JP2015118806A - Solvent amount deriving method, solvent amount deriving apparatus, electrode slurry producing method, and electrode slurry producing system - Google Patents

Solvent amount deriving method, solvent amount deriving apparatus, electrode slurry producing method, and electrode slurry producing system Download PDF

Info

Publication number
JP2015118806A
JP2015118806A JP2013261598A JP2013261598A JP2015118806A JP 2015118806 A JP2015118806 A JP 2015118806A JP 2013261598 A JP2013261598 A JP 2013261598A JP 2013261598 A JP2013261598 A JP 2013261598A JP 2015118806 A JP2015118806 A JP 2015118806A
Authority
JP
Japan
Prior art keywords
solvent
powder
amount
electrode slurry
solvent amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013261598A
Other languages
Japanese (ja)
Inventor
上田 大
Masaru Ueda
大 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2013261598A priority Critical patent/JP2015118806A/en
Publication of JP2015118806A publication Critical patent/JP2015118806A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solvent amount deriving technique by which when kneading a powder mixture including active material powder and a conductive assistant, a proper amount of solvent to supply to the powder mixture can be derived efficiently; and an electrode slurry-producing technique which enables the production of an electrode slurry with an active material and a conductive assistant uniformly distributed in solvent by such a solvent amount deriving technique.SOLUTION: A solvent amount deriving method comprises: a compacting step for compacting powder to be measured which is identical in composition with a powder mixture; a cavity volume calculation step of calculating a pore volume of the compacted powder to be measured; and a solvent amount decision step of deciding an amount of solvent based on the pore volume.

Description

この発明は、粉末状の活物質材料および導電助剤を含む混合粉末を混練する際に混合粉末に供給する溶媒の適正量を求める溶媒量導出技術および当該溶媒量導出技術を用いた電極スラリー作製技術に関するものである。   The present invention relates to a solvent amount deriving technique for obtaining an appropriate amount of a solvent to be supplied to a mixed powder when kneading a mixed powder containing a powdered active material and a conductive additive, and electrode slurry preparation using the solvent amount deriving technique It is about technology.

リチウム二次電池は、高容量、高出力の電源として、携帯電話やノートパソコンなどの携帯機器に限らず、近年ではハイブリッド自動車や電気自動車などにも採用されている。この種の電池の技術分野においては、さらなる電池の性能向上を図るために種々の技術が提案されている(例えば特許文献1)。   Lithium secondary batteries are used not only for portable devices such as mobile phones and laptop computers, but also for hybrid vehicles and electric vehicles in recent years as a high-capacity and high-output power source. In the technical field of this type of battery, various techniques have been proposed in order to further improve the performance of the battery (for example, Patent Document 1).

特開2012−74203号公報JP 2012-74203 A

特許文献1に記載の発明では、活物質層の構造を工夫することで二次電池の小型化・大出力化を図っているが、高容量化を図るために二次電池において電極の単位体積当たりに存在する活物質の量を増やす試みが提案されている。すなわち、電池の電極は粉末状の活物質材料および導電助剤を含む混合粉末を適当な溶媒に分散させて電極スラリーを作製し、これを集電体に塗布して形成される。この電極スラリーは、混合粉末に溶媒を添加して混練する混練工程と当該混練工程により得られる混練物を溶媒で希釈する希釈工程を経て作製されるが、混練工程において混合粉末に添加される溶媒の量を適正化することで電極スラリー中で粒子同士が数珠繋ぎ状態や凝集状態で存在するのを防止し、粒子を均一に分散させることができる。そして、このような電極スラリーを用いて電極を製造することによって電極の単位体積当たりの活物質の個数が増大する。   In the invention described in Patent Document 1, the structure of the active material layer is devised to reduce the size and increase the output of the secondary battery, but in order to increase the capacity, the unit volume of the electrode in the secondary battery Attempts have been proposed to increase the amount of active material present at the moment. That is, a battery electrode is formed by dispersing a mixed powder containing a powdered active material and a conductive additive in an appropriate solvent to prepare an electrode slurry, which is applied to a current collector. This electrode slurry is prepared through a kneading step in which a solvent is added to the mixed powder and kneaded, and a dilution step in which the kneaded product obtained by the kneading step is diluted with a solvent. The solvent added to the mixed powder in the kneading step By optimizing the amount, it is possible to prevent the particles from being present in a daisy chain or agglomerated state in the electrode slurry and to disperse the particles uniformly. And the number of active materials per unit volume of an electrode increases by manufacturing an electrode using such an electrode slurry.

しかしながら、混練処理中に添加すべき溶媒の適正量は経験に頼るところが大きく、試行錯誤を繰り返しながら導出していた。また、当該適正量は、使用される活物質材料や導電助剤の仕様(品種、配合比、ロット等)毎に異なることが多く、仕様変更のたびに試行錯誤を繰り返さねばならず、無駄が多かった。   However, the appropriate amount of the solvent to be added during the kneading process largely depends on experience, and has been derived through repeated trial and error. In addition, the appropriate amount often varies depending on the specifications of the active material used and the conductive additive (variety, blending ratio, lot, etc.), and trial and error must be repeated each time the specification is changed, which is wasteful. There were many.

この発明は上記課題に鑑みなされたものであり、粉末状の活物質材料および導電助剤を含む混合粉末を混練する際に混合粉末に供給する溶媒の適正量を効率的に導出することができる溶媒量導出技術、ならびに当該溶媒量導出技術を用いて活物質材料および導電助剤が溶媒中に均一に分散した電極スラリーを作製することができる電極スラリー作製技術を提供することを目的とする。   The present invention has been made in view of the above problems, and can efficiently derive an appropriate amount of a solvent to be supplied to a mixed powder when a mixed powder containing a powdered active material and a conductive additive is kneaded. It is an object of the present invention to provide a solvent amount deriving technique and an electrode slurry producing technique capable of producing an electrode slurry in which an active material and a conductive additive are uniformly dispersed in a solvent using the solvent amount deriving technique.

この発明の第1態様は、粉末状の活物質材料および導電助剤を含む混合粉末を混練する際に混合粉末に供給する溶媒の量を求める溶媒量導出方法であって、混合粉末と同一組成の計測対象粉末を圧縮する圧縮工程と、圧縮された計測対象粉末の空隙体積を求める空隙体積算出工程と、空隙体積に基づいて溶媒の量を決定する溶媒量決定工程とを備えることを特徴としている。   A first aspect of the present invention is a method for deriving an amount of solvent for obtaining an amount of a solvent to be supplied to a mixed powder when kneading the mixed powder containing a powdered active material and a conductive additive, and has the same composition as the mixed powder A compression step of compressing the measurement target powder, a void volume calculation step for obtaining a void volume of the compressed measurement target powder, and a solvent amount determination step for determining the amount of the solvent based on the void volume Yes.

また、この発明の第2態様は、電極スラリー作製方法であって、上記溶媒量導出方法によって導出された量の溶媒を、粉末状の活物質材料および導電助剤を含む混合粉末に供給して混練する混練工程と、混練工程により得られる混練物を溶媒で希釈して電極スラリーを作製する希釈工程とを備えることを特徴としている。   A second aspect of the present invention is an electrode slurry preparation method, wherein an amount of the solvent derived by the solvent amount deriving method is supplied to a mixed powder containing a powdered active material and a conductive additive. A kneading step for kneading and a diluting step for diluting a kneaded product obtained by the kneading step with a solvent to prepare an electrode slurry are characterized.

また、この発明の第3態様は、粉末状の活物質材料および導電助剤を含む混合粉末を混練する際に混合粉末に供給する溶媒の量を求める溶媒量導出装置であって、混合粉末と同一組成の計測対象粉末を収容する容器と、容器に収容された計測対象粉末を圧縮する圧縮部と、圧縮部により圧縮された計測対象粉末の空隙体積を求め、空隙体積に基づいて溶媒の量を算出する溶媒量演算部とを備えることを特徴としている。   According to a third aspect of the present invention, there is provided a solvent amount deriving device for obtaining an amount of a solvent to be supplied to the mixed powder when kneading the mixed powder containing the powdered active material and the conductive auxiliary agent. A container for storing the powder to be measured having the same composition, a compression unit for compressing the powder to be measured contained in the container, a void volume of the powder to be measured compressed by the compression unit, and the amount of the solvent based on the void volume And a solvent amount calculation unit for calculating the value.

