is a schematic cross section of a lithium ion secondary battery according to an embodiment.

以下、リチウムイオン二次電池に係る好適な実施形態を説明する。なお、図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。   Hereinafter, preferred embodiments according to the lithium ion secondary battery will be described. It should be noted that the dimensional relationships (length, width, thickness, etc.) in the figure do not reflect actual dimensional relationships. Further, matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters for those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.

図1に示すように、二次電池100は、電池ケース10と、電池ケース10内に収容される捲回電極体20と、を備える。電池ケース10は上面に開口部12を有しており、この開口部12は、捲回電極体20を開口部12から電池ケース10内に収容した後、蓋体14によって封止される。電池ケース10内にはまた、非水電解液25が収容されている。蓋体14には、外部接続用の外部正極端子38と外部負極端子48とが設けられており、それら端子38,48の一部は蓋体14の表面側に突出している。また、外部正極端子38の一部は電池ケース10内部で内部正極端子37に接続されており、外部負極端子48の一部は電池ケース10内部で内部負極端子47に接続されている。これら内部端子37,47は、捲回電極体20を構成する正極30,負極40にそれぞれ接続されている。   As shown in FIG. 1, the secondary battery 100 includes a battery case 10 and a wound electrode body 20 accommodated in the battery case 10. The battery case 10 has an opening 12 on the upper surface, and the opening 12 is sealed by the lid 14 after the wound electrode body 20 is accommodated in the battery case 10 from the opening 12. A non-aqueous electrolyte solution 25 is also accommodated in the battery case 10. The lid body 14 is provided with an external positive terminal 38 and an external negative terminal 48 for external connection, and a part of the terminals 38 and 48 protrudes to the surface side of the lid body 14. A part of the external positive terminal 38 is connected to the internal positive terminal 37 inside the battery case 10, and a part of the external negative terminal 48 is connected to the internal negative terminal 47 inside the battery case 10. These internal terminals 37 and 47 are connected to the positive electrode 30 and the negative electrode 40 constituting the wound electrode body 20, respectively.

捲回電極体20は、長尺シート状の正極(正極シート)30と、長尺シート状の負極(負極シート)40と、を備える。正極シート30は、長尺状の正極集電体32とその少なくとも一方の表面(典型的には両面)に形成された正極活物質層34とを備える。負極シート40は、長尺状の負極集電体42とその少なくとも一方の表面(典型的には両面)に形成された負極活物質層44とを備える。捲回電極体20はまた、長尺シート状の2枚のセパレータ(セパレータシート)50A,50Bを備える。正極シート30および負極シート40は、2枚のセパレータシート50A,50Bを介して積層されている。該積層体は、長尺方向に捲回されることによって捲回体とされ、さらにこの捲回体を側面方向から押しつぶして拉げさせることによって扁平形状に成形されている。なお、電極体は捲回電極体に限定されない。電池の形状や使用目的に応じて、例えばラミネート型等、適切な形状、構成を適宜採用することができる。   The wound electrode body 20 includes a long sheet-like positive electrode (positive electrode sheet) 30 and a long sheet-like negative electrode (negative electrode sheet) 40. The positive electrode sheet 30 includes a long positive electrode current collector 32 and a positive electrode active material layer 34 formed on at least one surface (typically both surfaces) thereof. The negative electrode sheet 40 includes a long negative electrode current collector 42 and a negative electrode active material layer 44 formed on at least one surface (typically both surfaces) thereof. The wound electrode body 20 also includes two long sheet-like separators (separator sheets) 50A and 50B. The positive electrode sheet 30 and the negative electrode sheet 40 are laminated via two separator sheets 50A and 50B. The laminated body is formed into a wound body by being wound in the longitudinal direction, and is further formed into a flat shape by crushing the rolled body from the side surface direction and causing it to be ablated. The electrode body is not limited to a wound electrode body. Depending on the shape of the battery and the purpose of use, an appropriate shape and configuration, such as a laminate mold, can be employed as appropriate.

次に、二次電池を構成する各構成要素について説明する。二次電池の正極を構成する正極集電体としては、例えばアルミニウムまたはアルミニウムを主成分とする合金からなる箔状のものを用い得る。正極活物質層は、正極活物質の他、必要に応じて導電材、結着材(バインダ)等の添加材を含有し得る。   Next, each component constituting the secondary battery will be described. As the positive electrode current collector constituting the positive electrode of the secondary battery, for example, a foil-like material made of aluminum or an alloy containing aluminum as a main component can be used. In addition to the positive electrode active material, the positive electrode active material layer can contain additives such as a conductive material and a binder (binder) as necessary.

正極活物質は、特に限定されず、リチウムイオン二次電池に用いられる正極活物質の1種または2種以上を用い得る。例えば、スピネル構造または層状構造のリチウム遷移金属複合酸化物、ポリアニオン型(例えばオリビン型)のリチウム遷移金属化合物等を用い得る。好ましい一態様では、正極活物質として、Liおよび少なくとも1種の遷移金属元素(好ましくはNi、CoおよびMnのうちの少なくとも1種)を含むリチウム遷移金属複合酸化物が用いられる。具体例としては、LiNiO、LiCoO、LiNi1/3Co1/3Mn1/3等が挙げられる。正極活物質層に占める正極活物質の割合は凡そ70〜97重量%(例えば75〜95重量%)とすることが好ましい。 The positive electrode active material is not particularly limited, and one or more of the positive electrode active materials used for the lithium ion secondary battery can be used. For example, a lithium transition metal composite oxide having a spinel structure or a layered structure, a polyanion type (eg, olivine type) lithium transition metal compound, or the like can be used. In a preferred embodiment, a lithium transition metal composite oxide containing Li and at least one transition metal element (preferably at least one of Ni, Co, and Mn) is used as the positive electrode active material. Specific examples include LiNiO 2 , LiCoO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 and the like. The proportion of the positive electrode active material in the positive electrode active material layer is preferably about 70 to 97% by weight (for example, 75 to 95% by weight).

導電材としては、例えばアセチレンブラック(AB)等のカーボンブラックを好ましく用い得る。結着材としては各種のポリマー材料が挙げられる。例えば、ポリフッ化ビニリデン(PVdF)等のハロゲン化ビニル樹脂;カルボキシメチルセルロース(CMC)等のセルロース系ポリマー;スチレンブタジエンゴム(SBR)等のゴム類;等の1種または2種以上を用い得る。なお、上記結着材は、正極活物質層形成用組成物の増粘材その他の添加材として使用されてもよい。   As the conductive material, for example, carbon black such as acetylene black (AB) can be preferably used. Examples of the binder include various polymer materials. For example, one or more of a halogenated vinyl resin such as polyvinylidene fluoride (PVdF); a cellulose polymer such as carboxymethyl cellulose (CMC); a rubber such as styrene butadiene rubber (SBR); In addition, the said binder may be used as a thickener other additives of the composition for positive electrode active material layer forming.

正極集電体上への正極活物質層の目付量は、特に限定されず、良好な導電パスを確保する観点から、正極集電体の片面当たり例えば凡そ3〜45mg/cm(例えば12〜25mg/cm)とすることが好ましい。 The basis weight of the positive electrode active material layer on the positive electrode current collector is not particularly limited. From the viewpoint of securing a good conductive path, for example, about 3 to 45 mg / cm 2 (for example, 12 to 12 per side) of the positive electrode current collector. 25 mg / cm 2 ) is preferable.

負極を構成する負極集電体としては、例えば銅または銅を主成分とする合金からなる箔状のものを用い得る。負極集電体の形状は特に限定されず、例えばシート状、箔状、メッシュ状等の形態であり得る。   As the negative electrode current collector constituting the negative electrode, for example, a foil-like one made of copper or an alloy containing copper as a main component can be used. The shape of the negative electrode current collector is not particularly limited, and may be, for example, a sheet shape, a foil shape, a mesh shape, or the like.

負極活物質層は負極活物質粒子を備える。負極活物質粒子は、コア粒子に対して金属めっき処理を施すことによって形成された複合粒子である。換言すると、当該複合粒子は、コア粒子と該コア粒子の表面の一部を覆う金属めっき部とから構成されている。上記複合粒子において、比表面積基準の金属めっき率は11%〜35%の範囲内である。金属めっき率が11%以上であることによって、電子抵抗が有意に低下し、電池の自己発熱が低く抑えられ、該自己発熱に起因する非水電解液の塩濃度ムラの発生が抑制される。その結果、ハイレートサイクル耐久性が向上する。また、金属めっき率が35%以下であることによって、上記活物質におけるLiイオンとの反応領域を良好に確保し得る。金属めっき率は、15%以上(例えば18%以上、典型的には25%以上)が好ましく、34%以下(例えば32%以下、典型的には30%以下)が好ましい。   The negative electrode active material layer includes negative electrode active material particles. The negative electrode active material particles are composite particles formed by performing metal plating on the core particles. In other words, the composite particle is composed of a core particle and a metal plating part that covers a part of the surface of the core particle. In the composite particles, the metal plating rate based on the specific surface area is in the range of 11% to 35%. When the metal plating rate is 11% or more, the electronic resistance is significantly lowered, the self-heating of the battery is suppressed to a low level, and the occurrence of uneven salt concentration in the non-aqueous electrolyte due to the self-heating is suppressed. As a result, the high rate cycle durability is improved. Moreover, when the metal plating rate is 35% or less, a reaction region with Li ions in the active material can be secured satisfactorily. The metal plating rate is preferably 15% or more (for example, 18% or more, typically 25% or more), and preferably 34% or less (for example, 32% or less, typically 30% or less).

