JP2015119103A - Vacuum processing apparatus and method for adjusting film thickness distribution - Google Patents

Vacuum processing apparatus and method for adjusting film thickness distribution Download PDF

Info

Publication number
JP2015119103A
JP2015119103A JP2013262811A JP2013262811A JP2015119103A JP 2015119103 A JP2015119103 A JP 2015119103A JP 2013262811 A JP2013262811 A JP 2013262811A JP 2013262811 A JP2013262811 A JP 2013262811A JP 2015119103 A JP2015119103 A JP 2015119103A
Authority
JP
Japan
Prior art keywords
distribution
frequency power
phase
discharge electrode
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013262811A
Other languages
Japanese (ja)
Other versions
JP6113647B2 (en
Inventor
拓郎 増田
Takuo Masuda
拓郎 増田
禎子 中尾
Teiko Nakao
禎子 中尾
田頭 健二
Kenji Tagashira
田頭  健二
竹内 良昭
Yoshiaki Takeuchi
良昭 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2013262811A priority Critical patent/JP6113647B2/en
Publication of JP2015119103A publication Critical patent/JP2015119103A/en
Application granted granted Critical
Publication of JP6113647B2 publication Critical patent/JP6113647B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To uniform the thickness distribution of a film deposited easily and for a short time by optimizing the selection of supply conditions of high frequency power in subjecting a substrate to film deposition treatment.SOLUTION: A thin film manufacturing device for forming plasma by high frequency power includes: a high frequency power source 31 outputting high frequency power; a phase modulator 33 modulating a phase of the high frequency power; a counter electrode; a plurality of discharge electrodes 3 to which the high frequency power is supplied and which form plasma between the discharge electrodes and the counter electrode; and an RF monitor 34 measuring a phase residence time distribution of the high frequency power on the discharge electrodes 3 and a voltage distribution on the discharge electrodes 3. In the thin film manufacturing device, at least one of the phase residence time distribution and the voltage distribution is adjusted so that the product of the phase residence time distribution and the voltage distribution is within a predetermined range.

Description

本発明は、真空処理装置及び膜厚分布調整方法に関し、特に大電力を投入してプラズマを発生させて処理を行う真空処理装置に関する。   The present invention relates to a vacuum processing apparatus and a film thickness distribution adjusting method, and more particularly, to a vacuum processing apparatus that performs processing by generating plasma by applying high power.

近年、大面積(例えば縦1m以上、横1m以上の大きさ)を有する基板に対して、シリコン等の物質を製膜するのにプラズマ化学蒸着(Plasma enhanced Chemical Vapor Deposition:PCVD)法を用いたプラズマCVD装置が使用されている。
特許文献1には、均一な製膜を行うために、放電電極の長手方向の左右両端である2系統の給電系から高周波電力を放電電極へ供給し、その位相差を時間的に変化させることにより定在波を移動させ、時間積分において均一な膜厚分布を得ることが開示されている。
In recent years, a plasma enhanced chemical vapor deposition (PCVD) method has been used to form a material such as silicon on a substrate having a large area (for example, a size of 1 m or more in length and 1 m or more in width). A plasma CVD apparatus is used.
In Patent Document 1, in order to perform uniform film formation, high-frequency power is supplied to the discharge electrode from two power supply systems that are both left and right ends in the longitudinal direction of the discharge electrode, and the phase difference is temporally changed. To move a standing wave and obtain a uniform film thickness distribution in time integration.

特開2001−257098号公報Japanese Patent Laid-Open No. 2001-257098

しかしながら、特許文献1に開示されている膜厚分布の調整方法では、放電電極に供給される高周波の位相変調角度や高周波の電力を変化させる高周波電力の供給調整と製膜結果の確認を繰り返しながら、膜厚分布が均一となる高周波電力の供給条件を選定する必要があった。このような調整の繰り返しは、高周波電力の供給条件の選定に時間を要し、また、基板、原料ガス、電力等の資源も要していた。
また、製膜圧力、ガス流量、基板電力間距離等の製膜条件を変化させると、負荷である放電電極のインピーダンス変化に伴う反射電力が変化する。このため、製膜条件を変化させることによっても、膜厚分布が均一となる最適条件が変化し、再度、高周波電力の供給条件を選定する必要があった。また、装置のメンテナンスを行う度に、製膜条件と高周波電力の供給条件を選定する必要があった。
However, in the film thickness distribution adjustment method disclosed in Patent Document 1, high-frequency power supply adjustment for changing the high-frequency phase modulation angle and high-frequency power supplied to the discharge electrode and confirmation of the film formation result are repeated. Therefore, it is necessary to select the supply conditions of the high frequency power that makes the film thickness distribution uniform. Such repeated adjustments required time for selecting the supply conditions of the high-frequency power, and also required resources such as substrates, source gases, and electric power.
Further, when the film forming conditions such as the film forming pressure, the gas flow rate, and the distance between the substrate powers are changed, the reflected power accompanying the change in the impedance of the discharge electrode as a load changes. For this reason, even when the film forming conditions are changed, the optimum conditions for making the film thickness distribution uniform change, and it is necessary to select the supply conditions of the high frequency power again. Further, it is necessary to select the film forming conditions and the high-frequency power supply conditions every time the apparatus is maintained.

本発明は、このような事情に鑑みてなされたものであって、基板に製膜処理を実施する際に、高周波電力の供給条件の選定を適正化して、簡易かつ短時間で製膜される膜厚分布を均一にできる、真空処理装置及び膜厚分布調整方法を提供することを目的とする。   The present invention has been made in view of such circumstances. When a film forming process is performed on a substrate, the selection of a high-frequency power supply condition is optimized and the film is formed easily and in a short time. An object of the present invention is to provide a vacuum processing apparatus and a film thickness distribution adjusting method capable of making the film thickness distribution uniform.

上記課題を解決するために、本発明の真空処理装置及び膜厚分布調整方法は以下の手段を採用する。   In order to solve the above problems, the vacuum processing apparatus and the film thickness distribution adjusting method of the present invention employ the following means.

本発明の第一態様に係る真空処理装置は、高周波電力によりプラズマを形成する真空処理装置であって、高周波電力を出力する高周波電源と、前記高周波電力の位相を変調する位相変調器と、対向電極と、前記高周波電力が供給され、前記対向電極との間にプラズマを形成する放電電極と、前記放電電極における前記高周波電力の各位相差での滞在時間分布、及び前記放電電極における電圧分布の少なくとも一方を計測する計測手段と、を備え、前記滞在時間分布と前記電圧分布との積が所定の範囲内となるように、前記滞在時間分布及び前記電圧分布の少なくとも一方を調整する。   A vacuum processing apparatus according to a first aspect of the present invention is a vacuum processing apparatus for forming plasma by high-frequency power, and a high-frequency power source that outputs high-frequency power, a phase modulator that modulates the phase of the high-frequency power, A discharge electrode that is supplied with the high-frequency power and forms plasma between the counter electrode, a residence time distribution at each phase difference of the high-frequency power in the discharge electrode, and a voltage distribution in the discharge electrode Measuring means for measuring one of them, and adjusting at least one of the stay time distribution and the voltage distribution so that a product of the stay time distribution and the voltage distribution falls within a predetermined range.

本構成に係る真空処理装置は、高周波電力によりプラズマを形成するものであって、高周波電力を出力する高周波電源と、高周波電力の位相を変調する位相変調器と、対向電極と、高周波電力により対向電極との間にプラズマを形成する放電電極と、を備える。また、放電電極に供給される高周波電力の各位相差での滞在時間分布、及び電圧分布の少なくとも一方が計測手段によって計測される。   The vacuum processing apparatus according to this configuration forms plasma by high-frequency power, and is a high-frequency power source that outputs high-frequency power, a phase modulator that modulates the phase of high-frequency power, a counter electrode, and a counter electrode by high-frequency power. A discharge electrode that forms plasma between the electrode and the electrode. Further, at least one of the stay time distribution and the voltage distribution at each phase difference of the high-frequency power supplied to the discharge electrode is measured by the measuring means.

ここで、発明者らは、製膜条件の多方面からの分析を実施した結果として、基板に製膜される膜厚分布は、放電電極に供給される高周波の各位相差での滞在時間分布と、電圧分布の積に比例するという、新しい高周波電力の供給条件を発見している。
そこで、各位相差での滞在時間分布及び電圧分布の少なくとも一方が、滞在時間分布と電圧分布との積が所定の範囲内となるように制御される。例えば、ある位相差で電圧が低いところほど、当該位相差での滞在時間が長くされ、滞在時間分布及び電圧分布の積が所定の範囲内とされる。これにより、各位相差での滞在時間分布及び電圧分布という2つのパラメータを調整することによって、基板に製膜される膜厚分布が一定となる。
Here, as a result of performing analysis from various aspects of the film formation conditions, the inventors have determined that the film thickness distribution formed on the substrate is the residence time distribution at each phase difference of the high frequency supplied to the discharge electrode. We have discovered a new high-frequency power supply condition that is proportional to the product of the voltage distribution.
Therefore, at least one of the stay time distribution and the voltage distribution at each phase difference is controlled so that the product of the stay time distribution and the voltage distribution is within a predetermined range. For example, the lower the voltage is at a certain phase difference, the longer the stay time at the phase difference, and the product of the stay time distribution and the voltage distribution is within a predetermined range. Thereby, the film thickness distribution formed on the substrate becomes constant by adjusting the two parameters of the stay time distribution and the voltage distribution at each phase difference.