さらに、この発明の第4態様は、粉末状の活物質材料および導電助剤を含む混合粉末と溶媒とを混練して混練物を作製し、混練物を溶媒で希釈して電極スラリーを作製する電極スラリー作製システムであって、上記溶媒量導出装置を備え、混練物を作製する際に使用する溶媒の量を、溶媒量導出装置により導出された量に調整することを特徴としている。   Furthermore, in the fourth aspect of the present invention, a mixed powder containing a powdered active material and a conductive additive and a solvent are kneaded to prepare a kneaded product, and the kneaded product is diluted with a solvent to prepare an electrode slurry. An electrode slurry production system comprising the above-described solvent amount deriving device, wherein an amount of a solvent used when producing a kneaded product is adjusted to an amount derived by the solvent amount deriving device.

混練処理中に添加すべき溶媒の量に対して適正値が存在することは既に説明したとおりであるが、その理由について詳しい考察は今までなされていなかった。そこで、後で詳述するように本願発明者は混合粉末に溶媒を加えたときの粒子間での溶媒の存在状態を考察し、混練処理中にキャピラリー状態(capillary state)が発現した際に粒子同士を相互に引き離し、粒子を均一に分散させることができるという知見を得た。つまり、粒子間の空隙が溶媒で満たされるように溶媒量を設定するのが好適であり、この溶媒量が最適な値であることがわかった。本発明は上記知見に基づくものであり、混合粉末と同一組成を有する計測対象粉末を圧縮することで、溶媒が存在していない点を除き、上記キャピラリー状態に類似した状態(以下、「擬似キャピラリー状態」という)を作り出している。そして、擬似キャピラリー状態にある計測対象粉末の粒子間の空隙体積を求め、さらに当該空隙体積に基づいて溶媒の適正値を導出する。   As described above, there is an appropriate value for the amount of the solvent to be added during the kneading process, but no detailed discussion has been made on the reason. Therefore, as will be described in detail later, the present inventor considered the existence state of the solvent between the particles when the solvent was added to the mixed powder, and the particles were observed when the capillary state developed during the kneading process. It was found that the particles can be separated from each other and the particles can be dispersed uniformly. That is, it has been found that the amount of solvent is preferably set so that the voids between the particles are filled with the solvent, and this amount of solvent is an optimum value. The present invention is based on the above findings, and is a state similar to the above-mentioned capillary state (hereinafter referred to as “pseudocapillary”) except that no solvent is present by compressing a powder to be measured having the same composition as the mixed powder. State)). Then, a void volume between particles of the measurement target powder in a pseudo capillary state is obtained, and an appropriate value of the solvent is derived based on the void volume.

以上のように、本発明によれば、混合粉末と同一組成を有する計測対象粉末を圧縮して擬似キャピラリー状態を形成し、そのときの計測対象粉末の粒子間の空隙体積に基づいて混練処理に際して混合粉末に供給する溶媒の量を導出している。このため、従来のように経験や試行錯誤により溶媒量を導出する場合に比べ、溶媒の適正量を効率的に導出することができる。また、この溶媒量導出技術を用いることで、活物質材料および導電助剤が溶媒中に均一に分散した電極スラリーを作製することができる。   As described above, according to the present invention, the measurement target powder having the same composition as the mixed powder is compressed to form a pseudo capillary state, and the kneading process is performed based on the void volume between the particles of the measurement target powder at that time. The amount of solvent supplied to the mixed powder is derived. For this reason, compared with the case where the amount of solvents is derived by experience and trial and error as in the prior art, the appropriate amount of solvent can be efficiently derived. Further, by using this solvent amount deriving technique, an electrode slurry in which the active material and the conductive additive are uniformly dispersed in the solvent can be produced.

本発明にかかる溶媒量導出装置の一実施形態を装備する電極スラリー作製システムを示す図である。It is a figure showing an electrode slurry preparation system equipped with one embodiment of a solvent amount derivation device concerning the present invention. 図1に示す電極スラリー作製システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the electrode slurry preparation system shown in FIG. 混合粉末に添加する溶媒量と容量密度との関係を示す図である。It is a figure which shows the relationship between the amount of solvent added to mixed powder, and a volume density.

A.粉体に溶媒を添加した際の粒子の流動状態
粉体は微細な固体粒子の集合体であり、分子間力などにより凝集状態あるいは数珠繋ぎ状態で存在している。この粉体に溶媒を添加すると、その添加量に応じて粒子の流動性が異なる。より詳しくは、添加する溶媒量が少ない場合、ペンジュラー状態(pendular state)やファニキュラー状態(funicular state)となり、粒子間の摩擦が比較的大きく、流動性は得られない。そして、添加する溶媒量が増えることでキャピラリー状態に近づいていき、流動が開始する。さらに溶媒量が増えると、粒子間のすべての空隙に溶媒が入り込んでキャピラリー状態に達する。このように流動の開始時より粒子間の結合を最も効率的に破壊することが可能となる。ただし、さらに添加する溶媒量が増えると、スラリー状態となり、粒子間の摩擦が少なくなり、結合を破壊することが困難となる。そして、凝集状態あるいは数珠繋ぎ状態のまま流動することとなる。
A. The flow state of particles when a solvent is added to the powder The powder is an aggregate of fine solid particles, and exists in an agglomerated state or a chain of states due to intermolecular forces. When a solvent is added to the powder, the fluidity of the particles varies depending on the amount added. More specifically, when the amount of the solvent to be added is small, the state becomes a pendular state or a funicular state, and friction between particles is relatively large, and fluidity cannot be obtained. Then, as the amount of the solvent to be added increases, the state approaches the capillary state and the flow starts. When the amount of the solvent further increases, the solvent enters all the voids between the particles and reaches the capillary state. In this way, the bonds between the particles can be broken most efficiently from the beginning of the flow. However, when the amount of the solvent to be added is further increased, a slurry state is obtained, friction between particles is reduced, and it becomes difficult to break the bond. And it will flow in the agglomerated state or the daisy chain state.

したがって、キャピラリー状態またはそれに近似した状態を実現できる量の溶媒を添加して混練処理を行うことで数珠繋ぎ状態や凝集状態で存在していた粒子同士を相互に引き離し、粒子を均一に分散させることができると考えられる。つまり、上記溶媒量が混練処理時に混合粉末に対して添加する溶媒の適正量であるとの知見を得た。   Therefore, by adding a solvent in an amount that can realize a capillary state or a state close to it, kneading is performed to separate the particles that existed in a daisy chain or agglomerated state from each other, and to uniformly disperse the particles. It is considered possible. That is, the knowledge that the amount of the solvent is an appropriate amount of the solvent added to the mixed powder during the kneading process was obtained.

そこで、本願発明者は、混合粉末中の粒子同士が密に詰まった状態を作り上げてキャピラリー状態に近い擬似状態、つまり溶媒が存在しない点を除いてキャピラリー状態に類似した状態を形成すると、その擬似状態での空隙体積が混練処理でキャピラリー状態を実現するのに必要な溶媒量に相当するとの結論を得た。つまり、粒子同士が密に詰まった状態での空隙体積を求め、これからキャピラリー状態あるいはそれに近似した状態を実現できる量の溶媒を導出することができるとの知見を得た。そして、当該知見に基づき粉末状の活物質材料および導電助剤を含む混合粉末を混練する際に混合粉末に供給する溶媒の適正量を効率的に導出する技術を創作した。以下、図面を参照しつつ上記知見に基づく溶媒量導出技術、ならびに当該技術を用いて電極スラリーを作製する技術について説明する。   Therefore, the inventor of the present application creates a state in which particles in the mixed powder are densely packed to form a pseudo state close to the capillary state, that is, a state similar to the capillary state except that no solvent is present. It was concluded that the void volume in the state corresponds to the amount of solvent necessary to realize the capillary state in the kneading process. That is, the void volume in a state where the particles are densely packed is obtained, and from this, it has been found that an amount of solvent that can realize a capillary state or a state close thereto can be derived. And based on the said knowledge, when knead | mixing the mixed powder containing a powdery active material material and a conductive support agent, the technique which derives | leads-out efficiently the amount of the solvent supplied to mixed powder was created. Hereinafter, a solvent amount deriving technique based on the above knowledge and a technique for producing an electrode slurry using the technique will be described with reference to the drawings.

B.実施形態
図1は本発明にかかる溶媒量導出装置の一実施形態を装備する電極スラリー作製システムを示す図である。この電極スラリー作製システム1は、例えばリチウムイオン二次電池の活物質層を製造する際に使用する塗布液、つまり複数種類の粉体を所望重量比で混合した混合粉末に対して溶媒を加えて電極形成用の懸濁体(以下「電極スラリー」という)を作製するシステムである。
B. Embodiment FIG. 1 is a diagram showing an electrode slurry preparation system equipped with an embodiment of a solvent amount deriving device according to the present invention. This electrode slurry preparation system 1 adds a solvent to, for example, a coating solution used when manufacturing an active material layer of a lithium ion secondary battery, that is, a mixed powder obtained by mixing a plurality of types of powders at a desired weight ratio. This is a system for producing a suspension for electrode formation (hereinafter referred to as “electrode slurry”).

