JP2015119977A - Deodorization/inactivation method - Google Patents

Deodorization/inactivation method Download PDF

Info

Publication number
JP2015119977A
JP2015119977A JP2015002446A JP2015002446A JP2015119977A JP 2015119977 A JP2015119977 A JP 2015119977A JP 2015002446 A JP2015002446 A JP 2015002446A JP 2015002446 A JP2015002446 A JP 2015002446A JP 2015119977 A JP2015119977 A JP 2015119977A
Authority
JP
Japan
Prior art keywords
water
fine particle
charged fine
particle water
deodorization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015002446A
Other languages
Japanese (ja)
Inventor
須田 洋
Hiroshi Suda
洋 須田
山内 俊幸
Toshiyuki Yamauchi
俊幸 山内
成正 岩本
Narimasa Iwamoto
成正 岩本
松井 康訓
Yasunori Matsui
康訓 松井
茂和 小豆沢
Shigekazu Azusawa
茂和 小豆沢
中田 隆行
Takayuki Nakada
隆行 中田
田中 友規
Tomonori Tanaka
友規 田中
山口 友宏
Tomohiro Yamaguchi
友宏 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43421591&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2015119977(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015002446A priority Critical patent/JP2015119977A/en
Publication of JP2015119977A publication Critical patent/JP2015119977A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a deodorization/inactivation method by charged fine particle water having high adsorptivity, long in a service life in the air and capable of effectively obtaining deodorization/sterilization actions.SOLUTION: Provided is a deodorization/inactivation method for the air in a space performing both of: a step of subjecting water electrostatic atomization to produce charged fine particle water and releasing the charged fine particle water inside a chamber, thus reacting the same with an odorous component to perform deodorization; and a step of inactivating any of a pollen antigen, mold, bacteria and virus.

Description

本発明は、脱臭・不活性化方法に関するものである。   The present invention relates to a deodorizing / inactivating method.

水に電荷を付与することによって生成される帯電微粒子水は、吸着性が高く、レイリー分裂によって微細化されやすい。このような帯電微粒子水の特徴を生かし、特開平13−170514号公報には、ナノメータサイズの粒子径の帯電微粒子水を効率のよい集塵剤として利用した例が示されている。   Charged fine particle water generated by imparting electric charge to water has high adsorptivity and is easily refined by Rayleigh splitting. Taking advantage of such characteristics of charged fine particle water, Japanese Patent Application Laid-Open No. 13-170514 shows an example in which charged fine particle water having a particle size of nanometer size is used as an efficient dust collecting agent.

一方、活性化学種であるラジカルは、化学的に反応性が高くて悪臭成分の分解無臭化などに効果的であることが知られている。しかし、活性であるが故に、非常に不安定な物質で空気中では短寿命であり、臭気成分と反応する前に消滅してしまうために十分な効果を得ることが困難であった。   On the other hand, radicals, which are active chemical species, are known to be highly chemically reactive and effective in decomposing and deodorizing malodorous components. However, since it is active, it is a very unstable substance, has a short life in the air, and disappears before reacting with the odor component, so that it is difficult to obtain a sufficient effect.

また、帯電微粒子水を用いることによって空気浄化などを試みたものが特開昭53−141167号公報、特開平13−96190号公報などに示されている。ただし、これらの例での微粒子水は、その粒子径がミクロンサイズであり、これ故に空間への拡散性が不十分で、離れたところにある室内の壁面や、衣服、カーテンなどに付着した臭気成分を十分に消臭することができなかった。   Further, attempts to purify air by using charged fine particle water are disclosed in Japanese Patent Laid-Open Nos. 53-141167 and 13-96190. However, the fine particle water in these examples has a micron particle size, and therefore is not sufficiently diffusible into the space, and the odor adhering to indoor wall surfaces, clothing, curtains, etc. The components could not be sufficiently deodorized.

特開平13−170514号公報Japanese Patent Laid-Open No. 13-170514 特開昭53−141167号公報JP-A-53-141167 特開平13−96190号公報Japanese Patent Laid-Open No. 13-96190

本発明は上記の従来の問題点に鑑みて発明したものであって、高い吸着性を備えるとともにラジカルを含んでいるにもかかわらず空気中での寿命が長く、吸着性及びラジカルを含有することによる作用をきわめて有効に得ることができる帯電微粒子水を発生させることによる脱臭・不活性化方法を提供することを課題とするものである。   The present invention has been invented in view of the above-mentioned conventional problems, and has a high adsorptivity and has a long life in air despite containing radicals, and contains adsorptivity and radicals. It is an object of the present invention to provide a deodorizing / inactivating method by generating charged fine particle water that can effectively obtain the action of the above.

上記課題を解決するために、本発明に係る脱臭・不活性化方法は、水を静電霧化して帯電微粒子水を生成し、前記帯電微粒子水を室内に放出することにより、前記帯電微粒子水を臭気成分と反応させて脱臭することと、前記帯電微粒子水で花粉抗原、黴、菌、ウイルスのいずれかを不活性化することの、両方を行うことを特徴とする。   In order to solve the above-described problems, the deodorizing / inactivating method according to the present invention is to generate charged fine particle water by electrostatic atomization of water, and discharge the charged fine particle water into a room. It is characterized by performing both deodorization by reacting with odor components and inactivating any of pollen antigens, wrinkles, fungi, and viruses with the charged fine particle water.

化学的に不安定なラジカルをナノメータサイズに微細化された帯電微粒子水に含有させることによって、長寿命化したものであり、このために空間内への拡散を大量に行うことができて、室内の壁面や、衣服、カーテンなどに付着した悪臭成分などに効果的に作用し、無臭化することができる。   By incorporating chemically unstable radicals into charged fine particle water that has been refined to nanometer size, the life has been extended. It effectively acts on malodorous components adhering to the wall surface of clothes, clothes, curtains, etc.

