JP2015118357A - Lens array optical system, image forming device having the same, and image reading device - Google Patents
Lens array optical system, image forming device having the same, and image reading device Download PDFInfo
- Publication number
- JP2015118357A JP2015118357A JP2014108094A JP2014108094A JP2015118357A JP 2015118357 A JP2015118357 A JP 2015118357A JP 2014108094 A JP2014108094 A JP 2014108094A JP 2014108094 A JP2014108094 A JP 2014108094A JP 2015118357 A JP2015118357 A JP 2015118357A
- Authority
- JP
- Japan
- Prior art keywords
- lens array
- light
- lens
- optical system
- shielding member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 196
- 238000003491 array Methods 0.000 claims abstract description 31
- 230000000903 blocking effect Effects 0.000 claims abstract description 11
- 230000031700 light absorption Effects 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- 238000005286 illumination Methods 0.000 claims description 2
- 108091008695 photoreceptors Proteins 0.000 claims 1
- 238000000149 argon plasma sintering Methods 0.000 abstract 2
- 238000003384 imaging method Methods 0.000 description 23
- 230000014509 gene expression Effects 0.000 description 15
- 230000000694 effects Effects 0.000 description 13
- 230000007613 environmental effect Effects 0.000 description 12
- 238000006073 displacement reaction Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/04—Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
- G03G15/0409—Details of projection optics
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/24—Optical objectives specially designed for the purposes specified below for reproducing or copying at short object distances
- G02B13/26—Optical objectives specially designed for the purposes specified below for reproducing or copying at short object distances for reproducing with unit magnification
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/18—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical projection, e.g. combination of mirror and condenser and objective
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/0006—Arrays
- G02B3/0037—Arrays characterized by the distribution or form of lenses
- G02B3/0062—Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/024—Details of scanning heads ; Means for illuminating the original
- H04N1/028—Details of scanning heads ; Means for illuminating the original for picture information pick-up
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/024—Details of scanning heads ; Means for illuminating the original
- H04N1/032—Details of scanning heads ; Means for illuminating the original for picture information reproduction
- H04N1/036—Details of scanning heads ; Means for illuminating the original for picture information reproduction for optical reproduction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/04—Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
- H04N1/10—Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using flat picture-bearing surfaces
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/04—Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
- H04N1/10—Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using flat picture-bearing surfaces
- H04N1/107—Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using flat picture-bearing surfaces with manual scanning
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Lenses (AREA)
- Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
- Optical Elements Other Than Lenses (AREA)
- Exposure Or Original Feeding In Electrophotography (AREA)
- Facsimile Heads (AREA)
Abstract
Description
本発明は、レンズアレイ光学系に関し、例えば画像形成装置や画像読取装置に用いられるレンズアレイ光学系に好適である。 The present invention relates to a lens array optical system, and is suitable, for example, for a lens array optical system used in an image forming apparatus or an image reading apparatus.
近年、小径レンズアレイで構成されたレンズアレイ光学系を用いた画像形成装置や画像読取装置が開発されている。例えば、レンズアレイ光学系をLED等のアレイ状光源やラインセンサ等と共に保持し、それをユニット(光学装置)として組み込んだ画像形成装置や画像読取装置が知られている。これらの装置によれば、レンズアレイ光学系を用いることで、装置の小型化や低コスト化を実現することができる。 In recent years, an image forming apparatus and an image reading apparatus using a lens array optical system composed of a small-diameter lens array have been developed. For example, an image forming apparatus and an image reading apparatus are known in which a lens array optical system is held together with an arrayed light source such as an LED, a line sensor, and the like and incorporated as a unit (optical apparatus). According to these apparatuses, it is possible to reduce the size and cost of the apparatus by using the lens array optical system.
しかし、従来のレンズアレイ光学系には、像面(画像読取装置ではセンサ面を指し、画像形成装置では感光面を指す)上に所望の結像をするための光束(結像光束)とは異なる不要なゴースト光が発生してしまうという問題があった。 However, in a conventional lens array optical system, a light beam (imaging light beam) for forming a desired image on an image surface (refers to a sensor surface in an image reading device and a photosensitive surface in an image forming device). There is a problem that different unnecessary ghost light is generated.
特許文献1は、光吸収部が形成された遮光部材が二つのレンズアレイの間に挟まれるように配置されたレンズアレイ光学系を開示している。この構成により、レンズアレイ光学系を構成する複数のレンズのうちの隣接するレンズの間を通過する光線を遮光し、それにより、不要光(ゴースト光)の発生を防止している。
特許文献1に開示されているレンズアレイ光学系では、遮光部材がレンズアレイに嵌合していないため、組み立てが容易であるという利点がある。しかしながら、組立時に配置誤差が生じたり、レンズアレイと遮光部材とで線膨張係数が異なることに伴って、環境温度が変動した際にレンズアレイと遮光部材との相対位置が理想的な位置からずれたりすることが考えられる。それにより、遮光部材が結像光束を遮光してしまったり、ゴースト光を通過させてしまったりする問題がある。
The lens array optical system disclosed in
そこで、本発明は、結像光束の遮光やゴースト光の発生を抑制することができるレンズアレイ光学系を提供することを目的とする。 Accordingly, an object of the present invention is to provide a lens array optical system capable of suppressing the shielding of an imaging light beam and the generation of ghost light.
上記目的を達成するための、本発明の一側面としてのレンズアレイ光学系は、第1の方向に配列された複数のレンズを含み、第1の方向と複数のレンズの光軸方向とに平行な第1の断面内において物体の中間像を形成する第1のレンズアレイと、第1の方向に配列された複数のレンズを含み、第1の断面内において物体の中間像を再結像する第2のレンズアレイと、第1及び第2のレンズアレイにおける隣接するレンズの光軸同士の間に配置される遮光部材と、を備え、第1及び第2のレンズアレイのそれぞれは、隣接するレンズ同士の間に散乱部又は吸光部を有しており、散乱部又は吸光部の第1の方向における幅は、遮光部材の第1の方向における幅よりも大きいことを特徴とする。
本発明の更なる目的又はその他の特徴は、以下、添付の図面を参照して説明される好ましい実施形態によって明らかにされる。
In order to achieve the above object, a lens array optical system according to one aspect of the present invention includes a plurality of lenses arranged in a first direction, and is parallel to the first direction and the optical axis direction of the plurality of lenses. A first lens array that forms an intermediate image of the object in the first cross section, and a plurality of lenses arranged in a first direction, and re-images the intermediate image of the object in the first cross section A second lens array; and a light shielding member disposed between optical axes of adjacent lenses in the first and second lens arrays, each of the first and second lens arrays being adjacent to each other. A scattering part or a light absorbing part is provided between the lenses, and the width of the scattering part or the light absorbing part in the first direction is larger than the width of the light shielding member in the first direction.
Further objects and other features of the present invention will become apparent from the preferred embodiments described below with reference to the accompanying drawings.
本発明によれば、レンズアレイ光学系において、製造時の配置誤差や環境温度変動に起因するレンズアレイと遮光部材の相対的な位置変動による、結像光束の遮光やゴースト光の発生、およびレンズ間に設ける散乱部の特徴的な形状によるゴースト光の発生を抑制することができる。 According to the present invention, in a lens array optical system, an image forming light beam is blocked and ghost light is generated due to a relative positional variation between the lens array and the light shielding member due to an arrangement error during manufacturing and an environmental temperature variation, and the lens. Generation of ghost light due to the characteristic shape of the scattering portion provided therebetween can be suppressed.
以下に、本発明に係るレンズアレイ光学系(結像光学系)について図面に基づいて説明する。なお、以下に示す図面は、本発明を容易に理解できるようにするために、実際とは異なる縮尺で描かれている場合がある。 Hereinafter, a lens array optical system (imaging optical system) according to the present invention will be described with reference to the drawings. It should be noted that the drawings shown below may be drawn at a scale different from the actual scale so that the present invention can be easily understood.
図1(a)、(b)及び(c)はそれぞれ、本発明の第1実施形態に係る光学装置100のXY断面図、XZ断面図及びYZ断面図を示している。なお、図1(c)において、図中の黒丸は、レンズアレイ光学系を構成する各レンズの光軸を示している。
1A, 1B, and 1C show an XY sectional view, an XZ sectional view, and a YZ sectional view of the
光学装置100は、光源101、レンズアレイ光学系102及び感光部103を備えている。レンズアレイ光学系102は、第1のレンズアレイ107、遮光部材108及び第2のレンズアレイ109から構成されている。
The
光源101は、複数の発光点が、第1のレンズアレイ107を構成する複数のレンズが主として配列されるY方向(以下、主配列方向と称する。)に沿って等間隔に配列されて構成されている。本実施例では、光源101の各発光点としてLEDを用いているが、これに限らず、例えば各発光点として有機EL素子等を用いてもよい。
レンズアレイ光学系102は、レンズアレイ光学系102の光軸方向(X方向)及び主配列方向(Y方向)に垂直なZ方向(以下、副配列方向と称する。)にはレンズアレイが一列配列されて構成されている。レンズアレイ光学系102は、主配列方向(第1の方向)に関して正立等倍結像し、副配列方向(第2の方向)に関しては倒立結像するようになっている。なお、レンズアレイ光学系102の主配列方向における配列ピッチPは0.76mmとなっている。
感光部103は、例えば画像形成装置においては、感光体ドラムが用いられる。
The
In the lens array
For example, in the image forming apparatus, the
光源101のLEDの間隔は数十μmであり、少なくとも数百μmはあるレンズアレイ光学系102の配列ピッチPに比べて十分小さいため、LEDは、ほぼ連続的に配置されていると考えることができる。
従って、光源101における一つのLEDから出射した光束は、主配列方向に並んだ複数のレンズを経由しても感光部103上の一点に集光される。例えば、図1(a)では、LED(P1)から出射した光束はP1’に集光し、LED(P2)から出射した光束はP2’に集光する。この特性により、光源の発光に対応した露光が可能となる。
The distance between the LEDs of the
Therefore, the light beam emitted from one LED in the
次に、レンズアレイ光学系102について説明する。
Next, the lens array
第1のレンズアレイ107は、複数の第1のレンズ(以下、G1と称する場合がある。)107a、107b、…、が配列されるように構成されている。同様に、第2のレンズアレイ109は、複数の第2のレンズ(以下、G2と称する場合がある。)109a、109b、…、が配列されるように構成されている。第1のレンズアレイ107と第2のレンズアレイ109それぞれを構成するレンズは、対を構成し、対を構成するレンズの光軸は互いに一致するように構成されている。
The
図2は、レンズアレイ光学系102の一部102aの主配列方向及び光軸方向に平行な断面(以後、主配列断面と記載する)、及び、副配列方向及び光軸方向に平行な断面(以後、副配列断面と記載する)での模式的断面図を示している。
2 shows a cross section parallel to the main array direction and the optical axis direction of a
レンズアレイ光学系の一部102aは、互いに整合するように配置された、第1のレンズ107a、遮光部材108の一部、及び第2のレンズ109aを含んでいる。第1のレンズ107a及び第2のレンズ109aの光軸に垂直な断面は矩形形状となっている。第1のレンズ107aの光源101側の面(以下、G1R1面と称する。)と第2のレンズ109aの感光部103側の面(以下、G2R2面と称する。)の有効径は0.76mmである。一方で、第1のレンズ107aの遮光部材108側の面(以下、G1R2面と称する。)と第2のレンズ109aの遮光部材108側の面(以下、G2R1面と称する。)の有効径は0.69mmである。すなわち、レンズの各面毎に有効径が異なる。
なお、隣接するレンズ同士の間には散乱部が設けられている。具体的には、第1のレンズ107aのG1R2面と不図示の隣接する第1のレンズのG1R2面の間には散乱部110が設けられている。同様に、第2のレンズ109aのG2R1面と不図示の隣接する第2のレンズのG2R1面同士の間にも散乱部110が設けられている。本実施形態の遮光部材108は、レンズアレイを構成するレンズの数に対応する光軸方向に貫通する複数の開口を有し、隣接する開口の間の遮光壁は、隣接するレンズの光軸の間に位置し、散乱部110に整合するように配置されている。
遮光部材108は、主配列断面内において隣接するレンズの光軸同士の間に配置されている。
なお、遮光部材108は、主配列方向に延在するフレームに遮光板を一定間隔で差し込んで固定し、主配列方向における位置を画定するように構成されていてもよい。
第1のレンズ107a、107b、…、及び第2のレンズ109a、109b、…、はそれぞれ結合し、レンズアレイ107、109を形成している。
A
A scattering portion is provided between adjacent lenses. Specifically, a
The
The
The
主配列方向について、光源101における一つのLEDから出射した光束は、第1のレンズ107aを通過した後、中間結像面105において一旦結像する。その後、第2のレンズ109aを通過して、感光部103に正立等倍結像する。
ここで、遮光部材108及び散乱部110は、例えば、第1のレンズ107aを通過した後、光軸の異なる第2のレンズ109bに向かう光束、即ちゴースト光を低減する役割を担っている。
なお、物体面(ここでは、光源101)から中間結像面105までを第1光学系と称し、中間結像面105から像面(ここでは、感光部103)までを第2光学系と称する。
第1のレンズアレイは、主配列断面内において物体の中間像を形成し、第2のレンズアレイは、主配列断面内において物体の中間像を再結像する。
副配列方向については、光源101から出射した光束は、第1のレンズ107aを通過した後、中間結像面105において結像することなく、第2のレンズ109aを通過して、感光部103に倒立結像する。
図2を見てわかるように、副配列方向に対しては倒立結像系としたことにより、結像性能を保ったまま副配列方向について光の取込み角度を大きくすることができ、結像光量と結像性能の両立を達成することができる。
With respect to the main array direction, the light beam emitted from one LED in the
Here, the
The object plane (here, the light source 101) to the
The first lens array forms an intermediate image of the object in the main array section, and the second lens array re-images the intermediate image of the object in the main array section.