電極スラリー作製システム1では、混合粉末を調製して供給する混合粉末供給装置2が設けられている。混合粉末供給装置2は、種々の仕様で電極スラリーを作製するために、予め複数種類の粉体を貯蔵する貯蔵部21を有している。貯蔵部21には、互いに異なる粉体A、粉体B、粉体C、…がそれぞれ異なる粉体貯蔵タンク211に独立して貯蔵されている。より具体的には、正極形成のために、正極活物質としては例えばLiCoO(LCO)を主体とする粉末状の活物質材料が粉体貯蔵タンク211に貯蔵されている。また、負極形成のために、負極活物質としては例えばLiTi12(LTO)を主体とした粉末状の活物質材料が粉体貯蔵タンク211に貯蔵されている。また、導電助剤としての粉末状のアセチレンブラック(AB)やケッチェンブラックがそれぞれ異なる粉体貯蔵タンク211に貯蔵されている。さらに、結着剤として粉末状のポリフッ化ビニリデン(PVDF)、スチレンブタジエンラバー(SBR)、ポリビニルピロリドン(PVP)、ポリビニルアルコール(PVA)やポリテトラフルオロエチレン(PTFE)がそれぞれ異なる粉体貯蔵タンク211に貯蔵されている。なお、本実施形態では、上記した粉体を貯蔵した粉体貯蔵タンク211を予め貯蔵部21に装備しているが、粉体の種類などについては上記したもので限定されるものではなく、作製すべき電極スラリーの種類に応じて適宜準備することができる。 The electrode slurry production system 1 is provided with a mixed powder supply device 2 that prepares and supplies mixed powder. The mixed powder supply apparatus 2 has a storage unit 21 that stores a plurality of types of powders in advance in order to produce electrode slurry with various specifications. In the storage unit 21, different powder A, powder B, powder C,... Are stored independently in different powder storage tanks 211, respectively. More specifically, for forming the positive electrode, as the positive electrode active material, for example, a powdered active material mainly composed of LiCoO 2 (LCO) is stored in the powder storage tank 211. For forming the negative electrode, as the negative electrode active material, for example, a powdered active material mainly composed of Li 4 Ti 5 O 12 (LTO) is stored in the powder storage tank 211. Further, powdered acetylene black (AB) and ketjen black as conductive assistants are stored in different powder storage tanks 211, respectively. Further, powder storage tanks 211 in which powdery polyvinylidene fluoride (PVDF), styrene butadiene rubber (SBR), polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA) and polytetrafluoroethylene (PTFE) are different as binders. Stored in In the present embodiment, the storage unit 21 is preliminarily equipped with the powder storage tank 211 storing the above-described powder. However, the type of the powder is not limited to the above-described one, and is manufactured. It can prepare suitably according to the kind of electrode slurry which should be carried out.

また、混合粉末供給装置2は、上記した貯蔵部21以外に、粉体混合撹拌部22および制御部23を有している。この粉体混合撹拌部22は粉体を一時的に収容する収容空間を有している。そして、制御部23がオペレータやホストコンピュータなどにより指示された電極スラリーの仕様に応じて分別投入機構(図示省略)を制御し、当該電極スラリーを作製するのに必要な複数種類の粉体を選択的に、しかも仕様に合致した重量比で粉体混合撹拌部22の収容空間に投入する。この粉体混合撹拌部22の収容空間には、撹拌機構(図示省略)が配置されており、制御部23からの撹拌指令に応じて撹拌機構が作動することで投入された複数種類の粉体が均一に混合されて混合粉末が調製される。なお、こうして調製された混合粉末は、通常時、つまり電極スラリーの作製時には混練装置3の混練部31に供給されて混練処理を受ける一方、後述するように混練処理に適した溶媒の量を導出する時には溶媒量導出装置4の容器41に供給される。   The mixed powder supply apparatus 2 includes a powder mixing and stirring unit 22 and a control unit 23 in addition to the storage unit 21 described above. The powder mixing and stirring unit 22 has a storage space for temporarily storing powder. Then, the control unit 23 controls a separate charging mechanism (not shown) according to the specification of the electrode slurry instructed by an operator, a host computer, etc., and selects a plurality of types of powders necessary for producing the electrode slurry. In addition, the powder is mixed into the storage space of the powder mixing and stirring unit 22 at a weight ratio that matches the specifications. An agitation mechanism (not shown) is disposed in the accommodation space of the powder mixing and agitation unit 22, and a plurality of types of powders that are input by operating the agitation mechanism in response to an agitation command from the control unit 23. Are uniformly mixed to prepare a mixed powder. The mixed powder thus prepared is supplied to the kneading unit 31 of the kneading device 3 and subjected to the kneading process at the normal time, that is, at the time of preparing the electrode slurry, and the amount of the solvent suitable for the kneading process is derived as described later. When it does, it is supplied to the container 41 of the solvent amount deriving device 4.

混練装置3は、上記した混練部31以外に、溶媒貯蔵供給部32および制御部33を有している。混練部31は粉体混合撹拌部22で調製された混合粉末に対して溶媒貯蔵供給部32から供給される溶媒を加えて混練処理を行う。本実施形態では、溶媒貯蔵供給部32は、溶媒としてN−メチル−2−ピロリドン(NMP)を溶媒貯蔵タンク(図示省略)に予め貯蔵しており、制御部33から与えられる供給指令に応じた量だけ溶媒貯蔵タンクから取り出し、混練部31に供給する。このように、供給指令により混練処理に用いる溶媒量を調整可能となっている。なお、この供給指令は溶媒量導出装置4により導出される溶媒量データに基づいて制御部33により決定されるものであり、その詳細については後で溶媒量導出装置4の構成説明と合わせて詳述する。   The kneading apparatus 3 includes a solvent storage and supply unit 32 and a control unit 33 in addition to the kneading unit 31 described above. The kneading unit 31 performs a kneading process by adding the solvent supplied from the solvent storage and supply unit 32 to the mixed powder prepared by the powder mixing and stirring unit 22. In the present embodiment, the solvent storage supply unit 32 stores N-methyl-2-pyrrolidone (NMP) as a solvent in advance in a solvent storage tank (not shown), and responds to a supply command given from the control unit 33. The amount is taken out from the solvent storage tank and supplied to the kneading unit 31. Thus, the amount of solvent used for the kneading process can be adjusted by the supply command. This supply command is determined by the control unit 33 based on the solvent amount data derived by the solvent amount deriving device 4, and details thereof will be described later together with the description of the configuration of the solvent amount deriving device 4. Describe.

混練装置3による混練処理によって所望の混練物(=混合粉末+溶媒)が作製されると、当該混練物は希釈装置5に供給される。この希釈装置5は混練物を溶媒により希釈して所望(後で実施例では55[wt%])の固体分濃度を有する電極スラリーを作製する。そして、当該電極スラリーが塗布液として集電体上に塗布されて活物質層が形成される。なお、本実施形態では、混練装置3と希釈装置5とを別装置として設けているが、ひとつの装置で混練処理と希釈処理とをこの順序で実行するように構成してもよい。つまり、混練装置3と希釈装置5とを設ける代わりに、混練・希釈装置を設けてもよく、混練・希釈装置で混練処理を行う際に、溶媒量導出装置4により導出される溶媒量データに基づいて混合粉末への溶媒の添加量を調整すればよい。   When a desired kneaded product (= mixed powder + solvent) is produced by the kneading process by the kneading device 3, the kneaded product is supplied to the diluting device 5. The diluting device 5 dilutes the kneaded material with a solvent to produce an electrode slurry having a desired solid content concentration (55% by weight in the examples later). And the said electrode slurry is apply | coated on a collector as a coating liquid, and an active material layer is formed. In the present embodiment, the kneading device 3 and the diluting device 5 are provided as separate devices, but the kneading process and the diluting process may be executed in this order by one apparatus. That is, instead of providing the kneading device 3 and the diluting device 5, a kneading / diluting device may be provided, and the solvent amount data derived by the solvent amount deriving device 4 when the kneading process is performed by the kneading / diluting device. Based on this, the addition amount of the solvent to the mixed powder may be adjusted.

次に、溶媒量導出装置4の構成について説明する。溶媒量導出装置4は、粉体混合撹拌部22で調製された混合粉末を収容する容器41を有している。本実施形態では、容器41の内容積、つまり「かさ」は10.40[cm]であるが、この値に限定されるものではなく、任意のサイズのものを採用することができる。 Next, the configuration of the solvent amount deriving device 4 will be described. The solvent amount deriving device 4 includes a container 41 that accommodates the mixed powder prepared by the powder mixing and stirring unit 22. In the present embodiment, the internal volume of the container 41, that is, the “bulk” is 10.40 [cm 3 ], but is not limited to this value, and an arbitrary size can be adopted.

また、溶媒量導出装置4は、上記した容器41以外に、容器41に投入された混合粉末を押圧するプレス部42、容器41に収容された混合粉末の重量を計測する重量計測部43および重量計測部43の計測結果に基づいて混練処理時における溶媒の適正値を演算する溶媒量演算部44を有している。この溶媒量導出装置4では、プレス部42が、容器41に混合粉末が供給された後で容器41に収容された混合粉末を押圧して容器41の内部空間内で混合粉末中の粒子同士が密に詰まった状態を作り上げて溶媒が存在しない点を除いてキャピラリー状態に近似した状態(以下、この状態を「擬似キャピラリー状態」という)を形成する。なお、本明細書では、混合粉末を圧縮して形成される物体を「圧縮体」と称する。   In addition to the container 41 described above, the solvent amount deriving device 4 includes a press unit 42 that presses the mixed powder charged in the container 41, a weight measuring unit 43 that measures the weight of the mixed powder stored in the container 41, and a weight. A solvent amount calculation unit 44 that calculates an appropriate value of the solvent during the kneading process based on the measurement result of the measurement unit 43 is provided. In the solvent amount deriving device 4, the pressing unit 42 presses the mixed powder stored in the container 41 after the mixed powder is supplied to the container 41, so that the particles in the mixed powder are in the internal space of the container 41. A state close to the capillary state is formed except that the solvent is not present by creating a densely packed state (hereinafter, this state is referred to as a “pseudo-capillary state”). In the present specification, an object formed by compressing the mixed powder is referred to as a “compressed body”.

また、重量計測部43は、空状態で容器41の重量を計測し、また擬似キャピラリー状態での容器41の重量、つまり容器41と圧縮体(混合粉末)の総重量を計測して溶媒量演算部44に与える。そして、溶媒量演算部44は充填状態の容器41の重量から空状態で容器41の重量を減算することで圧縮体(容器41中の混合粉末)の重量を求める。   The weight measuring unit 43 measures the weight of the container 41 in an empty state, and measures the weight of the container 41 in a pseudo capillary state, that is, the total weight of the container 41 and the compressed body (mixed powder), thereby calculating the amount of solvent. Part 44 is given. And the solvent amount calculating part 44 calculates | requires the weight of a compression body (mixed powder in the container 41) by subtracting the weight of the container 41 in an empty state from the weight of the container 41 in a filling state.

また図示を省略しているが、溶媒量演算部44はメモリを有している。そして、当該メモリには、粉体A、B、C、…毎の真密度ρ、ρ、ρ、…が記憶されるとともに、電極スラリーの仕様毎に当該電極スラリーを組成する粉体の重量比が予め記憶されている。例えば正極を形成するために用いる電極スラリーを作製するために、LiCoO(LCO)を主体とする粉末状の活物質材料の真密度として5.1[g/cm]、導電助剤としてアセチレンブラックの真密度として2.0[g/cm]、結着剤としてポリフッ化ビニリデン(PVDF)の真密度として[1.78g/cm]がメモリに予め記憶されている。また、LiCoO、アセチレンブラックおよびポリフッ化ビニリデンの重量比として8:1.2:0.8がメモリに記憶されている。 Although not shown, the solvent amount calculation unit 44 has a memory. The memory stores the true densities ρ A , ρ B , ρ C ,... For each of the powders A, B, C,..., And the powder that composes the electrode slurry for each specification of the electrode slurry. The weight ratio is stored in advance. For example, in order to produce an electrode slurry used to form a positive electrode, the true density of a powdered active material mainly composed of LiCoO 2 (LCO) is 5.1 [g / cm 3 ], and acetylene is used as a conductive auxiliary agent. 2.0 [g / cm 3] as the true density of the black, as the true density of polyvinylidene fluoride (PVDF) [1.78g / cm 3] it is previously stored in the memory as a binder. In addition, 8: 1.2: 0.8 is stored in the memory as the weight ratio of LiCoO 2 , acetylene black, and polyvinylidene fluoride.

溶媒量演算部44は、圧縮体の重量、当該圧縮体を組成する粉体の真密度ならびに重量比に基づいて擬似キャピラリー状態となっている圧縮体の体積を算出する。また、容器41の内容積から圧縮体の体積を差し引いて空隙体積を算出する。さらに、溶媒量演算部44は空隙体積から溶媒の適正量を導出し、これを溶媒量データとして混練装置3の制御部33に与える。   The solvent amount calculation unit 44 calculates the volume of the compressed body in a pseudo capillary state based on the weight of the compressed body, the true density of the powder composing the compressed body, and the weight ratio. Further, the void volume is calculated by subtracting the volume of the compressed body from the internal volume of the container 41. Further, the solvent amount calculation unit 44 derives an appropriate amount of the solvent from the void volume, and gives this to the control unit 33 of the kneading apparatus 3 as solvent amount data.

次に、上記のように構成された電極スラリー作製システム1の動作について図2を参照しつつ説明する。図2は図1に示す電極スラリー作製システムの動作を示すフローチャートである。電極スラリーの仕様、つまり使用される活物質材料、導電助剤や結着剤の品種、配合比、ロット等が異なると、混練処理に適した溶媒量は異なることが多い。そこで、本実施形態では、電極スラリー作製システム1全体を制御するホストコンピュータ(図示省略)が電極スラリーの仕様変更の有無を判定する(ステップS1)。そして、仕様変更が発生した場合(ステップS1で「NO」)、ホストコンピュータが混合粉末供給装置2および溶媒量導出装置4を以下のように制御して溶媒量導出処理を実行して混練処理に適した溶媒量を導出する(ステップS2)。   Next, operation | movement of the electrode slurry preparation system 1 comprised as mentioned above is demonstrated, referring FIG. FIG. 2 is a flowchart showing the operation of the electrode slurry production system shown in FIG. If the specifications of the electrode slurry, that is, the active material used, the type of conductive assistant or binder, the blending ratio, the lot, and the like are different, the amount of solvent suitable for the kneading process often differs. Therefore, in this embodiment, a host computer (not shown) that controls the entire electrode slurry production system 1 determines whether or not the specification of the electrode slurry is changed (step S1). If a specification change occurs ("NO" in step S1), the host computer controls the mixed powder supply device 2 and the solvent amount deriving device 4 as follows to execute the solvent amount deriving process to perform the kneading process. A suitable amount of solvent is derived (step S2).

この溶媒量導出処理では、混合粉末供給装置2が変更後の電極スラリーの仕様に応じた混合粉末を調製する(ステップS21)。なお、こうして調製された混合粉末は以下に説明するように溶媒の適正値を求めるために圧縮処理や重量計測処理を受けるため、電極スラリーを作製するために用いられる混合粉末と異なる。そこで、溶媒量導出処理で用いる混合粉末を「計測対象粉末」と称し、電極スラリーを作製するために用いられる混合粉末と区別する。ただし、溶媒の適正値を求めた後で計測対象粉末を電極スラリー作製に供してもよいことは言うまでもない。   In this solvent amount derivation process, the mixed powder supply device 2 prepares a mixed powder according to the changed specifications of the electrode slurry (step S21). In addition, since the mixed powder prepared in this way receives a compression process and a weight measurement process in order to obtain | require the appropriate value of a solvent so that it may demonstrate below, it differs from the mixed powder used in order to produce an electrode slurry. Therefore, the mixed powder used in the solvent amount derivation process is referred to as “measurement target powder”, and is distinguished from the mixed powder used for preparing the electrode slurry. However, it goes without saying that the powder to be measured may be used for electrode slurry preparation after determining the appropriate value of the solvent.

計測対象粉末の調製が完了すると、混合粉末供給装置2は計測対象粉末を溶媒量導出装置4の容器41に供給する(ステップS22)。この計測対象粉末では、粒子が凝集状態あるいは数珠繋ぎ状態で存在しており、空隙が多く存在している。ここで、電池の容量密度を向上させるためには、混練処理により混合粉末中で粒子同士の結着や凝集を効率的に破壊することが重要であり、それに適した溶媒量を求める必要がある。そこで、本実施形態は、上記知見に基づき擬似キャピラリー状態を形成する。より具体的には、容器41に供給された計測対象粉末をプレス部42により押圧して圧縮体を形成する(ステップS23)。こうして形成された圧縮体の内部は擬似キャピラリー状態となっている。   When the preparation of the measurement target powder is completed, the mixed powder supply device 2 supplies the measurement target powder to the container 41 of the solvent amount deriving device 4 (step S22). In this measurement target powder, the particles exist in an aggregated state or a daisy chain state, and there are many voids. Here, in order to improve the capacity density of the battery, it is important to efficiently destroy the binding and aggregation of particles in the mixed powder by a kneading process, and it is necessary to obtain an appropriate amount of solvent. . Therefore, in the present embodiment, a pseudo capillary state is formed based on the above knowledge. More specifically, the measurement object powder supplied to the container 41 is pressed by the press unit 42 to form a compressed body (step S23). The inside of the compression body thus formed is in a pseudo capillary state.

そして、溶媒量演算部44が圧縮体を収容した状態の容器41の重量(=容器41と圧縮体の合計重量)から空状態の容器41の重量を減算することで圧縮体(容器41中の計測対象粉末)の重量X[g]を求める。なお、混合粉末供給装置2が容器41に供給する計測対象粉末の量を計測し、それに基づき重量X[g]を求めてもよい。   Then, the solvent amount calculation unit 44 subtracts the weight of the empty container 41 from the weight of the container 41 in the state in which the compressed body is accommodated (= total weight of the container 41 and the compressed body). The weight X [g] of the powder to be measured) is determined. The mixed powder supply device 2 may measure the amount of the powder to be measured supplied to the container 41, and obtain the weight X [g] based on the measured amount.

溶媒量演算部44は、上記重量X[g]、メモリに記憶されている粉体毎の真密度および当該電極スラリーを組成する粉体の重量比から計測対象粉末の体積Vを求める。ここで、計測対象粉末が粉体A、粉体B、…、粉体Nの合計N種類の粉体を重量比X:X:…:Xで混合したものである場合、以下の計算式

Figure 2015118806
により計測対象粉末を構成する粉体A、粉体B、…、粉体Nの体積Vn(n=A、B、…、N)を求める。 The solvent amount calculation unit 44 obtains the volume V of the measurement target powder from the weight X [g], the true density of each powder stored in the memory, and the weight ratio of the powder composing the electrode slurry. Here, the measurement object powder powder A, powder B, ..., a total of N types of powders in a weight ratio X A powder N: X B: ...: If is a mixture with X N, the following a formula
Figure 2015118806
To obtain the volume Vn (n = A, B,..., N) of the powder A, powder B,.

また、これらの体積Vnを足し合わせることで計測対象粉末の体積Vを求める(ステップS24)。つまり、溶媒量演算部44は

Figure 2015118806
を実行する。 Further, the volume V of the measurement target powder is obtained by adding these volumes Vn (step S24). That is, the solvent amount calculation unit 44
Figure 2015118806
Execute.

そして、溶媒量演算部44は、容器41の内容積V0から計測対象粉末の体積Vを差し引く、つまり次式、

Figure 2015118806
に基づいて擬似キャピラリー状態での粒子間の空隙体積Vp[cm]を算出する(ステップS25)。 The solvent amount calculation unit 44 subtracts the volume V of the measurement target powder from the internal volume V0 of the container 41, that is, the following formula:
Figure 2015118806
Based on the above, the void volume Vp [cm 3 ] between the particles in the pseudo capillary state is calculated (step S25).

この空隙を満たすだけの溶媒を混練処理時に添加することでキャピラリー状態が得られ、数珠繋ぎ状態や凝集状態で存在していた粒子同士を相互に引き離し、粒子を均一に分散させることができる。そこで、溶媒量演算部44は、空隙体積Vpに対して溶媒の密度ρsを掛け合わせて溶媒の重量ms[g]を求める。つまり次式、

Figure 2015118806
に基づいて得られる溶媒の重量msを溶媒量データとして制御部33のメモリ(図示省略)に書き込む(ステップS26)。 By adding a solvent sufficient to fill the voids during the kneading process, a capillary state can be obtained, and particles existing in a daisy chain or agglomerated state can be separated from each other to uniformly disperse the particles. Therefore, the solvent amount calculation unit 44 obtains the solvent weight ms [g] by multiplying the void volume Vp by the solvent density ρs. In other words,
Figure 2015118806
The solvent weight ms obtained based on the above is written in the memory (not shown) of the control unit 33 as solvent amount data (step S26).

こうして溶媒の適正値を示す溶媒量データが求まる、あるいは仕様変更が発生していない場合(ステップS1で「YES」)、ホストコンピュータは混合粉末供給装置2、混練装置3および希釈装置5を以下のように制御して電極スラリーの作製を行う。すなわち、混合粉末供給装置2が電極スラリーの仕様に応じた混合粉末を調製し、混練装置3の混練部31に供給する(ステップS3)。そして、混練装置3では、制御部33がメモリから溶媒量導出処理(ステップS2)によって求められた溶媒量データを読み出す(ステップS4)。そして制御部33は当該溶媒量データに基づいて混練処理に適合した量の溶媒を供給する旨の供給指令を溶媒貯蔵供給部32に与える。この供給指令を受けて溶媒貯蔵供給部32は供給指令に基づき溶媒を混練部31に供給し、混練部31での混練処理が実行される(ステップS5)。例えば溶媒量導出処理での混合粉末と同量の混合粉末で電極スラリーを作製する場合には、溶媒量導出処理で導出された溶媒量と同一量の溶媒が溶媒貯蔵供給部32から混練部31に供給される。また、溶媒量導出処理での混合粉末と異なる量の混合粉末で電極スラリーを作製する場合には、相違量を考慮して溶媒貯蔵供給部32から混練部31に供給される溶媒量が調整される。そして、混練処理が完了すると、混練装置3は混練物を希釈装置5に供給し、溶媒により混練物を希釈して電極スラリーを作製する(ステップS6)。   In this way, when the solvent amount data indicating the proper value of the solvent is obtained or when the specification has not changed (“YES” in step S1), the host computer sets the mixed powder supply device 2, the kneading device 3 and the dilution device 5 as follows. The electrode slurry is prepared under the control as described above. That is, the mixed powder supply device 2 prepares a mixed powder according to the specifications of the electrode slurry and supplies it to the kneading part 31 of the kneading device 3 (step S3). And in the kneading apparatus 3, the control part 33 reads the solvent amount data calculated | required by the solvent amount derivation | leading-out process (step S2) from memory (step S4). Then, the control unit 33 gives a supply command to the solvent storage and supply unit 32 to supply an amount of solvent suitable for the kneading process based on the solvent amount data. In response to this supply command, the solvent storage and supply unit 32 supplies the solvent to the kneading unit 31 based on the supply command, and the kneading process in the kneading unit 31 is executed (step S5). For example, when the electrode slurry is prepared with the same amount of mixed powder as the mixed powder in the solvent amount deriving process, the same amount of solvent as that derived in the solvent amount deriving process is transferred from the solvent storage and supply unit 32 to the kneading unit 31. To be supplied. In addition, when the electrode slurry is produced with a mixed powder of an amount different from the mixed powder in the solvent amount derivation process, the amount of solvent supplied from the solvent storage supply unit 32 to the kneading unit 31 is adjusted in consideration of the difference amount. The When the kneading process is completed, the kneading device 3 supplies the kneaded material to the diluting device 5, and dilutes the kneaded material with a solvent to produce an electrode slurry (step S6).

以上のように、本実施形態によれば、電極スラリーを作製するための混合粉末と同一組成の計測対象粉末を調製し、この計測対象粉末を圧縮することで擬似キャピラリー状態を作り出している。そして、擬似キャピラリー状態にある計測対象粉末の粒子間の空隙体積に基づいて混練処理に際して混合粉末に供給する溶媒の量を導出している。このため、従来のように経験や試行錯誤により溶媒量を導出する場合に比べ、溶媒の適正量を効率的に導出することができる。また、この溶媒量導出技術を用いることで、活物質材料および導電助剤が溶媒中に均一に分散した電極スラリーを作製することができる。   As described above, according to the present embodiment, the measurement target powder having the same composition as the mixed powder for producing the electrode slurry is prepared, and the measurement target powder is compressed to create a pseudo capillary state. Then, the amount of the solvent supplied to the mixed powder in the kneading process is derived based on the void volume between the particles of the measurement target powder in the pseudo capillary state. For this reason, compared with the case where the amount of solvents is derived by experience and trial and error as in the prior art, the appropriate amount of solvent can be efficiently derived. Further, by using this solvent amount deriving technique, an electrode slurry in which the active material and the conductive additive are uniformly dispersed in the solvent can be produced.

また、上記実施形態では、計測対象粉末を圧縮して擬似キャピラリー状態の圧縮体を形成し、この圧縮体の体積V0から計測対象粉末の体積Vを減算して空隙体積Vpを求めており、空隙体積Vpを正確に求めることが可能となっている。ここで、計測対象粉末は複数種類の粉体を混合して調製されるため、本実施形態では、計測対象粉末に含まれる粉体毎の重量および真密度から計測対象粉末の体積を算出している。これによって、計測対象粉末Vの体積を正確に求めることができる。また、上記算出処理を行うためには粉体毎の重量Xnを求める必要があるが、これらについては圧縮体の重量Xと、圧縮体を構成する粉体の重量比とに基づき算出してもよく、粉体毎の重量を正確に求めることができる。   In the above embodiment, the measurement target powder is compressed to form a compressed body in a pseudo capillary state, and the volume Vp of the measurement target powder is subtracted from the volume V0 of the compression body to obtain the void volume Vp. It is possible to accurately determine the volume Vp. Here, since the measurement target powder is prepared by mixing a plurality of types of powders, in this embodiment, the volume of the measurement target powder is calculated from the weight and true density of each powder contained in the measurement target powder. Yes. Thereby, the volume of the measurement object powder V can be calculated | required correctly. In addition, in order to perform the above calculation process, it is necessary to obtain the weight Xn for each powder, and these may be calculated based on the weight X of the compressed body and the weight ratio of the powder constituting the compressed body. Well, it is possible to accurately determine the weight of each powder.

さらに、圧縮体の体積については計測対象粉末の圧縮後に圧縮体を撮像したり、センシングした結果に基づいて体積を導出する、つまり体積導出処理を実行してもよいが、容器41内で計測対象粉末を圧縮して圧縮体で容器41を満たすように構成すると、容器41の内容積V0を圧縮体の体積とすることができ、上記した体積導出処理が不要となり、効率的で、しかも正確な計測が可能となる。   Further, regarding the volume of the compressed body, the compressed body may be imaged after compression of the measurement target powder, or the volume may be derived based on the sensed result, that is, the volume derivation process may be executed. When the powder is compressed and the container 41 is filled with the compressed body, the inner volume V0 of the container 41 can be set as the volume of the compressed body, and the above-described volume derivation process becomes unnecessary, which is efficient and accurate. Measurement is possible.

このように本実施形態では、プレス部42が本発明の「圧縮部」の一例に相当しており、当該プレス部42により容器41に供給された計測対象粉末をプレスして圧縮体を形成する工程(ステップS23)が本発明の「圧縮工程」の一例に相当している。また、空隙体積Vp[cm]を算出する工程(ステップS25)が本発明の「空隙体積算出工程」の一例に相当している。式(4)に基づいて溶媒の重量msを溶媒量データとして決定する工程(ステップS26)が本発明の「溶媒量決定工程」の一例に相当している。 Thus, in this embodiment, the press part 42 is equivalent to an example of the “compression part” of the present invention, and the measurement object powder supplied to the container 41 by the press part 42 is pressed to form a compressed body. The process (step S23) corresponds to an example of the “compression process” of the present invention. Further, the step of calculating the void volume Vp [cm 3 ] (step S25) corresponds to an example of the “void volume calculating step” of the present invention. The step of determining the solvent weight ms as the solvent amount data based on the equation (4) (step S26) corresponds to an example of the “solvent amount determining step” of the present invention.

なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば上記実施形態では、電極スラリーを作製するための混合粉末を調製する混合粉末供給装置2により計測対象粉末を調製して溶媒量導出装置4に供給しているが、オペレータが手作業で計測対象粉末を調製するように構成してもよい。   The present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention. For example, in the above embodiment, the measurement target powder is prepared by the mixed powder supply device 2 that prepares the mixed powder for producing the electrode slurry and is supplied to the solvent amount deriving device 4, but the operator manually measures the measurement target. You may comprise so that powder may be prepared.

また、上記実施形態では、混合粉末供給装置2、混練装置3および溶媒量導出装置4が協働して溶媒量導出処理および混練処理を実行するように電極スラリー作製システム1が構成されているが、混合粉末供給装置2、混練装置3および希釈装置5を有する電極スラリー作製システム1から分離独立した形式で溶媒量導出装置4を設けてもよい。つまり、溶媒量導出装置4単独で溶媒量導出処理を実行して溶媒量データを導出し、そのデータをオペレータが電極スラリー作製システム1のホストコンピュータを介して入力設定するように構成してもよい。   Moreover, in the said embodiment, although the mixed powder supply apparatus 2, the kneading apparatus 3, and the solvent amount deriving device 4 cooperate, the electrode slurry preparation system 1 is comprised so that a solvent amount deriving process and a kneading process may be performed. Alternatively, the solvent amount deriving device 4 may be provided in a form independent and independent from the electrode slurry production system 1 having the mixed powder supply device 2, the kneading device 3, and the dilution device 5. That is, the solvent amount deriving device 4 alone may execute the solvent amount deriving process to derive the solvent amount data, and the operator may input and set the data via the host computer of the electrode slurry preparation system 1. .

次に本発明の実施例を示す。ただし、本発明はもとより下記の実施例によって制限を受けるものではない。したがって、前後記の趣旨に適合しうる範囲で適当に変更を加えて実施することももちろん可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Next, examples of the present invention will be described. However, the present invention is not limited by the following examples. Accordingly, it is of course possible to carry out the present invention with appropriate modifications within a range that can be adapted to the gist of the preceding and following descriptions, all of which are included in the technical scope of the present invention.

以下では、
活物質材料:コバルト酸リチウムの粉体(以下、「粉体LCO」という)
導電助剤:アセチレンブラックの粉体(以下、「粉体AB」という)
結着剤:ポリフッ化ビニリデンの粉体(以下、「粉体PVdF」という)
をそれぞれ粉体貯蔵タンク211に貯蔵し、各粉体の重量比を
(粉体LCO):(粉体AB):(粉体PVdF)=8:1.2:0.8
で混合した混合粉末20[g]を調製し、これを計測対象粉末として用いる。この場合、粉体LCO、粉体AB、粉体PVdFの重量は、それぞれ16[g]、2.4[g]、1.6[g]である。また、粉体LCO、粉体AB、粉体PVdFの真密度は、それぞれ5.1[g/cm]、2.0[g/cm]、1.78[g/cm]である。
Below,
Active material: Lithium cobaltate powder (hereinafter referred to as “powder LCO”)
Conductive aid: Acetylene black powder (hereinafter referred to as “powder AB”)
Binder: Polyvinylidene fluoride powder (hereinafter referred to as “powder PVdF”)
Are stored in the powder storage tank 211, and the weight ratio of each powder is (powder LCO) :( powder AB) :( powder PVdF) = 8: 1.2: 0.8
The mixed powder 20 [g] mixed in the above is prepared, and this is used as the measurement target powder. In this case, the weights of the powder LCO, the powder AB, and the powder PVdF are 16 [g], 2.4 [g], and 1.6 [g], respectively. The true densities of the powder LCO, the powder AB, and the powder PVdF are 5.1 [g / cm 3 ], 2.0 [g / cm 3 ], and 1.78 [g / cm 3 ], respectively. .

上記20[g]の計測対象粉末を、かさ(内容積)が10.40[cm]の容器に充填してプレスして圧縮体を形成した。ここで、圧縮体の体積は容器の内容積と同じであり、10.40[cm]である。これに対し、計測対象粉末中の粉体LCOの体積は
16[g]÷5.1[g/cm]=3.14[cm
であり、粉体ABの体積は
2.4[g]÷2.0[g/cm]=1.2[cm
であり、粉体PVdFの体積は
1.6[g]÷1.78[g/cm]=0.9[cm
であり、計測対象粉末の体積は5.24(=3.14+1.2+0.9)[cm]である。したがって、圧縮体に存在する空隙体積が
10.40−5.24=5.16[cm
であることがわかる。
The 20 [g] powder to be measured was filled into a container having a bulk (internal volume) of 10.40 [cm 3 ] and pressed to form a compressed body. Here, the volume of the compression body is the same as the inner volume of the container, and is 10.40 [cm 3 ]. On the other hand, the volume of the powder LCO in the measurement target powder is 16 [g] /5.1 [g / cm 3 ] = 3.14 [cm 3 ].
The volume of the powder AB is 2.4 [g] ÷ 2.0 [g / cm 3 ] = 1.2 [cm 3 ]
The volume of the powder PVdF is 1.6 [g] ÷ 1.78 [g / cm 3 ] = 0.9 [cm 3 ].
The volume of the powder to be measured is 5.24 (= 3.14 + 1.2 + 0.9) [cm 3 ]. Therefore, the void volume existing in the compressed body is 10.40-5.24 = 5.16 [cm 3 ].
It can be seen that it is.

そして、この空隙体積を満たす溶媒量が適正値であり、密度ρs=1.03[g/cm]であるN−メチル−2−ピロリドン(NMP)を溶媒として用いる場合には、溶媒の重量msは
5.16[cm]×1.03[g/cm]=5.31[g]
となる。
When N-methyl-2-pyrrolidone (NMP) having a density satisfying the void volume is an appropriate value and density ρs = 1.03 [g / cm 3 ] is used as a solvent, the weight of the solvent ms is 5.16 [cm 3 ] × 1.03 [g / cm 3 ] = 5.31 [g]
It becomes.

こうして得られた量の溶媒(NMP)を上記組成の混合粉末20[g]に添加して混練処理を行って混練物を作製する。この混練物中の固形分濃度は79[wt%]に相当する。さらに当該混練物に11.05[g]の溶媒(NMP)で希釈して固形分濃度が79から55[wt%]に低下させて電極スラリーを作製した。そして、当該電極スラリーを所定の目付け量で集電体上に塗布して、乾燥後に、30[MPa]でプレスし活物質層を形成して正極電極を形成した。また、上記目付け量は単位面積あたりの電極ペーストの重量であるが、1.5[mAh/cm]の容量が得られる目付け量とした。そして、上記正極電極からφ14[mm]の電極を打抜き、重量および膜厚を計測し、それらから容量密度[mAh/cm]を算出した。その結果、容量密度=288[mAh/cm]が得られた。 An amount of the solvent (NMP) thus obtained is added to the mixed powder 20 [g] having the above composition and kneaded to prepare a kneaded product. The solid content concentration in the kneaded product corresponds to 79 [wt%]. Furthermore, the kneaded product was diluted with 11.05 [g] of a solvent (NMP) to reduce the solid content concentration from 79 to 55 [wt%] to prepare an electrode slurry. And the said electrode slurry was apply | coated on the electrical power collector with the predetermined amount of an amount, and after drying, it pressed at 30 [MPa] and formed the active material layer, and formed the positive electrode. The weight per unit area is the weight of the electrode paste per unit area, and is a weight per unit area that provides a capacity of 1.5 [mAh / cm 2 ]. And the electrode of (phi) 14 [mm] was punched out from the said positive electrode, the weight and the film thickness were measured, and capacity density [mAh / cm < 3 >] was computed from them. As a result, capacity density = 288 [mAh / cm 3 ] was obtained.

このように本発明にかかる溶媒量導出技術を用いて得られる溶媒量で混練処理した電極スラリーを用いて活物質層を形成すると、当該活物質層は優れた容量密度を有することとなり、電池の高容量化が可能となっている。   As described above, when the active material layer is formed using the electrode slurry kneaded with the solvent amount obtained by using the solvent amount deriving technique according to the present invention, the active material layer has an excellent capacity density. High capacity is possible.

なお、上記実施例では、混合粉末の空隙体積に相当する溶媒を添加して混練処理を行っているが、溶媒の添加量のみを変えて混練処理を行い、上記と同様にして容量密度を求めると、図3に示す結果が得られた。同図中の(1)〜(7)はそれぞれ異なる溶媒量の実施例を示している。   In the above examples, the kneading process is performed by adding a solvent corresponding to the void volume of the mixed powder. However, the kneading process is performed by changing only the addition amount of the solvent, and the volume density is obtained in the same manner as described above. The result shown in FIG. 3 was obtained. (1)-(7) in the same figure has shown the Example of a different amount of solvent, respectively.

同図中の実施例(4)が上記実施例(溶媒量=5.31[g])の結果であり、同図中の実施例(1)〜(3)、(5)〜(7)がそれぞれ溶媒(NMP)を2.22[g]、3.53[g]、5[g]、6.67[g]、10.77[g]、16.36[g]添加して混練処理した場合の結果を示している。なお、混練処理および希釈処理で添加される溶媒の総和は16.36[g]に統一され、いずれの実施例においても最終的な固形分濃度が55[wt%]となるように希釈処理において添加する溶媒量を調整した。これは次の理由からである。すなわち、55[wt%]より小さいと電極スラリー(塗布液)の粘度が小さくなり、塗布後の塗布膜が平坦電極の表面に沿って広がり、所望膜厚の活物質層が得らないない。一方、55[wt%]より大きいと、粘度が大きくなり、塗布膜の表面に凹凸形状を呈してしまう。したがって、これらの問題を発生させないために、電極スラリーの固形分濃度は55[wt%]に調整されている。   Example (4) in the figure is the result of the above example (solvent amount = 5.31 [g]). Examples (1) to (3) and (5) to (7) in the figure are the same. Kneaded by adding 2.22 [g], 3.53 [g], 5 [g], 6.67 [g], 10.77 [g] and 16.36 [g] respectively to the solvent (NMP). The result of processing is shown. The sum of the solvents added in the kneading process and the dilution process is unified to 16.36 [g], and in any of the examples, the dilution process is performed so that the final solid content concentration is 55 [wt%]. The amount of solvent to be added was adjusted. This is for the following reason. That is, if it is smaller than 55 [wt%], the viscosity of the electrode slurry (coating liquid) becomes small, the coated film after coating spreads along the surface of the flat electrode, and an active material layer with a desired film thickness cannot be obtained. On the other hand, when it is larger than 55 [wt%], the viscosity increases, and the surface of the coating film has an uneven shape. Therefore, in order not to cause these problems, the solid content concentration of the electrode slurry is adjusted to 55 [wt%].

図3から明らかなように、混合粉末の空隙体積をきっちりと満たす量の溶媒を添加して混練処理を行うことで優れた容量密度を有する活物質層が得られ、混練処理時に添加する溶媒量が多少変動しても高い容量密度を有する活物質層が得られる。ただし、二次電池の高容量化を図るという観点から、現状では270[mAh/cm]以上の容量密度が要求されることが多く、この技術要求を満足させるという観点から図3中の実施例(3)〜実施例(6)が好適であり、混練処理により得られる混練物中の固形分濃度が65[wt%]〜80[wt%]となるように溶媒量を設定するのが望ましい。 As is clear from FIG. 3, an active material layer having an excellent capacity density can be obtained by adding an amount of solvent that completely fills the void volume of the mixed powder and performing kneading, and the amount of solvent added during kneading Even if fluctuates slightly, an active material layer having a high capacity density can be obtained. However, from the viewpoint of increasing the capacity of the secondary battery, a capacity density of 270 [mAh / cm 3 ] or more is often required at present, and the implementation in FIG. 3 is performed from the viewpoint of satisfying this technical requirement. Examples (3) to (6) are preferred, and the amount of solvent is set so that the solid content concentration in the kneaded product obtained by kneading treatment is 65 [wt%] to 80 [wt%]. desirable.

この発明は、粉末状の活物質材料および導電助剤を含む混合粉末を混練する際に混合粉末に供給する溶媒の適正量を求める溶媒量導出技術および当該溶媒量導出技術を用いた電極スラリー作製技術に好適に適用することができる。   The present invention relates to a solvent amount deriving technique for obtaining an appropriate amount of a solvent to be supplied to a mixed powder when kneading a mixed powder containing a powdered active material and a conductive additive, and electrode slurry preparation using the solvent amount deriving technique It can be suitably applied to technology.

1…電極スラリー作製システム
3…混練装置
4…溶媒量導出装置
5…希釈装置
41…容器
42…プレス部(圧縮部)
44…溶媒量演算部
DESCRIPTION OF SYMBOLS 1 ... Electrode slurry preparation system 3 ... Kneading apparatus 4 ... Solvent amount deriving apparatus 5 ... Dilution apparatus 41 ... Container 42 ... Press part (compression part)
44 ... Amount of solvent calculation unit

Claims (10)

粉末状の活物質材料および導電助剤を含む混合粉末を混練する際に前記混合粉末に供給する溶媒の量を求める溶媒量導出方法であって、
前記混合粉末と同一組成の計測対象粉末を圧縮する圧縮工程と、
圧縮された前記計測対象粉末の空隙体積を求める空隙体積算出工程と、
前記空隙体積に基づいて前記溶媒の量を決定する溶媒量決定工程と
を備えることを特徴とする溶媒量導出方法。
A solvent amount derivation method for obtaining an amount of a solvent to be supplied to the mixed powder when kneading the mixed powder containing the powdered active material and the conductive auxiliary agent,
A compression step of compressing the powder to be measured having the same composition as the mixed powder;
A void volume calculating step for obtaining a void volume of the compressed powder to be measured;
And a solvent amount determining step for determining the amount of the solvent based on the void volume.
請求項1に記載の溶媒量導出方法であって、
前記圧縮工程では、前記計測対象粉末を圧縮して圧縮体を形成し、
前記空隙体積算出工程では、前記圧縮体の体積から前記計測対象粉末の体積を減算して前記空隙体積を求める溶媒量導出方法。
The solvent amount derivation method according to claim 1,
In the compression step, the measurement object powder is compressed to form a compressed body,
In the void volume calculation step, a solvent amount derivation method for obtaining the void volume by subtracting the volume of the powder to be measured from the volume of the compressed body.
請求項2に記載の溶媒量導出方法であって、
前記空隙体積算出工程では、前記計測対象粉末に含まれる粉体毎の重量および真密度から前記計測対象粉末の体積を算出する溶媒量導出方法。
The solvent amount derivation method according to claim 2,
In the void volume calculation step, a solvent amount derivation method for calculating the volume of the measurement target powder from the weight and true density of each powder contained in the measurement target powder.
請求項3に記載の溶媒量導出方法であって、
前記空隙体積算出工程では、前記圧縮体の重量と、前記計測対象粉末における前記粉体の重量比とに基づき前記粉体毎の重量を算出する溶媒量導出方法。
The solvent amount derivation method according to claim 3,
In the void volume calculation step, a solvent amount derivation method of calculating a weight for each powder based on a weight of the compressed body and a weight ratio of the powder in the powder to be measured.
請求項1ないし4のいずれか一項に記載の溶媒量導出方法であって、
前記圧縮工程では、容器内で前記計測対象粉末を圧縮して前記圧縮体で前記容器を満たし、
前記空隙体積算出工程では、前記容器の内容積を前記圧縮体の体積として前記空隙体積を算出する溶媒量導出方法。
A solvent amount deriving method according to any one of claims 1 to 4,
In the compression step, the measurement object powder is compressed in a container to fill the container with the compressed body,
In the void volume calculation step, a solvent amount derivation method of calculating the void volume using the internal volume of the container as the volume of the compressed body.
請求項1ないし5のいずれか一項に記載の溶媒量導出方法によって導出された量の溶媒を、粉末状の活物質材料および導電助剤を含む混合粉末に供給して混練する混練工程と、
前記混練工程により得られる混練物を前記溶媒で希釈して電極スラリーを作製する希釈工程と
を備えることを特徴とする電極スラリー作製方法。
A kneading step of supplying and kneading the amount of solvent derived by the solvent amount deriving method according to any one of claims 1 to 5 to a mixed powder containing a powdered active material and a conductive aid;
And a dilution step of preparing an electrode slurry by diluting the kneaded product obtained in the kneading step with the solvent.
請求項6に記載の電極スラリー作製方法であって、
前記混合粉末は、前記活物質材料としてコバルト酸リチウムの粉体と、前記導電助剤としてアセチレンブラックの粉体と、結着剤としてポリフッ化ビニリデンの粉体との混合物である電極スラリー作製方法。
It is an electrode slurry preparation method of Claim 6, Comprising:
The method of preparing an electrode slurry, wherein the mixed powder is a mixture of a lithium cobaltate powder as the active material, an acetylene black powder as the conductive additive, and a polyvinylidene fluoride powder as a binder.
請求項7に記載の電極スラリー作製方法であって、
前記混練工程では、前記混練物中における前記粉体の濃度が65[wt%]〜80[wt%]に調整される電極スラリー作製方法。
The electrode slurry preparation method according to claim 7,
In the kneading step, an electrode slurry preparation method in which the concentration of the powder in the kneaded product is adjusted to 65 [wt%] to 80 [wt%].
粉末状の活物質材料および導電助剤を含む混合粉末を混練する際に前記混合粉末に供給する溶媒の量を求める溶媒量導出装置であって、
前記混合粉末と同一組成の計測対象粉末を収容する容器と、
前記容器に収容された前記計測対象粉末を圧縮する圧縮部と、
前記圧縮部により圧縮された前記計測対象粉末の空隙体積を求め、前記空隙体積に基づいて前記溶媒の量を算出する溶媒量演算部と
を備えることを特徴とする溶媒量導出装置。
A solvent amount deriving device for obtaining an amount of a solvent to be supplied to the mixed powder when kneading the mixed powder containing the powdered active material and the conductive auxiliary agent,
A container for storing a powder to be measured having the same composition as the mixed powder;
A compressing unit that compresses the powder to be measured contained in the container;
A solvent amount deriving device comprising: a solvent amount calculation unit that obtains a void volume of the measurement target powder compressed by the compression unit and calculates the amount of the solvent based on the void volume.
粉末状の活物質材料および導電助剤を含む混合粉末と溶媒とを混練して混練物を作製し、前記混練物を前記溶媒で希釈して電極スラリーを作製する電極スラリー作製システムであって、
請求項9に記載の溶媒量導出装置を備え、
前記混練物を作製する際に使用する前記溶媒の量を、前記溶媒量導出装置により導出された量に調整することを特徴とする電極スラリー作製システム。
An electrode slurry preparation system for preparing an electrode slurry by kneading a mixed powder containing a powdered active material and a conductive additive and a solvent to prepare a kneaded product, and diluting the kneaded product with the solvent,
A solvent amount deriving device according to claim 9,
An electrode slurry preparation system, wherein the amount of the solvent used when preparing the kneaded product is adjusted to the amount derived by the solvent amount deriving device.
JP2013261598A 2013-12-18 2013-12-18 Solvent amount deriving method, solvent amount deriving apparatus, electrode slurry producing method, and electrode slurry producing system Pending JP2015118806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013261598A JP2015118806A (en) 2013-12-18 2013-12-18 Solvent amount deriving method, solvent amount deriving apparatus, electrode slurry producing method, and electrode slurry producing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013261598A JP2015118806A (en) 2013-12-18 2013-12-18 Solvent amount deriving method, solvent amount deriving apparatus, electrode slurry producing method, and electrode slurry producing system

Publications (1)

Publication Number Publication Date
JP2015118806A true JP2015118806A (en) 2015-06-25

Family

ID=53531382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013261598A Pending JP2015118806A (en) 2013-12-18 2013-12-18 Solvent amount deriving method, solvent amount deriving apparatus, electrode slurry producing method, and electrode slurry producing system

Country Status (1)

Country Link
JP (1) JP2015118806A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170112106A (en) * 2016-03-30 2017-10-12 주식회사 엘지화학 Method for preparing lithium secondary battery
US20220299417A1 (en) * 2021-03-16 2022-09-22 Honda Motor Co., Ltd. Porosity deriving method and porosity deriving device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170112106A (en) * 2016-03-30 2017-10-12 주식회사 엘지화학 Method for preparing lithium secondary battery
KR102128010B1 (en) * 2016-03-30 2020-06-29 주식회사 엘지화학 Method for preparing lithium secondary battery
US20220299417A1 (en) * 2021-03-16 2022-09-22 Honda Motor Co., Ltd. Porosity deriving method and porosity deriving device
US11796442B2 (en) * 2021-03-16 2023-10-24 Honda Motor Co., Ltd. Porosity deriving method and porosity deriving device

Similar Documents

Publication Publication Date Title
JP5983001B2 (en) Electrode slurry supply apparatus and electrode slurry supply method
JP2007080652A (en) Slurry for forming lithium ion battery electrode and lithium ion battery
Fritsch et al. 3D-cathode design with foam-like aluminum current collector for high energy density lithium-ion batteries
WO2013179924A1 (en) Electrode for lithium-ion secondary battery, and lithium-ion secondary battery using said electrode
JP2014044921A (en) Lithium ion secondary battery, and method for manufacturing the same
JP4751988B2 (en) Cathode material for secondary battery and secondary battery using the same
JPWO2014184925A1 (en) Electrode paste manufacturing method
CN108470914A (en) A kind of preparation method of graphene complex lithium electricity electrocondution slurry
WO2016202168A1 (en) Lithium-ion battery positive-electrode slurry and preparation method therefor
CN107546363A (en) Negative plate and lithium ion battery
CN110071266A (en) The method for preparing electrode material
JP4754790B2 (en) Method for manufacturing battery electrode
CN110416598A (en) All-solid-state battery and its manufacturing method
CN105047857B (en) The positive pole and its manufacture method of rechargeable nonaqueous electrolytic battery
JP2015118806A (en) Solvent amount deriving method, solvent amount deriving apparatus, electrode slurry producing method, and electrode slurry producing system
KR101390548B1 (en) Electropositive plate, battery, and electropositive plate manufacturing method
JP6178967B2 (en) AC impedance measurement method for powder samples
JP2007234418A (en) Negative electrode mixture paste for nonaqueous secondary battery, negative electrode and nonaqueous secondary battery using it as well as manufacturing method of negative electrode mixture paste
JP5553170B2 (en) Lithium ion secondary battery
JP2015176744A (en) Method of manufacturing secondary battery
JP7484790B2 (en) All-solid-state battery
JP2013037883A (en) Binder composition for electrode
JP2016091850A (en) Nonaqueous electrolyte secondary battery
JP2012252810A (en) Manufacturing method of positive electrode plate
JP3371573B2 (en) Manufacturing method of lithium secondary battery