上記コア粒子としては、従来からリチウムイオン二次電池の負極活物質粒子として用いられる物質の1種または2種以上を使用し得る。そのような粒子として、例えばグラファイトカーボン(黒鉛)、アモルファスカーボン等の炭素材料(カーボン粒子)が挙げられる。少なくとも一部にグラファイト構造(層状構造)を含む粒子状の炭素材料が好ましく用いられる。なかでも天然黒鉛を主成分とする炭素材料の使用が好ましい。上記天然黒鉛は鱗片状の黒鉛を球形化したものであってもよい。また、黒鉛の表面にアモルファスカーボンがコートされた炭素質粉末を用いてもよい。その他、コア粒子として、チタン酸リチウム等の酸化物、ケイ素材料、スズ材料等の単体、合金、化合物、上記材料を併用した複合材料を用いることも可能である。コア粒子の比表面積は特に限定されないが、エネルギー密度や非水電解液含浸性等の観点から、1〜10m/g(例えば2〜5m/g、典型的には2.5〜4m/g)とすることが好ましい。また、コア粒子の粒径は、例えば1〜30μm(典型的には3〜20μm)程度とすることが適当である。なお、本明細書において「粒径」とは、一般的なレーザー回折・光散乱法に基づく粒度分布測定により測定した体積基準の粒度分布において、微粒子側からの累積50%に相当する粒径(D50粒径、メジアン径ともいう。)を指すものとする。 As said core particle, the 1 type (s) or 2 or more types of the substance conventionally used as a negative electrode active material particle of a lithium ion secondary battery can be used. Examples of such particles include carbon materials (carbon particles) such as graphite carbon (graphite) and amorphous carbon. A particulate carbon material containing a graphite structure (layered structure) at least partially is preferably used. Of these, the use of a carbon material mainly composed of natural graphite is preferred. The natural graphite may be obtained by spheroidizing flaky graphite. Alternatively, a carbonaceous powder having a graphite surface coated with amorphous carbon may be used. In addition, as core particles, oxides such as lithium titanate, silicon materials, simple substances such as tin materials, alloys, compounds, and composite materials using the above materials in combination can be used. Although the specific surface area of the core particles is not particularly limited, from the viewpoint of the energy density and the non-aqueous electrolyte impregnation, etc., 1 to 10 m 2 / g (e.g., 2 to 5 m 2 / g, typically 2.5~4M 2 / G). The particle size of the core particles is suitably about 1 to 30 μm (typically 3 to 20 μm), for example. In this specification, “particle size” means a particle size corresponding to 50% cumulative from the fine particle side in a volume-based particle size distribution measured by particle size distribution measurement based on a general laser diffraction / light scattering method. D 50 particle diameter, also referred to as median diameter).

金属めっきに用いられる金属(換言すると、金属めっき部を構成する金属)は、典型的にはLiイオン非吸蔵性の導電性物質である。めっき材料としてLiイオン吸蔵性の金属を用いた場合、Liイオン吸蔵時に金属めっき部が膨張し、めっきの脱離が発生する虞がある。Liイオン非吸蔵性の金属をめっき材料として用いることで、該金属のコア粒子からの脱離が防止される。また、上記金属は導電性物質であることから、電子抵抗を良好に低減し得る。Liイオン非吸蔵性の金属としては、NiやCu,Mn,Fe,Co,Zn,Ag,Au,In,周期表の4族、5族、6族に属する金属元素が挙げられる。なかでも、Ni、Cuが好ましく、Niがより好ましい。   A metal used for metal plating (in other words, a metal constituting the metal plating portion) is typically a Li ion non-occlusion conductive material. When a Li ion occlusion metal is used as the plating material, the metal plating portion expands during Li ion occlusion and there is a possibility that the detachment of the plating occurs. By using a Li ion non-occlusion metal as a plating material, detachment of the metal from the core particles is prevented. Moreover, since the said metal is an electroconductive substance, electronic resistance can be reduced favorably. Examples of Li ion non-occlusion metals include Ni, Cu, Mn, Fe, Co, Zn, Ag, Au, In, and metal elements belonging to Groups 4, 5, and 6 of the periodic table. Of these, Ni and Cu are preferable, and Ni is more preferable.

金属めっきの方法は特に限定されず、湿式めっき法、乾式めっき法のいずれも採用可能である。湿式めっき法としては、無電解めっき法、電気めっき法が挙げられる。乾式めっき法としては、真空蒸着法、スパッタリング法、CVD法、PVD法等が挙げられる。なかでも、湿式めっき法が好ましく、無電解めっき法がより好ましい。コア粒子として天然黒鉛等のカーボン粒子を採用する場合、無電解めっき法が特に好適である。上記方法の具体的な条件は、金属めっき率が所定の範囲となるように技術常識に基づいて適宜設定すればよい。   The method of metal plating is not particularly limited, and either a wet plating method or a dry plating method can be employed. Examples of the wet plating method include an electroless plating method and an electroplating method. Examples of the dry plating method include a vacuum deposition method, a sputtering method, a CVD method, and a PVD method. Of these, the wet plating method is preferable, and the electroless plating method is more preferable. When carbon particles such as natural graphite are employed as the core particles, the electroless plating method is particularly suitable. The specific conditions of the above method may be set as appropriate based on common technical knowledge so that the metal plating rate falls within a predetermined range.