従って、本構成は、基板に製膜処理を実施する際に、高周波電力の供給条件の選定を適正化して、簡易かつ短時間で製膜される膜厚分布を均一にできる。   Therefore, this configuration can optimize the selection of the supply condition of the high frequency power when performing the film forming process on the substrate, and can make the film thickness distribution uniform in a short time.

上記第一態様では、前記滞在時間分布の調整が、前記位相変調器の位相変調波形を調整することによって行われることが好ましい。   In the first aspect, it is preferable that the stay time distribution is adjusted by adjusting a phase modulation waveform of the phase modulator.

本構成によれば、簡易に滞在時間分布を調整できる。   According to this configuration, the stay time distribution can be easily adjusted.

上記第一態様では、前記電圧分布の調整が、前記高周波電源のインピーダンス、及び前記位相変調器の位相角度の変化範囲の少なくとも一方を調整することで行われることが好ましい。   In the first aspect, it is preferable that the adjustment of the voltage distribution is performed by adjusting at least one of an impedance of the high frequency power source and a phase angle change range of the phase modulator.

本構成によれば、簡易に電圧分布を調整できる。   According to this configuration, the voltage distribution can be easily adjusted.

上記第一態様では、プラズマにより前記対向電極に保持した前記基板をプラズマ処理し、前記基板に製膜された膜厚分布に基づいて、前記放電電極における前記高周波電力の各位相差での滞在時間分布、及び前記放電電極における電圧分布の少なくとも一方が微調整されることが好ましい。   In the first aspect, the substrate held on the counter electrode by plasma is plasma treated, and the residence time distribution at each phase difference of the high-frequency power in the discharge electrode based on the film thickness distribution formed on the substrate It is preferable that at least one of the voltage distributions in the discharge electrode is finely adjusted.

本構成によれば、簡易に膜厚分布を均一化できる。   According to this configuration, the film thickness distribution can be easily made uniform.

上記第一態様では、プラズマにより前記対向電極に保持した前記基板をプラズマ処理し、前記計測手段が、前記滞在時間分布を計測し、前記電圧分布が、前記基板に製膜された膜厚分布に基づいて推定されることが好ましい。   In the first aspect, the substrate held on the counter electrode by plasma is plasma-processed, the measuring unit measures the residence time distribution, and the voltage distribution is a film thickness distribution formed on the substrate. It is preferable to estimate based on this.

本構成によれば、計測手段が、放電電極における高周波電力の各位相差での滞在時間分布、及び放電電極における電圧分布の何れか一方のみを計測すればよいので、装置構成をより簡素化できる。   According to this configuration, the measuring unit only needs to measure either one of the residence time distribution at each phase difference of the high-frequency power in the discharge electrode and the voltage distribution in the discharge electrode, so that the apparatus configuration can be further simplified.

本発明の第二態様に係る膜厚分布調整方法は、高周波電力を出力する高周波電源と、前記高周波電力の位相を変調する位相変調器と、対向電極と、前記高周波電力が供給され、前記対向電極との間にプラズマを形成する放電電極と、前記放電電極における前記高周波電力の各位相差での滞在時間分布、及び前記放電電極における電圧分布の少なくとも一方を計測する計測手段と、を備えた真空処理装置において、プラズマにより前記基板に製膜する膜厚分布調整方法であって、前記滞在時間分布と前記電圧分布との積が所定の範囲内となるように、前記滞在時間分布及び前記電圧分布の少なくとも一方を調整する。   The film thickness distribution adjusting method according to the second aspect of the present invention includes a high-frequency power source that outputs high-frequency power, a phase modulator that modulates the phase of the high-frequency power, a counter electrode, and the high-frequency power supplied to the counter A vacuum comprising: a discharge electrode that forms plasma with the electrode; and a measurement unit that measures at least one of a residence time distribution at each phase difference of the high-frequency power in the discharge electrode and a voltage distribution in the discharge electrode In the processing apparatus, a film thickness distribution adjusting method for forming a film on the substrate by plasma, wherein the stay time distribution and the voltage distribution are set so that a product of the stay time distribution and the voltage distribution is within a predetermined range. Adjust at least one of

本発明によれば、基板に製膜処理を実施する際に、高周波電力の供給条件の選定を適正化して、簡易かつ短時間で製膜される膜厚分布を均一にする、という優れた効果を有する。   According to the present invention, when a film forming process is performed on a substrate, it is possible to optimize the selection of high-frequency power supply conditions and to make the film thickness distribution uniform easily and in a short time. Have

本発明の第1の実施形態に係る薄膜製造装置の構成を示す概略図である。It is the schematic which shows the structure of the thin film manufacturing apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る放電電極に対する電力の供給を説明する概略図である。It is the schematic explaining supply of the electric power with respect to the discharge electrode which concerns on the 1st Embodiment of this invention. 位相差を固定した場合の放電電極上の電圧分布を示す模式図である。It is a schematic diagram which shows the voltage distribution on the discharge electrode at the time of fixing a phase difference. 放電電極に供給する高周波電力の位相変調波形に三角波を用いた場合の位相差分布を示す模式図である。It is a schematic diagram which shows phase difference distribution at the time of using a triangular wave for the phase modulation waveform of the high frequency electric power supplied to a discharge electrode. 放電電極に供給する高周波電力の位相変調波形にsin波を用いた場合の位相差分布を示す模式図である。It is a schematic diagram which shows phase difference distribution at the time of using a sine wave for the phase modulation waveform of the high frequency electric power supplied to a discharge electrode. 放電電極に供給する高周波電力の位相変調波形に三角波を用いた場合の膜厚分布を示す図である。It is a figure which shows film thickness distribution at the time of using a triangular wave for the phase modulation waveform of the high frequency electric power supplied to a discharge electrode. 放電電極に供給する高周波電力の位相変調波形にsin波を用いた場合の膜厚分布を示す図である。It is a figure which shows film thickness distribution at the time of using a sine wave for the phase modulation waveform of the high frequency electric power supplied to a discharge electrode. 位相差を0°及び±180°に固定した状態で製膜した場合の膜厚分布の例を示す図である。It is a figure which shows the example of film thickness distribution at the time of forming into a film in the state which fixed the phase difference to 0 degree and +/- 180 degree. 放電電極に供給される高周波電力の各位相差における電圧値の例を示す図である。It is a figure which shows the example of the voltage value in each phase difference of the high frequency electric power supplied to a discharge electrode. 本第1実施形態にかかる膜厚分布調整処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the film thickness distribution adjustment process concerning this 1st Embodiment. 本第1実施形態にかかる放電電極における電圧分布の例を示す図である。It is a figure which shows the example of the voltage distribution in the discharge electrode concerning this 1st Embodiment. 本第1実施形態にかかる膜厚分布調整処理で計測された電圧分布に応じた位相滞在時間分布の例を示す図である。It is a figure which shows the example of phase residence time distribution according to the voltage distribution measured by the film thickness distribution adjustment process concerning this 1st Embodiment. 本第2実施形態にかかる膜厚分布調整処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the film thickness distribution adjustment process concerning this 2nd Embodiment.

以下に、本発明に係る真空処理装置及び膜厚分布調整方法の一実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of a vacuum processing apparatus and a film thickness distribution adjusting method according to the present invention will be described with reference to the drawings.

〔第1実施形態〕
以下、本発明の第1実施形態について説明する。
[First Embodiment]
The first embodiment of the present invention will be described below.

真空処理装置として、アモルファス太陽電池や微結晶太陽電池や液晶ディスプレイ用TFT(Thin Film Transistor)等に用いられる非晶質シリコン、微結晶シリコン、窒化シリコン等からなる膜の高速製膜処理を行うことが可能な薄膜製造装置、スパッタリング装置、ドライエッチング装置、基板の表面処理を行うプラズマ処理装置の他、大面積のプラズマ処理が必要な表面改質装置やオゾナイザ等、真空から大気圧の広い圧力領域でのプラズマ生成装置等が挙げられる。本実施形態においては、真空処理装置の一例として、基板に製膜処理を実施する薄膜製造装置について説明する。   As a vacuum processing device, high-speed film-forming processing of films made of amorphous silicon, microcrystalline silicon, silicon nitride, etc. used for amorphous solar cells, microcrystalline solar cells, TFTs for liquid crystal displays (Thin Film Transistor), etc. A wide pressure range from vacuum to atmospheric pressure, such as thin film manufacturing equipment, sputtering equipment, dry etching equipment, plasma treatment equipment that performs substrate surface treatment, surface modification equipment and ozonizers that require large-area plasma treatment, etc. And the like. In the present embodiment, a thin film manufacturing apparatus that performs a film forming process on a substrate will be described as an example of a vacuum processing apparatus.