ナノメータサイズの粒子径とするのは、これより大きいミクロンオーダーのサイズになると、移動度が小さく、空間内への拡散が困難となるためであるが、粒子径が3〜100nm(電気移動度が0.1〜0.001cm2/vsec)が望ましい。粒子径が3nm未満になると、帯電微粒子水の寿命が極端に短くなってしまって室内の隅々まで帯電微粒子水がいきわたることが困難となるからであり、特に障害物などがある場合は尚更困難となる。また、粒子径が100nmを超えると後述の人の肌の保湿性能の確保が困難となる。100nm程度といわれている肌の角質層の隙間からの帯電微粒子水の浸透が困難となるからである。   The reason why the particle size is nanometer size is that when the size is larger than the micron order, the mobility is small and the diffusion into the space becomes difficult, but the particle size is 3 to 100 nm (the electric mobility is small). 0.1 to 0.001 cm2 / vsec) is desirable. If the particle diameter is less than 3 nm, the life of the charged fine particle water becomes extremely short, and it becomes difficult for the charged fine particle water to reach every corner of the room, especially when there are obstacles. It becomes. On the other hand, when the particle diameter exceeds 100 nm, it becomes difficult to ensure the moisture retention performance of the human skin described later. This is because it becomes difficult for the charged fine particle water to penetrate from the gap between the stratum corneum of the skin, which is said to be about 100 nm.

含有するラジカルは、ヒドロキシルラジカル、スーパーオキサイド、一酸化窒素ラジカル、酸素ラジカルのうちのいずれか1つ以上のものであるために、反応性も高く、また大気中の酸素や水蒸気から生成されるためにラジカル原材料を用いる必要もなくて、ラジカル含有状態の確保が容易となる。   Because the radicals contained are any one or more of hydroxyl radicals, superoxides, nitric oxide radicals, and oxygen radicals, they are highly reactive and are generated from atmospheric oxygen and water vapor. Therefore, it is not necessary to use a radical raw material, and it is easy to secure a radical-containing state.

ちなみに、粒子径がμmオーダーのものであると、含まれる活性種が殆どなく、また帯電微粒子水が有する電荷量もきわめて低く、また、対向電極を接地し、水に負電圧を加えた場合には、マイナスイオン効果も期待することができるものの、その効果は低く、実際上、湿度調整に有効なだけである。   By the way, when the particle size is of the order of μm, there are almost no active species contained, the amount of charged fine particle water is very low, and when the counter electrode is grounded and a negative voltage is applied to the water Although the negative ion effect can be expected, the effect is low, and it is practically effective only for humidity adjustment.

しかも上記ラジカルに加えて酸性化学種を含有しているために、代表的な悪臭成分であるアミン化合物などのアルカリ性臭気成分に対しより効果的に作用させることができる。   Moreover, since it contains an acidic chemical species in addition to the radicals, it can more effectively act on alkaline odor components such as amine compounds that are typical malodorous components.

加えるに、上記酸性化学種は、窒素酸化物や有機酸であることから、大気中の窒素や二酸化炭素から生成することができるために、原材料を添加することなく、酸性化学種含有状態の確保が容易となる。   In addition, since the acidic chemical species are nitrogen oxides or organic acids, they can be generated from nitrogen or carbon dioxide in the atmosphere, so that the content of acidic chemical species is ensured without adding raw materials. Becomes easy.

硝酸、硝酸水和物、亜硝酸、亜硝酸水和物であってもよい。これらである場合、帯電微粒子水を弱酸性に保つことが可能で、アルカリ性臭気成分への作用だけでなく、人の肌への浸透、保湿への効果を併せ持つことになる。   It may be nitric acid, nitric acid hydrate, nitrous acid, or nitrous acid hydrate. In these cases, the charged fine particle water can be kept weakly acidic, and not only acts on alkaline odor components, but also has effects on penetration into human skin and moisturizing.

帯電微粒子水の帯電極性は、特に限定はされないが、マイナスに帯電させることによって、脱臭作用だけでなく、いわゆるマイナスイオン効果として知られるストレス低減効果をも併せ持つことができる上に、ナノメータサイズのものであるために、通常のマイナスイオンよりも高い効果を得ることができる。   The charging polarity of the charged fine particle water is not particularly limited, but it can have not only a deodorizing action but also a stress reducing effect known as a so-called negative ion effect by charging it negatively, and it is of nanometer size. Therefore, an effect higher than that of normal negative ions can be obtained.

なお、ラジカルを含有する上に粒子径がナノメータサイズであると、空気中に放出された時の寿命が長くて拡散性が大であり、これ故に室内の壁面、カーテン、衣類などの付着臭を効率良く且つ効果的に消臭することができる。また、細菌、カビ菌、ウイルスなどに対しても効果的に作用し、不活性化することができる。また、人肌に対して高い保湿性能を得ることができる。   In addition, when it contains radicals and the particle size is nanometer size, it has a long life when released into the air and is highly diffusive. It is possible to deodorize efficiently and effectively. In addition, it can effectively act against bacteria, fungi, viruses, etc., and can be inactivated. Moreover, high moisture retention performance can be obtained for human skin.

ナノメータサイズの粒子径に霧化された帯電微粒子水は、どのような装置で生成してもよいが、静電霧化装置、殊に水を搬送する多孔質体で構成された搬送体と、搬送体で搬送される水に電圧を印加する水印加電極と、上記搬送体と対向する位置に配された対抗電極と、上記水印加電極と対向電極との間に高電圧を印加する電圧印加部とからなり、搬送体で保持される水と対向電極との間に印加される高電圧によって水を帯電微粒子水とするものを好適に用いることができる。   The charged fine particle water atomized to a nanometer size particle diameter may be generated by any device, but is an electrostatic atomization device, in particular, a transport body composed of a porous body that transports water, A water application electrode for applying a voltage to the water transported by the transport body, a counter electrode disposed at a position facing the transport body, and a voltage application for applying a high voltage between the water application electrode and the counter electrode It is possible to suitably use water that is charged fine particle water by a high voltage applied between the water held by the carrier and the counter electrode.

このような静電霧化装置において、多孔質体の材質、形状、対向電極極との距離、印加する電圧値、電流値などを制御することで、目的とするナノメータサイズの粒子径の粒子を容易に得ることができる。   In such an electrostatic atomizer, by controlling the material and shape of the porous body, the distance from the counter electrode electrode, the voltage value to be applied, the current value, etc., particles having a target nanometer size particle diameter can be obtained. Can be easily obtained.

なお、得られた帯電微粒子の粒子径は、微分型電気移動度計測器(DMA/ワイコフ興業製)を用いて電気移動度として計測し、ストークスの法則に基づいて粒子径に換算している。このようにすることで粒子径の正確な測定が可能となるとともに、上記の静電霧化装置の構造や運転条件に粒子径の制御についてのフィードバックが可能となり、目的とするナノメータサイズの粒径を得ることがはじめて可能となった。   In addition, the particle diameter of the obtained charged fine particles is measured as electric mobility using a differential electric mobility measuring instrument (manufactured by DMA / Wyckoff Kogyo), and converted to the particle diameter based on Stokes' law. This makes it possible to accurately measure the particle size, and allows feedback on the control of the particle size to the structure and operating conditions of the electrostatic atomizer described above. Became possible for the first time.

帯電微粒子の粒子径が3nm以上である場合、3nm未満である時よりもその寿命は明らかに長寿命化される。アルミ容器内に帯電微粒子を取り込んで粒子数の変化を微分型電気移動度計測器(DMA)を用いて測定することで、20nm付近の粒子径をもつ帯電微粒子水イと1nmの粒子径の帯電微粒子水ロの粒子数とその寿命を求めた結果を図1に示す。なお、20nmの粒子径の微粒子水イは、後述の実施例で示した静電霧化装置を用いて生成し、1nmの粒子径の微粒子水ロはコロナ放電電極を用いて生成した。   When the particle diameter of the charged fine particles is 3 nm or more, the lifetime is obviously longer than when the charged fine particles are less than 3 nm. By charging charged fine particles into an aluminum container and measuring the change in the number of particles using a differential electric mobility meter (DMA), charged fine particles having a particle size of about 20 nm and charging with a particle size of 1 nm are obtained. FIG. 1 shows the results of obtaining the number of particles and the life of the particles. The fine particle water having a particle diameter of 20 nm was generated using the electrostatic atomizer shown in the examples described later, and the fine particle water having a particle diameter of 1 nm was generated using a corona discharge electrode.

帯電微粒子水は、室内に放出する場合、特に限定するものではないが、0.1g/hr以上の量を噴霧することが望ましい。なお、この量は静電霧化装置内のタンク水の減少量で測定した。   The charged fine particle water is not particularly limited when discharged into the room, but it is desirable to spray an amount of 0.1 g / hr or more. This amount was measured as the amount of tank water in the electrostatic atomizer.

帯電微粒子水に含まれるラジカルの分析は、帯電微粒子をスピントラップ剤が含まれた溶液に導入することによってラジカルを安定化した後、電子スピン共鳴スペクトル法(ESR)によって測定することができる。   Analysis of radicals contained in the charged fine particle water can be measured by electron spin resonance spectroscopy (ESR) after stabilizing the radicals by introducing charged fine particles into a solution containing a spin trap agent.

また帯電微粒子水に含まれる酸性化学種に関しては、帯電微粒子を純水中に導入した後、イオンクロマトグラフィーによって測定することができる。   The acidic chemical species contained in the charged fine particle water can be measured by ion chromatography after introducing the charged fine particles into pure water.

また、帯電微粒子水内の酸性化学種に関しては、その他に、ドリフトチューブ型イオン移動度/質量分析装置によっても計測することができる。   In addition, the acidic chemical species in the charged fine particle water can also be measured by a drift tube type ion mobility / mass spectrometer.

本発明は、水を静電霧化して、活性種を含む帯電微粒子水を発生させることができる。このようにして発生させた活性種を含む帯電微粒子水は、脱臭や、花粉抗原、黴、菌、ウイルスの何れかの不活性化効果がある。   The present invention can generate charged fine particle water containing active species by electrostatic atomization of water. The charged fine particle water containing the active species thus generated has a deodorizing effect or an inactivating effect of any of pollen antigens, wrinkles, fungi, and viruses.

(a)(b)本発明の静電霧化装置における帯電微粒子水の特性を示す説明図である。(A) (b) It is explanatory drawing which shows the characteristic of the charged fine particle water in the electrostatic atomizer of this invention. 同上の静電霧化装置の一例の分解斜視図である。It is a disassembled perspective view of an example of an electrostatic atomizer same as the above. 同上の動作の説明図であるIt is explanatory drawing of operation | movement same as the above. 同上の他例の動作説明図である。It is operation | movement explanatory drawing of the other example same as the above. 同上の静電霧化装置で生成した帯電微粒子水の粒子径分布計測結果を示す特性図である。It is a characteristic view which shows the particle diameter distribution measurement result of the charged fine particle water produced | generated with the electrostatic atomizer same as the above. 同上の静電霧化装置で生成した帯電微粒子水中のラジカルの電子スペクトル(ESR)チャートである。It is an electron spectrum (ESR) chart of the radical in the charged fine particle water produced | generated with the electrostatic atomizer same as the above. (a)は同上の静電霧化装置で生成した帯電微粒子水中の質量スペクトルチャート、(b)は分子量と化学式とイオン数との説明図である。(a) is a mass spectrum chart in charged fine particle water generated by the electrostatic atomizer described above, and (b) is an explanatory diagram of molecular weight, chemical formula and number of ions. 同上の耐電微粒子水によるチャンバー内のアセトアルデヒド分解性能測定結果を示す特性図である。It is a characteristic view which shows the acetaldehyde decomposition | disassembly performance measurement result in the chamber by the electrical resistant fine particle water same as the above. 同上の帯電微粒子水による杉花粉抗原のELISA試験による不活性評価結果の特性図である。It is a characteristic view of the inactivation evaluation result by the ELISA test of the cedar pollen antigen by the same charged fine particle water. 同上の帯電微粒子水による冷水負荷後の肌角質層の導電率の特性図である。It is a characteristic view of the electrical conductivity of a skin stratum corneum after the cold water load by the charged fine particle water same as the above. 同上の帯電微粒子水による冷水負荷後の手指温度の特性図である。It is a characteristic view of finger temperature after the cold water load by the charged fine particle water same as the above.

以下、本発明を添付図面に示す実施形態に基づいて説明すると、図2は帯電微粒子水を生成するための静電霧化装置の一例を示すもので、水溜め部1と、下端を水溜め部1内の水に浸している複数本の多孔質体からなる棒状の搬送体2と、これら搬送体2の保持及び水に対する電圧の印加のための水印加電極4と、絶縁体からなる保持部6によって保持されているとともに上記複数本の搬送体2の先端部と対向する対向部を備えている対向電極3と、上記水印加電極4と対向電極3との間に高電圧を印加する電圧印加部5とからなるもので、対向電極3と水印加電極4は共にカーボンのような導電材を混入した合成樹脂やSUSのような金属で形成されている。   Hereinafter, the present invention will be described based on an embodiment shown in the accompanying drawings. FIG. 2 shows an example of an electrostatic atomizer for generating charged fine particle water. A rod-shaped transport body 2 made of a plurality of porous bodies immersed in water in the section 1, a water application electrode 4 for holding the transport body 2 and applying a voltage to water, and a holding made of an insulator A high voltage is applied between the counter electrode 3 that is held by the unit 6 and has a counter part facing the tip of the plurality of transport bodies 2, and the water application electrode 4 and the counter electrode 3. The counter electrode 3 and the water application electrode 4 are both made of a synthetic resin mixed with a conductive material such as carbon or a metal such as SUS.

また、上記搬送体2は多孔質体で形成されてその上端が針状に尖った針状霧化部となっているもので、複数本、図示例では6本の搬送体2が水印加電極4に取り付けられている。これら搬送体2は水印加電極4の中央5を中心とする同心円上に等間隔で配置されて、上部が水印加電極4よりも上方に突出し、下部は下方に突出して上記水溜め部1内に入れられた水と接触する。   The transport body 2 is formed of a porous body and has a needle-like atomizing portion with an upper end pointed like a needle. A plurality of transport bodies 2 in the example shown in the drawing are water application electrodes. 4 is attached. These transport bodies 2 are arranged at equal intervals on a concentric circle centered on the center 5 of the water application electrode 4, the upper part projects upward from the water application electrode 4, and the lower part projects downward to form the inside of the water reservoir 1. Contact with water.

対向電極3は、中央に開口部を有するとともに、この開口部の縁が上方から見た時、前記複数本の搬送体2の上端の針状霧化部を中心とする複数の同一径の円弧Rを他の円弧で滑らかにつないだものとなっている。対向電極3を接地し、水印加電極4に電圧印加部5を接続して高電圧を印加するとともに、多孔質体で形成されている搬送体2が毛細管現象で水を吸い上げている時、搬送体2の上端の針状霧化部が印加電極4側の実質的な電極として機能すると同時に、対向電極3の上記円弧Rが実質的な電極として機能するものである。電圧印加部5としては、700〜1200V/mmの電界強度を与えることができるものが好ましい。   The counter electrode 3 has an opening at the center, and when the edge of the opening is viewed from above, a plurality of arcs having the same diameter centered on the needle-like atomizing portions at the upper ends of the plurality of transport bodies 2 R is smoothly connected with other arcs. When the counter electrode 3 is grounded, the voltage application unit 5 is connected to the water application electrode 4 and a high voltage is applied, and the carrier 2 formed of a porous body sucks water by capillary action, The needle-like atomization part at the upper end of the body 2 functions as a substantial electrode on the application electrode 4 side, and the arc R of the counter electrode 3 functions as a substantial electrode. As the voltage application part 5, what can give the electric field strength of 700-1200 V / mm is preferable.

そして、上記搬送体2は上述のように毛細管現象で水を先端にまで運ぶことができる多孔質体で形成されているのであるが、ここでは気孔率が10〜60%、粒子径が1〜100μm、先端針状部の断面形状がφ0.5mm以下の多孔質セラミックを用いているとともに、対向電極3が接地され且つ水印加電極4にマイナスの電圧が印加される場合、使用する水のpH値でマイナスに帯電する等電位点を有する材料からなるものを使用している。なお、水のpH値が7であるならば、シリカを主成分とするものを好適に用いることができる。   And the said conveyance body 2 is formed with the porous body which can carry water to a front-end | tip by capillarity as mentioned above, Here, the porosity is 10 to 60%, and the particle diameter is 1 to 1. When a porous ceramic having a cross-sectional shape of 100 μm and a tip needle-like portion of φ0.5 mm or less is used, the counter electrode 3 is grounded, and a negative voltage is applied to the water application electrode 4, the pH of the water to be used A material made of a material having an equipotential point that is negatively charged in value is used. In addition, if the pH value of water is 7, what has a silica as a main component can be used suitably.

このような材質を選択しているのは次の理由による。すなわち、霧化させる水が例えば水道水、地下水、電解水、pH調整水、ミネラルウォーター、ビタミンCやアミノ酸等の有用成分が入った水、アロマオイルや芳香剤や消臭剤等が添加されている水等に、Ca,Mg等のミネラル成分が入った水である時、毛細管現象で搬送体の先端部まで引き上げられた時、空気中のCOと反応し、搬送体の先端部にCaCO,MgO等として析出付着して静電霧化が起こり難くなってしまうが、使用する水のpH値でマイナスに帯電する等電位点を有する材料からなるものを使用した場合、水印加電極4にマイナスの電圧を印加した状態で水と多孔質セラミックである搬送体2とが接触した時、シラノール基の乖離によって搬送体2が図3に示すようにマイナスに帯電し、対向電極方向が図中の上方向である時、多孔質セラミックである搬送体2中の毛細管内の水は静電ポテンシャルの分布(ゼータ電位を図中Zで示す)を持つものとなって電気二重層が形成され、図中イで示す方向のいわゆる電気浸透流が発生するものであり、Ca,Mg等の陽イオンは電位の低い水印加電極4の方に向かう。つまり、水は搬送体2内を毛細管現象で対向電極3方向に引き上げられるが、水が含んでいるCa,Mg等の陽イオンは対向電極3側に向かわないために、搬送体2の先端で空気中のCOと反応し、搬送体の先端部にCaCO,MgO等として析出付着するという事態を招くことがないものである。図中Sは電気浸透流の流速がゼロになる面(滑り面)を示している。 The reason why such a material is selected is as follows. That is, for example, tap water, ground water, electrolyzed water, pH-adjusted water, mineral water, water containing useful components such as vitamin C and amino acids, aroma oil, fragrance, deodorant, etc. are added as the water to be atomized. When water that contains mineral components such as Ca, Mg, etc., when it is pulled up to the tip of the carrier by capillary action, it reacts with CO 2 in the air, and CaCO at the tip of the carrier 3. Electrostatic atomization is difficult to occur due to deposition and adhesion as MgO or the like, but when a material made of a material having an equipotential point that is negatively charged at the pH value of the water used is used, the water application electrode 4 When a negative voltage is applied to the water and the carrier 2, which is a porous ceramic, comes into contact with the carrier 2, the carrier 2 is negatively charged as shown in FIG. Inside The water in the capillary tube in the carrier 2 which is a porous ceramic has an electrostatic potential distribution (the zeta potential is indicated by Z in the figure), and an electric double layer is formed in the figure. A so-called electroosmotic flow in the direction indicated by A is generated, and cations such as Ca and Mg are directed toward the water application electrode 4 having a low potential. That is, water is pulled up in the transport body 2 in the direction of the counter electrode 3 by capillarity, but the cations such as Ca and Mg contained in the water do not go to the counter electrode 3 side. It does not cause a situation in which it reacts with CO 2 in the air and precipitates and adheres as CaCO 3 , MgO or the like to the tip of the carrier. In the figure, S indicates a surface (sliding surface) where the flow velocity of the electroosmotic flow becomes zero.

対向電極3が接地され且つ水印加電極4にプラスの電圧が印加される場合には、使用する水のpH値でプラスに帯電する等電位点を有する材料からなる多孔質セラミックを搬送体2に使用する。なお、水のpH値が7であるならば、アルミナを主成分とするものを好適に用いることができる。この場合、図4に示すように、電位の高い水印加電極4方向に流れる電気浸透流の陰イオンの流れに伴ってCa,Mg等の陽イオンも水印加電極4の方に向かう。従って、この場合においても、Ca,Mg等の陽イオンは対向電極3側に向かわないために、搬送体2の先端で空気中のCOと反応し、搬送体の先端部にCaCO,MgO等として析出付着するという事態を招くことがないものである。 When the counter electrode 3 is grounded and a positive voltage is applied to the water application electrode 4, a porous ceramic made of a material having an equipotential point that is positively charged with the pH value of the water used is applied to the carrier 2. use. In addition, if the pH value of water is 7, what has an alumina as a main component can be used suitably. In this case, as shown in FIG. 4, cations such as Ca and Mg also move toward the water application electrode 4 along with the flow of anions of the electroosmotic flow flowing in the direction of the water application electrode 4 having a high potential. Therefore, in this case as well, since cations such as Ca and Mg do not go to the counter electrode 3 side, they react with CO 2 in the air at the tip of the carrier 2 and CaCO 3 , MgO at the tip of the carrier. As a result, it does not cause a situation of deposition and adhesion.

いずれにせよ、水溜め部1内の水に搬送体2を接触させて毛細管現象で水を吸い上げさせ、さらに対向電極3を接地するとともに水印加電極4に電圧印加部5を接続して、水印加電極4に電圧を印加した時、この電圧が搬送体2の針状霧化部に位置する水にレイリー分裂を起こさせることができる高電圧であれば、搬送体2の上端の針状霧化部において水はレイリー分裂を起こして霧化する。静電霧化がなされるわけであり、この時、静電霧化で生じるミストは、電界強度が700〜1200V/mmである時、3〜100nmの粒子径を有するナノメータサイズのものとなるとともに、ラジカル(ヒドロキシラジカル、スーパーオキサイド等)を持ち、且つ強い電荷量を持ったものとなる。   In any case, the carrier 2 is brought into contact with the water in the water reservoir 1 to suck up the water by capillary action, and the counter electrode 3 is grounded and the voltage application unit 5 is connected to the water application electrode 4 to When a voltage is applied to the additive electrode 4, if this voltage is a high voltage that can cause Rayleigh splitting in the water located in the needle-like atomization portion of the carrier 2, the needle-like mist on the upper end of the carrier 2 In the conversion section, water undergoes Rayleigh splitting and atomizes. At this time, when the electric field strength is 700 to 1200 V / mm, the mist generated by electrostatic atomization is of nanometer size having a particle diameter of 3 to 100 nm. , Having radicals (hydroxy radical, superoxide, etc.) and having a strong charge.

ところで、700〜1200V/mmの電界強度を与えた時、粒子径が3〜20nmのミストと粒子径が30〜50nmのミストが多く発生するが、電界強度を高くすると、粒子径が小さくなる方向にシフトすることが観察でき、また電界強度900V/mmで16〜20nmの粒子径を持つミストを多く発生させた場合に、上記の各効果が特に有効に現れた。   By the way, when an electric field strength of 700 to 1200 V / mm is applied, a mist with a particle size of 3 to 20 nm and a mist with a particle size of 30 to 50 nm are often generated. The above effects were particularly effective when a large amount of mist having a particle diameter of 16 to 20 nm at an electric field strength of 900 V / mm was generated.

ちなみに搬送体2としては、前述のように、気孔率が10〜60%、粒子径が1〜100μm、先端針状部の先端断面形状がφ0.5mm以下の多孔質セラミックを用いると、粒子径が揃ったミストを発生させることができ、特に気孔率が40%、粒子径が1〜3μm、針状霧化部の先端断面形状がφ0.25mmの時に900V/mmの電界強度を与えた時、16〜20nmの粒子径を持つミストを多く発生させることができた。   Incidentally, as described above, when the porous body having a porosity of 10 to 60%, a particle diameter of 1 to 100 μm, and a tip cross-sectional shape of the tip needle-like portion of φ0.5 mm or less is used as the carrier 2, When the electric field strength of 900 V / mm is given when the porosity is 40%, the particle diameter is 1 to 3 μm, and the tip cross-sectional shape of the needle-like atomization part is φ0.25 mm A large amount of mist having a particle diameter of 16 to 20 nm could be generated.

なお、搬送体2は多孔質セラミックからなるものに限定されるものではなく、たとえばフェルトなどを用いてもよい。ただし、粒子径が揃ったミストを発生させるという点では多孔質セラミックが有利である。   In addition, the conveyance body 2 is not limited to what consists of porous ceramics, For example, felt etc. may be used. However, porous ceramic is advantageous in that it generates mist having a uniform particle size.

そして、このようなナノメータサイズの帯電微粒子水は、脱臭、花粉が持つ花粉症を引き起こす物質の不活性化、空気中のウイルスや菌の不活性化、空気中の黴の除去及び抗黴効果といった作用を有することが確認できた。   And such nanometer-sized charged fine particle water can be used for deodorization, inactivation of pollen-causing substances, inactivation of viruses and fungi in the air, removal of soot in the air, and antifungal effect. It was confirmed to have an action.

すなわち、水印加電極4が負電極となるようにした状態で上記の静電霧化装置によって得られた帯電微粒子水が、微分型電気移動度計測器による測定で図5に示す粒径分布で示されるもの、つまり20nm付近をピークとして、10〜30nmに分布を持つものであり、また、生成される帯電微粒子水の量が水溜め部1内の水の減少量による測定で0.5g/hrであり、帯電微粒子水中のラジカルの電子スピンスペクトル法による測定チャートが図6に示されるもの(図中Aはラジカルの検出ピーク、Bは標準物質である酸化マンガンのピーク)であり、さらに帯電微粒子水中のドリフトチューブ型イオン移動度/質量分析装置で測定された各種イオンの分析結果が図7に示すものである時、この帯電微粒子水を用いて確認することができた効果について、以下に記す。なお、図6から明らかなように、この帯電微粒子水はラジカルを含有する上に、図7から明らかなように、大気中の窒素や二酸化炭素から生成されたと考えられる窒素酸化物や有機酸といった酸性種を多く含有したものとなっている。   That is, the charged fine particle water obtained by the above electrostatic atomizer in a state where the water application electrode 4 is a negative electrode has a particle size distribution shown in FIG. 5 as measured by a differential electric mobility meter. In other words, it has a distribution in the range of 10 to 30 nm with a peak at around 20 nm, and the amount of charged fine particle water produced is 0.5 g / in as measured by the amount of water decrease in the water reservoir 1. The measurement chart of the radicals in the charged fine particle water by the electron spin spectrum method is shown in FIG. 6 (in the figure, A is a radical detection peak, B is a peak of manganese oxide which is a standard substance), When the analysis results of various ions measured with a drift tube type ion mobility / mass spectrometer in fine particle water are as shown in FIG. 7, this charged fine particle water can be used to confirm. For effect, described below. As is clear from FIG. 6, the charged fine particle water contains radicals and, as is clear from FIG. 7, such as nitrogen oxides and organic acids considered to be generated from nitrogen and carbon dioxide in the atmosphere. It contains a lot of acidic species.

まず、3Lチャンバー内における10ppmのアセトアルデヒドを上記帯電微粒子水で1時間処理すると、60%の減少が確認された。その測定結果を図8に示す。図中αが上記帯電微粒子水で処理した場合、βが粒子径1nmの帯電微粒子水で処理した場合を、γが何も処理しなかった場合である。   First, when 10 ppm of acetaldehyde in a 3 L chamber was treated with the charged fine particle water for 1 hour, a reduction of 60% was confirmed. The measurement results are shown in FIG. In the figure, α is treated with the charged fine particle water, β is treated with charged fine particle water having a particle diameter of 1 nm, and γ is not treated at all.

このような、脱臭効果は、臭気ガスが帯電微粒子中のラジカルとの化学反応で無臭化されることでなされるものであると考えられる。下記はラジカルとアセトアルデヒドをはじめとする各種臭気との脱臭反応式である。・OHはヒドロキシラジカルを示す。   Such a deodorizing effect is considered to be achieved by the odor gas being non-brominated by a chemical reaction with radicals in the charged fine particles. The following is a deodorization reaction formula of radicals and various odors including acetaldehyde. * OH represents a hydroxy radical.

アセトアルデヒド CHCHO+6・OH+O→2CO+5H
アンモニア 2NH+6・OH→N+6H
酢酸 CHCOOH+4・OH+O→2CO+4H
メタンガス CH+4・OH+O→CO+H
一酸化炭素 CO+2・OH→CO+H
一酸化窒素 2NO+4・OH→N2+2O+2H
ホルムアルデヒド HCHO+4・OH→CO+3H
また、上記帯電微粒子水に黴菌を曝したところ、黴残存率は60分後には0%となる結果を得ることができた。OHラジカルが黴の菌糸を分解するために抗黴効果を得られるものと考えられる。
Acetaldehyde CH 3 CHO + 6 · OH + O 2 → 2CO 2 + 5H 2
Ammonia 2NH 3 + 6 · OH → N 2 + 6H 2
Acetic acid CH 3 COOH + 4 · OH + O 2 → 2CO 2 + 4H 2
Methane gas CH 4 + 4 · OH + O 2 → CO 2 + H 2
Carbon monoxide CO + 2 · OH → CO 2 + H 2
Nitric oxide 2NO + 4 · OH → N2 + 2O 2 + 2H 2
Formaldehyde HCHO + 4 · OH → CO 2 + 3H 2
Further, when the koji mold was exposed to the above charged fine particle water, the result that the koji residual rate became 0% after 60 minutes could be obtained. It is thought that the anti-wrinkle effect can be obtained because the OH radical decomposes the mycelium of the cocoon.

また、上記の帯電微粒子水に杉花粉から抽出した抗原Cry j1,Cry j2を曝露させてELISA試験を行ったところ、図9に示すように、抗原量が初期状態(blank)から半減するという結果を得ることができた。   Further, when the ELISA test was carried out by exposing the antigens Cry j1 and Cry j2 extracted from cedar pollen to the above charged fine particle water, as shown in FIG. 9, the result was that the antigen amount was halved from the initial state (blank). Could get.

また、上記静電霧化装置から上記帯電微粒子水が内部に供給される円筒容器(φ55×200mm)内に一端開口から噴霧器にてウイルス溶液を噴霧し、他端開口からウイルスをインピンジャーで回収してプラーク法により抗ウイルス効果を確認したところ、回収溶液中のプラーク数はウイルスを単にマイナスイオンに曝した場合よりも少なくなる結果を得ることができた。   In addition, the virus solution is sprayed with a sprayer from one end opening into a cylindrical container (φ55 × 200 mm) into which the charged fine particle water is supplied from the electrostatic atomizer, and the virus is collected with an impinger from the other end opening. When the antiviral effect was confirmed by the plaque method, it was found that the number of plaques in the recovered solution was smaller than that obtained when the virus was simply exposed to negative ions.

また、大腸菌O−157を上記帯電微粒子水に曝露させたところ、30分後には不活性化率が100%となる結果を得ることができた。これは帯電微粒子水中の活性種が菌体表面のタンパクを変成し、菌体の増殖を抑制するためと考えられる。   Further, when E. coli O-157 was exposed to the charged fine particle water, a result that the inactivation rate became 100% after 30 minutes could be obtained. This is presumably because the active species in the charged fine particle water denatures the protein on the surface of the cells and suppresses the growth of the cells.

さらに、肌への保湿性に関して、肌に直接微粒子水を暴露した後の肌の含水量を評価したところ、図10にホで示すように、ブランクの場合(図中ヘ)よりも保湿時間が長くなったことが確認された。   Furthermore, regarding the moisture retention on the skin, the moisture content of the skin after directly exposing fine water to the skin was evaluated. As shown in FIG. It was confirmed that it became longer.

また、マイナスの電荷を持つ帯電微粒子水において、冷水後の体温上昇試験を行ったところ、図11にトで示すように、通常の粒子径1nmのマイナスイオンの場合(チ)よりも体温上昇速度の向上が確認された。図中ヌは帯電微粒子水を含まない場合である。   Further, in a charged fine particle water having a negative charge, a body temperature increase test after cold water was conducted. As shown in FIG. 11, the rate of increase in body temperature was higher than that in the case of a normal ion having a particle diameter of 1 nm (h). Improvement was confirmed. In the figure, “nu” represents a case where charged fine particle water is not included.

酸性種として、硝酸、硝酸水和物、亜硝酸、亜硝酸水和物の少なくとも1つ以上を含有させるようにしてもよい。これらを含有させた場合、帯電微粒子水は弱酸性を保つことになり、アルカリ性臭気成分への作用だけでなく、人の肌への浸透や保湿の点で有意な効果を有するものとなる。   As the acidic species, at least one of nitric acid, nitric acid hydrate, nitrous acid, and nitrous acid hydrate may be contained. When these are contained, the charged fine particle water maintains weak acidity, and has not only an effect on the alkaline odor component but also a significant effect in terms of penetration into human skin and moisture retention.

なお、粒子径が3nmより小さい場合及び粒子径が50nmを超える場合、上記のような抗原の不活性化といった作用はあまり得ることができなかった。また粒子径が3〜50nmというきわめて小さい帯電微粒子水は、空気中の湿度調整という点に関して殆ど影響を与えることはない。   In addition, when the particle diameter was smaller than 3 nm and when the particle diameter exceeded 50 nm, the effect of inactivating the antigen as described above could not be obtained so much. In addition, the extremely small charged fine particle water having a particle diameter of 3 to 50 nm has little influence on the adjustment of humidity in the air.

Claims (1)

水を静電霧化して帯電微粒子水を生成し、前記帯電微粒子水を室内に放出することにより、前記帯電微粒子水を臭気成分と反応させて脱臭することと、前記帯電微粒子水で花粉抗原、黴、菌、ウイルスのいずれかを不活性化することの、両方を行うことを特徴とする脱臭・不活性化方法。   Water is electrostatically atomized to produce charged fine particle water, and the charged fine particle water is discharged into the room to react the charged fine particle water with an odor component to deodorize the pollen antigen with the charged fine particle water, A deodorizing / inactivating method characterized by performing both inactivation of any one of sputum, fungus, and virus.
JP2015002446A 2003-08-05 2015-01-08 Deodorization/inactivation method Pending JP2015119977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015002446A JP2015119977A (en) 2003-08-05 2015-01-08 Deodorization/inactivation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003286960 2003-08-05
JP2003286960 2003-08-05
JP2015002446A JP2015119977A (en) 2003-08-05 2015-01-08 Deodorization/inactivation method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013046205A Division JP5891427B2 (en) 2003-08-05 2013-03-08 Method for producing charged fine particle water and electrostatic atomizer

Publications (1)

Publication Number Publication Date
JP2015119977A true JP2015119977A (en) 2015-07-02

Family

ID=43421591

Family Applications (11)

Application Number Title Priority Date Filing Date
JP2010179295A Expired - Lifetime JP5054809B2 (en) 2003-08-05 2010-08-10 Method for generating charged fine particle water and electrostatic atomizer
JP2010179293A Pending JP2010284541A (en) 2003-08-05 2010-08-10 Deodorization method by charged fine particle water and electrostatic atomizer
JP2010179294A Expired - Lifetime JP4877410B2 (en) 2003-08-05 2010-08-10 Deactivation method and deactivation apparatus with charged fine particle water
JP2010179292A Expired - Lifetime JP4948631B2 (en) 2003-08-05 2010-08-10 Moisturizing method and apparatus using charged fine particle water
JP2012126103A Pending JP2012213771A (en) 2003-08-05 2012-06-01 Electrostatic atomizer
JP2013046206A Expired - Lifetime JP5261627B1 (en) 2003-08-05 2013-03-08 Methane decomposition method and electrostatic atomizer
JP2013046205A Expired - Lifetime JP5891427B2 (en) 2003-08-05 2013-03-08 Method for producing charged fine particle water and electrostatic atomizer
JP2013265484A Expired - Lifetime JP5861112B2 (en) 2003-08-05 2013-12-24 Electrostatic atomizer
JP2014053550A Expired - Lifetime JP5764752B2 (en) 2003-08-05 2014-03-17 Decomposition method of odor component by charged fine particle water and odor component decomposition apparatus
JP2014078488A Expired - Lifetime JP5877387B2 (en) 2003-08-05 2014-04-07 Electrostatic atomizer
JP2015002446A Pending JP2015119977A (en) 2003-08-05 2015-01-08 Deodorization/inactivation method

Family Applications Before (10)

Application Number Title Priority Date Filing Date
JP2010179295A Expired - Lifetime JP5054809B2 (en) 2003-08-05 2010-08-10 Method for generating charged fine particle water and electrostatic atomizer
JP2010179293A Pending JP2010284541A (en) 2003-08-05 2010-08-10 Deodorization method by charged fine particle water and electrostatic atomizer
JP2010179294A Expired - Lifetime JP4877410B2 (en) 2003-08-05 2010-08-10 Deactivation method and deactivation apparatus with charged fine particle water
JP2010179292A Expired - Lifetime JP4948631B2 (en) 2003-08-05 2010-08-10 Moisturizing method and apparatus using charged fine particle water
JP2012126103A Pending JP2012213771A (en) 2003-08-05 2012-06-01 Electrostatic atomizer
JP2013046206A Expired - Lifetime JP5261627B1 (en) 2003-08-05 2013-03-08 Methane decomposition method and electrostatic atomizer
JP2013046205A Expired - Lifetime JP5891427B2 (en) 2003-08-05 2013-03-08 Method for producing charged fine particle water and electrostatic atomizer
JP2013265484A Expired - Lifetime JP5861112B2 (en) 2003-08-05 2013-12-24 Electrostatic atomizer
JP2014053550A Expired - Lifetime JP5764752B2 (en) 2003-08-05 2014-03-17 Decomposition method of odor component by charged fine particle water and odor component decomposition apparatus
JP2014078488A Expired - Lifetime JP5877387B2 (en) 2003-08-05 2014-04-07 Electrostatic atomizer

Country Status (1)

Country Link
JP (11) JP5054809B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166385A1 (en) * 2020-02-21 2021-08-26 パナソニックIpマネジメント株式会社 Composition for electrostatic spraying and electrostatic spraying device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5054809B2 (en) * 2003-08-05 2012-10-24 パナソニック株式会社 Method for generating charged fine particle water and electrostatic atomizer
JP2014014644A (en) 2012-06-13 2014-01-30 Sharp Corp Moisturizer, electrical equipment equipped with the same, and moisturizing method
JP6463390B2 (en) * 2017-02-02 2019-01-30 シャープ株式会社 Moisturizing device and control method of moisturizing device
JP2021007420A (en) * 2017-09-28 2021-01-28 パナソニックIpマネジメント株式会社 Functional mist generator
WO2019163389A1 (en) * 2018-02-22 2019-08-29 パナソニックIpマネジメント株式会社 Electrostatic spraying apparatus
US11850617B2 (en) 2018-04-06 2023-12-26 Panasonic Intellectual Property Management Co., Ltd. Electrostatic atomizing apparatus and electrostatic atomizing method
EP3626621B1 (en) 2018-09-21 2021-07-07 Panasonic Intellectual Property Management Co., Ltd. Electrostatic atomizing apparatus and electrostatic atomizing method
JP2021159411A (en) * 2020-03-31 2021-10-11 東洋製罐グループホールディングス株式会社 Deodorization method and deodorization device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000014265A (en) * 1998-07-01 2000-01-18 Purio:Kk Method for increasing productivity of animal through environmental improvement of barn using mist of finely divided water
JP2000051330A (en) * 1998-08-06 2000-02-22 Shinko Shoji Kk Method and device for sterilizing and deodorizing barn
JP2001149460A (en) * 1999-11-25 2001-06-05 Amano Corp Dust collecting, deodorizing, and sterilizing device
JP2001286546A (en) * 2000-04-07 2001-10-16 Ricoh Elemex Corp Deodorant sprayer

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5434541A (en) * 1977-08-23 1979-03-14 Daikin Ind Ltd Humidifier for air-conditioning
EP0020049B1 (en) * 1979-05-22 1983-03-02 Secretary of State for Industry in Her Britannic Majesty's Gov. of the United Kingdom of Great Britain and Northern Ireland Apparatus and method for the electrostatic dispersion of liquids
JPH0647350B2 (en) * 1984-03-13 1994-06-22 三菱自動車工業株式会社 Continuously variable transmission for automobiles
JP2587298B2 (en) * 1989-10-30 1997-03-05 オーベクス 株式会社 Liquid vaporizer
US5196171A (en) * 1991-03-11 1993-03-23 In-Vironmental Integrity, Inc. Electrostatic vapor/aerosol/air ion generator
JPH07135945A (en) * 1993-11-15 1995-05-30 Jiokuto:Kk Device for maintaining freshness of food
GB9406171D0 (en) * 1994-03-29 1994-05-18 Electrosols Ltd Dispensing device
JPH11155540A (en) * 1997-11-26 1999-06-15 Sanden Corp Food storage chamber
JP2001096190A (en) * 1999-09-28 2001-04-10 Ricoh Elemex Corp Air cleaner
JP3898421B2 (en) * 2000-06-28 2007-03-28 三菱電機株式会社 Electric washing machine
JP2002203657A (en) * 2000-12-27 2002-07-19 Daikin Ind Ltd Ion generator
JP2003017297A (en) * 2001-07-04 2003-01-17 Daikin Ind Ltd Discharge device and plasma reactor
JP2003159116A (en) * 2001-09-13 2003-06-03 Matsushita Electric Works Ltd Skin care device
JP5149473B2 (en) * 2001-09-14 2013-02-20 パナソニック株式会社 Deodorization device
JP4608207B2 (en) * 2003-08-05 2011-01-12 パナソニック電工株式会社 Moisturizing method and electrostatic atomizer using charged fine particle water
JP5054809B2 (en) * 2003-08-05 2012-10-24 パナソニック株式会社 Method for generating charged fine particle water and electrostatic atomizer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000014265A (en) * 1998-07-01 2000-01-18 Purio:Kk Method for increasing productivity of animal through environmental improvement of barn using mist of finely divided water
JP2000051330A (en) * 1998-08-06 2000-02-22 Shinko Shoji Kk Method and device for sterilizing and deodorizing barn
JP2001149460A (en) * 1999-11-25 2001-06-05 Amano Corp Dust collecting, deodorizing, and sterilizing device
JP2001286546A (en) * 2000-04-07 2001-10-16 Ricoh Elemex Corp Deodorant sprayer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166385A1 (en) * 2020-02-21 2021-08-26 パナソニックIpマネジメント株式会社 Composition for electrostatic spraying and electrostatic spraying device

Also Published As

Publication number Publication date
JP2010284541A (en) 2010-12-24
JP2012213771A (en) 2012-11-08
JP2010274126A (en) 2010-12-09
JP2011005267A (en) 2011-01-13
JP2013176756A (en) 2013-09-09
JP2014131765A (en) 2014-07-17
JP2011005266A (en) 2011-01-13
JP2014193464A (en) 2014-10-09
JP5764752B2 (en) 2015-08-19
JP5877387B2 (en) 2016-03-08
JP5861112B2 (en) 2016-02-16
JP5261627B1 (en) 2013-08-14
JP5054809B2 (en) 2012-10-24
JP2013173136A (en) 2013-09-05
JP4948631B2 (en) 2012-06-06
JP4877410B2 (en) 2012-02-15
JP5891427B2 (en) 2016-03-23
JP2014097497A (en) 2014-05-29

Similar Documents

Publication Publication Date Title
JP5764752B2 (en) Decomposition method of odor component by charged fine particle water and odor component decomposition apparatus
KR100661069B1 (en) Charged fine particulate water, and method of creating environment where mist of the charged fine particulate water is dispersed
KR100716638B1 (en) Electrostatic atomizing device and humidifier using this
JP4333339B2 (en) Toilet seat device
JP2004085185A (en) Air cleaner
JP2006204968A (en) Atomizer
JP4608513B2 (en) Deodorizing / deactivating method and electrostatic atomizer using charged fine particle water
JP4608207B2 (en) Moisturizing method and electrostatic atomizer using charged fine particle water
KR20090084429A (en) Air conditioner with anion and cation producer for a vehicle
WO2004110642A1 (en) Electrostatic atomizer with anion ion generating function and air cleaner using same
JP4195989B2 (en) Electrostatic atomizer and air cleaner provided with the same
JP2005230568A (en) Air purifier or deodorizer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160419