ここに開示される技術の好ましい一態様として、無電解めっき法によるニッケルめっきについて説明する。この方法ではまず、硫酸ニッケル等のニッケル塩を含むめっき液を用意する。上記めっき液は、典型的には、例えば次亜リン酸ナトリウムやテトラヒドロホウ酸塩、ジメチルアミノボラン等の還元剤を含み得る。上記めっき液にめっき対象である粒子(コア粒子)を投入し、撹拌を行う。良好な金属膜を形成するため、塩化パラジウムへの浸漬等の活性化処理をコア粒子に対して事前に行っておくことが好ましい。めっき条件(めっき浴中におけるNi濃度や還元剤濃度、温度、撹拌時間、pHその他)は所望の金属めっき率となるよう適宜設定すればよい。例えば、めっき温度は凡そ60〜100℃の範囲で行うことが好ましい。めっき後、適宜洗浄や乾燥を行うことにより、金属めっき処理が施された複合粒子を得ることができる。   As a preferred embodiment of the technology disclosed herein, nickel plating by an electroless plating method will be described. In this method, first, a plating solution containing a nickel salt such as nickel sulfate is prepared. The plating solution may typically contain a reducing agent such as sodium hypophosphite, tetrahydroborate, dimethylaminoborane. The particles to be plated (core particles) are charged into the plating solution and stirred. In order to form a good metal film, it is preferable that an activation treatment such as immersion in palladium chloride is performed on the core particles in advance. The plating conditions (Ni concentration, reducing agent concentration, temperature, stirring time, pH, etc. in the plating bath) may be appropriately set so as to obtain a desired metal plating rate. For example, the plating temperature is preferably in the range of about 60 to 100 ° C. By appropriately washing and drying after plating, composite particles subjected to metal plating can be obtained.

上記複合粒子の比表面積は、電子抵抗低減やLiイオン反応領域確保等の観点から、0.5〜9m/g(例えば1〜4m/g、典型的には1.5〜3m/g)とすることが好ましい。 The specific surface area of the composite particles is 0.5 to 9 m 2 / g (for example, 1 to 4 m 2 / g, typically 1.5 to 3 m 2 / g) from the viewpoint of reducing electronic resistance and securing the Li ion reaction region. g) is preferable.

負極活物質層は、負極活物質粒子の他に、1種または2種以上の結着材や増粘材その他の添加材を必要に応じて含有し得る。結着材としては、例えば、正極活物質層に含有され得るものを好ましく用いることができる。負極活物質層に占める負極活物質粒子の割合は、凡そ90〜99重量%(典型的には97〜99重量%)とするのが適当である。また、負極活物質層に占める上記添加材の割合は、凡そ0.8〜10重量%(典型的には1〜3重量%)とすることが適当である。   The negative electrode active material layer may contain one or two or more binders, thickeners, and other additives as needed in addition to the negative electrode active material particles. As the binder, for example, a material that can be contained in the positive electrode active material layer can be preferably used. The proportion of the negative electrode active material particles in the negative electrode active material layer is suitably about 90 to 99% by weight (typically 97 to 99% by weight). The proportion of the additive in the negative electrode active material layer is suitably about 0.8 to 10% by weight (typically 1 to 3% by weight).

負極集電体上への負極活物質層の目付量は、特に限定されず、良好な導電パスを確保する観点から、負極集電体の片面当たり例えば2〜40mg/cm(例えば5〜14mg/cm)とすることが好ましい。負極活物質層の密度も特に限定されず、例えば1.0〜3.0g/cm(例えば1.2〜2.0g/cm)程度とすることが好ましい。 The basis weight of the negative electrode active material layer on the negative electrode current collector is not particularly limited. From the viewpoint of securing a good conductive path, for example, 2 to 40 mg / cm 2 (for example, 5 to 14 mg) per one side of the negative electrode current collector. / Cm 2 ). The density of the negative electrode active material layer is not particularly limited, and is preferably about 1.0 to 3.0 g / cm 3 (for example, 1.2 to 2.0 g / cm 3 ), for example.

正極と負極とを隔てるように配置されるセパレータは、正極活物質層と負極活物質層とを絶縁するとともに、電解液の移動を許容する部材であればよい。セパレータの好適例としては、多孔質ポリオレフィン系樹脂(典型的にはポリエチレン(PE)やポリプロピレン(PP))で構成されたものが挙げられる。セパレータには、アルミナ等の無機フィラーから構成された耐熱層が設けられていてもよい。なお、電解液に代えて、例えば上記電解液にポリマーが添加されたような固体状(ゲル状)電解質を使用する場合には、当該電解質自体がセパレータとして機能し得るため、セパレータが不要になることがあり得る。   The separator disposed so as to separate the positive electrode and the negative electrode may be a member that insulates the positive electrode active material layer and the negative electrode active material layer and allows the electrolyte to move. Preferable examples of the separator include those made of a porous polyolefin resin (typically polyethylene (PE) or polypropylene (PP)). The separator may be provided with a heat-resistant layer composed of an inorganic filler such as alumina. When a solid (gel-like) electrolyte in which a polymer is added to the electrolytic solution, for example, is used instead of the electrolytic solution, the separator itself is not necessary because the electrolyte itself can function as a separator. It can happen.

二次電池内に含まれる非水電解液は、少なくとも非水溶媒と支持塩とを含み得る。非水溶媒としては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等が挙げられる。これらは1種を単独でまたは2種以上を混合して用いることができる。支持塩としては、例えばLiPF、LiBF、LiClO、LiAsF、LiCFSO、LiCSO、LiN(CFSO、LiC(CFSO、LiI等のリチウム塩の1種または2種以上を用いることができる。なお、支持塩の濃度は特に限定されないが、凡そ0.1〜5mol/Lの濃度とすることができる。 The non-aqueous electrolyte contained in the secondary battery can include at least a non-aqueous solvent and a supporting salt. Examples of the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and the like. These can be used individually by 1 type or in mixture of 2 or more types. Examples of the supporting salt include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiI and the like. One or more of the lithium salts can be used. The concentration of the supporting salt is not particularly limited, but can be about 0.1 to 5 mol / L.

次に、本発明に関するいくつかの実施例を説明するが、本発明を実施例に示すものに限定することを意図したものではない。なお、以下の説明において「部」および「%」は、特に断りがない限り重量基準である。   Next, some examples relating to the present invention will be described, but the present invention is not intended to be limited to those shown in the examples. In the following description, “parts” and “%” are based on weight unless otherwise specified.

<負極活物質粒子の用意>
(負極活物質粒子A〜D)
表1に示す比表面積を有する天然黒鉛粉末を負極活物質粒子A〜Dとして使用した。
<Preparation of negative electrode active material particles>
(Negative electrode active material particles A to D)
Natural graphite powder having a specific surface area shown in Table 1 was used as negative electrode active material particles AD.

(負極活物質粒子A−NiP−1〜5、B−NiP−1〜5)
コア粒子として負極活物質粒子AまたはBを使用した。この活物質コア粒子を1M塩化パラジウム水溶液に一昼夜浸漬した後、濾過処理を施して回収した。このコア粒子を、常法により、還元剤として次亜リン酸ナトリウムを用いた無電解ニッケルめっき浴に供し、80℃で撹拌して、Ni−Pめっきが施された負極活物質粒子を得た。この負極活物質粒子は、コア粒子としての天然黒鉛粒子にNi−Pめっきが施された複合粒子である。なお、各負極活物質粒子における金属めっき率は、撹拌時間を変更することによって調整した。各負極活物質粒子の比表面積および金属めっき率を表1に示す。
(Negative electrode active material particles A-NiP-1 to 5, B-NiP-1 to 5)
Negative electrode active material particles A or B were used as core particles. The active material core particles were immersed in a 1M palladium chloride aqueous solution for a whole day and night, and then collected by filtration. The core particles were subjected to an electroless nickel plating bath using sodium hypophosphite as a reducing agent by a conventional method, and stirred at 80 ° C. to obtain negative electrode active material particles subjected to Ni-P plating. . The negative electrode active material particles are composite particles obtained by applying Ni-P plating to natural graphite particles as core particles. In addition, the metal plating rate in each negative electrode active material particle was adjusted by changing the stirring time. Table 1 shows the specific surface area and metal plating rate of each negative electrode active material particle.

(負極活物質粒子A−Sn−1〜4)
コア粒子として負極活物質粒子Aを使用した。このコア粒子を1M塩化パラジウム水溶液に一昼夜浸漬した後、濾過処理を施して回収した。このコア粒子を、常法により、無電解Cuめっき浴に供し80℃で撹拌してCuめっきを施した。次いで、回収した粒子を、常法により置換型Snめっき浴に浸漬させることでCuからSnへの置換を行い、Snめっきが施された負極活物質粒子を得た。この負極活物質粒子は、コア粒子としての天然黒鉛粒子にSnめっきが施された複合粒子である。なお、各負極活物質粒子における金属めっき率は、撹拌時間を変更することによって調整した。各負極活物質粒子の比表面積および金属めっき率を表1に示す。
(Negative electrode active material particles A-Sn-1 to 4)
Negative electrode active material particles A were used as core particles. The core particles were immersed in a 1M palladium chloride aqueous solution for a whole day and night, and then collected by filtration. The core particles were subjected to an electroless Cu plating bath and stirred at 80 ° C. to perform Cu plating by a conventional method. Next, the recovered particles were immersed in a substitutional Sn plating bath by a conventional method to perform substitution from Cu to Sn to obtain negative electrode active material particles subjected to Sn plating. The negative electrode active material particles are composite particles obtained by performing Sn plating on natural graphite particles as core particles. In addition, the metal plating rate in each negative electrode active material particle was adjusted by changing the stirring time. Table 1 shows the specific surface area and metal plating rate of each negative electrode active material particle.

(負極活物質A+NiP、B+NiP)
Ni:Pの比率が93:7のNiP粒子を用意した。このNiP粒子を0.6%の割合となるように負極活物質粒子A,Bにそれぞれ添加、混合することにより、NiP粒子が添加された負極活物質を得た。
(Negative electrode active material A + NiP, B + NiP)
NiP particles having a Ni: P ratio of 93: 7 were prepared. By adding and mixing the NiP particles to the negative electrode active material particles A and B so as to have a ratio of 0.6%, a negative electrode active material to which NiP particles were added was obtained.

<例1〜20>
[正極シートの作製]
正極活物質としてコバルト酸リチウムと、導電材としてABと、結着材としてPVdFとを、これらの材料の重量比が93:4:3となるようにN−ビニルピロリドンで混合して、ペースト状の組成物を調製した。この組成物を、長尺シート状のアルミニウム箔(厚さ20μm)の両面に均一に塗付し、乾燥後、圧縮することによって、正極シートを作製した。この正極シートにおける正極活物質層の片面当たりの目付量(固形分基準)は15mg/cm(固形分基準)であった。
<Examples 1-20>
[Preparation of positive electrode sheet]
Lithium cobaltate as a positive electrode active material, AB as a conductive material, and PVdF as a binder are mixed with N-vinylpyrrolidone so that the weight ratio of these materials is 93: 4: 3, and pasty A composition was prepared. This composition was uniformly applied to both sides of a long sheet-like aluminum foil (thickness 20 μm), dried, and then compressed to prepare a positive electrode sheet. The basis weight per one surface (solid content basis) of the positive electrode active material layer in this positive electrode sheet was 15 mg / cm 2 (solid content basis).

[負極シートの作製]
表1に示す負極活物質粒子と、結着材としてSBRと、増粘材としてCMCとを、これらの材料の重量比が98:1:1となるようにイオン交換水で混合して、ペースト状の組成物を調製した。この組成物を、長尺シート状の銅箔(厚さ10μm)の両面に均一に塗付し、乾燥後、圧縮することによって、各例に係る負極シートを作製した。この負極シートにおける負極活物質層の片面当たりの目付量(固形分基準)は8.5mg/cmであり、密度は1.3g/cmであった。
[Preparation of negative electrode sheet]
A paste prepared by mixing negative electrode active material particles shown in Table 1, SBR as a binder, and CMC as a thickener with ion-exchanged water so that the weight ratio of these materials is 98: 1: 1. A shaped composition was prepared. This composition was uniformly applied to both sides of a long sheet-like copper foil (thickness: 10 μm), dried, and then compressed to prepare negative electrode sheets according to each example. In this negative electrode sheet, the basis weight per unit surface (solid content basis) of the negative electrode active material layer was 8.5 mg / cm 2 , and the density was 1.3 g / cm 3 .

[角型リチウムイオン二次電池の作製]
作製した正極シートと、上記各例に係る負極シートとを、2枚の耐熱層付きセパレータシートが正極シートと負極シートの間に1枚づつ配置されるように積層し、この積層体を捲回することにより捲回体を作製した。そして、この捲回体を側面方向からプレスして拉げさせることにより、扁平形状の捲回電極体を作製した。セパレータシートは、耐熱層が正極シートと対向するように配置した。セパレータシートとしては、PEからなる長尺シート状の単層フィルム(厚さ:16μm)の片面にAl耐熱層(厚さ:3μm)が形成されたものを使用した。
上記捲回電極体につき、正負の電極集電体の端部にそれぞれ電極端子を接合し、非水電解液とともにアルミ製の角型電池ケースに収容した後、該電池ケースを密封した。非水電解液としては、ECとEMCとDECとを3:5:2の体積比で含む混合溶媒に、支持塩としてのLiPFを約1モル/Lの濃度で含有させたものを使用した。このようにして各例に係る角型リチウムイオン二次電池(理論容量:25Ah)を作製した。
[Production of prismatic lithium-ion secondary battery]
The produced positive electrode sheet and the negative electrode sheet according to each of the above examples were laminated so that two separator sheets with a heat-resistant layer were arranged one by one between the positive electrode sheet and the negative electrode sheet, and this laminate was wound. Thus, a wound body was produced. Then, the wound electrode body was pressed from the side surface direction and ablated to produce a flat wound electrode body. The separator sheet was disposed so that the heat-resistant layer faced the positive electrode sheet. As the separator sheet, a long sheet-like single layer film (thickness: 16 μm) made of PE having an Al 2 O 3 heat-resistant layer (thickness: 3 μm) formed on one side thereof was used.
For the wound electrode body, electrode terminals were joined to the ends of the positive and negative electrode current collectors, respectively, and housed in an aluminum prismatic battery case together with a non-aqueous electrolyte, and then the battery case was sealed. As the non-aqueous electrolyte, a mixed solvent containing EC, EMC, and DEC at a volume ratio of 3: 5: 2 and containing LiPF 6 as a supporting salt at a concentration of about 1 mol / L was used. . Thus, the prismatic lithium ion secondary battery (theoretical capacity: 25 Ah) according to each example was produced.

[ハイレートサイクル耐久性]
各例に係る二次電池のハイレートサイクル耐久性を、ハイレート充放電サイクルにおいて抵抗が120%に上昇した時のサイクル数をカウントすることによって評価した。具体的には、各例に係る二次電池に対し、0℃の温度条件下にて5Cで30秒間の充電を行い、SOC40%の充電状態に調整した。その後、1Cで放電し、放電開始から10秒後の電圧を測定し、初期IV抵抗値(mΩ)を求めた。同様の条件で電池をSOC40%に調整した後、上記と同様の充放電を1サイクルとして上記充放電を1000サイクル繰り返した。サイクル毎に上記初期IV抵抗値の測定と同様にしてIV抵抗値(mΩ)を測定し、式:
(サイクル後IV抵抗値)/(初期IV抵抗値)×100
;により、上記充放電サイクルの前後における抵抗増加率(%)を求め、抵抗増加率(%)が120%に達したときのサイクル数を記録した。結果を表1に示す。
[High-rate cycle durability]
The high-rate cycle durability of the secondary battery according to each example was evaluated by counting the number of cycles when the resistance increased to 120% in the high-rate charge / discharge cycle. Specifically, the secondary battery according to each example was charged at 5C for 30 seconds under a temperature condition of 0 ° C., and adjusted to a SOC 40% charge state. Thereafter, the battery was discharged at 1C, the voltage 10 seconds after the start of discharge was measured, and the initial IV resistance value (mΩ) was determined. After the battery was adjusted to 40% SOC under the same conditions, the above charge / discharge was repeated 1000 cycles with the same charge / discharge as described above as one cycle. In each cycle, the IV resistance value (mΩ) is measured in the same manner as the measurement of the initial IV resistance value.
(IV resistance after cycle) / (initial IV resistance) × 100
The resistance increase rate (%) before and after the charge / discharge cycle was determined, and the number of cycles when the resistance increase rate (%) reached 120% was recorded. The results are shown in Table 1.

[低温抵抗]
各例に係る二次電池につき、IV抵抗試験を行った。温度25℃の環境下で充電を行い、SOC60%の充電状態に調整した。その後、−15℃にて10Cの電流で10秒間のパルス放電を行い、放電開始から10秒後の電圧降下量からIV抵抗値(mΩ)を求めた。得られた値を例2のIV抵抗値(mΩ)を100とする相対値に換算して示した。この相対値では、値が大きいほど抵抗が大きいことを示す。結果を表1に示す。
[Low temperature resistance]
An IV resistance test was performed on the secondary battery according to each example. Charging was performed in an environment at a temperature of 25 ° C. to adjust the SOC to 60%. Thereafter, pulse discharge was performed for 10 seconds at a current of 10 C at −15 ° C., and the IV resistance value (mΩ) was determined from the amount of voltage drop 10 seconds after the start of discharge. The obtained value was converted into a relative value with the IV resistance value (mΩ) of Example 2 as 100. In this relative value, it shows that resistance is so large that a value is large. The results are shown in Table 1.

Figure 2015122159
Figure 2015122159

表1に示されるように、Liイオン非吸蔵性の金属(具体的にはNi)を用いて11%〜35%のめっき率となるように金属めっき処理を施した負極活物質粒子を使用した例6〜例8、例11〜例13では、上記金属めっき処理を施さなかった負極活物質粒子を用いた例1〜4や、金属めっき率が11%未満または35%超の負極活物質粒子を用いた例5,9,10,14と比べて、有意に低温抵抗が低減し、ハイレートサイクル耐久性が向上した。この結果から、負極活物質粒子において金属めっき率を11%〜35%の範囲とすることにより、電子抵抗が低減し、非水電解液の塩濃度ムラを抑制したことがわかる。一方、Liイオン吸蔵性の金属(具体的にはSn)によって金属めっき処理を施した負極活物質粒子を用いた例15〜18では、低温抵抗は改善する傾向が認められたものの、ハイレートサイクル耐久性は低下した。これは、ハイレートでの充放電においてSnが活物質から脱離したためと推定される。Liイオン非吸蔵性の金属を添加混合した負極活物質を用いた例19〜20では、低温抵抗およびハイレートサイクル耐久性を有意に改善することはできなかった。この方法では、金属粒子が均一に分散せず、電子抵抗を低減することができなかったと考えられる。   As shown in Table 1, negative electrode active material particles that were subjected to metal plating treatment using a Li ion non-occlusion metal (specifically, Ni) to a plating rate of 11% to 35% were used. In Examples 6 to 8 and Examples 11 to 13, Examples 1 to 4 using the negative electrode active material particles not subjected to the metal plating treatment, and negative electrode active material particles having a metal plating rate of less than 11% or more than 35% As compared with Examples 5, 9, 10, and 14 using the low temperature resistance, the low temperature resistance was significantly reduced and the high rate cycle durability was improved. From this result, it can be seen that by setting the metal plating rate in the range of 11% to 35% in the negative electrode active material particles, the electronic resistance was reduced and the salt concentration unevenness of the non-aqueous electrolyte was suppressed. On the other hand, in Examples 15 to 18 using the negative electrode active material particles subjected to metal plating with a Li ion storage metal (specifically, Sn), the low-temperature resistance tended to improve, but the high-rate cycle durability was observed. Sex declined. This is presumably because Sn was desorbed from the active material during charge / discharge at a high rate. In Examples 19 to 20 using the negative electrode active material to which a Li ion non-occlusion metal was added and mixed, the low temperature resistance and the high rate cycle durability could not be significantly improved. In this method, it is considered that the metal particles were not uniformly dispersed and the electronic resistance could not be reduced.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。ここに開示される発明には上述の具体例を様々に変形、変更したものが含まれ得る。   Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The invention disclosed herein may include various modifications and alterations of the specific examples described above.

20 電極体(捲回電極体)
25 非水電解液
30 正極
40 負極
50A、50B セパレータ
100 リチウムイオン二次電池
20 Electrode body (winding electrode body)
25 Nonaqueous electrolyte 30 Positive electrode 40 Negative electrode 50A, 50B Separator 100 Lithium ion secondary battery

Claims (1)

正極、負極およびセパレータを備えた電極体と、非水電解液と、を含み、
前記負極は、負極活物質粒子を備えており、
前記負極活物質粒子は、コア粒子に対して金属めっき処理を施すことによって形成された複合粒子であり、
前記金属めっきに用いられる金属は、リチウムイオン非吸蔵性の金属であり、
前記複合粒子における比表面積基準の金属めっき率は11%〜35%である、リチウムイオン二次電池。
An electrode body including a positive electrode, a negative electrode, and a separator, and a non-aqueous electrolyte,
The negative electrode includes negative electrode active material particles,
The negative electrode active material particles are composite particles formed by performing metal plating on the core particles,
The metal used for the metal plating is a lithium ion non-occlusion metal,
The lithium ion secondary battery in which the metal plating rate based on the specific surface area of the composite particles is 11% to 35%.
JP2013264190A 2013-12-20 2013-12-20 Lithium ion secondary battery Active JP6238060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013264190A JP6238060B2 (en) 2013-12-20 2013-12-20 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013264190A JP6238060B2 (en) 2013-12-20 2013-12-20 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2015122159A true JP2015122159A (en) 2015-07-02
JP6238060B2 JP6238060B2 (en) 2017-11-29

Family

ID=53533628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013264190A Active JP6238060B2 (en) 2013-12-20 2013-12-20 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6238060B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180084944A (en) 2015-11-20 2018-07-25 가부시키가이샤 알박 Method of forming carbon film
KR20180131497A (en) 2017-05-31 2018-12-10 가부시키가이샤 알박 Sputtering apparatus
KR20200102484A (en) 2017-12-27 2020-08-31 가부시키가이샤 알박 Sputtering method and sputtering device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185753A (en) * 1997-12-18 1999-07-09 Fuji Photo Film Co Ltd Nonaqueous electrolyte lithium secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185753A (en) * 1997-12-18 1999-07-09 Fuji Photo Film Co Ltd Nonaqueous electrolyte lithium secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180084944A (en) 2015-11-20 2018-07-25 가부시키가이샤 알박 Method of forming carbon film
KR20180131497A (en) 2017-05-31 2018-12-10 가부시키가이샤 알박 Sputtering apparatus
KR20200102484A (en) 2017-12-27 2020-08-31 가부시키가이샤 알박 Sputtering method and sputtering device

Also Published As

Publication number Publication date
JP6238060B2 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
JP6596405B2 (en) Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary battery
JP6474548B2 (en) Non-aqueous electrolyte secondary battery negative electrode material and method for producing negative electrode active material particles
JP6181590B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5158452B2 (en) Positive electrode for lithium secondary battery and its utilization
JP6128393B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the battery
JP6960081B2 (en) Positive electrode active material for lithium ion secondary batteries
JP6448462B2 (en) Anode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing anode active material for nonaqueous electrolyte secondary battery
JP6086241B2 (en) Nonaqueous electrolyte secondary battery
JP2013089346A (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP2015011969A (en) Nonaqueous electrolyte secondary battery, and method for manufacturing the same
JP6810896B2 (en) Negative electrode for lithium ion secondary battery, method for manufacturing lithium ion secondary battery and lithium ion secondary battery
JP6238060B2 (en) Lithium ion secondary battery
JP2012238461A (en) Secondary battery, and method for manufacturing the same
WO2021132208A1 (en) Electricity storage element
JP6902206B2 (en) Lithium ion secondary battery
JP7452420B2 (en) Energy storage element
JP5754383B2 (en) Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery using the negative electrode active material, and method for producing negative electrode active material for lithium ion secondary battery
JP2021061110A (en) Lithium ion power storage element and method for manufacturing the same
JP2013161689A (en) Secondary battery electrode and manufacturing method of the same
JP6493766B2 (en) Lithium ion secondary battery
JP2013118104A (en) Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery including the negative electrode
JP5811857B2 (en) Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery using the negative electrode active material, and method for producing negative electrode active material for lithium ion secondary battery
JP2015197991A (en) negative electrode material
JP2015210891A (en) Nonaqueous electrolyte secondary battery
JP7484884B2 (en) Nonaqueous electrolyte storage element and storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171018

R151 Written notification of patent or utility model registration

Ref document number: 6238060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250