図1は、太陽電池パネルに用いられるシリコン薄膜の製膜に用いる薄膜製造装置の構成を示す概略構成図である。薄膜製造装置1は、真空容器である製膜室6、導電性の板である対向電極2、対向電極2の温度分布を均一化する均熱板5、均熱板5及び対向電極2を保持する均熱板保持機構11、対向電極2との間にプラズマを発生させる放電電極3、膜が形成される範囲を制限する防着板4、防着板4を支持する支持部7、後述する高周波電源からの高周波電力を放電電極3に供給する同軸給電部12a,12b、整合器13、製膜室6内の気体を排気する高真空排気部20、低真空排気部21及び製膜室6を保持する台22を備えている。なお、本図において、ガス供給に関する構成は省略している。   FIG. 1 is a schematic configuration diagram showing a configuration of a thin film manufacturing apparatus used for forming a silicon thin film used for a solar cell panel. The thin film manufacturing apparatus 1 holds a film forming chamber 6 that is a vacuum container, a counter electrode 2 that is a conductive plate, a heat equalizing plate 5 that equalizes the temperature distribution of the counter electrode 2, a heat equalizing plate 5, and the counter electrode 2. A soaking plate holding mechanism 11, a discharge electrode 3 for generating plasma between the counter electrode 2, a deposition plate 4 for limiting a range in which a film is formed, a support unit 7 for supporting the deposition plate 4, which will be described later. Coaxial feeders 12a and 12b that supply high-frequency power from a high-frequency power source to the discharge electrode 3, a matching unit 13, a high vacuum exhaust unit 20 that exhausts gas in the film forming chamber 6, a low vacuum exhaust unit 21, and a film forming chamber 6 Is provided. In addition, in this figure, the structure regarding gas supply is abbreviate | omitted.

製膜室6は、真空容器であり、その内部で基板8に微結晶シリコン膜等を製膜する。製膜室6は、台22上で鉛直方向に対してα=7°〜12°傾けて保持されている。このため、対向電極2の基板8の製膜処理面の法線が、水平方向に対して7°〜12°上に向く。基板8を鉛直方向から僅かに傾けることは、装置の設置スペースの増加を抑えながら基板8の自重を利用して少ない手間で基板8を保持し、更に基板8と対向電極2の密着性を向上して基板8の温度分布と電位分布を均一化することが出来て好ましい。
また、製膜室6は、鉛直方向に対してα=90°、すなわち水平方向に保持されていてもよい。この場合、装置の設置スペースは基板サイズに応じて必要となるものの、基板8の自重を全部利用して基板8を対向電極2へ密着性させるので、基板8の温度分布と電位分布を更に均一化させる場合には好ましい。
The film forming chamber 6 is a vacuum container, and a microcrystalline silicon film or the like is formed on the substrate 8 therein. The film forming chamber 6 is held on the table 22 while being inclined by α = 7 ° to 12 ° with respect to the vertical direction. For this reason, the normal line of the film-forming treatment surface of the substrate 8 of the counter electrode 2 faces 7 ° to 12 ° above the horizontal direction. By slightly tilting the substrate 8 from the vertical direction, the substrate 8 can be held with less effort using the weight of the substrate 8 while suppressing an increase in the installation space of the apparatus, and the adhesion between the substrate 8 and the counter electrode 2 is further improved. Thus, the temperature distribution and potential distribution of the substrate 8 can be made uniform, which is preferable.
Further, the film forming chamber 6 may be held at α = 90 ° with respect to the vertical direction, that is, in the horizontal direction. In this case, the installation space of the apparatus is required according to the size of the substrate, but the substrate 8 is adhered to the counter electrode 2 by using the entire weight of the substrate 8, so that the temperature distribution and the potential distribution of the substrate 8 are made more uniform. It is preferable in the case of making it.

対向電極2は、基板8を保持可能な保持手段(図示せず)を有する非磁性材料の導電性の板である。セルフクリーニングを行う場合は耐フッ素ラジカル性を備えることが好ましく、ニッケル合金、アルミやアルミ合金の板を使用することが望ましい。対向電極2は、放電電極3に対向する電極(例えば、接地側電極)となる。対向電極2は、一方の面が均熱板5の表面に密接し、製膜時に他方の面が基板8の表面と密接するようになっている。   The counter electrode 2 is a conductive plate made of a non-magnetic material having holding means (not shown) that can hold the substrate 8. When performing self-cleaning, it is preferable to have fluorine radical resistance, and it is desirable to use a plate of nickel alloy, aluminum or aluminum alloy. The counter electrode 2 is an electrode (for example, a ground side electrode) facing the discharge electrode 3. One surface of the counter electrode 2 is in close contact with the surface of the soaking plate 5, and the other surface is in close contact with the surface of the substrate 8 during film formation.

均熱板5は、内部に温度制御された熱媒体を循環させたり、または温度制御されたヒーターを組み込むことで、自身の温度を制御して、全体を概ね均一な温度とし、接触している対向電極2の温度を所定温度に均一化する機能を有する。ここで、熱媒体は、非導電性媒体であり、水素やヘリウム等の高熱伝導性ガス、フッ素系不活性液体、不活性オイル、及び純水等が使用でき、特に、150℃〜250℃の範囲でも圧力が上がらずに制御が容易であることから、フッ素系不活性液体(例えば商品名:ガルデン、F05等)の使用が好適である。   The heat equalizing plate 5 circulates a temperature-controlled heat medium inside or incorporates a temperature-controlled heater to control its own temperature so that the entire temperature is substantially uniform and is in contact with it. It has a function of making the temperature of the counter electrode 2 uniform at a predetermined temperature. Here, the heat medium is a non-conductive medium, and high heat conductive gas such as hydrogen and helium, fluorine-based inert liquid, inert oil, pure water, and the like can be used. The use of a fluorine-based inert liquid (for example, trade name: Galden, F05, etc.) is preferable because the pressure does not increase even within the range and control is easy.

均熱板保持機構11は、均熱板5及び対向電極2を製膜室6の側面(図1の右側)に対して略平行となるように保持すると共に、均熱板5、対向電極2及び基板8を、放電電極3に接近離間可能に保持する。また、均熱板保持機構11は、製膜時に均熱板5等を放電電極3に接近させて、基板8を放電電極3から、例えば3mmから10mmの範囲内に位置させることができる。   The soaking plate holding mechanism 11 holds the soaking plate 5 and the counter electrode 2 so as to be substantially parallel to the side surface (the right side in FIG. 1) of the film forming chamber 6, and the soaking plate 5 and the counter electrode 2. And the substrate 8 is held so as to be close to and away from the discharge electrode 3. The soaking plate holding mechanism 11 can bring the soaking plate 5 and the like closer to the discharge electrode 3 during film formation and position the substrate 8 from the discharge electrode 3 within a range of 3 mm to 10 mm, for example.

防着板4は、接地されプラズマの広がる範囲を抑えることにより、膜が製膜される範囲を制限するものであり、放電電極3における対向電極2と反対側の空間を覆うように支持部7で保持されている。本実施形態の場合、図1に示すように、製膜室6の内側における防着板4の後ろ側(基板8と反対の側)の壁に膜が製膜されないようにしている。   The deposition preventing plate 4 is grounded to limit the range in which the film is formed by suppressing the range in which the plasma spreads. The support plate 7 covers the space on the discharge electrode 3 opposite to the counter electrode 2. Is held by. In the case of the present embodiment, as shown in FIG. 1, no film is formed on the wall on the back side (the side opposite to the substrate 8) of the deposition preventing plate 4 inside the film forming chamber 6.

支持部7は、製膜室6の側面(図1における左側の側面)から内側へ垂直に延びる部材であり、支持部7は防着板4と結合され、放電電極3における対向電極2と反対側の空間を覆うように防着板4を保持している。また、支持部7は放電電極3と絶縁的に結合され、放電電極3を製膜室6の側面(図1における左側の側面)に対して略平行に保持している。   The support portion 7 is a member extending vertically inward from the side surface (the left side surface in FIG. 1) of the film forming chamber 6. The support portion 7 is coupled to the deposition preventing plate 4 and is opposite to the counter electrode 2 in the discharge electrode 3. The deposition preventing plate 4 is held so as to cover the side space. Further, the support portion 7 is insulatively coupled to the discharge electrode 3 and holds the discharge electrode 3 substantially parallel to the side surface of the film forming chamber 6 (the left side surface in FIG. 1).

高真空排気部20は、粗引き排気された製膜室6内の気体をさらに排気して、製膜室6内を高真空とする高真空排気用の真空ポンプである。弁23は、高真空排気部20と製膜室6との経路を開閉する弁である。
低真空排気部21は、初めに製膜室6内の気体を排気して、製膜室6内を低真空とする粗引き排気用の真空ポンプである。弁24は、低真空排気部21と製膜室6との経路を開閉する。
The high vacuum evacuation unit 20 is a vacuum pump for high vacuum evacuation that exhausts the gas in the film forming chamber 6 that has been evacuated roughly to make the inside of the film forming chamber 6 a high vacuum. The valve 23 is a valve that opens and closes the path between the high vacuum exhaust unit 20 and the film forming chamber 6.
The low vacuum evacuation unit 21 is a vacuum pump for roughing evacuation that first exhausts the gas in the film forming chamber 6 to make the inside of the film forming chamber 6 a low vacuum. The valve 24 opens and closes the path between the low vacuum exhaust unit 21 and the film forming chamber 6.