Regarding the sub-array direction, the light beam emitted from the
As can be seen from FIG. 2, by adopting an inverted imaging system with respect to the sub-array direction, it is possible to increase the light capture angle in the sub-array direction while maintaining the imaging performance. And imaging performance can be achieved.
本実施形態に係るレンズアレイ光学系の光学設計値は、以下の表1のようになっている。 The optical design values of the lens array optical system according to the present embodiment are as shown in Table 1 below.
ここで、各レンズ面と光軸との交点を原点とし、光軸方向をX軸とする。また、主配列方向をY軸、副配列方向をZ軸とする。また、表1において、「E−x」は、「×10-x」を意味している。 Here, the intersection of each lens surface and the optical axis is the origin, and the optical axis direction is the X axis. In addition, the main arrangement direction is a Y axis and the sub arrangement direction is a Z axis. In Table 1, “E-x” means “× 10 −x ”.
G1R1面、G1R2面、G2R1面及びG2R2面はそれぞれ、アナモフィック非球面で構成され、その非球面形状は以下の式(1)で表わされる。 Each of the G1R1, G1R2, G2R1 and G2R2 surfaces is composed of an anamorphic aspheric surface, and the aspheric shape is represented by the following equation (1).
ここで、Ci,j(i,j=0,1,2…)は非球面係数である。 Here, C i, j (i, j = 0, 1, 2,...) Is an aspheric coefficient.
特許文献1に開示されているレンズアレイ光学系では、遮光部材がレンズアレイに嵌合していないため、組み立てが容易であるという利点がある。しかしながら、組立時に配置誤差が生じたり、又は、環境温度が変動した際にレンズアレイと遮光部材の線膨張係数が異なることに伴って、レンズアレイと遮光部材との相対位置が理想的な位置からずれることが考えられる。それにより、遮光部材が所望の結像光束を遮光してしまったり、逆に、不要なゴースト光を通過させてしまったりする可能性がある。
The lens array optical system disclosed in
具体的に、この問題を、以下の図3(a)及び(b)によって示す。 Specifically, this problem is illustrated by FIGS. 3 (a) and 3 (b) below.
図3(a)は、従来技術における光学装置200の、レンズアレイと遮光部材との相対位置が理想的な場合における、主配列方向に沿った模式的断面図である。
FIG. 3A is a schematic cross-sectional view along the main array direction in the case where the relative position between the lens array and the light shielding member of the
レンズアレイと遮光部材との相対位置が理想的な(設計通りに配置された)場合には、光源201から出射した結像光束Kは、第1のレンズアレイ207を通過する。その後、遮光部材208によって遮光されず、第2のレンズアレイ209を通過して、感光部103に結像する。一方で、レンズアレイのレンズ間を通過する光束であるゴースト光Gは、光源201から出射し、第1のレンズアレイ207を通過した後、遮光部材208によって、遮光されている。
When the relative position between the lens array and the light shielding member is ideal (arranged as designed), the imaging light beam K emitted from the
図3(b)は、従来技術における光学装置200の、レンズアレイと遮光部材との相対位置が理想的な位置からずれた場合における、主配列方向に沿った模式的断面図である。
FIG. 3B is a schematic cross-sectional view along the main array direction in the case where the relative position between the lens array and the light shielding member is deviated from the ideal position in the
図3(b)に示すように、レンズアレイと遮光部材との相対位置が理想的な位置からずれた場合には、光源201から出射した結像光束Kは、第1のレンズアレイ207を通過した後、遮光部材208によって遮光されていることがわかる。一方で、光源201から出射したゴースト光Gは、第1のレンズアレイ207を通過した後、遮光部材208によって遮光されず、第2のレンズアレイ209を通過して、感光部103に結像していることがわかる。これは、画像の劣化につながる。
As shown in FIG. 3B, when the relative position between the lens array and the light shielding member deviates from the ideal position, the imaging light beam K emitted from the
本発明では、従来技術における上記の課題を解決することを目的としている。具体的には、レンズアレイと遮光部材との相対位置が理想的な位置からずれても、所望の結像光束の遮光や、不要なゴースト光の発生を防止することができるレンズアレイ光学系を提供することを目的とする。 An object of the present invention is to solve the above-described problems in the prior art. Specifically, even if the relative position between the lens array and the light shielding member is deviated from the ideal position, a lens array optical system that can prevent a desired imaged light beam from being shielded and unnecessary ghost light from being generated. The purpose is to provide.
従来技術における上記の課題を解決するために、本発明に係るレンズアレイ光学系では、レンズアレイのレンズ間に散乱部又は吸光部を設け、且つ、遮光部材の幅が該散乱部又は該吸光部の幅よりも小さい構成としている。これにより、レンズアレイと遮光部材との相対位置が理想的な位置からずれても、所望の結像光束の遮光や、不要なゴースト光の発生を防止する効果を得ることができる。 In order to solve the above-described problems in the prior art, in the lens array optical system according to the present invention, a scattering part or a light absorbing part is provided between the lenses of the lens array, and the width of the light shielding member is the scattering part or the light absorbing part. It is configured to be smaller than the width of. As a result, even if the relative position between the lens array and the light shielding member is deviated from the ideal position, it is possible to obtain an effect of preventing the shielding of a desired imaging light beam and the generation of unnecessary ghost light.
次に、本発明に係るレンズアレイ光学系の具体的な構成について説明する。 Next, a specific configuration of the lens array optical system according to the present invention will be described.
図4(a)は、本発明の第1実施形態に係るレンズアレイ光学系102の主配列方向に沿った模式的断面図を示している。
FIG. 4A is a schematic cross-sectional view along the main array direction of the lens array
ここで、散乱部110の主配列方向の幅Bmは0.17mm、及び遮光部材108の主配列方向の幅Tmは0.1mmである。すなわち、BmとTmは、以下の式(2)で表される関係を満たす。
Bm>Tm ・・・(2)
Here, the width Bm of the
Bm> Tm (2)
すなわち、隣接するレンズ間に沿った散乱部110の幅Bmは、隣接するレンズ間に沿った遮光部材108の幅Tmより大きい。
That is, the width Bm of the
レンズアレイ光学系102では、散乱部110が設けられている。そして、図4(a)に示すように、主配列方向において、各散乱部110の中心位置と遮光部材108の中心位置とが整合するように遮光部材108が配置される。このように、レンズアレイ107、109と遮光部材108との相対位置が理想的な場合には、すなわち、式(2)の関係を満たしていれば、所望の結像光束Kを遮光したり、不要なゴースト光Gを結像させたりすることを防止することができる。
In the lens array
しかしながら、もし、主配列方向において、遮光部材108が散乱部110の主配列方向の幅の範囲内に収まらないほどに、レンズアレイ107又は109と遮光部材108との相対位置がずれると、前述の図3(b)に示したように、所望の結像光束Kが遮光される一方で、不要なゴースト光Gが結像される。
However, if the relative position between the
従って、レンズアレイ107、109と遮光部材108の主配列方向に沿った相対位置ずれの許容量ΔQmは、以下の式(3)のように表される。
ΔQm=(Bm―Tm)/2 ・・・(3)
Accordingly, an allowable amount ΔQm of relative positional deviation along the main array direction of the
ΔQm = (Bm−Tm) / 2 (3)
本実施例においては、Bm=0.17mm、Tm=0.1mmであるので、ΔQm=0.035mmとなる。
次に、環境温度が変動した際のレンズアレイ107、109及び遮光部材108の熱膨張差に伴う主配列方向に沿った相対位置ずれについて具体的に考える。
In this embodiment, since Bm = 0.17 mm and Tm = 0.1 mm, ΔQm = 0.035 mm.
Next, specific consideration will be given to the relative positional deviation along the main arrangement direction due to the thermal expansion difference between the
まず、第1のレンズアレイ107及び第2のレンズアレイ109の主配列方向の線膨張係数Xlは10.0×10-5(/℃)、遮光部材108の主配列方向の線膨張係数Xsは9.0×10-5(/℃)である。これらの値は、レンズアレイ及び遮光部材を樹脂で作成した場合には、標準的な値である。
なお、第1のレンズアレイ107及び第2のレンズアレイ109の主配列方向の線膨張係数は互いに異なっていても良い。
また、レンズアレイ光学系102は、A4幅(210mm幅)にわたって露光するように構成されている。すなわち、第1のレンズアレイ107、第2のレンズアレイ109及び遮光部材108の主配列方向の全長Lは210mmである。
さらに、第1のレンズアレイ107、第2のレンズアレイ109及び遮光部材108は、主配列方向について各々の中心部で位置決めされている。
加えて、レンズアレイ光学系102の動作補償環境温度は、30℃±30℃である。これは、標準的な仕様である。
First, the linear expansion coefficient Xl in the main array direction of the
Note that the linear expansion coefficients of the
The lens array
Furthermore, the
In addition, the operation compensation environment temperature of the lens array
ここで、環境温度がΔT=30℃だけ上昇した場合を考える。このとき、主配列方向における中心を基準としたとき、レンズアレイ光学系102の主配列方向の両端部において生じる、レンズアレイ107、109と遮光部材108との相対位置最大ずれ量ΔYmaxは、以下の式(4)のように表される。
Here, a case where the environmental temperature rises by ΔT = 30 ° C. is considered. At this time, when the center in the main array direction is used as a reference, the relative position maximum deviation ΔYmax between the
ΔYmax=(L/2)×ΔT×(Xl―Xs)
=(210mm/2)×30℃×(10.0×10-5/℃−9.0×10-5/℃)
=105mm×30℃×(10.0×10-5/℃−9.0×10-5/℃)
=0.0315mm ・・・(4)
ΔYmax = (L / 2) × ΔT × (X1-Xs)
= (210mm / 2) × 30 ℃ × (10.0 × 10 -5 /℃-9.0×10 -5 / ℃)
= 105mm × 30 ℃ × (10.0 × 10 -5 /℃-9.0×10 -5 / ℃)
= 0.0315mm (4)
従って、レンズアレイ107、109と遮光部材108との相対位置ずれΔYは中心部では0mmであり、両端部では0.0315mmである。そして、中心部と両端部の間では、その位置に応じて0乃至0.0315mmのいずれかの値だけずれており、そのずれ量は、基準位置である中心部から遠ざかるにつれて大きくなり、中心部からの距離に比例する。この相対位置ずれの様子が図4(b)に示されている。
Therefore, the relative positional deviation ΔY between the
式(3)及び(4)から、レンズアレイ107、109と遮光部材108との相対位置最大ずれ量ΔYmaxは、主配列方向に沿った相対位置ずれの許容量ΔQmの範囲内に収まっていることがわかる。
従って、レンズアレイ光学系102において、このような環境温度の変動が生じても、所望の結像光束Kの遮光や、不要なゴースト光Gの発生を防止することができることがわかる。
From equations (3) and (4), the maximum relative displacement ΔYmax between the
Therefore, it can be seen that the lens array
上記の関係は、一般的には次の式(5)のように表すことができる。
ΔL×ΔT×ΔX≦ΔW/2 ・・・(5)
The above relationship can be generally expressed as the following formula (5).
ΔL × ΔT × ΔX ≦ ΔW / 2 (5)
ここで、ΔLは、レンズアレイ光学系102において、レンズアレイ107、109及び遮光部材108が位置決めされている場所から最も離間した位置までの距離である。換言すると、遮光部材108の最も離間した位置とは、遮光部材108において、遮光部材として機能している部分内の最も離間した位置である。ΔTは、レンズアレイ107、109及び遮光部材108が位置決めされた時の温度と、レンズアレイ光学系102が使用されているときの温度との差である。ΔXは、レンズアレイ107の線膨張係数と遮光部材108の主配列方向及び副配列方向における位置を画定している部材の線膨張係数との差の絶対値、及びレンズアレイ109の線膨張係数と遮光部材108の主配列方向及び副配列方向における位置を画定している部材の線膨張係数との差の絶対値のうちの大きい方の値である。ΔWは、隣接するレンズ間に沿った散乱部110の幅Bmと、隣接するレンズ間に沿った遮光部材108の幅Tmとの差(Bm―Tm)である。
Here, ΔL is the distance from the position where the
このとき、図4(c)に示すように、散乱部110に向かう光束Sが増加する。このような散乱光Sは、所望の結像光束ではないが、散乱部110で散乱されることによって、像面上の各位置では強度が十分に低下するため、画像の劣化にはつながらない。
At this time, as shown in FIG.4 (c), the light beam S which goes to the
図5(a)及び(b)は、本実施形態に係る第1のレンズアレイ107及び散乱部110の主配列方向断面図及び散乱部110の主配列方向拡大断面図をそれぞれ示している。
5A and 5B respectively show a main array direction cross-sectional view of the
図5(a)及び(b)に示すように、本実施形態の散乱部110は、例えば底辺a=10μm、高さh=10μmとした三角プリズムを17個配列した形状となっている。このような三角プリズムの構成とすることで、散乱部110は、加工が容易となり、製造コストを安くすることができるという効果が得られる。
なお、発明者が検討した結果、三角プリズムの底辺aに対する高さhの比(アスペクト比)h/aが0.7以上であれば、散乱部110が十分散乱効果を発揮することがわかったので、本実施形態では、アスペクト比h/aが1である三角プリズムを用いて散乱部110の一例を示している。
As shown in FIGS. 5A and 5B, the
In addition, as a result of examination by the inventors, it was found that if the ratio of the height h to the base a of the triangular prism (aspect ratio) h / a is 0.7 or more, the scattering
上では、遮光部材108と散乱部110の主配列方向の幅の関係について議論した。次に、遮光部材108の光軸方向の長さについて議論する。
In the above, the relationship between the width of the
図6は、本実施形態に係るレンズアレイ光学系102の主配列方向に沿った模式的断面図を示している。
FIG. 6 is a schematic cross-sectional view along the main array direction of the lens array
なお、以下では散乱部110が設けられていないとし、不要なゴースト光Gを遮光部材108によって遮光する場合を考える。
In the following description, it is assumed that the
図6に示すように、不図示の光源から出射したゴースト光Gは、レンズ107aを通過した後、遮光部材108によって遮光されている。なお、ゴースト光Gは、レンズ107aを通過した後、遮光部材108aのレンズアレイ107側の面上の或る点Y1、遮光部材108aの遮光部材108b側の面上の或る点Y2、レンズ109bの端部である点Y3に向かっていると仮定する。
点Y1から点Y3までの主配列方向に沿った距離をα、点Y2から点Y3までの主配列方向に沿った距離をβとすると、以下の式(6)の関係を満たせば、ゴースト光Gを遮光部材108によって遮光することができる。
α≧β ・・・(6)
As shown in FIG. 6, the ghost light G emitted from a light source (not shown) passes through a
Assuming that the distance along the main array direction from the point Y1 to the point Y3 is α and the distance along the main array direction from the point Y2 to the point Y3 is β, the ghost light is satisfied as long as the relationship of the following expression (6) is satisfied. G can be shielded by the shielding
α ≧ β (6)
レンズ間の接続部、例えばレンズ107a及びレンズ107bの主配列方向の幅をBm、遮光部材108aの主配列方向の幅をTm、及びレンズアレイ107及び109のレンズ配列周期をPとすると、距離βは以下の式(7)の関係を満たす。
β=P−(Bm/2−Tm/2)−Tm
=P−Bm/2−Tm/2 ・・・(7)
If the width of the connecting portion between the lenses, for example, the
β = P− (Bm / 2−Tm / 2) −Tm
= P-Bm / 2-Tm / 2 (7)
点Y1、Y2及びY3を結ぶ直線と光軸の成す角をθ、遮光部材108の光軸方向の長さをLsとする。そして、レンズアレイ107の或るレンズ、例えば107bとレンズアレイ109の前記或るレンズに向かい合うレンズ、例えば109bの端部間の距離(第1のレンズアレイ107と第2のレンズアレイ109の対向する面間の光軸方向における最長の距離)をLmaxとすると、距離αは以下の式(8)のように表される。
The angle formed by the straight line connecting the points Y1, Y2, and Y3 and the optical axis is θ, and the length of the
α=(Lmax/2+Ls/2)×tanθ
=(Lmax/2+Ls/2)×(P/Lmax)
=P/2+(P/2)×(Ls/Lmax) ・・・(8)
α = (Lmax / 2 + Ls / 2) × tan θ
= (Lmax / 2 + Ls / 2) × (P / Lmax)
= P / 2 + (P / 2) × (Ls / Lmax) (8)
従って、式(6)、(7)及び(8)より、以下の式(9)に表される関係が得られる。
Bm+Tm≧P×(1−(Ls/Lmax)) ・・・(9)
Therefore, the relationship expressed by the following equation (9) is obtained from the equations (6), (7), and (8).
Bm + Tm ≧ P × (1− (Ls / Lmax)) (9)
例えば、本実施形態に係るレンズアレイ光学系102は、Bmが0.17mm、Tmが0.10mm、Pが0.76mm、Lsが1.90mm、及びLmaxが2.33mmとなるように設計されている。
従って、
Bm+Tm=0.27mm
P×(1−(Ls/Lmax))=0.14mm
となり、本実施形態に係るレンズアレイ光学系102は、式(9)の関係を満たしていることがわかる。
すなわち、本実施形態に係るレンズアレイ光学系102では、図6のように、ゴースト光Gを遮光部材108が遮光できることがわかる。
For example, the lens array
Therefore,
Bm + Tm = 0.27mm
P × (1− (Ls / Lmax)) = 0.14 mm
Thus, it can be seen that the lens array
That is, in the lens array
また、レンズアレイ107の或るレンズ、例えば107aとレンズアレイ109の向かい合うレンズ、例えば109aとの間の最小面間隔(第1のレンズアレイ107と第2のレンズアレイ109の対向する面間の光軸方向における最短の距離)をLminとする。その場合、遮光部材108の光軸方向の長さLsとLminは、以下の式(10)の関係を満たしていることが好ましい。
Ls<Lmin ・・・(10)
Further, a minimum surface interval between a certain lens of the
Ls <Lmin (10)
すなわち、遮光部材の光軸方向の長さLsは、第1のレンズアレイの或るレンズと第2のレンズアレイの前記或るレンズに向かい合うレンズとの間の最小面間隔Lminより小さいことが好ましい。 That is, the length Ls of the light shielding member in the optical axis direction is preferably smaller than the minimum surface distance Lmin between a certain lens of the first lens array and a lens facing the certain lens of the second lens array. .
式(10)の関係を満たすように、レンズアレイ107、109及び遮光部材108を用意することで、レンズアレイと遮光部材の両部材を、互いに主配列方向についてスライドさせながら組んでも、遮光部材とレンズアレイとが干渉することがない。そのため、レンズアレイ光学系102の組み立てが容易になる。逆に、式(10)の関係を満たさないと、レンズアレイと遮光部材の両部材を、互いに主配列方向についてスライドさせながら組もうとすると、レンズアレイと遮光部材が干渉してしまう。そのため、破損等の問題が生じてしまう可能性がある。
By preparing the
これまで、遮光部材108と散乱部110の主配列方向の幅、および遮光部材108の光軸方向の長さについて議論してきた。次に、本実施形態の散乱部108と遮光部材110の効果的な配置について議論する。
So far, the width of the
図7は、散乱部110と遮光部材108を含む本発明の第1実施形態に係るレンズアレイ光学系102の主配列断面における模式的断面図を示している。
FIG. 7 is a schematic cross-sectional view of the main array cross section of the lens array
なお、以下では、散乱部110には図5で示したようなアスペクト比0.7以上の三角プリズムを設けているものとする。
In the following, it is assumed that the
まず、散乱部110の三角プリズムでは、頂部と底部のエッジ状の稜線や、製造上の利点から意図的に平坦部を設けた稜線や、射出成型などのような転写、複製プロセスによる丸みを帯びた稜線が形成されることがある。このため三角プリズムの稜線近傍を透過する光は放射状に広がる可能性があり、不要なゴースト光とならないようにする必要がある。
First, the triangular prism of the
例えば、散乱光が遮光されずに対向するレンズに入射するケースとして、図7中の第1のレンズアレイ107のレンズ107aと107bの間にある散乱部110abを透過し、第2のレンズアレイ109のレンズ109aの方向に向かう散乱光を考える。
不図示の光源から射出された光束は、レンズアレイ107、レンズ107aと107bの間にある散乱部110abのプリズム稜線近傍を透過し、光が放射状に射出される。このような光は、光軸方向に対向する遮光部材108abの短手側面及び長手側面にて遮光されたり、レンズ109aを跨ぎ、隣接する遮光部材に遮光されたり、再び散乱部に入射して散乱されることによって、強度が十分に低下する。従って、このような光線であれば、散乱光は遮光されるため、画像の劣化につながることはない。
For example, as a case where the scattered light is incident on the opposite lens without being blocked, the light is transmitted through the scattering portion 110ab between the
A light beam emitted from a light source (not shown) passes through the vicinity of the prism ridge line of the scattering section 110ab between the
しかしながら、散乱光が遮光されずに対向するレンズに入射するケースも考えられる。そのようなケースとして、図7中の第1のレンズアレイ107のレンズ107bと107cの間にある散乱部110bcを透過し、第2のレンズアレイ109のレンズ109bの方向に向かう散乱光を考える。
However, there may be a case where scattered light is incident on a facing lens without being blocked. As such a case, consider scattered light that passes through the scattering portion 110bc between the
不図示の光源から射出された光線は、レンズアレイ107、レンズ107bと107cの間にある散乱部110bcのプリズム稜線近傍を透過し、光が放射状に射出される。このとき、散乱部110bcに対向する遮光部材108bcによって遮光されず、対向するレンズ109bのレンズ面に入射し、不要なゴースト光SGとなる可能性がある。具体的には、図7中の遮光部材108のレンズ107側の角部をY4、レンズ109の両端部をY5及びY6としたとき、散乱部110bcに対向する遮光部材108bcによって遮光されず、Y4とY5を結ぶ線分と、Y4とY6を結ぶ線分との間の領域内で対向するレンズ109bのレンズ面に入射する光が不要なゴースト光SGとなる。
すなわち、遮光部材108の角部Y4を起点にして所定の領域内に光が入射する条件を考えればよい。
A light beam emitted from a light source (not shown) passes through the vicinity of the prism ridge line of the scattering portion 110bc between the
That is, it is only necessary to consider a condition in which light enters a predetermined region starting from the corner Y4 of the
Y4とY5を結ぶ線分は、光軸に対して式(11)に示されるような臨界角度θ1を有する。
θ1=tan-1(ΔQm/((Lmax+Ls)/2)) ・・・(11)
また、Y4とY6を結ぶ線分は、光軸に対して式(12)に示されるような臨界角度θ2を有する。
θ2=tan-1((P−ΔQm)/((Lmax+Ls)/2))・・・(12)
The line segment connecting Y4 and Y5 has a critical angle θ1 as shown in Expression (11) with respect to the optical axis.
θ1 = tan −1 (ΔQm / ((Lmax + Ls) / 2)) (11)
Further, the line segment connecting Y4 and Y6 has a critical angle θ2 as shown in Expression (12) with respect to the optical axis.
θ2 = tan −1 ((P−ΔQm) / ((Lmax + Ls) / 2)) (12)
本実施形態において、レンズアレイ光学系102は、Bmが0.17mm、Tmが0.10mm、Pが0.76mm、Lsが1.90mm、及びLmaxが2.33mm、ΔQm=0.035mmとなるように設計されている。
従って、
θ1=0.95°
θ2=20.6°
と求まる。
In this embodiment, the lens array
Therefore,
θ1 = 0.95 °
θ2 = 20.6 °
It is obtained.
散乱部110のプリズム稜線近傍から発生する不要なゴースト光SGを抑制するためには、臨界角度θ1及びθ2によって規定される領域に散乱部110からの光線が入射することを避けることが望ましい。
In order to suppress unnecessary ghost light SG generated from the vicinity of the prism ridge line of the
図8は、散乱部110及び遮光部材108の拡大図を示している。
FIG. 8 shows an enlarged view of the
Bmは散乱部110の幅、Tmは遮光部材108の幅である。また、Beは、散乱部110において、両端から1つ目のプリズムの稜線の間の距離である。すなわち、散乱部110に形成されるプリズム稜線は、幅Be内にのみ含まれることを意味している。
Bm is the width of the
図8(a)、(b)及び(c)より、対向する不図示のレンズに入射する不要なゴースト光SGを抑制するための、散乱部110と遮光部材108の効果的な配置について説明する。
8A, 8B, and 8C, an effective arrangement of the
図8(a)は、遮光部材108の幅Tmに対して幅Beの方が大きい場合を示している。図8中において、点線で示している領域が、光がゴースト光SGとなる領域である。このように、散乱部110から放射状に広がる様々な光が発生し、ゴースト光SGが生じることがわかる。
FIG. 8A shows a case where the width Be is larger than the width Tm of the
次に、図8(b)は、遮光部材108の幅Tmに対して幅Beの方が小さい場合を示している。この条件を満たすために、散乱部110の三角プリズムを遮光部材108に近づけて形成している。図8(b)に示されるように、図8(a)のケースと比較して、点線で示している領域内に入射する光、すなわちゴースト光SGになる光線が大幅に抑制されていることがわかる。これは、プリズム稜線を遮光部材110に近接して配置することで、遮光部材110の短手側面で光線を受けて遮光することができるためである。このように、発明者が検討した結果、遮光部材108の幅Tmより幅Beを小さくすることで、ゴースト光SGを効果的に抑制できることがわかった。
つまり、式(13)の関係を満たすことで、ゴースト光SGを効果的に抑制できる。
Tm≧Be ・・・(13)
本実施形態においては、Tmが0.10mmであるため、Beは0.10mm以下とすればよい。
Next, FIG. 8B shows a case where the width Be is smaller than the width Tm of the
That is, the ghost light SG can be effectively suppressed by satisfying the relationship of Expression (13).
Tm ≧ Be (13)
In the present embodiment, since Tm is 0.10 mm, Be may be 0.10 mm or less.
また、散乱面と遮光部材は光軸方向の距離において、式(10)で示される関係を満たす必要がある。
本実施形態において、三角プリズムのアスペクト比h/aは1としているので、三角プリズムの最大高さは、少なくともΔQmの2倍である必要がある。すなわち、ΔQm=0.035mmであるので、三角プリズムの最大高さは0.07mmである必要がある。本実施形態においてLsが1.90mm、及びLmaxが2.33mmであるので、三角プリズムの最大高さは0.215mmまで取ることができる。従って、三角プリズムは光軸方向において干渉なく配置することができる。
Further, the scattering surface and the light shielding member need to satisfy the relationship represented by Expression (10) in the distance in the optical axis direction.
In the present embodiment, since the aspect ratio h / a of the triangular prism is 1, the maximum height of the triangular prism needs to be at least twice as large as ΔQm. That is, since ΔQm = 0.035 mm, the maximum height of the triangular prism needs to be 0.07 mm. In this embodiment, since Ls is 1.90 mm and Lmax is 2.33 mm, the maximum height of the triangular prism can be up to 0.215 mm. Therefore, the triangular prism can be arranged without interference in the optical axis direction.
さらに、図8(c)は、理想的な散乱部110と遮光部材108との配置関係を示している。ここでは、遮光部材108の幅Tmに対して幅Beの方が小さく、かつ、遮光部材108の両側の臨界角度θ2に対応する線分及び遮光部材108の短手側面で囲まれる領域内に三角プリズムの稜線が入るように、散乱部110が形成されている。これにより、散乱部110から放射される光線Shは、遮光部材108の短手側面によって遮光され、遮光部材108の角部から抜ける光線Shについても、隣接する遮光部材108の長手側面で遮光することができる。
Further, FIG. 8C shows an arrangement relationship between the
本実施形態に係るレンズアレイ光学系では、図5に示されているように、形成する三角プリズムの底辺aを10μmとしているが、アスペクト比を保てばこれに限られない。プリズム間隔を広げることで、形成されるプリズム稜線の数は減るため、散乱部のプリズム稜線近傍を透過する光線も減少し、ゴースト光も抑制することができる。 In the lens array optical system according to the present embodiment, as shown in FIG. 5, the base a of the triangular prism to be formed is 10 μm. However, the present invention is not limited to this as long as the aspect ratio is maintained. By widening the prism interval, the number of prism ridge lines formed is reduced, so that light rays that pass through the vicinity of the prism ridge line of the scattering portion are also reduced, and ghost light can be suppressed.
本実施形態に係るレンズアレイ光学系は、レンズアレイが副配列方向には一列だけ配置した構成となっている。しかしながら、一列に限定される必要はなく、複数列配置した構成であっても、少なくとも一列において本発明の構成を有していれば、本発明の効果を得ることができる。 The lens array optical system according to the present embodiment has a configuration in which the lens array is arranged in one line in the sub-array direction. However, it is not necessary to be limited to a single row, and even if the configuration is a plurality of rows, the effect of the present invention can be obtained as long as the configuration of the present invention is provided in at least one row.
本実施形態に係るレンズアレイ光学系は、主配列方向について正立等倍結像を行うが、本発明はこれに限定されない。また、本実施形態のレンズアレイ光学系は、副配列方向について倒立結像を行うが、本発明はこれに限定されない。 The lens array optical system according to the present embodiment performs erecting equal-magnification imaging in the main array direction, but the present invention is not limited to this. The lens array optical system of the present embodiment performs inverted imaging in the sub-array direction, but the present invention is not limited to this.
本実施形態に係るレンズアレイ光学系は、二つのレンズアレイ及び一つの遮光部材から構成されているが、本発明の構成を満たしていれば、レンズアレイ及び遮光部材の数はこれに限定されない。
例えば、主配列断面内において物体の中間像を形成する第1のレンズアレイ、及び主配列断面内において物体の中間像を再結像する第2のレンズアレイに加えて、中間結像面に沿って第3のレンズアレイを設ける実施形態も考えることができる。
The lens array optical system according to this embodiment includes two lens arrays and one light shielding member, but the number of lens arrays and light shielding members is not limited to this as long as the configuration of the present invention is satisfied.
For example, in addition to the first lens array that forms an intermediate image of the object in the main array section and the second lens array that re-images the intermediate image of the object in the main array section, along the intermediate image plane An embodiment in which a third lens array is provided can also be considered.
本実施形態に係るレンズアレイ光学系は、レンズアレイと遮光部材が、主配列方向について各々の中心部で位置決めされている。しかしながら、各々の中心部で位置決めする必要はなく、本発明の構成を満たしていれば、例えば、レンズアレイと遮光部材を、各々の端部で位置決めしても良い。 In the lens array optical system according to the present embodiment, the lens array and the light shielding member are positioned at the center of each in the main arrangement direction. However, it is not necessary to position at each central portion, and for example, the lens array and the light shielding member may be positioned at each end as long as the configuration of the present invention is satisfied.
本実施形態に係るレンズアレイ光学系では、二つのレンズアレイの間に一つの遮光部材が設けられており、各レンズアレイの遮光部材側の面に、散乱部が設けられている。しかしながら、本発明はこの構成に限定される必要はない。例えば、本発明の構成を満たしていれば、各レンズアレイの遮光部材側とは反対側の面に散乱部を設けたり、片方のレンズアレイの遮光部材側の面のみに散乱部を設けたりしても良い。 In the lens array optical system according to the present embodiment, one light shielding member is provided between two lens arrays, and a scattering portion is provided on the surface of each lens array on the light shielding member side. However, the present invention need not be limited to this configuration. For example, if the configuration of the present invention is satisfied, a scattering portion may be provided on the surface opposite to the light shielding member side of each lens array, or a scattering portion may be provided only on the surface of the one lens array on the light shielding member side. May be.
図9(a)、(b)及び(c)はそれぞれ、本発明の第2実施形態に係る光学装置300のXY断面図、XZ断面図及びYZ断面図を示している。
FIGS. 9A, 9B, and 9C are respectively an XY sectional view, an XZ sectional view, and a YZ sectional view of an
本実施形態の光学装置300は、画像読取装置の形態をとっている。すなわち、光学装置300は、物体面である原稿301、レンズアレイ光学系302、像面であるセンサ部303及び原稿台304を備えている。レンズアレイ光学系302は、第1の遮光部材308a、第1のレンズアレイ307、第2のレンズアレイ309、及び第2の遮光部材308bから構成されている。すなわち、本実施形態では、遮光部材308a(308b)は、レンズアレイ光学系302の入射側又は出射側に配置されている。換言すれば、遮光部材308aは、第1のレンズアレイ307よりも物体側に配置され、遮光部材308bは、第2のレンズアレイ309よりも像側に配置されている。すなわち、レンズアレイ307及びレンズアレイ309のうちの少なくとも一方のレンズアレイ307(309)の、他方のレンズアレイ309(307)に対向しない側に配置されている、ということができる。
The
レンズアレイ光学系302は、主配列方向に複数のレンズが周期1.50mmで配列されて構成されている。またレンズアレイ光学系302は、レンズアレイ光学系302の光軸方向(X方向)及び主配列方向(Y方向)に垂直な副配列方向(Z方向)にはレンズが間隔1.50mmで二列の千鳥配列になるように構成されている。なお、以下では、副配列方向の二列のうちの下側の列(図9(c)におけるB列)のみを考慮する。そして、他方の列(図9(c)におけるA列)についても同様の構成をなしているものとする。
レンズアレイ光学系302は、主配列方向に関しては正立等倍結像するようになっており、副配列方向に関しては正立結像するようになっている。
The lens array
The lens array
不図示の照明部から出射された光束は、原稿台304を透過して、原稿301に入射し、その後反射される。そして、原稿301によって反射された光束は、レンズアレイ光学系302を通過し、センサ部303に入射し、検知される。原稿301によって反射された光束は、主配列方向に並んだ複数のレンズを経由してもセンサ部303上の一点に集光される。例えば、図9(a)では、発光点Cから出射した光束はC’に集光し、発光点Dから出射した光束はD’に集光する。
A light beam emitted from an illuminating unit (not shown) passes through the document table 304, enters the
次に、レンズアレイ光学系302について説明する。
Next, the lens array
第1のレンズアレイ307は、複数の第1のレンズ(以下、G1とも記載する場合がある。)307a、307b…が配列されるように構成されている。同様に、第2のレンズアレイ309は、複数の第2のレンズ(以下、G2とも記載する場合がある。)309a、309b…が配列されるように構成されている。
The
図10は、レンズアレイ光学系302の一部302aの主配列方向及び副配列方向それぞれに沿った模式的断面図を示している。
FIG. 10 is a schematic cross-sectional view of the
レンズアレイ光学系の一部302aは、同一光軸上に配置された、第1の遮光部材308aの一部、第1のレンズ307a、第2のレンズ309a、及び第2の遮光部材308bの一部を含んでいる。なお、副配列方向においては、二列のレンズアレイの間に遮光部材が配置される場合を考える。すなわち、本実施形態では、副配列方向の二列のうちの下側の列のみを考慮しているので、副配列方向断面図では、遮光部材308a及び308bは、レンズ307a及び309aの図中上側のみに配置されることになる。全てのレンズ面は円形形状となっている。第1のレンズ307aの原稿301側の面(以下、G1R1面と称する。)と第2のレンズ309aのセンサ部303側の面(以下、G2R2面と称する。)の有効径は1.20mmである。同様に、第1のレンズ307aの第2のレンズ309a側の面(以下、G1R2面と称する。)と第2のレンズ309aの第1のレンズ307a側の面(以下、G2R1面と称する。)の有効径も1.20mmである。全ての遮光部材の開口断面は円形であり、第1の遮光部材308aの両面、及び第2の遮光部材308bの両面の開口径は1.30mmである。
なお、第1のレンズ307aのG1R1面と不図示の隣接する第1のレンズのG1R1面との間には散乱部310が設けられている。第1のレンズ307aのG1R2面と不図示の隣接する第1のレンズのG1R2面との間にも散乱部310が設けられている。同様に、第2のレンズ309aのG2R1面と不図示の隣接する第2のレンズのG2R1面との間にも散乱部310が設けられている。第2のレンズ309aのG2R2面と不図示の隣接する第2のレンズのG2R2面との間にも散乱部310が設けられている。
第1のレンズ307a、307b、…及び第2のレンズ309a、309b、…はそれぞれ結合し、レンズアレイ307、309を形成している。
A
A scattering
The
主配列方向について、原稿301によって反射された光束は、原稿台304、第1のレンズ307aを通過した後、中間結像面305において一旦結像する。その後、第2のレンズ309aを通過して、センサ部303に正立等倍結像する。
副配列方向についても、原稿301によって反射された光束は、原稿台304、第1のレンズ307aを通過した後、中間結像面305において一旦結像する。その後、第2のレンズ309aを通過して、センサ部303に正立結像する。
ここで、遮光部材308a、308b及び散乱部310は、第1のレンズ307aを通過した後、光軸の異なる第2のレンズに向かう光束、即ちゴースト光を低減する役割を担っている。
なお、物体面(ここでは、原稿301)から中間結像面305までを第1光学系と称し、中間結像面305から像面(ここでは、センサ部303)までを第2光学系と称する。
In the main arrangement direction, the light beam reflected by the
Also in the sub-array direction, the light beam reflected by the
Here, the
Note that the object plane (here, the original 301) to the
本実施形態に係るレンズアレイ光学系の光学設計値は、以下の表2のようになっている。 The optical design values of the lens array optical system according to this embodiment are as shown in Table 2 below.
ここで、各レンズ面と光軸との交点を原点とし、光軸方向をX軸とする。また、主配列方向をY軸、副配列方向をZ軸とする。また、表1において、「E−x」は、「×10-x」を意味している。 Here, the intersection of each lens surface and the optical axis is the origin, and the optical axis direction is the X axis. In addition, the main arrangement direction is a Y axis and the sub arrangement direction is a Z axis. In Table 1, “E-x” means “× 10 −x ”.
G1R1面、G1R2面、G2R1面及びG2R2面はそれぞれ、アナモフィック非球面で構成され、その非球面形状は以下の式(14)で表わされる。 The G1R1, G1R2, G2R1 and G2R2 surfaces are each composed of an anamorphic aspheric surface, and the aspheric shape is expressed by the following equation (14).
第2実施形態に係るレンズアレイ光学系302でも、第1実施形態に係るレンズアレイ光学系102と同様に、レンズアレイのレンズ間に散乱部又は吸光部を設ける。そして、遮光部材の幅が、散乱部又は吸光部の幅よりも小さい構成としている。これにより、レンズアレイと遮光部材との相対位置が理想的な位置からずれても、所望の結像光束の遮光や、不要なゴースト光の発生を防止する効果を得ることができる。
Similarly to the lens array
次に、本実施形態に係るレンズアレイ光学系の具体的な構成について説明する。 Next, a specific configuration of the lens array optical system according to the present embodiment will be described.
図11(a)は、本発明の第2実施形態に係るレンズアレイ光学系302の主配列方向断面図を示している。なお、図11(a)において、第2の遮光部材308bは図示していない。
FIG. 11A shows a sectional view in the main array direction of the lens array
本実施形態のように、遮光部材308a及び308bの開口が矩形形状ではない場合、散乱部310の主配列方向の幅Bm、及び遮光部材308aの主配列方向の幅Tmは、レンズ面及び遮光部材の主配列方向の距離が最も近くなる副配列方向に垂直な断面で定義する。つまり、図9(c)の鎖線L1のように、上段側レンズアレイの光軸を含む副配列方向に垂直な断面で定義する。
As in the present embodiment, when the openings of the
ここで、散乱部310の主配列方向の幅Bmは0.30mm、及び遮光部材308aの主配列方向の幅Tmは0.10mmである。すなわち、BmとTmは、以下の式(15)で表される関係を満たす。
Bm>Tm ・・・(15)
Here, the width Bm of the
Bm> Tm (15)
すなわち、隣接するレンズ間に沿った散乱部310の幅Bmは、隣接するレンズ間に沿った遮光部材308aの幅Tmより大きい。
That is, the width Bm of the
レンズアレイ光学系302では、散乱部310が設けられている。そして、図11(a)に示すように、各散乱部310の中心位置に整合するように遮光部材308aが配置される。このように、レンズアレイ307、309と遮光部材308aとの相対位置が理想的な場合には、式(12)の関係を満たしていれば、所望の結像光束Kを遮光したり、不要なゴースト光Gを結像させたりすることを防止することができる。
In the lens array
しかしながら、もし遮光部材308aが散乱部310の主配列方向の幅を超えるように、レンズアレイ307又は309と遮光部材との相対位置がずれると、所望の結像光束Kが遮光される一方で、不要なゴースト光Gが結像される。
However, if the relative position between the
従って、レンズアレイ307、309と遮光部材308aの主配列方向に沿った相対位置ずれの許容量ΔQmは、以下の式(16)のように表される。
ΔQm=(Bm―Tm)/2=0.10mm ・・・(16)
Therefore, an allowable amount ΔQm of relative positional deviation along the main array direction of the
ΔQm = (Bm−Tm) /2=0.10 mm (16)
次に、環境温度が変動した際のレンズアレイ307、309及び遮光部材308aの膨張に伴う主配列方向に沿った相対位置ずれについて具体的に考える。
Next, the relative positional deviation along the main array direction accompanying the expansion of the
まず、第1のレンズアレイ307及び第2のレンズアレイ309の主配列方向の線膨張係数Xlは10.0×10-5(/℃)、遮光部材308aの主配列方向の線膨張係数Xsは9.0×10-5(/℃)である。これらの値は、レンズアレイ及び遮光部材を樹脂で作成した場合には、標準的な値である。
また、レンズアレイ光学系302は、A4幅(210mm幅)にわたって露光するように構成されている。すなわち、第1のレンズアレイ307、第2のレンズアレイ309及び遮光部材308aの主配列方向の全長Lは210mmである。
さらに、第1のレンズアレイ307、第2のレンズアレイ309及び遮光部材308aは、主配列方向について一方の端部において位置決めされている。
加えて、レンズアレイ光学系302の動作補償環境温度は、30℃±30℃である。これは、標準的な仕様である。
First, the linear expansion coefficient Xl in the main array direction of the
The lens array
Furthermore, the
In addition, the operation compensation environmental temperature of the lens array
ここで、環境温度がΔT=30℃だけ上昇した場合を考える。このとき、レンズアレイ光学系302の主配列方向の位置決めされている端部とは反対側の端部において生じる、レンズアレイ307、309と遮光部材308aとの相対位置最大ずれ量ΔYmaxは、以下の式(17)のように表される。
Here, a case where the environmental temperature rises by ΔT = 30 ° C. is considered. At this time, the relative positional maximum deviation amount ΔYmax between the
ΔYmax=L×ΔT×(Xl―Xs)
=210mm×30℃×(10.0×10-5/℃−9.0×10-5/℃)
=0.063mm ・・・(17)
ΔYmax = L × ΔT × (X1-Xs)
= 210mm × 30 ℃ × (10.0 × 10 -5 /℃-9.0×10 -5 / ℃)
= 0.063mm (17)
従って、レンズアレイ307、309と遮光部材308aとの相対位置ずれΔYは位置決めされている端部では0mmであり、反対側の端部では0.063mmである。そして、位置決めされている端部と反対側の端部の間では、その位置に応じて0乃至0.063mmのいずれかの値だけずれており、そのずれ量は、位置決めされている端部から遠ざかるにつれて大きくなり、位置決めされている端部からの距離に比例する。この相対位置ずれの様子が図11(b)に示されている。
Accordingly, the relative positional deviation ΔY between the
式(16)及び(17)から、レンズアレイ307、309と遮光部材308aとの相対位置最大ずれ量ΔYmaxは、主配列方向に沿った相対位置ずれの許容量ΔQmの範囲内に収まっていることがわかる。
従って、レンズアレイ光学系302において、このような環境温度の変動が生じても、所望の結像光束Kの遮光や、不要なゴースト光Gの発生を防止することができることがわかる。
From Expressions (16) and (17), the relative positional maximum deviation amount ΔYmax between the
Therefore, it can be seen that the lens array
本実施形態に係るレンズアレイ光学系302は、副配列方向(Z方向)にはレンズが二列の千鳥配列になるように構成されている。
従って、レンズアレイ及び遮光部材の副配列方向に沿った相対位置ずれについても考慮することができる。
The lens array
Therefore, it is possible to consider relative positional deviation along the sub-array direction of the lens array and the light shielding member.
本実施形態のように、遮光部材308a及び308bの開口形状が矩形形状ではない場合、散乱部の副配列方向の幅Bsは、以下のように定義する。すなわち、A列内のレンズと該レンズに隣接するB列内のレンズとの距離が最も小さくなる位置に散乱部を配置し、散乱部の副配列方向の幅Bsは、散乱部の副配列断面に投影した副配列方向の成分で定義する。つまり、散乱部の副配列方向の幅Bs、及び遮光部材の副配列方向の幅Tsは、主配列方向に垂直な断面で定義する。すなわち、図9(c)の鎖線L2のように、上段側レンズアレイの光軸を含む主配列方向に垂直な断面(副配列断面)で定義する。
When the opening shape of the
ここで、散乱部の副配列方向の幅Bsは0.30mm、及び遮光部材の副配列方向の幅Tsは0.10mmである。すなわち、BsとTsは、以下の式(18)で表される関係を満たす。
Bs>Ts ・・・(18)
Here, the width Bs of the scattering portion in the sub-array direction is 0.30 mm, and the width Ts of the light shielding member in the sub-array direction is 0.10 mm. That is, Bs and Ts satisfy the relationship represented by the following formula (18).
Bs> Ts (18)
従って、式(16)の議論と同様に、散乱部の中心部に遮光部材を配置したとすると、レンズアレイと遮光部材の副配列方向に沿った相対位置ずれの許容量ΔQsは、以下の式(19)のように表される。
ΔQs=(Bs―Ts)/2=0.10mm ・・・(19)
Therefore, similarly to the discussion of Expression (16), if the light shielding member is disposed at the center of the scattering portion, the relative displacement ΔQs along the sub-array direction of the lens array and the light shielding member is expressed by the following expression. It is expressed as (19).
ΔQs = (Bs−Ts) /2=0.10 mm (19)
組立時における配置誤差等に伴って、レンズアレイと遮光部材の副配列方向に沿った相対位置ずれΔZが生じたとする。その場合でも、ΔZ≦ΔQsを満たしていれば、副配列方向に関しても、所望の結像光束の遮光や、不要なゴースト光の発生を防止する効果を得ることができる。 It is assumed that a relative displacement ΔZ along the sub-array direction of the lens array and the light shielding member occurs due to an arrangement error or the like during assembly. Even in this case, as long as ΔZ ≦ ΔQs is satisfied, it is possible to obtain an effect of blocking the desired imaging light beam and preventing unnecessary ghost light in the sub-array direction.
本実施形態に係る光学装置300は、画像読取装置の形態をとっていたが、もちろん、画像形成装置にも適用可能である。
The
本実施形態に係るレンズアレイ光学系302は、二つの遮光部材308a及び308bを第1のレンズアレイ307と原稿301との間、及び第2のレンズアレイ309とセンサ部303との間に一つずつ有した構成となっている。しかしながら、本実施形態に係るレンズアレイ光学系302は、このような構成に限定される必要はなく、本発明の構成を満たしていれば、例えば遮光部材をどちらか一つのみ有している構成でも本発明の効果を得ることができる。
In the lens array
本実施形態に係るレンズアレイ光学系302では、副配列方向の二列のうちの一方の列のみについて本発明の構成を議論し、他方の列については同様の構成をなしているものとした。しかしながら、本実施形態に係るレンズアレイ光学系302は、このような構成に限定される必要はなく、一方の列のみが本発明の構成を満たしていたとしても、本発明の効果を得ることができる。
In the lens array
最後に、本発明に係るレンズアレイ光学系を備えたモノクロ画像形成装置、カラー画像形成装置及び画像読取装置について説明する。 Finally, a monochrome image forming apparatus, a color image forming apparatus and an image reading apparatus provided with the lens array optical system according to the present invention will be described.
図12(a)は、本発明に係るレンズアレイ光学系を備えたモノクロ画像形成装置5の模式的断面図を示している。 FIG. 12A is a schematic cross-sectional view of a monochrome image forming apparatus 5 including the lens array optical system according to the present invention.
画像形成装置5には、パーソナルコンピュータ等の外部機器15からコードデータDcが入力される。コードデータDcは、装置内のプリンタコントローラ10によって、画像データ(ドットデータ)Diに変換される。画像データDiは、本発明に係るレンズアレイ光学系を備えた露光ユニット1に入力される。そして、露光ユニット1からは、画像データDiに応じて変調された露光光4が出射され、露光光4によって感光ドラム2の感光面が露光される。
Code data Dc is input to the image forming apparatus 5 from an
静電潜像担持体(感光体)たる感光ドラム2は、モーター13によって時計廻りに回転させられる。感光ドラム2の上方には、感光ドラム2の表面を一様に帯電せしめる帯電ローラ3が感光ドラム2の表面に当接するように設けられている。そして、帯電ローラ3によって帯電された感光ドラム2の表面に、露光ユニット1によって露光光4が照射されるようになっている。
The photosensitive drum 2 serving as an electrostatic latent image carrier (photoconductor) is rotated clockwise by a
先に説明したように、露光光4は、画像データDiに基づいて変調されており、露光光4を照射することによって感光ドラム2の感光面上に静電潜像を形成せしめる。形成された静電潜像は、露光光4の照射位置よりもさらに感光ドラム2の回転方向の下流側で、感光ドラム2に当接するように配設された現像器6によってトナー像として現像される。
As described above, the exposure light 4 is modulated based on the image data Di, and an electrostatic latent image is formed on the photosensitive surface of the photosensitive drum 2 by irradiating the exposure light 4. The formed electrostatic latent image is developed as a toner image by a developing
現像器6によって現像されたトナー像は、感光ドラム2の下方で、感光ドラム2に対向するように配設された転写ローラ7(転写器)によって被転写材たる用紙11上に転写される。用紙11は感光ドラム2の前方(図12(a)において右側)の用紙カセット8内に収納されているが、手差しでも給紙が可能である。用紙カセット8端部には、給紙ローラ9が配設されており、用紙カセット8内の用紙11を搬送路へ送り込む。
The toner image developed by the developing
以上のようにして、未定着トナー像を転写された用紙11はさらに感光ドラム2後方(図12(a)において左側)の定着器16へと搬送される。定着器16は内部に定着ヒータ(不図示)を有する定着ローラ12と、定着ローラ12に圧接するように配設された加圧ローラ18とで構成されている。転写部17から搬送されてきた用紙11を定着ローラ12と加圧ローラ14の圧接部にて加圧しながら加熱することにより用紙11上の未定着トナー像を定着せしめる。更に定着器16の後方には排紙ローラ14が配設されており、定着された用紙11を画像形成装置5の外に排出せしめる。
As described above, the
プリントコントローラ10は、データの変換だけでなく、モーター13を含む画像形成装置5内の各部の制御も行う。
The
本発明に係るレンズアレイ光学系を用いることによって、露光ユニットをコンパクトにでき、それにより画像形成装置全体についてもコンパクトにできる効果が得られる。 By using the lens array optical system according to the present invention, it is possible to make the exposure unit compact, thereby obtaining the effect of making the entire image forming apparatus compact.
図12(b)は、本発明に係るレンズアレイ光学系を備えたカラー画像形成装置33の模式的断面図を示している。
FIG. 12B is a schematic cross-sectional view of a color
カラー画像形成装置33は、光学装置を4個並べ各々並行して像担持体である感光ドラム面上に画像情報を記録するタンデムタイプのカラー画像形成装置である。カラー画像形成装置33は、17、18、19、20は本発明に係るレンズアレイ光学系を備えた光学装置17、18、19、20、像担持体としての感光ドラム21、22、23、24、現像器25、26、27、28、及び搬送ベルト34を備えている。
The color
カラー画像形成装置33には、パーソナルコンピュータ等の外部機器35からR(レッド)、G(グリーン)、B(ブルー)の各色信号が入力される。これらの色信号は、装置内のプリンタコントローラ36によって、C(シアン),M(マゼンタ),Y(イエロー)、K(ブラック)の各画像データ(ドットデータ)に変換される。これらの画像データは、それぞれ光学装置17、18、19、20に入力される。そして、これらの光学装置からは、各画像データに応じて変調された露光光29、30、31、32が出射され、これらの露光光によって感光ドラム21、22、23、24の感光面が露光される。
The color
これらの露光光は、画像データに基づいて変調されており、露光光を照射することによって不図示の帯電装置によって帯電された感光ドラム21、22、23、24の表面に静電潜像を形成せしめる。形成された静電潜像は、露光光の照射位置よりもさらに感光ドラムの回転方向の下流側で、感光ドラムに当接するように配設された現像器25、26、27、28によってトナー像として現像される。
These exposure lights are modulated based on the image data, and electrostatic latent images are formed on the surfaces of the
現像器によって現像されたトナー像は、被転写材たる用紙39上に順次転写される。用紙39は感光ドラムの前方(図12(b)において右側)の用紙カセット38内に収納されているが、手差しでも給紙が可能である。
The toner images developed by the developing device are sequentially transferred onto a sheet 39 as a transfer material. The sheet 39 is stored in the
以上のようにして、未定着トナー像を転写された用紙39はさらに感光ドラム2後方(図12(b)において左側)の定着器37へと搬送される。定着器37は内部に定着ヒータ(不図示)を有する定着ローラと、定着ローラに圧接するように配設された加圧ローラとで構成されている。搬送されてきた用紙39を定着ローラと加圧ローラの圧接部にて加圧しながら加熱することにより用紙39上の未定着トナー像を定着せしめる。そして、定着された用紙39は画像形成装置33の外に排出される。
As described above, the sheet 39 on which the unfixed toner image is transferred is further conveyed to the fixing unit 37 behind the photosensitive drum 2 (left side in FIG. 12B). The fixing device 37 includes a fixing roller having a fixing heater (not shown) therein, and a pressure roller arranged so as to be in pressure contact with the fixing roller. The sheet 39 that has been conveyed is heated while being pressed by a pressure contact portion between the fixing roller and the pressure roller, thereby fixing the unfixed toner image on the sheet 39. Then, the fixed sheet 39 is discharged out of the
外部機器35としては、例えばCCDセンサを備えたカラー画像読取装置が用いられても良い。この場合には、このカラー画像読取装置と、カラー画像形成装置33とで、カラーデジタル複写機が構成される。また、本発明に係るレンズアレイ光学系をこのカラー画像読取装置に用いてもよい。
As the
図13は、本発明に係るレンズアレイ光学系を備えた画像読取装置50の模式的断面図を示している。
FIG. 13 is a schematic cross-sectional view of an
画像読取装置50は、画像読取部41、フレーム42及び原稿台43を備えている。原稿台43は透過部材から成り、フレーム42によって支持されている。原稿台43の上面には、原稿40が配置される。
画像読取部41は、図中矢印方向に移動することにより、原稿40の画像データを読み取る。画像読取部41は、原稿台43を透過して原稿40を照明する照明ユニットと、原稿40から反射した光束を結像する結像ユニット、及び結像された光束を受光し画像データとするセンサユニット(受光部)から構成される。
The
The
本発明に係るレンズアレイ光学系を用いることによって、結像ユニットをコンパクトにでき、それにより画像読取装置全体についてもコンパクトにできる効果が得られる。 By using the lens array optical system according to the present invention, the image forming unit can be made compact, thereby obtaining an effect that the entire image reading apparatus can be made compact.
本発明に係るレンズアレイ光学系は、レンズアレイのレンズ面と隣接するレンズ面との間に散乱部が設けられた構成となっている。しかしながら、散乱部に限定される必要はなく、散乱部の代わりに吸光部を設けても、本発明の効果を得ることができる。 The lens array optical system according to the present invention has a configuration in which a scattering portion is provided between a lens surface of a lens array and an adjacent lens surface. However, it is not necessary to be limited to the scattering portion, and the effect of the present invention can be obtained even if a light absorption portion is provided instead of the scattering portion.
本発明に係るレンズアレイ光学系における遮光部材は、レンズアレイを構成するレンズの数に対応する光軸方向に貫通する複数の開口を有し、隣接する開口の間の遮光壁が、隣接するレンズの光軸の間に位置し、散乱部に整合するように配置されている、一体に成形された部材として説明されている。しかしながら遮光部材は、このような一体に成形された部材に限定される必要はなく、例えば、ゴースト光を遮光することができる複数の板状の部材を、該複数の板状の部材の主配列方向及び副配列方向における位置を画定するように、枠部材が保持することによって得られる遮光部材ユニットとしてもよい。 The light shielding member in the lens array optical system according to the present invention has a plurality of openings penetrating in the optical axis direction corresponding to the number of lenses constituting the lens array, and the light shielding walls between the adjacent openings are adjacent lenses. It is described as an integrally molded member that is positioned between the two optical axes and arranged to align with the scattering portion. However, the light-shielding member is not necessarily limited to such an integrally molded member. For example, a plurality of plate-like members capable of shielding ghost light are arranged in the main arrangement of the plurality of plate-like members. It is good also as a light shielding member unit obtained when a frame member hold | maintains so that the position in a direction and a subarray direction may be defined.
本発明に係るレンズアレイ光学系は、A4幅(210mm幅)の全長を有するように構成されている。しかしながら、A4幅に限定される必要はなく、任意の幅の全長を有するように構成されていても構わない。 The lens array optical system according to the present invention is configured to have an overall length of A4 width (210 mm width). However, it is not necessary to be limited to the A4 width, and it may be configured to have a total length of an arbitrary width.
本発明に係るレンズアレイ光学系は、A4幅の全長にわたって、本発明の構成を有している。しかしながら、レンズアレイ光学系の全長にわたって本発明の構成を有している必要はなく、レンズアレイ光学系の一部のみが本発明の構成を有している場合でも、本発明の効果を得ることができる。
例えば、第1実施形態に係るレンズアレイ光学系では、主配列方向について中心部で位置決めされている。従って、環境温度が変動したとしても、中心部付近におけるレンズアレイと遮光部材との相対位置ずれは小さい。そのため、少なくともレンズアレイ光学系の両端部付近のレンズが本発明の構成を有していれば、本発明の効果を得ることができる。
The lens array optical system according to the present invention has the configuration of the present invention over the entire length of the A4 width. However, it is not necessary to have the configuration of the present invention over the entire length of the lens array optical system, and the effects of the present invention can be obtained even when only a part of the lens array optical system has the configuration of the present invention. Can do.
For example, in the lens array optical system according to the first embodiment, the lens is positioned at the center in the main arrangement direction. Therefore, even if the environmental temperature fluctuates, the relative positional deviation between the lens array and the light shielding member near the center is small. Therefore, the effects of the present invention can be obtained as long as at least lenses near both ends of the lens array optical system have the configuration of the present invention.
本発明に係るレンズアレイ光学系では、レンズアレイと遮光部材の線膨張係数が異なっている。しかしながら、双方の線膨張係数は同じであっても良い。双方の線膨張係数が同じ場合には、環境温度が変動した際のレンズアレイと遮光部材との相対位置ずれは生じないが、組立時における配置誤差によるレンズアレイと遮光部材との相対位置ずれは常に存在する。従って、本発明は、レンズアレイと遮光部材の線膨張係数が同じ場合であっても、効果を有する。 In the lens array optical system according to the present invention, the linear expansion coefficients of the lens array and the light shielding member are different. However, both linear expansion coefficients may be the same. When both linear expansion coefficients are the same, there is no relative displacement between the lens array and the light shielding member when the environmental temperature fluctuates, but there is no relative displacement between the lens array and the light shielding member due to an arrangement error during assembly. Always exists. Therefore, the present invention is effective even when the linear expansion coefficients of the lens array and the light shielding member are the same.
102 レンズアレイ光学系
107 レンズアレイ(第1のレンズアレイ)
108 遮光部材
109 レンズアレイ(第2のレンズアレイ)
110 散乱部
102 Lens array
108
110 Scattering part
Claims (12)
前記第1及び第2のレンズアレイにおける隣接するレンズの光軸同士の間に配置される遮光部材と、
を備え、
前記第1及び第2のレンズアレイのそれぞれは、前記隣接するレンズ同士の間に散乱部又は吸光部を有しており、
前記散乱部又は吸光部の前記第1の方向における幅は、前記遮光部材の前記第1の方向における幅よりも大きいことを特徴とするレンズアレイ光学系。 A first lens array including a plurality of lenses arranged in a first direction and forming an intermediate image of an object in a first cross section parallel to the first direction and the optical axis direction of the plurality of lenses A second lens array that includes a plurality of lenses arranged in the first direction and re-images an intermediate image of the object in the first cross section;
A light shielding member disposed between optical axes of adjacent lenses in the first and second lens arrays;
With
Each of the first and second lens arrays has a scattering part or a light absorbing part between the adjacent lenses,
The lens array optical system according to claim 1, wherein a width of the scattering portion or the light absorption portion in the first direction is larger than a width of the light shielding member in the first direction.
前記第1の方向及び前記第2の方向に配列された複数のレンズを含み、前記第1の断面内において前記物体の中間像を再結像する第2のレンズアレイと、
前記第1及び第2のレンズアレイにおける隣接するレンズの光軸同士の間に配置される遮光部材と、
を備え、
前記第1及び第2のレンズアレイのそれぞれは、前記隣接するレンズ同士の間に散乱部又は吸光部を有しており、
前記散乱部又は吸光部の前記第2の方向における幅は、前記遮光部材の前記第2の方向における幅よりも大きいことを特徴とするレンズアレイ光学系。 In a first cross section including a plurality of lenses arranged in a first direction and a second direction perpendicular to the first direction, and parallel to the first direction and the optical axis direction of the plurality of lenses A first lens array for forming an intermediate image of the object at
A second lens array including a plurality of lenses arranged in the first direction and the second direction, and re-images an intermediate image of the object in the first cross section;
A light shielding member disposed between optical axes of adjacent lenses in the first and second lens arrays;
With
Each of the first and second lens arrays has a scattering part or a light absorbing part between the adjacent lenses,
The lens array optical system according to claim 1, wherein a width of the scattering portion or the light absorbing portion in the second direction is larger than a width of the light shielding member in the second direction.
前記散乱部又は吸光部の前記第2の方向における幅は、前記遮光部材の前記第2の方向における幅よりも大きいことを特徴とする請求項1に記載のレンズアレイ光学系。 Each of the first and second lens arrays includes a plurality of lenses arranged in the first direction and a second direction perpendicular to the first direction;
2. The lens array optical system according to claim 1, wherein a width of the scattering portion or the light absorption portion in the second direction is larger than a width of the light shielding member in the second direction.
ΔL×ΔT×ΔX≦ΔW/2
を満たす、ことを特徴とする請求項1乃至3の何れか一項に記載のレンズアレイ光学系。 ΔL is the distance from the position where the first lens array, the second lens array, and the light shielding member are positioned to the farthest position in the lens array optical system, and ΔT is the first lens. The difference between the temperature when the array, the second lens array and the light shielding member are positioned and the temperature when the lens array optical system is used, ΔX, is the linear expansion of the first lens array. The absolute value of the difference between the coefficient and the linear expansion coefficient of the member defining the position of the light blocking member in the first direction and the second direction, and the linear expansion coefficient of the second lens array and the light blocking member Of the absolute value of the difference from the coefficient of linear expansion of the member defining the position in the first direction and the second direction, ΔW, the scattering along the adjacent lenses Part or suck When parts and width Bm of the difference between the width Tm of the light blocking member along between the adjacent lenses, that,
ΔL × ΔT × ΔX ≦ ΔW / 2
The lens array optical system according to claim 1, wherein:
Pを前記第1のレンズアレイ及び前記第2のレンズアレイのレンズ配列周期、Lsを前記遮光部材の前記光軸方向の長さ、Lmaxを前記第1のレンズアレイと前記第2のレンズアレイの対向する面間の光軸方向における最長の距離、とするとき、
Bm+Tm≧P×(1−(Ls/Lmax))
を満たす、ことを特徴とする請求項4に記載のレンズアレイ光学系。 The light shielding member is disposed between the first lens array and the second lens array,
P is the lens arrangement period of the first lens array and the second lens array, Ls is the length of the light shielding member in the optical axis direction, and Lmax is the distance between the first lens array and the second lens array. When the longest distance in the optical axis direction between the opposing faces,
Bm + Tm ≧ P × (1− (Ls / Lmax))
The lens array optical system according to claim 4, wherein:
Tm≧Be
を満たすことを特徴とする請求項8に記載のレンズアレイ光学系。 When Be is the distance between the ridgelines of the first prism from both ends of the scattering part,
Tm ≧ Be
The lens array optical system according to claim 8, wherein:
ΔL×ΔT×ΔX≦ΔW/2
を満たすことを特徴とする請求項4乃至6の何れか一項に記載のレンズアレイ光学系。 ΔL = 105mm, ΔT = 30 ° C. ΔL × ΔT × ΔX ≦ ΔW / 2
The lens array optical system according to claim 4, wherein:
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014108094A JP6677439B2 (en) | 2013-11-14 | 2014-05-26 | Image forming optical system, image forming apparatus including the same, and image reading apparatus |
PCT/JP2014/077761 WO2015072284A1 (en) | 2013-11-14 | 2014-10-10 | Lens array optical system, and image forming apparatus and image reading apparatus including the lens array optical system |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013235569 | 2013-11-14 | ||
JP2013235569 | 2013-11-14 | ||
JP2014108094A JP6677439B2 (en) | 2013-11-14 | 2014-05-26 | Image forming optical system, image forming apparatus including the same, and image reading apparatus |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2015118357A true JP2015118357A (en) | 2015-06-25 |
JP2015118357A5 JP2015118357A5 (en) | 2017-06-29 |
JP6677439B2 JP6677439B2 (en) | 2020-04-08 |
Family
ID=53057226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014108094A Expired - Fee Related JP6677439B2 (en) | 2013-11-14 | 2014-05-26 | Image forming optical system, image forming apparatus including the same, and image reading apparatus |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6677439B2 (en) |
WO (1) | WO2015072284A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018100820A1 (en) * | 2016-11-30 | 2018-06-07 | 京セラドキュメントソリューションズ株式会社 | Reading module, image reading device comprising same, and image forming device |
US10054790B2 (en) | 2016-03-24 | 2018-08-21 | Canon Kabushiki Kaisha | Imaging optical system |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008110596A (en) * | 2006-10-03 | 2008-05-15 | Seiko Epson Corp | Line head and image formation device using it |
JP2010204208A (en) * | 2009-02-27 | 2010-09-16 | Oki Data Corp | Lens unit, led head, exposure device, image forming apparatus, and reader |
US20100315718A1 (en) * | 2009-06-16 | 2010-12-16 | Nippon Sheet Glass Company, Limited | Erecting equal-magnification lens array plate, optical scanning unit, and image reading device |
JP2010286741A (en) * | 2009-06-12 | 2010-12-24 | Nippon Sheet Glass Co Ltd | Erecting unit magnification lens array plate, optical scanning unit and image reader |
JP2011027922A (en) * | 2009-07-23 | 2011-02-10 | Ricoh Co Ltd | Lens array element, image reader with the element, and method for manufacturing lens array element |
US20110280628A1 (en) * | 2010-05-11 | 2011-11-17 | Samsung Electronics Co., Ltd | Lens array, linear light exposure device, and optical apparatus employing the linear light exposure unit |
JP2012085229A (en) * | 2010-10-14 | 2012-04-26 | Nec Corp | Pon system, station side device of the same, optical receiver, and optical reception method |
JP2012163850A (en) * | 2011-02-08 | 2012-08-30 | Nippon Sheet Glass Co Ltd | Erecting equal-magnification lens array plate, optical scanning unit, image reading device, and image writing system |
JP2012185230A (en) * | 2011-03-03 | 2012-09-27 | Nippon Sheet Glass Co Ltd | Erect life-size lens array plate, optical scanning unit, image reading device, and image writing device |
JP2012185390A (en) * | 2011-03-07 | 2012-09-27 | Nippon Sheet Glass Co Ltd | Erect life-size lens array plate, optical scanning unit, image reading device, and image writing device |
JP2012185229A (en) * | 2011-03-03 | 2012-09-27 | Nippon Sheet Glass Co Ltd | Erect life-size lens array plate, optical scanning unit, image reading device, and image writing device |
JP2013088661A (en) * | 2011-10-19 | 2013-05-13 | Toshiba Tec Corp | Lens array and image forming device using the same |
-
2014
- 2014-05-26 JP JP2014108094A patent/JP6677439B2/en not_active Expired - Fee Related
- 2014-10-10 WO PCT/JP2014/077761 patent/WO2015072284A1/en active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008110596A (en) * | 2006-10-03 | 2008-05-15 | Seiko Epson Corp | Line head and image formation device using it |
JP2010204208A (en) * | 2009-02-27 | 2010-09-16 | Oki Data Corp | Lens unit, led head, exposure device, image forming apparatus, and reader |
JP2010286741A (en) * | 2009-06-12 | 2010-12-24 | Nippon Sheet Glass Co Ltd | Erecting unit magnification lens array plate, optical scanning unit and image reader |
US20100315718A1 (en) * | 2009-06-16 | 2010-12-16 | Nippon Sheet Glass Company, Limited | Erecting equal-magnification lens array plate, optical scanning unit, and image reading device |
JP2011027922A (en) * | 2009-07-23 | 2011-02-10 | Ricoh Co Ltd | Lens array element, image reader with the element, and method for manufacturing lens array element |
US20110280628A1 (en) * | 2010-05-11 | 2011-11-17 | Samsung Electronics Co., Ltd | Lens array, linear light exposure device, and optical apparatus employing the linear light exposure unit |
JP2012085229A (en) * | 2010-10-14 | 2012-04-26 | Nec Corp | Pon system, station side device of the same, optical receiver, and optical reception method |
JP2012163850A (en) * | 2011-02-08 | 2012-08-30 | Nippon Sheet Glass Co Ltd | Erecting equal-magnification lens array plate, optical scanning unit, image reading device, and image writing system |
JP2012185230A (en) * | 2011-03-03 | 2012-09-27 | Nippon Sheet Glass Co Ltd | Erect life-size lens array plate, optical scanning unit, image reading device, and image writing device |
JP2012185229A (en) * | 2011-03-03 | 2012-09-27 | Nippon Sheet Glass Co Ltd | Erect life-size lens array plate, optical scanning unit, image reading device, and image writing device |
JP2012185390A (en) * | 2011-03-07 | 2012-09-27 | Nippon Sheet Glass Co Ltd | Erect life-size lens array plate, optical scanning unit, image reading device, and image writing device |
JP2013088661A (en) * | 2011-10-19 | 2013-05-13 | Toshiba Tec Corp | Lens array and image forming device using the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10054790B2 (en) | 2016-03-24 | 2018-08-21 | Canon Kabushiki Kaisha | Imaging optical system |
WO2018100820A1 (en) * | 2016-11-30 | 2018-06-07 | 京セラドキュメントソリューションズ株式会社 | Reading module, image reading device comprising same, and image forming device |
JPWO2018100820A1 (en) * | 2016-11-30 | 2019-10-17 | 京セラドキュメントソリューションズ株式会社 | Reading module, image reading apparatus including the same, and image forming apparatus |
US10666826B2 (en) | 2016-11-30 | 2020-05-26 | Kyocera Document Solutions Inc. | Reading module having reflection mirror array, image reading device comprising same, and image forming apparatus therewith |
Also Published As
Publication number | Publication date |
---|---|
JP6677439B2 (en) | 2020-04-08 |
WO2015072284A1 (en) | 2015-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10054790B2 (en) | Imaging optical system | |
US8675281B2 (en) | Lens unit, LED head, exposure device, image forming device, and scanning device | |
US8780157B2 (en) | Imaging element array and image forming apparatus | |
US9377609B2 (en) | Imaging element array and image forming apparatus | |
JP2016130757A (en) | Lens array optical system, and image forming apparatus including the same, and image reading device | |
JP2011180527A (en) | Reflective optical sensor and image forming apparatus | |
JP2010184392A (en) | Line head and image forming apparatus | |
JP6677439B2 (en) | Image forming optical system, image forming apparatus including the same, and image reading apparatus | |
JP6047598B2 (en) | Optical scanning device and image forming apparatus using the same | |
JP2007045094A (en) | Scanning optical system and image forming device using the same | |
JP5698855B2 (en) | Lens array and reading apparatus, exposure apparatus, and image forming apparatus using the same | |
JP2010188528A (en) | Line head and image forming apparatus | |
JP4702436B2 (en) | Image forming apparatus | |
JP5879293B2 (en) | Illumination device, and image reading apparatus and image forming apparatus provided with the same | |
JP2006078576A5 (en) | ||
JP2017107120A (en) | Lens array optical system | |
JP2014126751A (en) | Lens array optical system, image forming device, and image reading device | |
CN213517887U (en) | Exposure device and image forming apparatus | |
JP7415681B2 (en) | Optical writing device and image forming device | |
JP2013088661A (en) | Lens array and image forming device using the same | |
JP2010162852A (en) | Line head and image forming apparatus | |
JP4618289B2 (en) | Light source device and optical scanning device | |
JP2016105125A (en) | Lens array unit, and image forming apparatus and image reading device including the lens array unit | |
JP6195359B2 (en) | Optical device and method for adjusting optical device | |
JP6275205B2 (en) | LIGHTING DEVICE, IMAGE READING DEVICE, AND IMAGE FORMING DEVICE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170522 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170522 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20171214 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20180126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180517 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180710 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181211 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190711 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190905 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200213 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200313 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6677439 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |