JP2015118349A - Resin composition for antireflection layer, antireflection layer, and optical device - Google Patents

Resin composition for antireflection layer, antireflection layer, and optical device Download PDF

Info

Publication number
JP2015118349A
JP2015118349A JP2013263432A JP2013263432A JP2015118349A JP 2015118349 A JP2015118349 A JP 2015118349A JP 2013263432 A JP2013263432 A JP 2013263432A JP 2013263432 A JP2013263432 A JP 2013263432A JP 2015118349 A JP2015118349 A JP 2015118349A
Authority
JP
Japan
Prior art keywords
antireflection layer
resin composition
layer according
resin
antireflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013263432A
Other languages
Japanese (ja)
Inventor
江口 敏正
Toshimasa Eguchi
敏正 江口
大輔 磯部
Daisuke Isobe
大輔 磯部
信彦 寺田
Nobuhiko Terada
信彦 寺田
大塚 博之
Hiroyuki Otsuka
博之 大塚
武彦 前谷
Takehiko Maetani
武彦 前谷
内藤 学
Manabu Naito
学 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2013263432A priority Critical patent/JP2015118349A/en
Publication of JP2015118349A publication Critical patent/JP2015118349A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a resin composition for an antireflection layer, which can be cured in a short time and has excellent heat resistance and durability, and an antireflection layer having good characteristics with high yield by using the composition, and an optical device using the antireflection layer.SOLUTION: The resin composition for an antireflection layer comprises an alicyclic epoxy and a reaction initiator. The reaction initiator comprises a photoacid generator. The composition for an antireflection layer is in a varnish state at room temperature and has a property of suppressing shrinkage during curing, and thereby, the composition can be used for a member for an optical device that requires high dimensional accuracy.

Description

本発明は、反射防止層用樹脂組成物、より詳しくは加工性と耐熱性に優れた反射防止層の透明樹脂組成物、反射防止層及びこれを用いた光学装置に関する。   The present invention relates to a resin composition for an antireflection layer, and more particularly to a transparent resin composition for an antireflection layer excellent in processability and heat resistance, an antireflection layer, and an optical device using the same.

反射防止部材は一般に、陰極管表示装置(CRT)、プラズマディスプレイパネル(PDP)や液晶表示装置(LCD)のような画像表示装置において、外光の反射によるコントラスト低下や像の映り込みを防止するために、光学干渉の原理を用いて反射率を低減するようにディスプレイの最表面に配置される。   In general, the antireflection member prevents a decrease in contrast and reflection of an image due to reflection of external light in an image display device such as a cathode ray tube display (CRT), a plasma display panel (PDP), or a liquid crystal display (LCD). Therefore, it is placed on the outermost surface of the display so as to reduce the reflectivity using the principle of optical interference.

このような反射防止部材は、例えば特許文献1に記載されるように、支持基材の少なくとも片面に、塗料組成物を1回のみ塗布することで(以後、支持基材における塗料組成物を1回のみ塗布する側の面を、面Aという)、屈折率の異なる2層からなる反射防止層を形成することにより達成される。また、特許文献2では、透明基板上の1面に光の吸収膜と誘電体膜を交互に積層することによって透過光量を変えるようにした多層膜に、屈折率の異なる2種類以上の膜からなる多層反射防止層を積層し、2面に屈折率の異なる2種類以上の膜からなる多層反射防止層を積層する方法が記載されている。
反射防止部材を作製する方法、他に種々存在するが、いずれも作製に時間がかかるという問題があった。
For example, as described in Patent Document 1, such an antireflection member is formed by applying the coating composition only once on at least one side of the supporting substrate (hereinafter, the coating composition on the supporting substrate is 1). This is achieved by forming an antireflection layer composed of two layers having different refractive indices, the surface on which the coating is applied only once. In Patent Document 2, a multilayer film in which the amount of transmitted light is changed by alternately laminating a light absorption film and a dielectric film on one surface of a transparent substrate is changed from two or more kinds of films having different refractive indexes. And a method of laminating a multilayer antireflection layer comprising two or more kinds of films having different refractive indexes on two surfaces.
There are various other methods for producing an antireflection member, but there is a problem that it takes time to produce them.

特開2012−008158号公報Japanese Unexamined Patent Publication No. 2012-008158 特開2010−175941号公報JP 2010-175941 A

本発明は、短時間で硬化が可能であり耐熱性や耐久性に優れる反射防止層用樹脂組成物と、これを用いることにより高い歩留まりで特性の良好な反射防止層及びこれを用いた光学装置を提供することを目的とする。 The present invention relates to a resin composition for an antireflection layer that can be cured in a short time and is excellent in heat resistance and durability, an antireflection layer having good characteristics at a high yield by using the same, and an optical device using the same The purpose is to provide.

本発明は以下の通りである。
(1)化学式1および/又は化学式2で表わされる脂環式エポキシ樹脂前駆体と重合開始剤を含むことを特徴とする反射防止層用樹脂組成物。

[上記式(1)中、−X−は−O−、−S−、−SO−、−SO−、−CH−、−CH(CH)−、または−C(CH−を表す。]

(2)前記重合開始剤が光酸発生剤である(1)に記載の反射防止層用樹脂組成物。
(3)前記樹脂組成物中の脂環式エポキシ樹脂の比率が50%〜100%である(1)または(2)に記載の反射防止層用樹脂組成物。
(4)(1)記載の化合物の異性体の含有率が40%以下である請求項1ないし3いずれか1項に記載の反射防止層用樹脂組成物。
(5)酸化防止剤を含有する(1)ないし(4)いずれか1項に記載の反射防止層用樹脂組成物。
(6)(1)ないし(5)のいずれか1項に記載の反射防止層用樹脂組成物を用いた反射防止層。
(7)前記反射防止層において、入射光の反射率が3%以下である(6)記載の反射防止層。
(8)前記反射防止層において、屈折率が1.4〜1.6である(6)または(7)に記載の反射防止層。
(9)屈折率と厚さの積が50nm以上200nm以下である(8)に記載の反射防止層。
(10)層の厚さが150nm以下である(9)に記載の反射防止層。
(11)反射防止層であって、その少なくとも1方の表面に凹凸構造を有し、該凹凸構造の高さが0.02μm以上、0.95μm以下である(6)ないし(10)のいずれか1項に記載の反射防止層。
(12)前記凹凸構造のピッチが300nm以下である(11)に記載の反射防止層。
(13)(6)ないし(12)のいずれか1項に記載の反射防止層を有する光学装置。
(14)(6)ないし(12)のいずれか1項に記載の反射防止層を有する表示装置。
(15)(6)ないし(12)のいずれか1項に記載の反射防止層を有する液晶表示装置。
(16)(6)ないし(12)のいずれか1項に記載の反射防止層を有する有機エレクトロルミネッセンス表示装置。
(17)(6)ないし(12)のいずれか1項に記載の反射防止層を有するレンズ。
(18)(6)ないし(12)のいずれか1項に記載の反射防止層を有する撮像素子。
The present invention is as follows.
(1) A resin composition for an antireflection layer comprising an alicyclic epoxy resin precursor represented by Chemical Formula 1 and / or Chemical Formula 2 and a polymerization initiator.

[In the above formula (1), -X- is -O -, - S -, - SO -, - SO 2 -, - CH 2 -, - CH (CH 3) -, or -C (CH 3) 2 -Represents. ]

(2) The resin composition for an antireflection layer according to (1), wherein the polymerization initiator is a photoacid generator.
(3) The resin composition for an antireflection layer according to (1) or (2), wherein the ratio of the alicyclic epoxy resin in the resin composition is 50% to 100%.
(4) The resin composition for an antireflection layer according to any one of claims 1 to 3, wherein the content of the isomer of the compound according to (1) is 40% or less.
(5) The resin composition for an antireflection layer as described in any one of (1) to (4), which contains an antioxidant.
(6) An antireflection layer using the resin composition for an antireflection layer according to any one of (1) to (5).
(7) The antireflection layer according to (6), wherein the reflectance of incident light is 3% or less in the antireflection layer.
(8) The antireflection layer according to (6) or (7), wherein the antireflection layer has a refractive index of 1.4 to 1.6.
(9) The antireflection layer according to (8), wherein the product of the refractive index and the thickness is from 50 nm to 200 nm.
(10) The antireflection layer according to (9), wherein the layer has a thickness of 150 nm or less.
(11) The antireflection layer, which has an uneven structure on at least one surface thereof, and the height of the uneven structure is 0.02 μm or more and 0.95 μm or less. 2. The antireflection layer according to item 1.
(12) The antireflection layer according to (11), wherein the pitch of the uneven structure is 300 nm or less.
(13) An optical device having the antireflection layer according to any one of (6) to (12).
(14) A display device comprising the antireflection layer according to any one of (6) to (12).
(15) A liquid crystal display device comprising the antireflection layer according to any one of (6) to (12).
(16) An organic electroluminescence display device having the antireflection layer according to any one of (6) to (12).
(17) A lens having the antireflection layer according to any one of (6) to (12).
(18) An imaging device having the antireflection layer according to any one of (6) to (12).

本発明によれば、短時間で硬化が可能であり耐熱性や耐久性に優れる反射防止層用樹脂組成物と、これを用いることにより高い歩留まりで特性の良好な反射防止層及びこれを用いた光学装置を提供することが可能となる。 According to the present invention, a resin composition for an antireflection layer that can be cured in a short time and is excellent in heat resistance and durability, an antireflection layer having good characteristics at a high yield by using this, and the same are used. An optical device can be provided.

反射防止膜を有する表示装置を示す図The figure which shows the display apparatus which has an antireflection film 反射防止膜を有するレンズを示す図。The figure which shows the lens which has an antireflection film. 反射防止膜を有する撮像素子を示す図。The figure which shows the image pick-up element which has an antireflection film.

本発明は、反射防止層用樹脂組成物に関するものであって、該反射防止層用樹脂組成物は、脂環式エポキシ樹脂前駆体と重合開始剤を含むことを特徴とする。
以下、反射防止層用樹脂組成物を構成する各々の材料について詳細に記載する。
The present invention relates to a resin composition for an antireflection layer, wherein the resin composition for an antireflection layer contains an alicyclic epoxy resin precursor and a polymerization initiator.
Hereinafter, each material constituting the resin composition for an antireflection layer will be described in detail.

(A)脂環式エポキシ樹脂
本発明において用いる樹脂は、成形時には室温または加熱により液状になるものであることが好ましく、特に硬化時の収縮を抑制するという特性から、脂環式エポキシ樹脂前駆体を用いることが好ましく、下記の化学式のものを最も好適に使用することが出来る。

[上記式(1)中、−X−は−O−、−S−、−SO−、−SO−、−CH−、−CH(CH)−、または−C(CH−を表す。]

樹脂組成物中の(1)、(2)の割合は、50%〜100%が好ましく、60〜100%がさらに好ましい。この範囲で(1)、(2)が含有されていることで、硬化時の収縮を効果的に少なくすることができる。
また、(1)、(2)の異性体比は、40%以下が好ましく、30%以下であることがさらに好ましい。(1)、(2)の異性対比がこの範囲にあることで、反応開始剤による反応が効果的に行われる。
(A) Alicyclic epoxy resin The resin used in the present invention is preferably one that becomes liquid at room temperature or upon heating, particularly from the property of suppressing shrinkage during curing. Are preferably used, and those having the following chemical formulas can be most suitably used.

[In the above formula (1), -X- is -O -, - S -, - SO -, - SO 2 -, - CH 2 -, - CH (CH 3) -, or -C (CH 3) 2 -Represents. ]

The ratio of (1) and (2) in the resin composition is preferably 50% to 100%, more preferably 60 to 100%. By containing (1) and (2) within this range, shrinkage during curing can be effectively reduced.
Further, the isomer ratio of (1) and (2) is preferably 40% or less, and more preferably 30% or less. When the isomer contrast of (1) and (2) is within this range, the reaction by the reaction initiator is effectively performed.

(その他の樹脂)
本発明においては前記脂環式エポキシ樹脂以外の樹脂を含んでも良く、特に熱及び/または光架橋樹脂を好適に使用することができる。
具体的には、エポキシ系樹脂、オキセタン系樹脂、イソシアネート系樹脂、アクリレート系樹脂、オレフィン系樹脂、シクロオレフィン系樹脂、ジアリルフタレート系樹脂、ポリカーボネート系樹脂、ジアリルカーボネート系樹脂、ウレタン系樹脂、メラミン系樹脂、ポリイミド系樹脂、芳香族ポリアミド系樹脂、ポリスチレン系樹脂、ポリフェニレン系樹脂、ポリスルホン系樹脂、ポリフェニレンオキサイド系樹脂、シルセスキオキサン系化合物等が挙げられる。
(Other resins)
In the present invention, a resin other than the alicyclic epoxy resin may be contained, and in particular, a heat and / or photocrosslinking resin can be suitably used.
Specifically, epoxy resins, oxetane resins, isocyanate resins, acrylate resins, olefin resins, cycloolefin resins, diallyl phthalate resins, polycarbonate resins, diallyl carbonate resins, urethane resins, melamine resins Examples include resins, polyimide resins, aromatic polyamide resins, polystyrene resins, polyphenylene resins, polysulfone resins, polyphenylene oxide resins, silsesquioxane compounds, and the like.

上記のうち、特にエポキシ系樹脂については、前記脂環式エポキシ樹脂との相溶性、反応性が良好であり、脂環式エポキシ樹脂の特性を損なわない程度に添加することができる。脂環式エポキシ樹脂以外のエポキシ樹脂としては、たとえばグリシジル型エポキシ樹脂があげられ、具体例としては、フェノールノボラック型エポキシ、クレゾールノボラック型エポキシ等のノボラック型エポキシ樹脂、ビスフェノールA型エポキシ、ビスフェノールF型エポキシ等のビスフェノール型エポキシ樹脂、N,N−ジグリシジルアニリン、N,N−ジグリシジルトルイジン、ジアミノジフェニルメタン型グリシジルアミン、アミノフェノール型グリシジルアミンのような芳香族グリシジルアミン型エポキシ樹脂、ハイドロキノン型エポキシ、ビフェニル型エポキシ、スチルベン型エポキシ、トリフェノールメタン型エポキシ、トリフェノールプロパン型エポキシ、アルキル変性トリフェノールメタン型エポキシ、トリアジン核含有エポキシ、ジシクロペンタジエン変性フェノール型エポキシ、ナフトール型エポキシ、ナフタレン型エポキシ、フェニレンおよび/またはビフェニ
レン骨格を有するフェノールアラルキル型エポキシ、フェニレンおよび/またはビフェニレン骨格を有するナフトールアラルキル型エポキシ等のアラルキル型エポキシ等のエポキシ樹脂、フルオレン骨格を有するグリシジル型エポキシ樹脂、n − ブチルグリシジルエーテル、バーサティック酸グリシジルエステル、スチレンオキサイド、エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、クレジルグリシジルエーテル、ブチルフェニルグリシジルエーテル等単官能エポキシ樹脂、または上記のうちベンゼン環の水素添加を行ったもの等が挙げられる。
Among the above, especially an epoxy resin can be added to the extent that the compatibility and reactivity with the alicyclic epoxy resin are good and the characteristics of the alicyclic epoxy resin are not impaired. Examples of epoxy resins other than alicyclic epoxy resins include glycidyl type epoxy resins, and specific examples include novolak type epoxy resins such as phenol novolak type epoxy and cresol novolak type epoxy, bisphenol A type epoxy, and bisphenol F type. Bisphenol type epoxy resin such as epoxy, N, N-diglycidylaniline, N, N-diglycidyltoluidine, diaminodiphenylmethane type glycidylamine, aromatic glycidylamine type epoxy resin such as aminophenol type glycidylamine, hydroquinone type epoxy, Biphenyl type epoxy, stilbene type epoxy, triphenolmethane type epoxy, triphenolpropane type epoxy, alkyl-modified triphenolmethane type epoxy, triazine core Aralkyl type epoxy such as epoxy, dicyclopentadiene modified phenol type epoxy, naphthol type epoxy, naphthalene type epoxy, phenol aralkyl type epoxy having phenylene and / or biphenylene skeleton, naphthol aralkyl type epoxy having phenylene and / or biphenylene skeleton, etc. Epoxy resins, glycidyl type epoxy resins having a fluorene skeleton, n-butyl glycidyl ether, versatic acid glycidyl ester, styrene oxide, ethylhexyl glycidyl ether, phenyl glycidyl ether, cresyl glycidyl ether, butylphenyl glycidyl ether, and other monofunctional epoxy resins, Or what carried out hydrogenation of the benzene ring among the above is mentioned.

(B)反応開始剤
本発明に用いる反応開始剤としては、たとえば酸発生剤、塩基発生剤、酸無水物、脂肪族アミン等の架橋剤、ラジカル系反応開始剤等が挙げられ、特に反応性が良好であるという点で光酸発生剤であることが好ましい。
(B) Reaction initiator Examples of the reaction initiator used in the present invention include acid generators, base generators, acid anhydrides, crosslinking agents such as aliphatic amines, radical reaction initiators, and the like. It is preferable that it is a photo-acid generator at the point that is favorable.

前記光酸発生剤としては、例えば、ルイス酸のジアゾニウム塩、ルイス酸のヨードニウム塩、ルイス酸のスルホニウム塩等のオニウム塩が挙げられる。光カチオン系反応開始剤の具体例としては、四フッ化ホウ素のフェニルジアゾニウム塩、六フッ化リンのジフェニルヨードニウム塩、六フッ化アンチモンのジフェニルヨードニウム塩、六フッ化ヒ素のトリ−4−メチルフェニルスルホニウム塩、四フッ化アンチモンのトリ−4−メチルフェニルスルホニウム塩、またこれらの混合物等が挙げられる。   Examples of the photoacid generator include onium salts such as a Lewis acid diazonium salt, a Lewis acid iodonium salt, and a Lewis acid sulfonium salt. Specific examples of the photocationic initiator include phenyldiazonium salt of boron tetrafluoride, diphenyliodonium salt of phosphorus hexafluoride, diphenyliodonium salt of antimony hexafluoride, tri-4-methylphenyl of arsenic hexafluoride Examples thereof include sulfonium salts, tri-4-methylphenylsulfonium salts of antimony tetrafluoride, and mixtures thereof.

その他、熱カチオン系反応開始剤としては、例えば芳香族スルホニウム塩、芳香族ヨードニウム塩、アンモニウム塩、アルミニウムキレート、三フッ化ホウ素アミン錯体、またこれらの混合物等が挙げられる。
また、上記光カチオン系反応開始剤と熱カチオン系反応開始剤を混合しても良い。
In addition, examples of the thermal cationic reaction initiator include aromatic sulfonium salts, aromatic iodonium salts, ammonium salts, aluminum chelates, boron trifluoride amine complexes, and mixtures thereof.
Moreover, you may mix the said photocationic reaction initiator and a thermal cationic reaction initiator.

このようなカチオン系反応開始剤の含有量は、特に限定されないが、樹脂材料100質量部に対して0.1〜5質量部程度であるのが好ましく、特に0.5〜3重量部が好ましい。含有量が前記下限値未満であると樹脂材料の反応性が低下する場合があり、前記上限値を超えると樹脂組成物が脆くなる場合がある。
光硬化させる場合は、樹脂材料の硬化反応を促進させるため、必要に応じて、増感剤、酸増殖剤等も併せて用いることができる。
Although content of such a cationic reaction initiator is not specifically limited, It is preferable that it is about 0.1-5 mass parts with respect to 100 mass parts of resin materials, and 0.5-3 weight part is especially preferable. . When the content is less than the lower limit, the reactivity of the resin material may be reduced, and when the content exceeds the upper limit, the resin composition may be brittle.
In the case of photocuring, in order to accelerate the curing reaction of the resin material, a sensitizer, an acid proliferating agent, and the like can be used together as necessary.

アニオン系触媒としては、例えばアミン系反応開始剤が挙げられる。エポキシ樹脂中のエポキシ基と共有結合を形成することが可能な1級アミンまたは2級アミンを分子中に2個以上含むものであれば、特に分子量や構造は限定されるものではない。そのようなアミン系反応開始剤としては、例えばジエチレントリアミン、トリエチレンテトラアミン、テトラエチレンペンタミン、m−キシレンジアミン、トリメチルヘキサメチレンジアミン、2−メチルペンタメチレンジアミン脂肪族ポリアミン、イソフォロンジアミン、1,3−ビスアミノメチルシクロヘキサン、ビス(4−アミノシクロヘキシル)メタン、ノルボルネンジアミン、1,2−ジアミノシクロヘキサンなどの脂環式ポリアミン、N−アミノエチルピペラジン、1,4−ビス(2−アミノ−2−メチルプロピル)ピペラジンなどのピペラジン型のポリアミン、ジアミノジフェニルメタン、m−フェニレンジアミン、ジアミノジフェニルスルホン、ジエチルトルエンジアミン、トリメチレンビス(4−アミノベンゾエート)、ポリテトラメチレンオキシド−ジ−P−アミノベンゾエートなどの芳香族ポリアミン類等が挙げられる。これらの反応開始剤は、単独で用いても、2種以上の反応開始剤を配合して用いても良い。また、アミン系反応開始剤と併用/又は単独でイミダゾール化合物を使用することも挙げられる。イミダゾール化合物としては、例えば、2−メチルイミダゾール、2−エチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−C1123−イミダゾー
ル等の一般的なイミダゾールやトリアジンやイソシアヌル酸を付加し、保存安定性を付与した2,4−ジアミノ−6−{2−メチルイミダゾール−(1)}−エチル−S−トリアジン、又そのイソシアネート付加物等が挙げられ、これらは1 種類あるいは複数種を併
用して使うことが可能である。
Examples of the anionic catalyst include amine-based reaction initiators. The molecular weight and structure are not particularly limited as long as the molecule contains two or more primary amines or secondary amines capable of forming a covalent bond with the epoxy group in the epoxy resin. Examples of such amine reaction initiators include diethylenetriamine, triethylenetetraamine, tetraethylenepentamine, m-xylenediamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine aliphatic polyamine, isophoronediamine, 1, Alicyclic polyamines such as 3-bisaminomethylcyclohexane, bis (4-aminocyclohexyl) methane, norbornenediamine, 1,2-diaminocyclohexane, N-aminoethylpiperazine, 1,4-bis (2-amino-2-) Piperazine type polyamines such as methylpropyl) piperazine, diaminodiphenylmethane, m-phenylenediamine, diaminodiphenylsulfone, diethyltoluenediamine, trimethylenebis (4-aminobenzoate), Polytetramethylene oxide - aromatic polyamines such as di -P- aminobenzoate and the like. These reaction initiators may be used alone or in combination of two or more kinds of reaction initiators. In addition, use of an imidazole compound alone or in combination with an amine-based reaction initiator may also be mentioned. Examples of the imidazole compound include 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, and 2-phenyl-4. , 5-dihydroxy methyl imidazole, 2-C 11 H 23 - adds a generic imidazole or triazine and isocyanuric acid such as imidazole, to impart storage stability of 2,4-diamino-6- {2-methylimidazole - (1)}-Ethyl-S-triazine, or its isocyanate adduct, and the like, and these can be used alone or in combination.

酸無水物としては, たとえば無水フタル酸、ヘキサヒドロ無水フタル酸、テトラヒドロ
無水フタル酸、メチルテトラヒドロ無水フタル酸、無水マレイン酸、無水コハク酸、無水ドデシニルコハク酸、無水ジクロルコハク酸、無水メチルナジック酸、無水ピロメリット酸、メチルヘキサヒドロ無水フタル酸、メチルシクロヘキセンジカルボン酸無水物、エンドメチレンテトラヒドロ無水フタル酸、メチルエンドメチレンテトラヒドロ無水フタル酸、メチルブテニルテトラヒドロ無水フタル酸、アルキルスチレン− 無水マレイン酸共重
合体、テトラブロム無水フタル酸、ポリアゼライン酸無水物、無水クロレンディク酸、無水ベンゾフェノンテトラカルボン酸等などが挙げられ, これらは単独でも混合して用い
てもよい。また、酸無水物系反応開始剤と併用してイミダゾール化合物を使用することも挙げられる。イミダゾール化合物としては、例えば前記記載したものが挙げられる。
Examples of acid anhydrides include phthalic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, maleic anhydride, succinic anhydride, dodecynyl succinic anhydride, dichlorosuccinic anhydride, methyl nadic anhydride, Mellitic acid, methylhexahydrophthalic anhydride, methylcyclohexene dicarboxylic anhydride, endomethylenetetrahydrophthalic anhydride, methylendomethylenetetrahydrophthalic anhydride, methylbutenyltetrahydrophthalic anhydride, alkylstyrene-maleic anhydride copolymer, Examples thereof include tetrabromophthalic anhydride, polyazeline acid anhydride, chlorendic acid anhydride, benzophenone tetracarboxylic anhydride and the like, and these may be used alone or in combination. In addition, use of an imidazole compound in combination with an acid anhydride-based reaction initiator can also be mentioned. Examples of the imidazole compound include those described above.

(その他の添加剤)
前記樹脂組成物は、その他に、酸化防止剤、ナノフィラー等を含んでも良い。
(Other additives)
In addition, the resin composition may contain an antioxidant, a nanofiller, and the like.

(酸化防止剤)
酸化防止剤としては、例えば、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤等が用いられるが、特にヒンダードフェノール系酸化防止剤が好ましく用いられる。
ヒンダードフェノール系酸化防止剤としては、例えば、BHT、2,2’−メチレンビ
ス(4−メチル−6−tert−ブチルフェノール)、ペンタエリトリトール=テトラキ
ス[3-(3',5'-ジ-tert-ブチル-4'-ヒドロキシフェニル)プロピオナート]等が挙げられる。
(Antioxidant)
As the antioxidant, for example, a phenol-based antioxidant, a phosphorus-based antioxidant, a sulfur-based antioxidant, and the like are used, and a hindered phenol-based antioxidant is particularly preferably used.
Examples of the hindered phenol antioxidant include BHT, 2,2′-methylenebis (4-methyl-6-tert-butylphenol), pentaerythritol = tetrakis [3- (3 ′, 5′-di-tert- Butyl-4′-hydroxyphenyl) propionate] and the like.

樹脂ワニス中の酸化防止剤の含有量は、0.01質量%以上5質量%以下であるのが好ましく、0.1質量%以上3質量%以下程度であるのがより好ましい。酸化防止剤の含有量を前記範囲内にすることにより、光学異方性の低い樹脂組成物が得られ、かつ、信頼性試験においても光学異方性の悪化の程度の小さい面樹脂組成物が得られる。 The content of the antioxidant in the resin varnish is preferably 0.01% by mass to 5% by mass, and more preferably about 0.1% by mass to 3% by mass. By setting the content of the antioxidant within the above range, a resin composition having low optical anisotropy is obtained, and a surface resin composition having a small degree of deterioration of optical anisotropy in a reliability test is obtained. can get.

また、酸化防止剤の重量平均分子量は、200〜2000であるのが好ましく、500〜1500であるのがより好ましく、1000〜1400であるのがさらに好ましい。酸化防止剤の重量平均分子量が上記範囲内であれば、酸化防止剤の揮発が抑制されるとともに、樹脂材料(例えば脂環式エポキシ樹脂)に対する相溶性が確保される。このような酸化防止剤は、湿熱処理のような信頼性試験を経ても、光学異方性の少ない反射防止層用樹脂組成物を実現することができる。 Moreover, it is preferable that the weight average molecular weight of antioxidant is 200-2000, It is more preferable that it is 500-1500, It is further more preferable that it is 1000-1400. If the weight average molecular weight of the antioxidant is within the above range, volatilization of the antioxidant is suppressed and compatibility with a resin material (for example, an alicyclic epoxy resin) is secured. Such an antioxidant can realize a resin composition for an antireflection layer with little optical anisotropy even after a reliability test such as wet heat treatment.

また、ヒンダードフェノール系酸化防止剤以外のフェノール系酸化防止剤としては、例えば、水酸基を挟むように位置する置換基の一方がメチル基等に置換されているセミヒンダード型のフェノール系酸化防止剤や、水酸基を挟む2つの置換基の双方がメチル基等に置換されているレスヒンダード型のフェノール系酸化防止剤が挙げられる。これらは、ヒンダードフェノール系酸化防止剤より少ない添加量で、樹脂ワニス中に添加される。
リン系酸化防止剤としては、例えば、トリデシルホスファイト、ジフェニルデシルホスファイト等が挙げられる。
Examples of phenolic antioxidants other than hindered phenolic antioxidants include, for example, semi-hindered phenolic antioxidants in which one of the substituents located so as to sandwich the hydroxyl group is substituted with a methyl group or the like. And a hindered phenolic antioxidant in which both of two substituents sandwiching a hydroxyl group are substituted with a methyl group or the like. These are added to the resin varnish in an amount less than that of the hindered phenol antioxidant.
Examples of phosphorus antioxidants include tridecyl phosphite and diphenyl decyl phosphite.

なお、ヒンダードフェノール系酸化防止剤とリン系酸化防止剤とを併用することにより、それらの相乗効果が発揮される。これにより、樹脂材料の酸化防止、および樹脂組成物の光学異方性の悪化の抑制がより顕著になる。これは、ヒンダードフェノール系酸化防止剤
とリン系酸化防止剤とで、樹脂材料の酸化防止のメカニズムが異なるため、両者が独立して働き、さらには相乗的な効果が生じているからであると考えられる。
In addition, the synergistic effect is exhibited by using together a hindered phenolic antioxidant and phosphorus antioxidant. Thereby, the oxidation prevention of the resin material and the suppression of the deterioration of the optical anisotropy of the resin composition become more remarkable. This is because the hindered phenolic antioxidant and the phosphorus antioxidant differ in the antioxidant mechanism of the resin material, so that they work independently and have a synergistic effect. it is conceivable that.

このようなヒンダードフェノール系酸化防止剤以外の酸化防止剤(特にリン系酸化防止剤)の添加量は、ヒンダードフェノール系酸化防止剤100質量部に対して、好ましくは30〜300質量部程度とされ、より好ましくは50〜200質量部程度とされる。これにより、ヒンダードフェノール系酸化防止剤とそれ以外の酸化防止剤とが、それぞれの効果を埋没させる(相殺する)ことなく発揮し、相乗効果をもたらすことができる。 The addition amount of antioxidants (particularly phosphorus antioxidants) other than such hindered phenolic antioxidants is preferably about 30 to 300 parts by mass with respect to 100 parts by mass of hindered phenolic antioxidants. And more preferably about 50 to 200 parts by mass. Thereby, a hindered phenolic antioxidant and other antioxidants can exhibit each effect without burying (cancelling), and can bring about a synergistic effect.

(ナノフィラー)
前記樹脂組成物は、繊維又は粒子状のフィラーを含んでもよい。本開示に係る樹脂組成物に含有される無機フィラーの材質は、無機物であれば特に制限されず、一又は複数の実施形態において、シリカ、アルミナ、酸化チタン等の金属酸化物、マイカ等の鉱物、ガラス、又はこれらの混合物が挙げられる。ガラスの種類としては、Eガラス、Cガラス、Aガラス、Sガラス、Dガラス、NEガラス、Tガラス、低誘導率ガラス、高誘導率ガラスなどがあげられる。
無機フィラーが繊維である場合、樹脂硬化物の熱膨張率の低減、及び、樹脂硬化物の透明性向上の観点から、前記繊維の平均繊維径は1〜1000nmである。ここで、前記繊維は、単繊維が、引き揃えられることなく、かつ相互間にマトリックス樹脂の液状前駆体が入り込むように十分に離隔して存在するものより成ってもよい。この場合、平均繊維径は単繊維の平均径となる。また、前記繊維は、複数本の単繊維が束状に集合して1本の糸条を構成しているものであってもよく、この場合、平均繊維径は1本の糸条の径の平均値として定義される。
無機フィラーが粒子である場合、樹脂硬化物の熱膨張率の低減、及び、樹脂硬化物の透明性向上の観点から、前記粒子の平均粒子径は1〜1000nmである。ここで、前記粒子の平均粒子径は、平均投影円相当直径をいい、具体的には実施例の方法で測定される。前記粒子の形状は、特に制限されないが、一又は複数の実施形態において、樹脂硬化物の熱膨張率の低減、及び、樹脂硬化物の透明性向上の観点から、球状若しくは真球状、ロッド状、平板状、又はこれらの結合形状が挙げられる。本開示に係るポリアミド溶液における固形分中の無機フィラーの割合としては、一又は複数の実施形態において、1重量%〜50重量%、2重量%〜40重量%、又は3重量%〜30重量%である。
(Nano filler)
The resin composition may include a fiber or a particulate filler. The material of the inorganic filler contained in the resin composition according to the present disclosure is not particularly limited as long as it is an inorganic substance. In one or a plurality of embodiments, a metal oxide such as silica, alumina, titanium oxide, or a mineral such as mica. , Glass, or a mixture thereof. Examples of the glass include E glass, C glass, A glass, S glass, D glass, NE glass, T glass, low induction glass, and high induction glass.
When the inorganic filler is a fiber, the average fiber diameter of the fiber is 1-1000 nm from the viewpoint of reducing the thermal expansion coefficient of the cured resin and improving the transparency of the cured resin. Here, the fibers may be composed of single fibers that are sufficiently spaced so that the liquid precursors of the matrix resin enter between each other without being aligned. In this case, the average fiber diameter is the average diameter of single fibers. Further, the fiber may be one in which a plurality of single fibers are gathered in a bundle to constitute one yarn, and in this case, the average fiber diameter is the diameter of one yarn. Defined as an average value.
When the inorganic filler is a particle, the average particle diameter of the particle is 1-1000 nm from the viewpoint of reducing the thermal expansion coefficient of the cured resin and improving the transparency of the cured resin. Here, the average particle diameter of the particles refers to an average projected circle equivalent diameter, and is specifically measured by the method of the example. The shape of the particles is not particularly limited, but in one or a plurality of embodiments, from the viewpoint of reducing the coefficient of thermal expansion of the cured resin and improving the transparency of the cured resin, spherical or true spherical, rod-shaped, A flat plate shape or a combined shape thereof may be mentioned. In one or a plurality of embodiments, the proportion of the inorganic filler in the solid content in the polyamide solution according to the present disclosure is 1% by weight to 50% by weight, 2% by weight to 40% by weight, or 3% by weight to 30% by weight. It is.

(前記反射防止用樹脂組成物を硬化させて形成される硬化物の説明)
本発明の樹脂組成物は、未硬化樹脂であるワニスとして提供されても良い。
まず、該ワニスについて述べる。
樹脂ワニスは、前述した未硬化の樹脂材料、その他の成分、有機溶剤等を含む他、必要に応じて、前述の反応開始剤、酸化防止剤等を含むものである。
また、樹脂ワニスは、その特性を損なわない範囲で必要に応じて、熱可塑性樹脂または熱硬化性樹脂のオリゴマーやモノマー等を含んでいてもよい。
必要に応じて、樹脂ワニスに脱泡処理を施しても良い。
(Description of cured product formed by curing the antireflection resin composition)
The resin composition of the present invention may be provided as a varnish that is an uncured resin.
First, the varnish will be described.
The resin varnish contains the aforementioned uncured resin material, other components, an organic solvent, and the like, and also contains the aforementioned reaction initiator, antioxidant, and the like as necessary.
In addition, the resin varnish may contain an oligomer or a monomer of a thermoplastic resin or a thermosetting resin as necessary as long as the characteristics are not impaired.
If necessary, the resin varnish may be defoamed.

(ワニスの硬化)
前記ワニスは、そのまま型に入れ硬化し、成形することが可能である。また、型を押し当てながら硬化して成形することも可能である。
(Curing varnish)
The varnish can be put into a mold as it is, cured and molded. It is also possible to cure and mold while pressing the mold.

光硬化(UV硬化)
本発明の樹脂組成物を硬化させるために、必要な光の積算光量としては、例えば、50〜5000mJ/cmであることが好ましく、75〜4000mJ/cmであることがより好ましく、100〜3000mJ/cmであることがより一層好ましい。また、「硬化する」とは、樹脂組成物において、硬化反応に関与し得る官能基の多くが反応してい
ることをいい、具体的には、樹脂組成物のエポキシ開環率が50%以上であることをいう。
エポキシ開環率とは、樹脂硬化物におけるエポキシ基の開環割合に相当する指標である。エポキシ開環率の測定方法としては、まず、フーリエ変換赤外分光分析(FT−IR)により、樹脂硬化物の試料の吸光度スペクトルを取得する。
Light curing (UV curing)
In order to cure the resin composition of the present invention, the necessary amount of accumulated light is preferably, for example, 50 to 5000 mJ / cm 2 , more preferably 75 to 4000 mJ / cm 2 , and 100 to Even more preferably, it is 3000 mJ / cm 2 . Further, “curing” means that many functional groups that can participate in the curing reaction are reacted in the resin composition. Specifically, the epoxy ring opening rate of the resin composition is 50% or more. It means that.
The epoxy ring-opening rate is an index corresponding to the ring-opening ratio of the epoxy group in the resin cured product. As a method for measuring the epoxy ring-opening rate, first, an absorbance spectrum of a cured resin sample is obtained by Fourier transform infrared spectroscopy (FT-IR).

次いで、得られた吸光度スペクトルについて、波数914cm−1付近に位置するエポキシ基由来のピークの面積を、波数2900cm−1付近に位置するメチレン基由来のピークの面積で標準化し、これを試料の「エポキシ相対強度」とする。ここでは、メチレン基由来のピーク面積に対するエポキシ基由来のピーク面積の割合を試料のエポキシ相対強度Xとし、求めるべき試料のエポキシ開環率をY(%)とする。
一方、試料のエポキシ相対強度を測定する際には、あらかじめ硬化前の樹脂組成物のエポキシ相対強度を測定しておく。硬化前の樹脂組成物ではエポキシ基が開環していないと推定されるので、これを標準試料とすることができ、樹脂組成物のエポキシ相対強度は、エポキシ開環率0%に対応する強度であるとみなすことができる。なお、硬化前の樹脂組成物のエポキシ相対強度を100とする。
また、上記光照射による硬化後、2次処理として熱による処理を行うことにより、より反応を進行させることができる。
Then, the obtained absorbance spectrum, the area of the peak derived from the epoxy group located in the vicinity of a wave number of 914 cm -1, normalized to the area of the peak derived from the methylene groups located in the vicinity of a wave number of 2900 cm -1, which sample ""Epoxy relative strength". Here, the ratio of the peak area derived from the epoxy group to the peak area derived from the methylene group is defined as the epoxy relative strength X of the sample, and the epoxy ring opening rate of the sample to be obtained is defined as Y (%).
On the other hand, when measuring the epoxy relative strength of the sample, the epoxy relative strength of the resin composition before curing is measured in advance. Since it is presumed that the epoxy group is not ring-opened in the resin composition before curing, this can be used as a standard sample, and the epoxy relative strength of the resin composition corresponds to an epoxy ring-opening rate of 0%. Can be considered. The epoxy relative strength of the resin composition before curing is set to 100.
Moreover, after hardening by the said light irradiation, reaction can be advanced more by performing the process by a heat | fever as a secondary process.

2次処理時の処理温度は、150〜300℃程度であるのが好ましく、200〜280℃程度であるのがより好ましい。また、処理時間は、好ましくは0.1〜5時間程度とされ、より好ましくは0.2〜3時間程度とされる。これにより、効率的に反応を進行させることが出来る。
なお、反応開始材が熱系開始剤の場合は、一次加熱条件は60℃〜300℃、好ましくは70℃〜280℃で、処理時間は5分から3時間、好ましくは10分から2時間である。
The treatment temperature during the secondary treatment is preferably about 150 to 300 ° C, and more preferably about 200 to 280 ° C. The treatment time is preferably about 0.1 to 5 hours, more preferably about 0.2 to 3 hours. Thereby, reaction can be advanced efficiently.
When the reaction initiator is a thermal initiator, the primary heating conditions are 60 ° C. to 300 ° C., preferably 70 ° C. to 280 ° C., and the treatment time is 5 minutes to 3 hours, preferably 10 minutes to 2 hours.

(反射防止層)
前記樹脂組成物は、反射防止層を形成することができる。
入射光の反射率は、3%以下が好ましく、2%、1%以下がさらに好ましい。反射率がこれらの数値となることで、性能の高い光学装置を作製することができる。
(Antireflection layer)
The resin composition can form an antireflection layer.
The reflectance of incident light is preferably 3% or less, more preferably 2% or 1%. When the reflectance becomes these numerical values, an optical device with high performance can be manufactured.

また、この反射防止層の屈折率は、1.4〜1.6であることが好ましく、1.45〜1.6であることがさらに好ましい。屈折率がこの範囲にあることで、作製した反射防止層の反射防止効果を高めることができる。 The refractive index of the antireflection layer is preferably 1.4 to 1.6, more preferably 1.45 to 1.6. When the refractive index is within this range, the antireflection effect of the produced antireflection layer can be enhanced.

また、屈折率と厚さの積が50nm以上200nm以下である反射防止層は、前記樹脂組成物を塗布し、硬化することで得ることができ、効率よく反射防止効果を得ることができる。 Moreover, the antireflection layer having a product of the refractive index and the thickness of 50 nm or more and 200 nm or less can be obtained by applying and curing the resin composition, and an antireflection effect can be obtained efficiently.

また、反射防止層の厚さは、150nm以下であることが好ましく、130nmであることがさらに好ましい。厚みがこの範囲にあることで、作製した反射防止層の反射防止効果を高めることができる。 In addition, the thickness of the antireflection layer is preferably 150 nm or less, and more preferably 130 nm. When the thickness is in this range, the antireflection effect of the produced antireflection layer can be enhanced.

塗布方法としては、具体的には、ダイコート、スピンコート、スリットコート等を用いることが出来る。特に、均一な膜厚による薄膜化という点で、スピンコートによる塗布が好適である。 Specifically, die coating, spin coating, slit coating or the like can be used as the coating method. In particular, application by spin coating is preferable in terms of thinning with a uniform film thickness.

硬化方法としてはUV光、熱及びその併用が挙げられる。 Examples of the curing method include UV light, heat, and a combination thereof.

さらに、表面に凹凸を有することで、厚み、屈折率にかかわらず、反射防止効果を得られ
る。
凹凸の高さが1μm以下である表面やピッチが300nm以下の凹凸構造は、表面にnmサイズの微細粒子を吹き付ける、逆スパッタリング処理、酸素プラズマ処理等の型を用いない加工や、nmサイズの凹凸型を用いたインプリント法により得ることができる。この場合は前記に記載の屈折率と厚さの積が100nm以上200nm以下である反射防止層とは異なる光学的効果により良好な反射防止効果を得ることができる。具体的には、特開2001−264520に記載されているように、フィルム等の表面に、光の波長以下のピッチの微細な凹凸パターンを形成した微細凹凸フィルムは、凹凸の底部では樹脂がほとんどを占めるから、樹脂の光の屈折率そのものに限りなく近づき、凹凸の表面側に近づくほど、樹脂が占める割合が低下して、代わりに空気の割合が増加するから、屈折率が低下し、最も外側の表面近傍では空気の屈折率(1.0)に限りなく近づき、あたかも光の屈折率が連続的に変化する層を多数積層したのと同様な効果を持つ事が知られている。そのため、厚みの制御をせずとも反射防止効果を得られる。
Furthermore, by having irregularities on the surface, an antireflection effect can be obtained regardless of the thickness and refractive index.
Surfaces with unevenness heights of 1 μm or less and uneven structures with pitches of 300 nm or less can be processed without using molds such as reverse sputtering treatment and oxygen plasma treatment to spray fine particles of nm size on the surface, It can be obtained by an imprint method using a mold. In this case, a good antireflection effect can be obtained by an optical effect different from that of the antireflection layer in which the product of the refractive index and the thickness is 100 nm to 200 nm. Specifically, as described in JP-A-2001-264520, a fine concavo-convex film in which a fine concavo-convex pattern having a pitch equal to or less than the wavelength of light is formed on the surface of a film or the like has almost no resin at the bottom of the concavo-convex. Therefore, the closer to the surface side of the unevenness, the lower the proportion of resin, and the higher the proportion of air, the lower the refractive index. It is known that the vicinity of the outer surface approaches the refractive index (1.0) of air as much as possible, and has the same effect as if a number of layers in which the refractive index of light changes continuously is stacked. Therefore, the antireflection effect can be obtained without controlling the thickness.

(反射防止層を有する光学装置)
本発明の反射防止膜用樹脂組成物は、前述のように短時間で硬化が可能であるため、効率的に反射防止層を作製することが可能となり、その結果高い寸法精度が要求される光学装置用の部材として使用することが出来る。
なお、本発明における光学装置とは、光の吸収、透過、発光に関わる装置群を表し、具体的には、液晶表示装置や有機エレクトロルミネッセンス表示装置などの表示装置、レンズ、撮像素子等を示す。
以下、具体例を挙げて説明するが、本発明はこれら具体例に限定されるものではない。
(Optical device having antireflection layer)
Since the resin composition for an antireflection film of the present invention can be cured in a short time as described above, it is possible to efficiently produce an antireflection layer, and as a result, an optical that requires high dimensional accuracy. It can be used as a device member.
The optical device in the present invention represents a device group related to light absorption, transmission, and light emission, and specifically, a display device such as a liquid crystal display device or an organic electroluminescence display device, a lens, an image sensor, or the like. .
Hereinafter, although a specific example is given and demonstrated, this invention is not limited to these specific examples.

前記樹脂組成物は、前述の短時間で硬化が可能である他に、樹脂の選択により高い光透過性を獲得することも可能であり、液晶表示装置や有機エレクトロルミネッセンス表示装置などの表示装置(図1)に好適に用いられる。これらの表示装置に所定の屈折率を有する樹脂組成物を用いて所定の厚みで層を作製すること、または凹凸を形成することで、反射防止層とすることができる。反射防止効果を有する層を作製するための樹脂組成物の屈折率や層の厚みの条件、凹凸の条件は、前述のとおりである。 The resin composition can be cured in a short time as described above, and can also obtain high light transmittance by selecting a resin, such as a liquid crystal display device or an organic electroluminescence display device ( 1). An antireflection layer can be obtained by forming a layer with a predetermined thickness using a resin composition having a predetermined refractive index for these display devices, or by forming irregularities. The refractive index of the resin composition for producing a layer having an antireflection effect, the layer thickness conditions, and the unevenness conditions are as described above.

また、前記樹脂組成物は、前述の硬化時の収縮を抑制する特性の他に、樹脂の選択により高い光透過性を獲得することも可能であり、光学レンズ用の反射防止層として使用することができる(図2)。レンズに所定の屈折率を有する樹脂組成物を用いて所定の厚みで層を作製すること、または凹凸を形成することで、反射防止層とすることができる。反射防止効果を有する層を作製するための樹脂組成物の屈折率や層の厚みの条件、凹凸の条件は、前述のとおりである。 In addition to the above-described property of suppressing shrinkage during curing, the resin composition can also acquire high light transmittance by selecting a resin, and can be used as an antireflection layer for an optical lens. (Fig. 2). An antireflection layer can be formed by forming a layer with a predetermined thickness using a resin composition having a predetermined refractive index for the lens, or by forming irregularities. The refractive index of the resin composition for producing a layer having an antireflection effect, the layer thickness conditions, and the unevenness conditions are as described above.

また、前記樹脂組成物は、撮像素子用の反射防止層に使用することができる(図3)。前記撮像素子は、CCDイメージセンサーまたはCMOSイメージセンサーである。撮像素子は、一般的に基板上に形成された多数の受光素子の並びで光電変換を行い、受光素子に光を照射すると光エネルギーによって電荷を発生する。この電荷をCCD素子や、CMOS素子によって外部に転送するのが主な動作である。本発明の樹脂組成物は当該装置のレンズ部表面の反射防止層として使用することが好適である。レンズ部表面に所定の屈折率を有する樹脂組成物を用いて所定の厚みで層を作製すること、または凹凸を形成することで、反射防止層とすることができる。反射防止効果を有する層を作製するための樹脂組成物の屈折率や層の厚みの条件、凹凸の条件は、前述のとおりである。
Moreover, the said resin composition can be used for the reflection preventing layer for image sensors (FIG. 3). The image sensor is a CCD image sensor or a CMOS image sensor. In general, an image sensor performs photoelectric conversion with an array of a large number of light receiving elements formed on a substrate, and generates light by light energy when the light receiving elements are irradiated with light. The main operation is to transfer this electric charge to the outside by a CCD element or a CMOS element. The resin composition of the present invention is preferably used as an antireflection layer on the surface of the lens portion of the device. An antireflection layer can be obtained by forming a layer with a predetermined thickness using a resin composition having a predetermined refractive index on the surface of the lens portion, or by forming irregularities. The refractive index of the resin composition for producing a layer having an antireflection effect, the layer thickness conditions, and the unevenness conditions are as described above.

次に、本発明の具体的実施例について説明する。   Next, specific examples of the present invention will be described.

(実施例1)
(A)脂環式エポキシ樹脂前駆体として下記化合物(2)に示すビシクロヘキシル−3、3‘−ジオキシド(EBP, ダイセル製)100質量部に、(B)反応開始剤としてアンチ
モン系スルホニウム塩型光酸発生剤(SP−170、ADEKA製)1質量部を投入し、均一
になるまで混合した後に穴径1μmのフィルターでろ過を行い、光学用樹脂組成物を作製した。
Example 1
(A) 100 parts by mass of bicyclohexyl-3,3′-dioxide (EBP, manufactured by Daicel) shown in the following compound (2) as an alicyclic epoxy resin precursor, and (B) an antimony sulfonium salt type as a reaction initiator 1 part by mass of a photoacid generator (SP-170, manufactured by ADEKA) was added, mixed until uniform, and then filtered through a filter having a hole diameter of 1 μm to prepare an optical resin composition.

厚さ125μmの透明ポリエステルフィルム(東洋紡株式会社製)上に、巻き出し装置、ダイコーター、高圧水銀灯、周期100nm高さ200nmの凹凸形状を有する賦形ロール、加熱炉、巻き取り装置を備えた塗工機を用いてこの反射防止層用樹脂組成物を厚さ0.09μmになるよう塗布し、塗布面を賦形ロールに押し当てながら裏面より照度150mW/cmのメタルハライドランプにて紫外線を積算光量約900mJ/cm2照射(照射時間:6秒)し、窒素雰囲気下の加熱炉にて80℃10分分加熱して反射防止層付きフィルムを作製した。この反射防止層付きフィルムを、液晶セル、光学補償板、偏光版等から成る液晶パネルに粘着剤により貼り合わせ、バックライトユニットを組み合わせて液晶ディスプレイを作製した。この液晶ディスプレイの表面の波長550nmの反射率を測定したところ0.5%であった。 On a transparent polyester film having a thickness of 125 μm (manufactured by Toyobo Co., Ltd.), an unwinding device, a die coater, a high-pressure mercury lamp, a shaping roll having an irregular shape with a period of 100 nm and a height of 200 nm, a heating furnace, and a winding device Using an industrial machine, apply this anti-reflective layer resin composition to a thickness of 0.09 μm, and integrate ultraviolet rays with a metal halide lamp with an illuminance of 150 mW / cm 2 from the back while pressing the coated surface against the shaping roll. The film was irradiated with a light amount of about 900 mJ / cm 2 (irradiation time: 6 seconds) and heated at 80 ° C. for 10 minutes in a heating furnace under a nitrogen atmosphere to produce a film with an antireflection layer. This antireflection layer-attached film was bonded to a liquid crystal panel composed of a liquid crystal cell, an optical compensation plate, a polarizing plate, etc. with an adhesive, and a backlight unit was combined to produce a liquid crystal display. The reflectance at a wavelength of 550 nm on the surface of this liquid crystal display was measured and found to be 0.5%.

(実施例2)
(A)脂環式エポキシ樹脂前駆体として下記化合物(3)に示す脂環式エポキシ樹脂前駆体(E-DOA, ダイセル製)100質量部に、(B)反応開始剤としてアンチモン系スルホ
ニウム塩型光酸発生剤(SP−170、ADEKA製)1質量部を投入し、均一になるまで混
合した後に穴径10μmのフィルターでろ過を行い、反射防止層用樹脂組成物を作製した。

図2に示す直径60mmのレンズ表面に反射防止層用樹脂組成物を厚さ1μmになるようスピンコーターで塗布し、周期100nm、高さ500nmの微細凹凸構造を有する型を押し当てながら裏面より照度150mW/cmのメタルハライドランプにて紫外線を積算光量約900mJ/cm2照射(照射時間:6秒)し、加熱炉にて120℃10分加熱して反射防止層付きレンズを作製した。この反射防止層付きレンズ表面の波長550nmの反射率を測定したところ0.1%であった。
(Example 2)
(A) As an alicyclic epoxy resin precursor, 100 parts by mass of an alicyclic epoxy resin precursor (E-DOA, manufactured by Daicel) shown in the following compound (3), and (B) an antimony sulfonium salt type as a reaction initiator 1 part by mass of a photoacid generator (SP-170, manufactured by ADEKA) was added and mixed until uniform, followed by filtration with a filter having a hole diameter of 10 μm to prepare a resin composition for an antireflection layer.

The resin composition for the antireflection layer is applied to the surface of the lens having a diameter of 60 mm shown in FIG. A 150 mW / cm 2 metal halide lamp was irradiated with ultraviolet rays with an integrated light quantity of about 900 mJ / cm 2 (irradiation time: 6 seconds), and heated in a heating furnace at 120 ° C. for 10 minutes to produce a lens with an antireflection layer. The reflectance at a wavelength of 550 nm on the lens surface with the antireflection layer was measured and found to be 0.1%.

(実施例3)
実施例1において、さらに酸化防止剤としてヒンダートフェノール系酸化防止剤であるペンタエリスリトール テトラキス〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プ
ロピオナート)〕(イルガノックス1010、チバ・スペシャリティ・ケミカルズ製)1
質量部を投入し、均一になるまで混合した後に穴径1μmのフィルターでろ過を行い、光学用樹脂組成物を作製した以外は、実施例1と同様の成分にて樹脂組成物を作製し、実施例2と同様にして反射防止層付きレンズを作製した。この反射防止層付きレンズ表面の波長550nmの反射率を測定したところ0.1%であった。また、加熱炉中で90℃/100時間放置後も変化はなかった。
(Example 3)
In Example 1, pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate)] (Irganox 1010, Ciba) which is a hindered phenol-based antioxidant as an antioxidant.・ Specialty Chemicals) 1
A resin composition was prepared with the same components as in Example 1 except that a mass part was added and mixed until uniform, followed by filtration with a filter having a hole diameter of 1 μm to prepare an optical resin composition. A lens with an antireflection layer was produced in the same manner as in Example 2. The reflectance at a wavelength of 550 nm on the lens surface with the antireflection layer was measured and found to be 0.1%. In addition, there was no change after standing in a heating furnace at 90 ° C./100 hours.

(比較例)
エポキシ樹脂としてビスフェノールA型エポキシ樹脂(jER828 三菱化学製)100質量部に反応開始剤として酸無水物 ( M H − 7 0 0 ( 新日本理化(株)製)90重
量部、イミダゾール化合物2 M Z − A ( 四国化成(株)製)1重量部を均一になるまで混合した後に穴径10μmのフィルターでろ過を行い、反射防止層用樹脂組成物を作製した。ガラス表面に反射防止層用樹脂組成物を厚さ0.09μmになるようスピンコーターで塗布し、加熱炉にて200℃60分加熱して反射防止層付きレンズを作製した。この反射防止層付きレンズ表面の波長550nmの反射率を測定したところ0.6%であったが、硬化するまでに時間がかかるため、量産には不適用であった。
(Comparative example)
100 parts by mass of bisphenol A type epoxy resin (jER828 manufactured by Mitsubishi Chemical) as an epoxy resin, 90 parts by weight of an acid anhydride (MH-70.0 (manufactured by Shin Nippon Rika Co., Ltd.)) as a reaction initiator, imidazole compound 2 M Z -A (manufactured by Shikoku Kasei Co., Ltd.) 1 part by weight was mixed until uniform, and then filtered through a filter having a hole diameter of 10 μm to produce a resin composition for an antireflection layer. The composition was applied with a spin coater to a thickness of 0.09 μm, and heated in a heating furnace at 200 ° C. for 60 minutes to produce a lens with an antireflection layer, which has a reflectance of 550 nm on the surface of the lens with the antireflection layer. Was 0.6%, but it took time to harden, so it was not applicable to mass production.

1 反射防止層付フィルム
2 透明粘着剤
3 液晶パネル
4 バックライトシステム
5 反射防止層
6 レンズ
7 反射防止層
8 赤外線カットフィルタ
9 CCD素子

DESCRIPTION OF SYMBOLS 1 Film with antireflection layer 2 Transparent adhesive 3 Liquid crystal panel 4 Backlight system 5 Antireflection layer 6 Lens 7 Antireflection layer 8 Infrared cut filter 9 CCD element

Claims (18)

化学式1および/又は化学式2で表わされる脂環式エポキシ樹脂前駆体と重合開始剤を含むことを特徴とする反射防止層用樹脂組成物。

[上記式(1)中、−X−は−O−、−S−、−SO−、−SO−、−CH−、−CH(CH)−、または−C(CH−を表す。]
A resin composition for an antireflection layer comprising an alicyclic epoxy resin precursor represented by Chemical Formula 1 and / or Chemical Formula 2 and a polymerization initiator.

[In the above formula (1), -X- is -O -, - S -, - SO -, - SO 2 -, - CH 2 -, - CH (CH 3) -, or -C (CH 3) 2 -Represents. ]
前記重合開始剤が光酸発生剤である請求項1に記載の反射防止層用樹脂組成物。 The resin composition for an antireflection layer according to claim 1, wherein the polymerization initiator is a photoacid generator. 前記樹脂組成物中の脂環式エポキシ樹脂の比率が50%〜100%である請求項1または2に記載の反射防止層用樹脂組成物。 The resin composition for an antireflection layer according to claim 1 or 2, wherein a ratio of the alicyclic epoxy resin in the resin composition is 50% to 100%. 請求項1記載の脂環式エポキシ樹脂前駆体の異性体の含有率が40%以下である請求項1ないし3のいずれか1項に記載の反射防止層用樹脂組成物。 The resin composition for an antireflection layer according to any one of claims 1 to 3, wherein the isomer content of the alicyclic epoxy resin precursor according to claim 1 is 40% or less. さらに酸化防止剤を含有する請求項1ないし4のいずれか1項に記載の反射防止層用樹脂組成物。 The resin composition for an antireflection layer according to any one of claims 1 to 4, further comprising an antioxidant. 請求項1ないし5のいずれか1項に記載の反射防止層用樹脂組成物を用いた反射防止層。 An antireflection layer using the resin composition for an antireflection layer according to any one of claims 1 to 5. 前記反射防止層において、入射光の反射率が3%以下である請求項6記載の反射防止層。 The antireflection layer according to claim 6, wherein in the antireflection layer, the reflectance of incident light is 3% or less. 前記反射防止層において、屈折率が1.4〜1.6である請求項6または7に記載の反射防止層。 The antireflection layer according to claim 6 or 7, wherein the antireflection layer has a refractive index of 1.4 to 1.6. 前記屈折率と厚さの積が50nm以上200nm以下である請求項8に記載の反射防止層。 The antireflection layer according to claim 8, wherein a product of the refractive index and the thickness is 50 nm or more and 200 nm or less. 前記反射防止層の厚さが150nm以下である請求項9に記載の反射防止層。 The antireflection layer according to claim 9, wherein the antireflection layer has a thickness of 150 nm or less. 前記反射防止層であって、その少なくとも1方の表面に凹凸構造を有し、該凹凸構造の高さが0.02μm以上、0.95μm以下である請求項6ないし10のいずれか1項に記載の反射防止層。 11. The antireflection layer according to claim 6, wherein the antireflection layer has a concavo-convex structure on at least one surface thereof, and a height of the concavo-convex structure is 0.02 μm or more and 0.95 μm or less. The antireflection layer as described. 前記凹凸構造のピッチが300nm以下である請求項11に記載の反射防止層。 The antireflection layer according to claim 11, wherein the uneven structure has a pitch of 300 nm or less. 請求項6ないし12のいずれか1項に記載の反射防止層を有する光学装置。 An optical device comprising the antireflection layer according to claim 6. 請求項6ないし12のいずれか1項に記載の反射防止層を有する表示装置。 A display device comprising the antireflection layer according to claim 6. 請求項6ないし12のいずれか1項に記載の反射防止層を有する液晶表示装置。 A liquid crystal display device comprising the antireflection layer according to claim 6. 請求項6ないし12のいずれか1項に記載の反射防止層を有する有機エレクトロルミネッセンス表示装置。 The organic electroluminescent display apparatus which has an antireflection layer of any one of Claims 6 thru | or 12. 請求項6ないし12のいずれか1項に記載の反射防止層を有するレンズ。 A lens having the antireflection layer according to any one of claims 6 to 12. 請求項6ないし12のいずれか1項に記載の反射防止層を有する撮像素子。

An imaging device comprising the antireflection layer according to claim 6.

JP2013263432A 2013-12-20 2013-12-20 Resin composition for antireflection layer, antireflection layer, and optical device Pending JP2015118349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013263432A JP2015118349A (en) 2013-12-20 2013-12-20 Resin composition for antireflection layer, antireflection layer, and optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013263432A JP2015118349A (en) 2013-12-20 2013-12-20 Resin composition for antireflection layer, antireflection layer, and optical device

Publications (1)

Publication Number Publication Date
JP2015118349A true JP2015118349A (en) 2015-06-25

Family

ID=53531081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013263432A Pending JP2015118349A (en) 2013-12-20 2013-12-20 Resin composition for antireflection layer, antireflection layer, and optical device

Country Status (1)

Country Link
JP (1) JP2015118349A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242101A (en) * 1998-02-24 1999-09-07 Fuji Photo Film Co Ltd Antireflection film and display device equipped with the film
JP2003131050A (en) * 2001-10-26 2003-05-08 Nippon Sheet Glass Co Ltd Optical fiber coupling system
JP2004157200A (en) * 2002-11-05 2004-06-03 Nippon Sheet Glass Co Ltd Optical element
JP2005092099A (en) * 2003-09-19 2005-04-07 Fuji Photo Film Co Ltd Curable resin composition and optical article, and image display device using the same
JP2008258202A (en) * 2007-03-30 2008-10-23 Fujifilm Corp Solid-state imaging element, and manufacturing method of solid-state imaging element
JP2010008756A (en) * 2008-06-27 2010-01-14 Konica Minolta Opto Inc Antireflection film, polarizing plate and image display device
JP2012140607A (en) * 2010-12-14 2012-07-26 Daicel Corp Curable composition and curable resin

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242101A (en) * 1998-02-24 1999-09-07 Fuji Photo Film Co Ltd Antireflection film and display device equipped with the film
JP2003131050A (en) * 2001-10-26 2003-05-08 Nippon Sheet Glass Co Ltd Optical fiber coupling system
JP2004157200A (en) * 2002-11-05 2004-06-03 Nippon Sheet Glass Co Ltd Optical element
JP2005092099A (en) * 2003-09-19 2005-04-07 Fuji Photo Film Co Ltd Curable resin composition and optical article, and image display device using the same
JP2008258202A (en) * 2007-03-30 2008-10-23 Fujifilm Corp Solid-state imaging element, and manufacturing method of solid-state imaging element
JP2010008756A (en) * 2008-06-27 2010-01-14 Konica Minolta Opto Inc Antireflection film, polarizing plate and image display device
JP2012140607A (en) * 2010-12-14 2012-07-26 Daicel Corp Curable composition and curable resin

Similar Documents

Publication Publication Date Title
TWI439475B (en) Curable copolymer and curable resin composition
TWI621663B (en) Polyamide-imide resin and manufacturing method thereof , curable resin composition and hardened material thereof
CN103676475B (en) Black curable resin composition
US20120181702A1 (en) Photosensitive adhesive composition having alkali soluble epoxy resin, and patternable adhesive film using the same
CN106959577B (en) Photosensitive resin composition, light-shielding film, liquid crystal display device, and methods for producing these
TW201107357A (en) Sealing agent for liquid crystal dripping method
JP2018095679A (en) Sheet-like seal material, display element seal material, surface sealing material for organic el element, organic el device, and method for manufacturing organic el device
TWI225881B (en) Particle, composition and protecting membrane
WO2021024616A1 (en) Image display apparatus sealing material
JP6700710B2 (en) Photosensitive resin composition for black column spacer, black column spacer, liquid crystal display device, method for producing photosensitive resin composition for black column spacer, method for producing black column spacer, and method for producing liquid crystal display device
JP6920838B2 (en) Composition for forming an interlayer insulating film, a method for forming an interlayer insulating film and an interlayer insulating film pattern, and a device.
TWI709590B (en) Thermosetting compositions and use thereof
JP6386370B2 (en) Laminated structure, photocurable composition, and method for producing laminated structure
JP7260524B2 (en) Method for producing polymerizable unsaturated group-containing alkali-soluble resin, polymerizable unsaturated group-containing alkali-soluble resin, photosensitive resin composition containing same as essential component, and cured film thereof
WO2015087946A1 (en) Composite resin composition and same resin composition production method
JP2015086306A (en) Resin composition for optical device, resin cured product, and optical device
JP5685879B2 (en) Cured resin, transparent composite substrate, display element substrate, and method for producing cured resin
JP4958343B2 (en) High refractive index thin film and antireflection film
JP2015118349A (en) Resin composition for antireflection layer, antireflection layer, and optical device
JP7250591B2 (en) A method for producing a polymerizable unsaturated group-containing alkali-soluble resin, a polymerizable unsaturated group-containing alkali-soluble resin, a photosensitive resin composition containing the same, a cured product obtained by curing the same, and a touch panel containing the cured product as a constituent component and color filters
TWI753959B (en) Epoxy resin composition for forming printed wiring board
CN111448517A (en) Adhesive resin and photosensitive resin composition or coating solution containing the same
KR101851784B1 (en) Composition for window film, flexible window film prepared using the same and display apparatus comprising the same
JP2015137337A (en) Curable composition containing conductive fiber coated particle
JP2019174670A (en) Photosensitive resin composition containing polymerizable unsaturated group-containing alkali-soluble resin as essential component, and cured film thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180514

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180521

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180803