台22は、上面に配置された保持部25を介して製膜室6を保持するものである。台22の内部には低真空排気部21が配置される領域が形成されている。   The table 22 holds the film forming chamber 6 via a holding unit 25 arranged on the upper surface. A region in which the low vacuum evacuation unit 21 is disposed is formed inside the table 22.

図2は、放電電極3に対する電力の供給を説明する概略図である。
放電電極3は、各々給電点を有する長尺状の分割電極30が長手方向と直交する方向に複数の分割電極30が配列されることで放電電極3を構成している。本第1実施形態に係る放電電極3は、両端部が給電点であり、一例として、6個の長尺状の分割電極30(分割電極30_1〜30_6)で構成されている。以下の説明において、側部電極とは分割電極30_1,30_6を示し、中央部電極とは分割電極30_2〜30_5を示す。
FIG. 2 is a schematic diagram for explaining the supply of electric power to the discharge electrode 3.
The discharge electrode 3 is constituted by a plurality of divided electrodes 30 arranged in a direction perpendicular to the longitudinal direction of long divided electrodes 30 each having a feeding point. Both ends of the discharge electrode 3 according to the first embodiment are feeding points, and as an example, the discharge electrode 3 includes six elongated divided electrodes 30 (divided electrodes 30_1 to 30_6). In the following description, the side electrodes indicate the divided electrodes 30_1 and 30_6, and the center electrode indicates the divided electrodes 30_2 to 30_5.

なお、本第1実施形態においては、1つの製膜室6について6個の分割電極30を備えた薄膜製造装置1に適用して説明するが、分割電極30の数は6個よりも多くてもよいし、少なくてもよく、また一つでもよく、特に限定するものではない。
また、分割電極30の数は、真空中及びプラズマ生成時の高周波波長による定在波の影響をなくすよう各分割電極30の幅を決めることが好ましく、複数の分割電極30を並べて設置した状態で基板8の幅よりも少し大きくなるように配置することがプラズマの均一化に好ましい。
また、側部電極及び中央部電極の分け方も一例であり、分割電極30_1,30_2,30_5,30_6を側部電極とし、分割電極30_3,30_4のみを中央部電極としてもよい。
In the first embodiment, one film forming chamber 6 is described as being applied to the thin film manufacturing apparatus 1 including six divided electrodes 30, but the number of divided electrodes 30 is greater than six. There may be one, few, or one, and there is no particular limitation.
Further, the number of the divided electrodes 30 is preferably determined so that the width of each divided electrode 30 is eliminated so as to eliminate the influence of standing waves due to high-frequency wavelengths in vacuum and plasma generation. It is preferable to make the arrangement a little larger than the width of the substrate 8 in order to make the plasma uniform.
The method of dividing the side electrode and the central electrode is also an example, and the divided electrodes 30_1, 30_2, 30_5, and 30_6 may be used as the side electrodes, and only the divided electrodes 30_3 and 30_4 may be used as the central electrodes.

各分割電極30の給電点(両端部)には、高周波電力を出力する高周波電源31、及び高周波電源31と分割電極30とのインピーダンスを整合させる整合器13が設けられている。   A feeding point (both ends) of each divided electrode 30 is provided with a high-frequency power source 31 that outputs high-frequency power and a matching unit 13 that matches the impedance between the high-frequency power source 31 and the divided electrode 30.

また、各分割電極30と整合器13との間には、分割電極30毎にRFモニタ34が設けられている。RFモニタ34は、分割電極30の両端に設けられ、分割電極30における高周波電力の各位相差での滞在時間分布(以下「位相滞在時間分布」という。)及び電圧分布を計測するための計測点となる。RFモニタ34により、高周波電力の電圧が計測されると共に、RFモニタ34に、タイムインターバルアナライザ(以下「TIA」という。)が接続されることで、位相滞在時間分布が計測される。TIAは、被測定時信号(分割電極30の両端に供給する高周波電力)間の位相差を測定し、各位相差が発生する頻度の分布を計測する。この度数分布が位相滞在時間分布(後述する図4,5参照)となる。   Further, an RF monitor 34 is provided for each divided electrode 30 between each divided electrode 30 and the matching unit 13. The RF monitors 34 are provided at both ends of the divided electrode 30, and measurement points for measuring a stay time distribution (hereinafter referred to as “phase stay time distribution”) and a voltage distribution at each phase difference of the high-frequency power in the divided electrode 30. Become. The RF monitor 34 measures the voltage of the high-frequency power, and a time interval analyzer (hereinafter referred to as “TIA”) is connected to the RF monitor 34 to measure the phase residence time distribution. The TIA measures the phase difference between signals under measurement (high-frequency power supplied to both ends of the divided electrode 30), and measures the distribution of the frequency at which each phase difference occurs. This frequency distribution is a phase residence time distribution (see FIGS. 4 and 5 described later).

そして、各分割電極30の給電点には、高周波電源31が出力する高周波電力の電圧波形の位相が時間的に変化して各々供給される。これにより、図1に示されるように放電電極3と平行な位置には、基板8を載置すると共に設置されている対向電極2が配置されているので、放電電極3と対向電極2との間には、高周波電力が給電され、また図示しない製膜用原料ガスが放電電極3から噴出して供給されることにより、プラズマが生成されて基板8に製膜処理が行われる。   Then, the phase of the voltage waveform of the high-frequency power output from the high-frequency power supply 31 is supplied to the feeding point of each divided electrode 30 with a temporal change. Thereby, as shown in FIG. 1, the counter electrode 2 placed and placed on the substrate 8 is disposed at a position parallel to the discharge electrode 3. In the meantime, high-frequency power is supplied, and a film forming raw material gas (not shown) is blown out and supplied from the discharge electrode 3, whereby plasma is generated and a film forming process is performed on the substrate 8.

なお、高周波電源31は、発信器32から出力された所定の周波数(例えば、略10MHzから略100MHzまでの間であって、好ましくは60MHz)の信号であって、位相変調器33によって位相が変調された信号に基づいて、高周波電力を出力する。   The high frequency power supply 31 is a signal of a predetermined frequency (for example, between approximately 10 MHz and approximately 100 MHz, preferably 60 MHz) output from the transmitter 32, and the phase is modulated by the phase modulator 33. High frequency power is output based on the signal.

図3は、位相差を固定した場合の放電電極3上の電圧分布を示す模式図である。放電電極3の長さは、高周波電力の1/2波長とする。図3は、左右方向が放電電極3の長手方向であり、放電電極3の長手方向(左右方向)の両端部分には高周波電力が給電されており、位相差として0°の場合と±180°の場合を示している。
図3に示されるように、高周波の電圧分布は、放電電極3の中央を境界にして対称的な電圧定在波分布となる。位相差が0°の場合において放電電極3の長手方向の中央が、電圧定在波の腹となり、電圧が最も高い位置となる。また、このとき、放電電極3の長手方向端部(給電点)が、電圧定在波の節となり、電圧は0となる。一方、位相差が180°の場合において放電電極3の長手方向の中央部が、電圧定在波の節となり、放電電極3の長手方向端部(給電点)が、電圧定在波の腹となる。
FIG. 3 is a schematic diagram showing a voltage distribution on the discharge electrode 3 when the phase difference is fixed. The length of the discharge electrode 3 is ½ wavelength of the high frequency power. In FIG. 3, the left-right direction is the longitudinal direction of the discharge electrode 3, and high-frequency power is fed to both end portions in the longitudinal direction (left-right direction) of the discharge electrode 3, and the phase difference is 0 ° and ± 180 °. Shows the case.
As shown in FIG. 3, the high-frequency voltage distribution is a symmetrical voltage standing wave distribution with the center of the discharge electrode 3 as a boundary. When the phase difference is 0 °, the center in the longitudinal direction of the discharge electrode 3 becomes the antinode of the voltage standing wave, and is the position where the voltage is the highest. At this time, the longitudinal end (feeding point) of the discharge electrode 3 becomes a node of the voltage standing wave, and the voltage becomes zero. On the other hand, when the phase difference is 180 °, the central portion in the longitudinal direction of the discharge electrode 3 becomes a node of the voltage standing wave, and the longitudinal end portion (feeding point) of the discharge electrode 3 becomes the antinode of the voltage standing wave. Become.

図4は、放電電極3に供給する高周波電力の位相変調波形として、三角波を用いた場合の位相差分布の例を示す模式図である。   FIG. 4 is a schematic diagram illustrating an example of a phase difference distribution when a triangular wave is used as the phase modulation waveform of the high-frequency power supplied to the discharge electrode 3.

位相変調波形を三角波とした場合は、位相差0°から位相差90°の変化に要する時間と位相差90°から位相差180°の変化に要する時間が同じ時間aである。このように、位相変調波形を三角波とした場合、各位相差における位相差の変化に要する時間(位相変化速度)が一定である。このため、位相変調波形を三角波とした場合、各位相差角度に対応する放電電極3の長手方向の各位置における高周波電圧の腹部分が滞在する頻度(時間)である位相滞在時間分布が一定となる。   When the phase modulation waveform is a triangular wave, the time a required for the change from the phase difference 0 ° to the phase difference 90 ° is the same as the time a required for the change from the phase difference 90 ° to the phase difference 180 °. As described above, when the phase modulation waveform is a triangular wave, the time (phase change speed) required for the change of the phase difference in each phase difference is constant. Therefore, when the phase modulation waveform is a triangular wave, the phase residence time distribution, which is the frequency (time) at which the antinode portion of the high-frequency voltage stays at each position in the longitudinal direction of the discharge electrode 3 corresponding to each phase difference angle, is constant. .

図5は、放電電極3に供給する高周波電力の位相変調波形として、正弦波(以下、「sin波」という。)を用いた場合の位相差分布の例を示す模式図である。   FIG. 5 is a schematic diagram showing an example of the phase difference distribution when a sine wave (hereinafter referred to as “sin wave”) is used as the phase modulation waveform of the high-frequency power supplied to the discharge electrode 3.

位相変調波形をsin波とした場合は、位相差0°から位相差90°の変化に要する時間bに比べ、位相差90°から位相差180°の変化に要する時間cが長化しているように、位相差が大きくなるほど位相差の変化に要する時間が長くなる。このため、位相変調波形をsin波とした場合、位相差180°における高周波の電圧の腹に相当する位置である放電電極3の長手方向端部で、位相滞在時間分布が長くなる。   When the phase modulation waveform is a sine wave, the time c required for the change from the phase difference 90 ° to the phase difference 180 ° seems to be longer than the time b required for the change from the phase difference 0 ° to the phase difference 90 °. In addition, as the phase difference increases, the time required to change the phase difference increases. For this reason, when the phase modulation waveform is a sine wave, the phase residence time distribution becomes long at the longitudinal end portion of the discharge electrode 3, which is the position corresponding to the antinode of the high frequency voltage at the phase difference of 180 °.

図6は、放電電極3に供給する高周波電力の位相変調波形に三角波を用いた場合の膜厚分布の例を示すグラフである。一方、図7は、放電電極3に供給する高周波電力の位相変調波形にsin波を用いた場合の膜厚分布を示すグラフである。なお、図6,7における縦軸は、膜厚を示しているが、平均値を1.0として規格化された値である。
位相変調波形がsin波の場合は、位相変調波形が三角波の場合に比べて、位相差が大きい領域において位相滞在時間が長いので、放電電極3の長手方向端部での位相滞在時間が長くなる。このため、図3の位相差が±180°のときの電圧分布の影響が大きくなり、図7からわかるように、位相変調波形がsin波の場合は、放電電極3の長手方向端部での膜厚が厚くなる。
FIG. 6 is a graph showing an example of the film thickness distribution when a triangular wave is used as the phase modulation waveform of the high-frequency power supplied to the discharge electrode 3. On the other hand, FIG. 7 is a graph showing the film thickness distribution when a sine wave is used as the phase modulation waveform of the high-frequency power supplied to the discharge electrode 3. The vertical axis in FIGS. 6 and 7 represents the film thickness, but is a value normalized with an average value of 1.0.
When the phase modulation waveform is a sine wave, the phase residence time is longer in the region where the phase difference is larger than in the case where the phase modulation waveform is a triangular wave, and therefore the phase residence time at the longitudinal end of the discharge electrode 3 is longer. . For this reason, the influence of the voltage distribution when the phase difference of FIG. 3 is ± 180 ° becomes large. As can be seen from FIG. 7, when the phase modulation waveform is a sine wave, The film thickness increases.

このことから、放電電極3に供給される高周波電力の電圧分布が均一な場合には、高周波電力の位相滞在時間と放電電極3の長手方向の膜厚分布には比例関係があることが分かった。
なお、位相変調波形が三角波の場合は、位相滞在時間分布が均一であるが、図6の例では、膜厚分布が一定でない。この理由は、各位相差で供給される高周波電力が不均一であったためである。
From this, it was found that when the voltage distribution of the high frequency power supplied to the discharge electrode 3 is uniform, the phase residence time of the high frequency power and the film thickness distribution in the longitudinal direction of the discharge electrode 3 have a proportional relationship. .
When the phase modulation waveform is a triangular wave, the phase residence time distribution is uniform, but in the example of FIG. 6, the film thickness distribution is not constant. This is because the high-frequency power supplied at each phase difference is not uniform.

図8は、位相差を0°及び±180°に固定した状態で製膜した場合の膜厚分布の例を示す。なお、図8における縦軸は、膜厚を示しているが、位相差0°における膜厚の最大値を1.0として規格化された値である。
図9は、放電電極3に供給される高周波電力の各位相差における電圧値の例を示す。ここで、供給される高周波に位相変調を施すため、整合器13のインピーダンス整合は、位相差を0°とした整合状態で固定されている。なお、図9における縦軸は、電圧値を示しているが、位相差0°における電圧値を1.0として規格化された値である。電圧値は、RFモニタ34で計測されたものである。
図9に示されるように、放電電極3に供給される高周波電力の電圧値は、位相差が0°の場合に最大となり、位相差が±180°の場合に最少の約0.5となる。この理由は、位相差を0°に固定した条件で、反射電力が小さくなるように整合器13でインピーダンスの整合調整をしているので、整合調整を行った位相差0°から位相差が大きくなるにつれて反射電力が増加したためである。
そして、図8,9に示されるように、位相差が0°の場合に電圧値は1.0となり、膜厚は計測位置0mmにおいて最大の1.0となる。一方、位相差が±180°の場合に電圧値は約0.5となり、膜厚は計測位置±約550mmにおいて約0.5となる。
FIG. 8 shows an example of the film thickness distribution when the film is formed with the phase difference fixed at 0 ° and ± 180 °. The vertical axis in FIG. 8 indicates the film thickness, but is a value normalized with the maximum value of the film thickness at a phase difference of 0 ° being 1.0.
FIG. 9 shows an example of the voltage value at each phase difference of the high-frequency power supplied to the discharge electrode 3. Here, in order to perform phase modulation on the supplied high frequency, the impedance matching of the matching unit 13 is fixed in a matching state with a phase difference of 0 °. The vertical axis in FIG. 9 indicates the voltage value, but is a value normalized with the voltage value at a phase difference of 0 ° being 1.0. The voltage value is measured by the RF monitor 34.
As shown in FIG. 9, the voltage value of the high-frequency power supplied to the discharge electrode 3 is maximum when the phase difference is 0 °, and is minimum about 0.5 when the phase difference is ± 180 °. . This is because the impedance matching is adjusted by the matching unit 13 so that the reflected power is reduced under the condition that the phase difference is fixed at 0 °. Therefore, the phase difference is large from the phase difference 0 ° after the matching adjustment. This is because the reflected power increases with time.
As shown in FIGS. 8 and 9, the voltage value is 1.0 when the phase difference is 0 °, and the film thickness is 1.0 at the maximum at the measurement position of 0 mm. On the other hand, when the phase difference is ± 180 °, the voltage value is about 0.5, and the film thickness is about 0.5 at the measurement position ± about 550 mm.

このことから、放電電極3に供給される高周波電力の電圧分布と放電電極3の長手方向に対応する膜厚分布には比例関係があることが分かった。   From this, it was found that there is a proportional relationship between the voltage distribution of the high frequency power supplied to the discharge electrode 3 and the film thickness distribution corresponding to the longitudinal direction of the discharge electrode 3.

上述のように、図9の位相差が±180°の場合に電圧値は約0.5であるので、この±180°の位相差の影響が大きく出るのは、図3を参照すれば放電電極3の両端部分になる。このため、放電電極3の両端部分での位相滞在時間を長くするように位相変調波形を制御すれば、放電電極両端部分の膜厚分布を改善できる。
また、図8の放電電極3の両端部分に近い位置にある計測位置±約550mmにおいての膜厚は約0.5となることから、計測位置0mmにおいての膜厚である1.0に近づけるには2倍の位相滞在時間が必要と判断される。一方、図9の位相差が±180°の場合の電圧値である約0.5を位相差が0°の場合の電圧値である1.0とするには約2倍とする必要がある。
As described above, when the phase difference in FIG. 9 is ± 180 °, the voltage value is about 0.5. Therefore, the influence of the phase difference of ± 180 ° is greatly increased by referring to FIG. It becomes the both ends of the electrode 3. For this reason, if the phase modulation waveform is controlled so as to lengthen the phase residence time at both ends of the discharge electrode 3, the film thickness distribution at both ends of the discharge electrode can be improved.
Further, since the film thickness at the measurement position ± about 550 mm near the both end portions of the discharge electrode 3 in FIG. 8 is about 0.5, the film thickness approaches 1.0 which is the film thickness at the measurement position 0 mm. Is determined to require twice the phase residence time. On the other hand, in order to change the voltage value of about 0.5 when the phase difference is ± 180 ° in FIG. 9 to 1.0 which is the voltage value when the phase difference is 0 °, it is necessary to double it. .

以上、図6〜9に示される結果から、発明者らは、製膜条件の多方面からの分析を実施した結果として、基板8に製膜される膜厚分布は、放電電極3に供給される高周波の各位相差での滞在時間分布と、電圧分布の積に比例するという、新しい高周波電力の供給条件を発見した。   As described above, from the results shown in FIGS. 6 to 9, the inventors have analyzed the film forming conditions from various directions, and as a result, the film thickness distribution formed on the substrate 8 is supplied to the discharge electrode 3. We discovered a new high-frequency power supply condition that is proportional to the product of the residence time distribution at each phase difference of the high frequency and the voltage distribution.

そこで、本実施形態にかかる薄膜製造装置1は、基板8に製膜を行う場合に、位相滞在時間分布及び電圧分布の積を所定の範囲内とすることで、基板8に製膜される膜厚を均一にする膜厚分布調整処理を行う。
図10は、本第1実施形態にかかる膜厚分布調整処理の流れを示すフローチャートである。なお、本第1実施形態にかかる膜厚分布調整処理は、膜厚分布が均一になる条件を得るために基板8に単膜を製膜する場合に行われる。
Therefore, when the thin film manufacturing apparatus 1 according to this embodiment forms a film on the substrate 8, the film formed on the substrate 8 is formed by setting the product of the phase residence time distribution and the voltage distribution within a predetermined range. A film thickness distribution adjustment process is performed to make the thickness uniform.
FIG. 10 is a flowchart showing the flow of film thickness distribution adjustment processing according to the first embodiment. In addition, the film thickness distribution adjustment process according to the first embodiment is performed when a single film is formed on the substrate 8 in order to obtain a condition for making the film thickness distribution uniform.

まず、ステップ100では、製膜条件を選定する。製膜条件は、例えば、SiH4ガス流量、H2ガス流量、製膜圧力、投入高周波電力、基板電極間距離、位相変調角度、位相変調波形、及び位相変調周波数等である。   First, in step 100, film forming conditions are selected. The film forming conditions are, for example, SiH 4 gas flow rate, H 2 gas flow rate, film forming pressure, input high frequency power, substrate electrode distance, phase modulation angle, phase modulation waveform, phase modulation frequency, and the like.

次のステップ102では、RFモニタ34によって、位相差を各値で設定した場合の放電電極3における電圧分布を計測する。図11は、放電電極3における計測された電圧分布の例を示す。図11の例では、位相差が0°の場合に電圧値が最大となり、位相差が±180°の場合に電圧値が最少となる。   In the next step 102, the RF monitor 34 measures the voltage distribution in the discharge electrode 3 when the phase difference is set at each value. FIG. 11 shows an example of the measured voltage distribution at the discharge electrode 3. In the example of FIG. 11, the voltage value is maximized when the phase difference is 0 °, and the voltage value is minimized when the phase difference is ± 180 °.

次のステップ104では、(1)式に示されるように位相滞在時間分布P(x)と電圧分布V(x)との積が所定の範囲内にある定数となるような、位相変調波形を選定する。

Figure 2015119103
xは位相差である。Aは所定の範囲にある定数であり、特定の製膜条件で形成される膜の膜厚に相当する値である。(1)式で算出される積は、定数Aは選定した値を中心値とした許容膜厚分布を考慮した所定範囲内(例えば±10%)となればよい。
(1)式のV(x)に計測した電圧分布が入力されることによって、位相滞在時間分布が算出され、算出された位相滞在時間分布となる位相変調波形が選定される。 In the next step 104, a phase modulation waveform is obtained such that the product of the phase residence time distribution P (x) and the voltage distribution V (x) becomes a constant within a predetermined range as shown in the equation (1). Select.
Figure 2015119103
x is a phase difference. A is a constant within a predetermined range, and is a value corresponding to the film thickness of a film formed under specific film forming conditions. The product calculated by the equation (1) may be a constant A within a predetermined range (for example, ± 10%) in consideration of the allowable film thickness distribution with the selected value as the center value.
By inputting the measured voltage distribution to V (x) in equation (1), the phase residence time distribution is calculated, and the phase modulation waveform that becomes the calculated phase residence time distribution is selected.

図12は、図11に示される各位相差に対する電圧分布に応じた位相滞在時間分布の例を示す図である。図12の例では、位相差が0°の場合に位相滞在時間が最少となり、位相差が±180°の場合に位相滞在時間が最大となる。
図12のような位相滞在時間分布を満たすように選定される位相変調波形は、例えば、sin波又は三角波だけでなく、方形波等の他の波形であってもよい。
なお、位相変調波形の選定は、例えば、RFモニタ34の計測結果が位相変調器33に入力され、位相変調器33によって行われる。これにより、膜厚分布調整処理では、簡易に位相滞在時間分布を調整できる。
FIG. 12 is a diagram illustrating an example of the phase residence time distribution corresponding to the voltage distribution for each phase difference illustrated in FIG. 11. In the example of FIG. 12, the phase residence time is minimum when the phase difference is 0 °, and the phase residence time is maximum when the phase difference is ± 180 °.
The phase modulation waveform selected so as to satisfy the phase residence time distribution as shown in FIG. 12 may be other waveforms such as a square wave as well as a sin wave or a triangular wave.
The phase modulation waveform is selected by, for example, inputting the measurement result of the RF monitor 34 to the phase modulator 33 and the phase modulator 33. Thereby, in film thickness distribution adjustment processing, phase residence time distribution can be adjusted easily.

次のステップ106では、基板8に単膜を製膜する。   In the next step 106, a single film is formed on the substrate 8.

次のステップ108では、製膜した単膜の膜厚分布が所定範囲内(例えば±10%)であるか否かを判定し、肯定判定の場合は膜厚分布調整処理を終了する一方、否定判定の場合はステップ110へ移行する。なお、膜厚分布調整処理が終了したのちには、選定した位相変調波形によって、例えば太陽電池パネルに用いられるシリコン薄膜の製膜が行われる。   In the next step 108, it is determined whether or not the film thickness distribution of the formed single film is within a predetermined range (for example, ± 10%). In the case of determination, the process proceeds to step 110. After the film thickness distribution adjustment process is completed, a silicon thin film used for, for example, a solar cell panel is formed using the selected phase modulation waveform.

薄膜製造装置1の放電電極3の周辺構造や製膜ガス流れ分布などによる膜厚分布の乱れが発生することがある。
そこでステップ110では、膜厚分布が所定範囲内となるように、位相変調器33によって位相角度の変化範囲を0°から±180°の間でより適正な変化範囲となるような調整で電圧分布の微調整が行われる。または、位相滞在時間分布を微調整するために位相変調波形の微調整が行われる。その後ステップ106へ戻り、単膜の製膜が行われる。なお、膜厚分布が所定範囲内となるように、電圧分布及び位相滞在時間分布の両方が微調整されてもよい。
Disturbance of the film thickness distribution may occur due to the peripheral structure of the discharge electrode 3 of the thin film manufacturing apparatus 1 or the film forming gas flow distribution.
Therefore, in step 110, the voltage distribution is adjusted by the phase modulator 33 so that the change range of the phase angle becomes a more appropriate change range between 0 ° and ± 180 ° so that the film thickness distribution is within a predetermined range. Is finely adjusted. Alternatively, the phase modulation waveform is finely adjusted in order to finely adjust the phase residence time distribution. Thereafter, the process returns to step 106, and a single film is formed. Note that both the voltage distribution and the phase stay time distribution may be finely adjusted so that the film thickness distribution falls within a predetermined range.

以上説明したように、本第1実施形態に係る薄膜製造装置1は、放電電極3における高周波電力の位相滞在時間分布、及び放電電極3における電圧分布を計測するRFモニタ34を備え、位相滞在時間分布と電圧分布との積が所定の範囲内となるように、位相滞在時間分布及び電圧分布の少なくとも一方が調整される。
従って、本第1実施形態に係る薄膜製造装置1は、位相滞在時間分布及び電圧分布という2つのパラメータを調整することによって、基板8に製膜される膜厚分布を一定とできるので、基板8に製膜処理を実施する際に、高周波電力の供給条件の選定を適正化して、簡易かつ短時間で製膜される膜厚分布を均一にできる。
As described above, the thin film manufacturing apparatus 1 according to the first embodiment includes the RF monitor 34 that measures the phase residence time distribution of the high-frequency power in the discharge electrode 3 and the voltage distribution in the discharge electrode 3, and the phase residence time. At least one of the phase residence time distribution and the voltage distribution is adjusted so that the product of the distribution and the voltage distribution falls within a predetermined range.
Therefore, the thin film manufacturing apparatus 1 according to the first embodiment can make the film thickness distribution formed on the substrate 8 constant by adjusting the two parameters of the phase residence time distribution and the voltage distribution. When the film forming process is performed, the selection of the high-frequency power supply conditions is made appropriate, and the film thickness distribution can be made uniform easily and in a short time.

なお、本第1実施形態にかかる膜厚分布調整処理では、位相滞在時間分布を調整することによって、位相滞在時間分布と電圧分布との積を所定の範囲内とする場合について説明したが、これに限らず、RFモニタ34によって測定された位相滞在時間分布に基づいて、電圧分布を調整することで上記積を所定の範囲内としてもよい。
この場合、電圧分布の調整は、高周波電源31のインピーダンスを調整することによって行われる。具体的には、整合器13を構成する抵抗及びコンデンサやコイルの値を調整することでその電圧値が調整される。また、位相変調器33の位相角度の変化範囲を変更することによって、電圧分布の分布形状が調整される。これにより、膜厚分布調整処理では、簡易に電圧分布を調整できる。
In the film thickness distribution adjustment process according to the first embodiment, the case where the product of the phase stay time distribution and the voltage distribution is within a predetermined range by adjusting the phase stay time distribution has been described. Not limited to this, the product may be within a predetermined range by adjusting the voltage distribution based on the phase residence time distribution measured by the RF monitor 34.
In this case, the voltage distribution is adjusted by adjusting the impedance of the high-frequency power supply 31. Specifically, the voltage value is adjusted by adjusting the values of resistors, capacitors, and coils constituting the matching unit 13. In addition, the distribution shape of the voltage distribution is adjusted by changing the change range of the phase angle of the phase modulator 33. Thus, the voltage distribution can be easily adjusted in the film thickness distribution adjustment process.

〔第2実施形態〕
以下、本発明の第2実施形態について説明する。
[Second Embodiment]
Hereinafter, a second embodiment of the present invention will be described.

本第2実施形態に係る薄膜製造装置1の構成は、図1,2に示す第1実施形態に係る薄膜製造装置1の構成と同様であるので説明を省略する。
本第2実施形態に係るRFモニタ34は、放電電極3における電圧分布を計測せずに、位相滞在時間分布のみを計測する。
The configuration of the thin film manufacturing apparatus 1 according to the second embodiment is the same as the configuration of the thin film manufacturing apparatus 1 according to the first embodiment shown in FIGS.
The RF monitor 34 according to the second embodiment measures only the phase residence time distribution without measuring the voltage distribution in the discharge electrode 3.

図13は、本第2実施形態に係る膜厚分布調整処理の流れを示すフローチャートである。なお、図13における図10と同一のステップについては図10と同一の符号を付して、その説明を一部又は全部省略する。   FIG. 13 is a flowchart showing a flow of film thickness distribution adjustment processing according to the second embodiment. In FIG. 13, the same steps as those in FIG. 10 are denoted by the same reference numerals as those in FIG.

本第2実施形態に係る膜厚分布調整処理は、ステップ100によって製膜条件が選定されると、ステップ200へ移行する。   The film thickness distribution adjustment process according to the second embodiment proceeds to step 200 when the film forming conditions are selected in step 100.

ステップ200では、RFモニタ34によって、放電電極3における位相滞在時間分布を計測する。   In step 200, the phase residence time distribution in the discharge electrode 3 is measured by the RF monitor 34.

ステップ202では、基板8に単膜を製膜する。   In step 202, a single film is formed on the substrate 8.

次のステップ204では、計測した位相滞在時間分布と製膜した単膜の膜厚とから、放電電極3における電圧分布を推定し、ステップ104’へ移行する。すなわち、放電電極3の長手方向における単膜の膜厚分布から位相滞在時間分布を除した値が、電圧分布に比例した値となる。   In the next step 204, the voltage distribution in the discharge electrode 3 is estimated from the measured phase residence time distribution and the film thickness of the formed single film, and the process proceeds to step 104 '. That is, the value obtained by dividing the phase residence time distribution from the single film thickness distribution in the longitudinal direction of the discharge electrode 3 is a value proportional to the voltage distribution.

ステップ104’では、計測された位相滞在時間分布と推定された電圧分布との積が所定の範囲内となるような、位相変調波形を選定する。   In step 104 ', a phase modulation waveform is selected such that the product of the measured phase residence time distribution and the estimated voltage distribution is within a predetermined range.

このように、本第2実施形態にかかる薄膜製造装置1では、RFモニタ34が放電電極3における高周波電力の位相滞在時間分布のみを計測するので、装置構成が簡素化される。   As described above, in the thin film manufacturing apparatus 1 according to the second embodiment, the RF monitor 34 measures only the phase residence time distribution of the high-frequency power in the discharge electrode 3, so that the apparatus configuration is simplified.

上述したようにRFモニタ34は、放電電極3の給電部分の電圧を計測する。このため、放電電極3の周辺構造や製膜ガス流れ分布等による膜厚分布の乱れが発生することにより、位相変調波形の微調整が必要になる場合がある。一方、本第2実施形態では膜厚分布から直接的に放電電極3の電圧分布を推定する。このため、位相変調波形の微調整がより少なくなり、高周波電力の供給条件の選定をより適正化して、製膜される膜厚分布をより簡易に均一にすることができる。   As described above, the RF monitor 34 measures the voltage of the power feeding portion of the discharge electrode 3. For this reason, the disturbance of the film thickness distribution due to the peripheral structure of the discharge electrode 3 and the film-forming gas flow distribution or the like may cause fine adjustment of the phase modulation waveform. On the other hand, in the second embodiment, the voltage distribution of the discharge electrode 3 is estimated directly from the film thickness distribution. For this reason, the fine adjustment of the phase modulation waveform is reduced, the selection of the supply condition of the high frequency power is made more appropriate, and the film thickness distribution to be formed can be made uniform more easily.

以上、本発明を、上記各実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記各実施形態に多様な変更又は改良を加えることができ、該変更又は改良を加えた形態も本発明の技術的範囲に含まれる。また、上記各実施形態を適宜組み合わせてもよい。   As mentioned above, although this invention was demonstrated using said each embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. Various changes or improvements can be added to the above-described embodiments without departing from the gist of the invention, and embodiments to which the changes or improvements are added are also included in the technical scope of the present invention. Moreover, you may combine said each embodiment suitably.

例えば、位相変調波形は、アモルファス太陽電池や微結晶太陽電池等、製膜する膜質に応じて異なるものとしてもよい。
さらに製膜処理する膜種は薄膜シリコン系を主体とした実施形態を示したが、これに限定するものではない。なおここで、シリコン系とはシリコン(Si)、シリコンカーバイト(SiC)、シリコンゲルマニウム(SiGe)、シリコンナイトライド(SiNx)やシリコンオキサイド(SiOx)等を含む総称であり、アモルファスシリコン系と結晶質シリコン系と含むものである。
For example, the phase modulation waveform may be different depending on the film quality to be formed, such as an amorphous solar cell or a microcrystalline solar cell.
Furthermore, although the film | membrane kind to form into a film showed embodiment mainly having a thin film silicon system, it is not limited to this. Here, the silicon-based is a general term including silicon (Si), silicon carbide (SiC), silicon germanium (SiGe), silicon nitride (SiNx), silicon oxide (SiOx), and the like. It includes quality silicon.

また、上記各実施形態で説明した膜厚分布調整処理の流れも一例であり、本発明の主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよい。   In addition, the flow of the film thickness distribution adjustment process described in each of the above embodiments is also an example, and unnecessary steps can be deleted, new steps can be added, and the processing order can be changed without departing from the gist of the present invention. It may be replaced.

1 薄膜製造装置
2 対向電極
3 放電電極
8 基板
30 分割電極
31 高周波電源(RF電源)
33 位相変調器
34 RFモニタ
DESCRIPTION OF SYMBOLS 1 Thin film manufacturing apparatus 2 Counter electrode 3 Discharge electrode 8 Substrate 30 Divided electrode 31 High frequency power supply (RF power supply)
33 Phase modulator 34 RF monitor

Claims (6)

高周波電力によりプラズマを形成する真空処理装置であって、
高周波電力を出力する高周波電源と、
前記高周波電力の位相を変調する位相変調器と、
対向電極と、
前記高周波電力が供給され、前記対向電極との間にプラズマを形成する放電電極と、
前記放電電極における前記高周波電力の各位相差での滞在時間分布、及び前記放電電極における電圧分布の少なくとも一方を計測する計測手段と、
を備え、
前記滞在時間分布と前記電圧分布との積が所定の範囲内となるように、前記滞在時間分布及び前記電圧分布の少なくとも一方を調整する真空処理装置。
A vacuum processing apparatus that forms plasma with high-frequency power,
A high frequency power supply that outputs high frequency power;
A phase modulator for modulating the phase of the high-frequency power;
A counter electrode;
A discharge electrode that is supplied with the high-frequency power and forms plasma with the counter electrode;
Measuring means for measuring at least one of a residence time distribution at each phase difference of the high-frequency power in the discharge electrode and a voltage distribution in the discharge electrode;
With
A vacuum processing apparatus that adjusts at least one of the stay time distribution and the voltage distribution so that a product of the stay time distribution and the voltage distribution falls within a predetermined range.
前記滞在時間分布の調整は、前記位相変調器の位相変調波形を調整することによって行われる請求項1記載の真空処理装置。   The vacuum processing apparatus according to claim 1, wherein the stay time distribution is adjusted by adjusting a phase modulation waveform of the phase modulator. 前記電圧分布の調整は、前記高周波電源のインピーダンス、及び前記位相変調器の位相角度の変化範囲の少なくとも一方を調整することで行われる請求項1又は請求項2記載の真空処理装置。   The vacuum processing apparatus according to claim 1, wherein the voltage distribution is adjusted by adjusting at least one of an impedance of the high-frequency power source and a range of change in phase angle of the phase modulator. プラズマにより前記対向電極に保持した前記基板をプラズマ処理し、
前記基板に製膜された膜厚分布に基づいて、前記放電電極における前記高周波電力の各位相差での滞在時間分布、及び前記放電電極における電圧分布の少なくとも一方が微調整される請求項2又は請求項3記載の真空処理装置。
Plasma-treating the substrate held on the counter electrode by plasma;
The at least one of the residence time distribution at each phase difference of the high-frequency power in the discharge electrode and the voltage distribution in the discharge electrode is finely adjusted based on the film thickness distribution formed on the substrate. Item 4. A vacuum processing apparatus according to item 3.
プラズマにより前記対向電極に保持した前記基板をプラズマ処理し、
前記計測手段は、前記滞在時間分布を計測し、
前記電圧分布は、前記基板に製膜された膜厚分布に基づいて推定される請求項1記載の真空処理装置。
Plasma-treating the substrate held on the counter electrode by plasma;
The measuring means measures the stay time distribution,
The vacuum processing apparatus according to claim 1, wherein the voltage distribution is estimated based on a film thickness distribution formed on the substrate.
高周波電力を出力する高周波電源と、前記高周波電力の位相を変調する位相変調器と、対向電極と、前記高周波電力が供給され、前記対向電極との間にプラズマを形成する放電電極と、前記放電電極における前記高周波電力の各位相差での滞在時間分布、及び前記放電電極における電圧分布の少なくとも一方を計測する計測手段と、を備えた真空処理装置において、プラズマにより前記基板に製膜する膜厚分布調整方法であって、
前記滞在時間分布と前記電圧分布との積が所定の範囲内となるように、前記滞在時間分布及び前記電圧分布の少なくとも一方を調整する膜厚分布調整方法。
A high-frequency power source that outputs high-frequency power; a phase modulator that modulates the phase of the high-frequency power; a counter electrode; a discharge electrode that is supplied with the high-frequency power and forms plasma between the counter electrode; and the discharge A film thickness distribution formed on the substrate by plasma in a vacuum processing apparatus comprising: a measuring unit that measures at least one of a residence time distribution at each phase difference of the high-frequency power in the electrode and a voltage distribution in the discharge electrode An adjustment method,
A film thickness distribution adjusting method for adjusting at least one of the stay time distribution and the voltage distribution so that a product of the stay time distribution and the voltage distribution falls within a predetermined range.
JP2013262811A 2013-12-19 2013-12-19 Vacuum processing apparatus and film thickness distribution adjusting method Expired - Fee Related JP6113647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013262811A JP6113647B2 (en) 2013-12-19 2013-12-19 Vacuum processing apparatus and film thickness distribution adjusting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013262811A JP6113647B2 (en) 2013-12-19 2013-12-19 Vacuum processing apparatus and film thickness distribution adjusting method

Publications (2)

Publication Number Publication Date
JP2015119103A true JP2015119103A (en) 2015-06-25
JP6113647B2 JP6113647B2 (en) 2017-04-12

Family

ID=53531568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013262811A Expired - Fee Related JP6113647B2 (en) 2013-12-19 2013-12-19 Vacuum processing apparatus and film thickness distribution adjusting method

Country Status (1)

Country Link
JP (1) JP6113647B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04346670A (en) * 1991-05-21 1992-12-02 Seiko Epson Corp Bias plasma cvd device and film forming method thereof
JPH06111996A (en) * 1992-08-13 1994-04-22 Matsushita Electric Ind Co Ltd Plasma generator
US5404079A (en) * 1992-08-13 1995-04-04 Matsushita Electric Industrial Co., Ltd. Plasma generating apparatus
JP2003109908A (en) * 2001-10-01 2003-04-11 Sharp Corp Device and method for plasma treatment, substrate, and semiconductor device
US20040050495A1 (en) * 2002-09-13 2004-03-18 Masahiro Sumiya Plasma processing apparatus and plasma processing method
US20070235420A1 (en) * 2006-03-28 2007-10-11 Tokyo Electron Limited Plasma processing apparatus
JP2009021634A (en) * 2008-10-10 2009-01-29 Masayoshi Murata High frequency plasma cvd device, high frequency plasma cvd method, and manufacturing method of semiconductor thin film
JP2011181959A (en) * 2011-05-23 2011-09-15 Mitsubishi Heavy Ind Ltd Vacuum treatment apparatus, power feed device for vacuum treatment apparatus, film forming method, and power feed method at film formation
WO2013136656A1 (en) * 2012-03-15 2013-09-19 東京エレクトロン株式会社 Film forming device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04346670A (en) * 1991-05-21 1992-12-02 Seiko Epson Corp Bias plasma cvd device and film forming method thereof
JPH06111996A (en) * 1992-08-13 1994-04-22 Matsushita Electric Ind Co Ltd Plasma generator
US5404079A (en) * 1992-08-13 1995-04-04 Matsushita Electric Industrial Co., Ltd. Plasma generating apparatus
JP2003109908A (en) * 2001-10-01 2003-04-11 Sharp Corp Device and method for plasma treatment, substrate, and semiconductor device
US20040050495A1 (en) * 2002-09-13 2004-03-18 Masahiro Sumiya Plasma processing apparatus and plasma processing method
JP2004111432A (en) * 2002-09-13 2004-04-08 Hitachi High-Technologies Corp Apparatus and method for plasma processing
US20070235420A1 (en) * 2006-03-28 2007-10-11 Tokyo Electron Limited Plasma processing apparatus
JP2009021634A (en) * 2008-10-10 2009-01-29 Masayoshi Murata High frequency plasma cvd device, high frequency plasma cvd method, and manufacturing method of semiconductor thin film
JP2011181959A (en) * 2011-05-23 2011-09-15 Mitsubishi Heavy Ind Ltd Vacuum treatment apparatus, power feed device for vacuum treatment apparatus, film forming method, and power feed method at film formation
WO2013136656A1 (en) * 2012-03-15 2013-09-19 東京エレクトロン株式会社 Film forming device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAWAMURA 他: "Development of large-area a-Si:H films deposition using controlled VHF plasma", THIN SOLID FILMS, vol. 506-507, JPN6016045186, 2006, pages 22 - 26, XP025005652, ISSN: 0003495271, DOI: 10.1016/j.tsf.2005.08.017 *
TAKATSUKA 他: "World's largest amorphous silicon photovoltaic module", THIN SOLID FILMS, vol. 506-507, JPN6016045184, 2006, pages 13 - 16, XP025005650, ISSN: 0003495270, DOI: 10.1016/j.tsf.2005.08.011 *

Also Published As

Publication number Publication date
JP6113647B2 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
EP2407998B1 (en) Plasma processing in a capacitively-coupled reactor with trapezoidal-waveform excitation
US8586484B2 (en) Film forming method and film forming apparatus
US20110272099A1 (en) Plasma processing apparatus and method for the plasma processing of substrates
JP5118354B2 (en) Vacuum processing apparatus and film forming method using vacuum processing apparatus
JP2011162830A (en) Film-forming method with plasma cvd technique, substrate having film formed thereon, and film-forming apparatus
JP4707403B2 (en) Plasma processing method and apparatus by pulse division supply and plasma CVD method
JPH11243062A (en) Method and device for plasma cvd
JP2006202638A (en) Plasma generation device and plasma generation method
JP5772941B2 (en) Plasma CVD equipment
JP6113647B2 (en) Vacuum processing apparatus and film thickness distribution adjusting method
JP5484375B2 (en) Plasma film forming apparatus and plasma film forming method
US20130285551A1 (en) Method for Improving Uniformity of High-Frequency Plasma Discharge by Means of Frequency Modulation
JP2014041760A (en) Vacuum processing device, and film thickness distribution adjustment method
JP5487990B2 (en) Plasma CVD equipment
JPH06295866A (en) Plasma reaction system
JP4264321B2 (en) Plasma chemical vapor deposition apparatus, plasma generation method, plasma chemical vapor deposition method
JP2002327276A (en) Method and device for uniformizing high frequency plasma over large area in plasma cvd apparatus
JP2011017076A (en) Substrate treatment apparatus
JP3611309B2 (en) Structure of discharge electrode in plasma chemical vapor deposition equipment.
JP2011038123A (en) Substrate processing apparatus
JP5039476B2 (en) Vacuum processing apparatus and method for adjusting vacuum processing apparatus
JP2017028092A (en) Plasma processing apparatus and plasma processing method
Lien et al. Production of a uniform VHF H2 plasma by a narrow-gap discharge
JP2018076547A (en) Method for manufacturing thin film, method for manufacturing solar cell, and plasma cvd apparatus
JP3814218B2 (en) Power supply method to discharge electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170315

R150 Certificate of patent or registration of utility model

Ref document number: 6113647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees