JP2015118189A - Liquid crystal display device and electronic equipment - Google Patents

Liquid crystal display device and electronic equipment Download PDF

Info

Publication number
JP2015118189A
JP2015118189A JP2013260578A JP2013260578A JP2015118189A JP 2015118189 A JP2015118189 A JP 2015118189A JP 2013260578 A JP2013260578 A JP 2013260578A JP 2013260578 A JP2013260578 A JP 2013260578A JP 2015118189 A JP2015118189 A JP 2015118189A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
display device
pixel
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013260578A
Other languages
Japanese (ja)
Inventor
裕紀 杉山
Hironori Sugiyama
裕紀 杉山
弘 稲村
Hiroshi Inamura
弘 稲村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Display Inc
Original Assignee
Japan Display Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Display Inc filed Critical Japan Display Inc
Priority to JP2013260578A priority Critical patent/JP2015118189A/en
Publication of JP2015118189A publication Critical patent/JP2015118189A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a liquid crystal display device capable of reducing off-leak current in switching-off, and electronic equipment.SOLUTION: A display device 1 comprises a first substrate, a second substrate, and a liquid crystal layer arranged between the first substrate and the second substrate. The first substrate comprises a plurality of pixel electrodes 72 arranged in a matrix, a thin-film transistor Tr which is a switching element connected to each of the pixel electrodes 72, and a conductive layer 73 provided via an inorganic insulating layer 74b laminated in the thin-film transistor Tr in a direction perpendicular to a surface of the pixel substrate 60 and covering a channel region ch. Positive electric potential is applied to the conductive layer 73.

Description

本発明は、液晶表示装置及びこれを備える電子機器に関する。   The present invention relates to a liquid crystal display device and an electronic apparatus including the same.

近年、液晶表示装置は、カーナビゲーションの表示装置や、携帯電話や電子ペーパーなどのモバイル機器向けの表示装置の需要が高くなっている。   In recent years, the demand for liquid crystal display devices is increasing for display devices for car navigation, and display devices for mobile devices such as mobile phones and electronic paper.

特許文献1には、TFTへの光リークを防止するとともに、TFTの特性のズレを補正し、表示ムラの発生を抑制する技術が記載されている。   Japanese Patent Application Laid-Open No. 2004-133260 describes a technique for preventing the occurrence of display unevenness while preventing light leakage to the TFT and correcting the deviation of the TFT characteristics.

特開2008−197359号公報JP 2008-197359 A

特許文献1では、アレイ基板上に導電性の遮光層が形成され、その上層に絶縁膜を介してTFTが形成されている。このような態様によって、遮光層に負の電位を印加したときは、TFTの特性が補正され、閾値電圧が高くなるので、TFTオフ時のリークによる表示ムラを改善することができるとされる。しかしながら、このような作用があるのは、アレイ基板上に導電性の遮光層が形成され、その上層に絶縁膜を介してTFTが形成されている場合に限られるため、TFTの下層に導電性の遮光層がない場合でも、TFTオフ時(スイッチングオフ)のオフリークを低減することが望まれている。   In Patent Document 1, a conductive light shielding layer is formed on an array substrate, and a TFT is formed on the upper layer via an insulating film. According to such an embodiment, when a negative potential is applied to the light shielding layer, the TFT characteristics are corrected and the threshold voltage is increased, so that display unevenness due to leakage when the TFT is turned off can be improved. However, this effect is limited to the case where a conductive light shielding layer is formed on the array substrate and a TFT is formed on the upper layer via an insulating film. Even when there is no light shielding layer, it is desired to reduce off-leakage when the TFT is off (switching off).

本発明はかかる問題点に鑑みてなされたもので、スイッチングオフ時のオフリーク電流を低減する液晶表示装置及び電子機器を提供することにある。   The present invention has been made in view of such problems, and it is an object of the present invention to provide a liquid crystal display device and an electronic apparatus that can reduce off-leakage current when switching off.

本発明の一態様に係る液晶表示装置は、第1基板と、前記第1基板に対向配置された第2基板と、前記第1基板と前記第2基板との間に配置される液晶層と、を備える液晶表示装置であって、前記第1基板は、マトリクス状に配置された複数の画素電極と、前記画素電極のそれぞれに接続されるスイッチング素子と、前記第1基板の表面に垂直な方向において前記スイッチング素子に積層された無機絶縁層を介して設けられ、かつ前記スイッチング素子のチャネル領域を覆う、導電層を備え、前記導電層には、正の電位が印加されている。   A liquid crystal display device according to one embodiment of the present invention includes a first substrate, a second substrate disposed opposite to the first substrate, and a liquid crystal layer disposed between the first substrate and the second substrate. The first substrate includes a plurality of pixel electrodes arranged in a matrix, switching elements connected to the pixel electrodes, and a surface perpendicular to the surface of the first substrate. A conductive layer is provided through an inorganic insulating layer stacked on the switching element in a direction and covers a channel region of the switching element, and a positive potential is applied to the conductive layer.

望ましい一態様として、前記第1基板は、画素電極と共通電極とを有し、前記導電層の電位は、前記共通電極の電位と同じでもよい。   As a desirable mode, the first substrate may have a pixel electrode and a common electrode, and the potential of the conductive layer may be the same as the potential of the common electrode.

望ましい一態様として、カラム反転又はドット反転により前記スイッチング素子が駆動されてもよい。   As a desirable mode, the switching element may be driven by column inversion or dot inversion.

本発明の一態様に係る電子機器は、上記液晶表示装置と、前記液晶表示装置に映像信号を供給し、前記液晶表示装置の動作を制御する制御装置とを備えてもよい。   An electronic device according to one embodiment of the present invention may include the liquid crystal display device and a control device that supplies a video signal to the liquid crystal display device and controls the operation of the liquid crystal display device.

図1は、本実施形態及び変形例に係る液晶表示装置の一例を表す説明図である。FIG. 1 is an explanatory diagram illustrating an example of a liquid crystal display device according to the present embodiment and the modification. 図2は、図1の液晶表示装置のシステム例を表すブロック図である。FIG. 2 is a block diagram illustrating a system example of the liquid crystal display device of FIG. 図3は、画素を駆動する駆動回路の一例を示す回路図である。FIG. 3 is a circuit diagram illustrating an example of a drive circuit for driving a pixel. 図4は、液晶表示部の一例を示す断面図である。FIG. 4 is a cross-sectional view illustrating an example of a liquid crystal display unit. 図5は、実施形態1に係る液晶表示装置の画素を模式的に示す平面図である。FIG. 5 is a plan view schematically showing a pixel of the liquid crystal display device according to the first embodiment. 図6は、実施形態1に係る液晶表示装置の画素基板の一例を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically illustrating an example of the pixel substrate of the liquid crystal display device according to the first embodiment. 図7は、スイッチング素子の特性を説明するための説明図である。FIG. 7 is an explanatory diagram for explaining the characteristics of the switching element. 図8は、実施形態1に係る液晶表示装置の画素基板の変形例を模式的に示す断面図である。FIG. 8 is a cross-sectional view schematically showing a modification of the pixel substrate of the liquid crystal display device according to the first embodiment. 図9は、実施形態2に係る液晶表示装置の画素を模式的に示す平面図である。FIG. 9 is a plan view schematically showing pixels of the liquid crystal display device according to the second embodiment. 図10は、実施形態2に係る液晶表示装置の画素基板の一例を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically illustrating an example of the pixel substrate of the liquid crystal display device according to the second embodiment. 図11は、実施形態2の変形例1に係る液晶表示装置の画素基板を模式的に示す断面図である。FIG. 11 is a cross-sectional view schematically showing a pixel substrate of the liquid crystal display device according to the first modification of the second embodiment. 図12は、実施形態2の変形例2に係る液晶表示装置の画素基板を模式的に示す断面図である。FIG. 12 is a cross-sectional view schematically illustrating a pixel substrate of a liquid crystal display device according to the second modification of the second embodiment. 図13は、本実施形態に係る液晶表示装置を適用する電子機器の一例を示す図である。FIG. 13 is a diagram illustrating an example of an electronic apparatus to which the liquid crystal display device according to this embodiment is applied.

本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。なお、開示はあくまで一例にすぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。   DESCRIPTION OF EMBODIMENTS Embodiments (embodiments) for carrying out the present invention will be described in detail with reference to the drawings. The present invention is not limited by the contents described in the following embodiments. The constituent elements described below include those that can be easily assumed by those skilled in the art and those that are substantially the same. Furthermore, the constituent elements described below can be appropriately combined. It should be noted that the disclosure is merely an example, and those skilled in the art can easily conceive of appropriate modifications while maintaining the gist of the invention are naturally included in the scope of the present invention. In addition, the drawings may be schematically represented with respect to the width, thickness, shape, and the like of each part in comparison with actual aspects for the sake of clarity of explanation, but are merely examples, and the interpretation of the present invention is not limited. It is not limited. In addition, in the present specification and each drawing, elements similar to those described above with reference to the previous drawings are denoted by the same reference numerals, and detailed description may be omitted as appropriate.

(実施形態1)
図1は、本実施形態及び変形例に係る液晶表示装置の一例を表す説明図である。図2は、図1の液晶表示装置のシステム例を表すブロック図である。図1は模式的に表したものであり、実際の寸法、形状と同一とは限らない。なお、表示装置1が本発明の「液晶表示装置」の一具体例に相当する。
(Embodiment 1)
FIG. 1 is an explanatory diagram illustrating an example of a liquid crystal display device according to the present embodiment and the modification. FIG. 2 is a block diagram illustrating a system example of the liquid crystal display device of FIG. FIG. 1 is a schematic representation and is not necessarily the same as the actual size and shape. The display device 1 corresponds to a specific example of the “liquid crystal display device” of the present invention.

表示装置1は、液晶表示部2と、ドライバIC3と、バックライト6と、を備えている。表示装置1は、透過型、又は半透過型の表示装置であってもよく、バックライト6を備えない、反射型の表示装置であってもよい。図示しないフレキシブルプリント基板(FPC(Flexible Printed Circuits))は、ドライバIC3への外部信号又はドライバIC3を駆動する駆動電力を伝送する。液晶表示部2は、透光性絶縁基板、例えばガラス基板11と、ガラス基板11の表面にあり、液晶セルを含む画素がマトリクス状(行列状)に多数配置されてなる表示エリア部21と、水平ドライバ(水平駆動回路)23と、垂直ドライバ(垂直駆動回路)22A、22Bと、を備えている。垂直ドライバ(垂直駆動回路)22A、22Bは、第1垂直ドライバ22A、第2垂直ドライバ22Bとして、表示エリア部21を挟むように配置されている。ガラス基板11は、能動素子(例えば、トランジスタ)を含む多数の画素回路がマトリクス状に配置形成される第1基板と、この第1基板と所定の間隙をもって対向して配置される第2基板とを含む。そして、ガラス基板11は、第1基板、第2基板の間に液晶が封入される液晶層を有する。   The display device 1 includes a liquid crystal display unit 2, a driver IC 3, and a backlight 6. The display device 1 may be a transmissive or transflective display device, or may be a reflective display device that does not include the backlight 6. An unillustrated flexible printed circuit board (FPC (Flexible Printed Circuits)) transmits an external signal to the driver IC 3 or driving power for driving the driver IC 3. The liquid crystal display unit 2 is a translucent insulating substrate, for example, a glass substrate 11, and a display area unit 21 on the surface of the glass substrate 11, in which a large number of pixels including liquid crystal cells are arranged in a matrix (matrix), A horizontal driver (horizontal drive circuit) 23 and vertical drivers (vertical drive circuits) 22A and 22B are provided. The vertical drivers (vertical drive circuits) 22A and 22B are arranged so as to sandwich the display area portion 21 as the first vertical driver 22A and the second vertical driver 22B. The glass substrate 11 includes a first substrate on which a large number of pixel circuits including active elements (for example, transistors) are arranged and formed in a matrix, and a second substrate arranged to face the first substrate with a predetermined gap. including. The glass substrate 11 has a liquid crystal layer in which liquid crystal is sealed between the first substrate and the second substrate.

液晶表示部2の額縁領域11gr、11glは、ガラス基板11の表面にあり、液晶セルを含む画素がマトリクス状(行列状)に多数配置されてなる表示エリア部21がない、非表示領域である。垂直ドライバ22A、22Bは、額縁領域11gr、11glに配置されている。   The frame regions 11gr and 11gl of the liquid crystal display unit 2 are non-display regions that are on the surface of the glass substrate 11 and do not have the display area unit 21 in which a large number of pixels including liquid crystal cells are arranged in a matrix (matrix). . The vertical drivers 22A and 22B are disposed in the frame regions 11gr and 11gl.

バックライト6は、液晶表示部2の裏面側(画像を表示する面とは反対側の面)に配置されている。バックライト6は、液晶表示部2に向けて光を照射し、表示エリア部21の全面に光を入射させる。バックライト6は、例えば光源と、光源から出力された光を導いて、液晶表示部2の裏面に向けて出射させる導光板と、を含む。   The backlight 6 is disposed on the back side of the liquid crystal display unit 2 (the surface opposite to the image display surface). The backlight 6 irradiates light toward the liquid crystal display unit 2 and makes the light incident on the entire surface of the display area unit 21. The backlight 6 includes, for example, a light source and a light guide plate that guides light output from the light source and emits the light toward the back surface of the liquid crystal display unit 2.

(表示装置のシステム構成例)
液晶表示部2は、ガラス基板11上に、表示エリア部21と、インターフェース(I/F)及びタイミングジェネレータの機能を備えるドライバIC3と、第1垂直ドライバ22A、第2垂直ドライバ22B及び水平ドライバ23とを備えている。
(Example of system configuration of display device)
The liquid crystal display unit 2 includes a display area unit 21, a driver IC 3 having functions of an interface (I / F) and a timing generator, a first vertical driver 22A, a second vertical driver 22B, and a horizontal driver 23 on a glass substrate 11. And.

表示エリア部21は、液晶層を含む画素Vpixが、表示上の1画素を構成するユニットがm行×n列に配置されたマトリクス(行列状)構造を有している。なお、この明細書において、行とは、一方向に配列されるn個の画素Vpixを有する画素行をいう。また、列とは、行が配列される方向と直交する方向に配列されるm個の画素Vpixを有する画素列をいう。そして、mとnとの値は、垂直方向の表示解像度と水平方向の表示解像度に応じて定まる。表示エリア部21は、画素Vpixのm行n列の配列に対して行毎に走査線24、24、24・・・24が配線され、列毎に信号線25、25、25・・・25が配線されている。以後、本実施形態においては、走査線24、24、24・・・24を代表して走査線24又は走査線24のように表記し、信号線25、25、25・・・25を代表して信号線25又は信号線25のように表記することがある。また、本実施形態においては、走査線24、24、24・・・24を代表して走査線24m+1、24m+2、24m+3・・・のように表記し、信号線25、25、25・・・25を代表して信号線25n+1、25n+2、25n+3・・・のように表記することもある。表示エリア部21は、正面に直交する方向から見た場合、走査線24と信号線25がカラーフィルタのブラックマトリクスと重なる領域に配置されている。また、表示エリア部21は、ブラックマトリクスが配置されていない領域が開口部となる。 The display area unit 21 has a matrix (matrix) structure in which pixels Vpix including a liquid crystal layer are arranged in m rows × n columns of units constituting one pixel on the display. In this specification, a row means a pixel row having n pixels Vpix arranged in one direction. A column refers to a pixel column having m pixels Vpix arranged in a direction orthogonal to the direction in which rows are arranged. The values of m and n are determined according to the vertical display resolution and the horizontal display resolution. In the display area section 21, scanning lines 24 1 , 24 2 , 24 3 ... 24 m are wired for each row with respect to an array of m rows and n columns of pixels Vpix, and signal lines 25 1 , 25 2 are provided for each column. , 25 3 ... 25 n are wired. Hereinafter, in the present embodiment, the scanning lines 24 1 , 24 2 , 24 3 ... 24 m are represented as scanning lines 24 or scanning lines 24 m , and signal lines 25 1 , 25 2 , 25 are represented. 3 ... 25 n may be represented as a signal line 25 or a signal line 25 n . In the present embodiment, the scanning lines 24 1, 24 2, 24 3 ··· 24 m and on behalf expressed as scanning lines 24 m + 1, 24 m + 2, 24 m + 3 ···, the signal lines 25 1 25 2 , 25 3 ... 25 n may be represented as signal lines 25 n + 1 , 25 n + 2 , 25 n + 3 . The display area 21 is arranged in a region where the scanning lines 24 and the signal lines 25 overlap with the black matrix of the color filter when viewed from the direction orthogonal to the front. In addition, the display area portion 21 has an opening in a region where no black matrix is arranged.

液晶表示部2には、外部から外部信号である、マスタークロック、水平同期信号及び垂直同期信号が入力され、ドライバIC3に与えられる。ドライバIC3は、外部電源の電圧振幅のマスタークロック、水平同期信号及び垂直同期信号を、液晶の駆動に必要な内部電源の電圧振幅にレベル変換(昇圧)し、マスタークロック、水平同期信号及び垂直同期信号を生成する。ドライバIC3は、生成したマスタークロック、水平同期信号及び垂直同期信号をそれぞれ第1垂直ドライバ22A、第2垂直ドライバ22B及び水平ドライバ23に与える。ドライバIC3は、画素Vpix毎の画素電極に対して各画素共通に与えるコモン電位(対向電極電位)Vcomを生成して表示エリア部21に与える。   The liquid crystal display unit 2 is supplied with a master clock, a horizontal synchronizing signal, and a vertical synchronizing signal, which are external signals from the outside, and are supplied to the driver IC 3. The driver IC 3 converts (boosts) the level of the master clock, horizontal synchronization signal, and vertical synchronization signal of the voltage amplitude of the external power source into the voltage amplitude of the internal power source necessary for driving the liquid crystal, and then master clock, horizontal synchronization signal, and vertical synchronization. Generate a signal. The driver IC 3 supplies the generated master clock, horizontal synchronization signal, and vertical synchronization signal to the first vertical driver 22A, the second vertical driver 22B, and the horizontal driver 23, respectively. The driver IC 3 generates a common potential (counter electrode potential) Vcom that is commonly applied to each pixel with respect to the pixel electrode for each pixel Vpix, and supplies the common potential to the display area unit 21.

第1垂直ドライバ22A、第2垂直ドライバ22Bは、後述するシフトレジスタを含み、さらにラッチ回路等を含む。第1垂直ドライバ22A、第2垂直ドライバ22Bは、ラッチ回路が、垂直クロックパルスに同期してドライバIC3から出力される表示データを1水平期間で順次サンプリングしラッチする。第1垂直ドライバ22A、第2垂直ドライバ22Bは、ラッチ回路においてラッチされた1ライン分のデジタルデータを垂直走査パルスとして順に出力し、表示エリア部21の走査線24m+1、24m+2、24m+3・・・に与えることによって画素Vpixを行単位で順次選択する。第1垂直ドライバ22A、第2垂直ドライバ22Bは、走査線24m+1、24m+2、24m+3・・・の延在方向に走査線24m+1、24m+2、24m+3・・・を挟むように配置されている。第1垂直ドライバ22A、第2垂直ドライバ22Bは、例えば、走査線24m+1、24m+2、24m+3・・・の表示エリア部21の上寄り、垂直走査上方向から、表示エリア部21の下寄り、垂直走査下方向へ順にデジタルデータを出力する。また、第1垂直ドライバ22A、第2垂直ドライバ22Bは、走査線24m+1、24m+2、24m+3・・・の表示エリア部21の下寄り、垂直走査下方向から、表示エリア部21の上寄り、垂直走査上方向へ順にデジタルデータを出力することもできる。 The first vertical driver 22A and the second vertical driver 22B include a shift register described later, and further include a latch circuit and the like. In the first vertical driver 22A and the second vertical driver 22B, the latch circuit sequentially samples and latches display data output from the driver IC 3 in one horizontal period in synchronization with the vertical clock pulse. The first vertical driver 22A and the second vertical driver 22B sequentially output the digital data for one line latched in the latch circuit as vertical scanning pulses, and scan lines 24 m + 1 , 24 m + 2 , 24 m + 3. ... Sequentially select pixels Vpix in units of rows. The first vertical driver 22A and the second vertical driver 22B are arranged so as to sandwich the scanning lines 24 m + 1 , 24 m + 2 , 24 m + 3 ... In the extending direction of the scanning lines 24 m + 1 , 24 m + 2 , 24 m + 3. ing. For example, the first vertical driver 22A and the second vertical driver 22B are located above the display area 21 of the scanning lines 24 m + 1 , 24 m + 2 , 24 m + 3. The digital data is output in order in the vertical scanning downward direction. Further, the first vertical driver 22A and the second vertical driver 22B are located below the display area 21 of the scanning lines 24 m + 1 , 24 m + 2 , 24 m + 3. The digital data can also be output in order in the vertical scanning upward direction.

水平ドライバ23には、例えば6ビットのR(赤)、G(緑)、B(青)のデジタル映像データVsigが与えられる。水平ドライバ23は、第1垂直ドライバ22A、第2垂直ドライバ22Bによる垂直走査によって選択された行の各画素Vpixに対して、画素毎に、もしくは複数画素毎に、あるいは全画素一斉に、信号線25を介して表示データを書き込む。   For example, 6-bit R (red), G (green), and B (blue) digital video data Vsig is supplied to the horizontal driver 23. For each pixel Vpix in the row selected by the vertical scanning by the first vertical driver 22A and the second vertical driver 22B, the horizontal driver 23 is a signal line for each pixel, for every plurality of pixels, or for all the pixels at once. The display data is written via 25.

図3は、画素を駆動する駆動回路の一例を示す回路図である。表示エリア部21には、図3に示す各画素Vpixの薄膜トランジスタ(TFT;Thin Film Transistor)Trに表示データとして画素信号を供給する信号線25n+1、25n+2、25n+3、各薄膜トランジスタTrを駆動する走査線24m+1、24m+2、24m+3等の配線が形成されている。このように、信号線25n+1、25n+2、25n+3は、上述したガラス基板11の表面と平行な平面に延在し、画素Vpixに画像を表示するための画素信号を供給する。画素Vpixは、薄膜トランジスタTr及び液晶素子LCを備えている。薄膜トランジスタTrは、この例では、nチャネルのMOS(Metal Oxide Semiconductor)型のTFTで構成されている。薄膜トランジスタTrのソース及びドレインのうち一方は信号線25n+1、25n+2、25n+3に接続され、ゲートは走査線24m+1、24m+2、24m+3に接続され、ソース及びドレインのうち他方は液晶素子LCの一端に接続されている。液晶素子LCは、一端が薄膜トランジスタTrに接続され、他端が共通電極comのコモン電位Vcomに接続されている。 FIG. 3 is a circuit diagram illustrating an example of a drive circuit for driving a pixel. In the display area unit 21, signal lines 25 n + 1 , 25 n + 2 , 25 n + 3 for supplying pixel signals as display data to the thin film transistors (TFT) of each pixel Vpix shown in FIG. 3 and the thin film transistors Tr are driven. Wiring lines such as scanning lines 24 m + 1 , 24 m + 2 , 24 m + 3 are formed. As described above, the signal lines 25 n + 1 , 25 n + 2 , and 25 n + 3 extend in a plane parallel to the surface of the glass substrate 11 described above, and supply pixel signals for displaying an image to the pixels Vpix. The pixel Vpix includes a thin film transistor Tr and a liquid crystal element LC. In this example, the thin film transistor Tr is composed of an n-channel MOS (Metal Oxide Semiconductor) TFT. One of the source and drain of the thin film transistor Tr is connected to the signal lines 25 n + 1 , 25 n + 2 and 25 n + 3 , the gate is connected to the scanning lines 24 m + 1 , 24 m + 2 and 24 m + 3 , and the other of the source and drain is the liquid crystal element LC. It is connected to one end. The liquid crystal element LC has one end connected to the thin film transistor Tr and the other end connected to the common potential Vcom of the common electrode com.

画素Vpixは、走査線24m+1、24m+2、24m+3により、表示エリア部21の同じ行に属する他の画素Vpixと互いに接続されている。走査線24m+1、24m+2、24m+3のうち奇数の走査線24m+1、24m+3は、第1垂直ドライバ22Aと接続され、第1垂直ドライバ22Aから後述する走査信号の垂直走査パルスが供給される。走査線24m+1、24m+2、24m+3のうち偶数の走査線24m+2、24m+4は、第2垂直ドライバ22Bと接続され、第2垂直ドライバ22Bから、後述する走査信号の垂直走査パルスが供給される。このように、第1垂直ドライバ22A、第2垂直ドライバ22Bは、走査方向の走査線24m+1、24m+2、24m+3に交互に垂直走査パルスを印加する。また、画素Vpixは、信号線25n+1、25n+2、25n+3により、表示エリア部21の同じ列に属する他の画素Vpixと互いに接続されている。信号線25n+1、25n+2、25n+3は、水平ドライバ23と接続され、水平ドライバ23より画素信号が供給される。共通電極comのコモン電位Vcomは、不図示の駆動電極ドライバと接続され、駆動電極ドライバより電圧が供給される。さらに、画素Vpixは、共通電極comのコモン電位Vcomにより、表示エリア部21の同じ列に属する他の画素Vpixと互いに接続されている。 The pixel Vpix is connected to other pixels Vpix belonging to the same row of the display area unit 21 by scanning lines 24 m + 1 , 24 m + 2 and 24 m + 3 . Of the scanning lines 24 m + 1 , 24 m + 2 and 24 m + 3 , the odd scanning lines 24 m + 1 and 24 m + 3 are connected to the first vertical driver 22A, and a vertical scanning pulse of a scanning signal to be described later is supplied from the first vertical driver 22A. . Of the scanning lines 24 m + 1 , 24 m + 2 and 24 m + 3 , the even scanning lines 24 m + 2 and 24 m + 4 are connected to the second vertical driver 22B, and a vertical scanning pulse of a scanning signal to be described later is supplied from the second vertical driver 22B. The As described above, the first vertical driver 22A and the second vertical driver 22B alternately apply vertical scanning pulses to the scanning lines 24 m + 1 , 24 m + 2 , and 24 m + 3 in the scanning direction. The pixel Vpix is connected to other pixels Vpix belonging to the same column of the display area unit 21 by signal lines 25 n + 1 , 25 n + 2 , and 25 n + 3 . The signal lines 25 n + 1 , 25 n + 2 , 25 n + 3 are connected to the horizontal driver 23, and pixel signals are supplied from the horizontal driver 23. The common potential Vcom of the common electrode com is connected to a drive electrode driver (not shown), and a voltage is supplied from the drive electrode driver. Further, the pixel Vpix is connected to another pixel Vpix belonging to the same column of the display area unit 21 by the common potential Vcom of the common electrode com.

図1及び図2に示す第1垂直ドライバ22A、第2垂直ドライバ22Bは、垂直走査パルスを、図3に示す走査線24m+1、24m+2、24m+3を介して、画素Vpixの薄膜トランジスタTrのゲートに印加することにより、表示エリア部21にマトリクス状に形成されている画素Vpixのうちの1行(1水平ライン)を表示駆動の対象として順次選択する。図1及び図2に示す水平ドライバ23は、画素信号を、図3に示す信号線25n+1、25n+2、25n+3を介して、第1垂直ドライバ22A、第2垂直ドライバ22Bにより順次選択される1水平ラインを含む各画素Vpixにそれぞれ供給する。そして、これらの画素Vpixでは、供給される画素信号に応じて、1水平ラインの表示が行われるようになっている。 The first vertical driver 22A and the second vertical driver 22B shown in FIG. 1 and FIG. 2 send the vertical scanning pulse to the gate of the thin film transistor Tr of the pixel Vpix via the scanning lines 24 m + 1 , 24 m + 2 , 24 m + 3 shown in FIG. Is applied to the display area 21 to sequentially select one row (one horizontal line) of the pixels Vpix formed in a matrix in the display area 21 as a display drive target. The horizontal driver 23 shown in FIGS. 1 and 2 sequentially selects pixel signals by the first vertical driver 22A and the second vertical driver 22B via the signal lines 25 n + 1 , 25 n + 2 and 25 n + 3 shown in FIG. Each pixel Vpix including one horizontal line is supplied. In these pixels Vpix, display of one horizontal line is performed in accordance with the supplied pixel signal.

上述したように、表示装置1は、第1垂直ドライバ22A、第2垂直ドライバ22Bが走査線24m+1、24m+2、24m+3を順次走査するように駆動することにより、1水平ラインが順次選択される。また、表示装置1は、1水平ラインに属する画素Vpixに対して、水平ドライバ23が画素信号を供給することにより、1水平ラインずつ表示が行われる。この表示動作を行う際、駆動電極ドライバは、その1水平ラインに対応する共通電極comのコモン電位Vcomを印加するようになっている。 As described above, in the display device 1, one horizontal line is sequentially selected by driving the first vertical driver 22 </ b > A and the second vertical driver 22 </ b > B so that the scanning lines 24 m + 1 , 24 m + 2 , and 24 m + 3 are sequentially scanned. The In the display device 1, the horizontal driver 23 supplies a pixel signal to the pixels Vpix belonging to one horizontal line, so that display is performed for each horizontal line. When performing this display operation, the drive electrode driver applies the common potential Vcom of the common electrode com corresponding to the one horizontal line.

表示装置1は、液晶素子LCに同極性の直流電圧が印加され続けることによって液晶の比抵抗(物質固有の抵抗値)等が劣化する可能性がある。表示装置1は、液晶の比抵抗(物質固有の抵抗値)等の劣化を防ぐため、駆動信号のコモン電位Vcomを基準として映像信号の極性を所定の周期で反転させる駆動方式が採られる。   In the display device 1, there is a possibility that the specific resistance (resistance value specific to the substance) of the liquid crystal and the like deteriorate due to the continuous application of the DC voltage of the same polarity to the liquid crystal element LC. The display device 1 employs a driving method in which the polarity of the video signal is inverted at a predetermined period with reference to the common potential Vcom of the driving signal in order to prevent deterioration of the specific resistance (substance specific to the substance) of the liquid crystal.

この液晶表示装置の駆動方式として、カラム反転、ライン反転、ドット反転、フレーム反転などの駆動方式が知られている。カラム反転は、1カラム(1画素列)に相当する1V(Vは垂直期間)の時間周期で映像信号の極性を反転させる駆動方式である。ライン反転は、1ライン(1画素行)に相当する1H(Hは水平期間)の時間周期で映像信号の極性を反転させる駆動方式である。ドット反転は、互いに隣接する上下左右の画素毎に映像信号の極性を交互に反転させる駆動方式である。フレーム反転は、1画面に相当する1フレーム毎に全画素に書き込む映像信号を一度に同じ極性で反転させる駆動方式である。表示装置1は、上記の各駆動方式のいずれを採用することも可能であるが、後述するように、共通電極comのコモン電位Vcomを一定とする場合は、映像信号の極性を反転させる駆動方式であるカラム反転又はドット反転を用いる。   As a driving method of the liquid crystal display device, driving methods such as column inversion, line inversion, dot inversion, and frame inversion are known. Column inversion is a driving method in which the polarity of a video signal is inverted in a time period of 1 V (V is a vertical period) corresponding to one column (one pixel column). Line inversion is a driving method in which the polarity of a video signal is inverted at a time period of 1H (H is a horizontal period) corresponding to one line (one pixel row). The dot inversion is a driving method in which the polarity of the video signal is alternately inverted for each of the upper, lower, left and right adjacent pixels. Frame inversion is a driving method that inverts video signals to be written to all pixels for each frame corresponding to one screen at the same polarity. The display device 1 can employ any of the above driving methods. However, as will be described later, when the common potential Vcom of the common electrode com is constant, the driving method reverses the polarity of the video signal. Use column inversion or dot inversion.

次に、表示エリア部21の構成を詳細に説明する。図4は、液晶表示部の一例を示す断面図である。液晶表示部2は、図4に示すように、第1基板(上側基板)50と、この第1基板50の表面に垂直な方向に対向して配置された第2基板(下側基板)52と、第1基板50と第2基板52との間に挿設された液晶層54とを備えている。なお、第1基板50は、液晶層54とは反対側の面に、バックライト6が配置されている。   Next, the configuration of the display area unit 21 will be described in detail. FIG. 4 is a cross-sectional view illustrating an example of a liquid crystal display unit. As shown in FIG. 4, the liquid crystal display unit 2 includes a first substrate (upper substrate) 50 and a second substrate (lower substrate) 52 arranged to face the surface of the first substrate 50 in a direction perpendicular to the first substrate 50. And a liquid crystal layer 54 inserted between the first substrate 50 and the second substrate 52. The first substrate 50 is provided with the backlight 6 on the surface opposite to the liquid crystal layer 54.

液晶層54は、電界の状態に応じてそこを通過する光を変調するものであり、FFS(フリンジフィールドスイッチング)又はIPS(インプレーンスイッチング)等の横電界モードの液晶54を用いた液晶表示デバイスが用いられる。液晶54は、液晶層54に多数分散されている。   The liquid crystal layer 54 modulates light passing therethrough according to the state of an electric field, and a liquid crystal display device using a liquid crystal 54 in a transverse electric field mode such as FFS (fringe field switching) or IPS (in-plane switching). Is used. A large number of liquid crystals 54 are dispersed in the liquid crystal layer 54.

第1基板50は、ガラスなどの透光性基板である画素基板60と、画素基板60の液晶層54側に積層された第1配向膜62と、画素基板60の液晶層54とは反対側に積層された第1偏光板63と、を有する。画素基板60については後述する。第1配向膜62は、液晶層54内の液晶分子を所定の方向に配向させるものであり、液晶層54と直接に接している。第1配向膜62は、例えば、ポリイミドなどの高分子材料からなり、例えば、塗布したポリイミド等に対してラビング処理を施すことにより形成されたものである。第1偏光板63は、バックライト6側から入射してきた光を直線偏光に変換する機能を有している。   The first substrate 50 includes a pixel substrate 60 that is a light-transmitting substrate such as glass, a first alignment film 62 that is stacked on the liquid crystal layer 54 side of the pixel substrate 60, and a side opposite to the liquid crystal layer 54 of the pixel substrate 60. And a first polarizing plate 63 laminated on the substrate. The pixel substrate 60 will be described later. The first alignment film 62 aligns the liquid crystal molecules in the liquid crystal layer 54 in a predetermined direction, and is in direct contact with the liquid crystal layer 54. The first alignment film 62 is made of, for example, a polymer material such as polyimide, and is formed, for example, by subjecting applied polyimide or the like to a rubbing process. The first polarizing plate 63 has a function of converting light incident from the backlight 6 side into linearly polarized light.

第2基板52は、ガラスなどの透光性基板である対向基板64と、この対向基板64の液晶層54側に形成されたカラーフィルタ66と、カラーフィルタ66の液晶層54側に形成された第2配向膜67と、対向基板64の液晶層54側とは反対側に形成された位相差板68と、位相差板68の対向基板64側とは反対側に形成された第2偏光板69と、を含む。カラーフィルタ66は、例えば、赤(R)、緑(G)、青(B)の3色に着色された色領域を含む。カラーフィルタ66は、開口部76bに例えば赤(R)、緑(G)、青(B)の3色に着色された色領域を周期的に配列して、図3に示す各画素VpixにR、G、Bの3色の色領域が1組として画素Pixとして対応付けられている。カラーフィルタ66は、画素基板60と垂直な方向において、液晶層54と対向する。なお、カラーフィルタ66は、異なる色に着色されていれば、他の色の組み合わせであってもよい。一般に、カラーフィルタ66は、緑(G)の色領域の輝度が、赤(R)の色領域及び青(B)の色領域の輝度よりも高い。なお、カラーフィルタ66は、ブラックマトリクス76aが図3に示す画素Vpixの外周を覆うように形成されていてもよい。このブラックマトリクス76aは、二次元配置された画素Vpixと画素Vpixとの境界に配置されることで、格子形状となる。そして、ブラックマトリクス76aは、光の吸収率が高い材料で形成される。   The second substrate 52 is a counter substrate 64 that is a light-transmitting substrate such as glass, a color filter 66 formed on the liquid crystal layer 54 side of the counter substrate 64, and a liquid crystal layer 54 side of the color filter 66. The second alignment film 67, the retardation plate 68 formed on the opposite side of the counter substrate 64 from the liquid crystal layer 54 side, and the second polarizing plate formed on the opposite side of the retardation plate 68 from the counter substrate 64 side. 69. The color filter 66 includes, for example, a color region colored in three colors of red (R), green (G), and blue (B). The color filter 66 periodically arranges, for example, color regions colored in three colors of red (R), green (G), and blue (B) in the opening 76b, and R is applied to each pixel Vpix shown in FIG. , G, and B are associated with each other as a pixel Pix. The color filter 66 faces the liquid crystal layer 54 in a direction perpendicular to the pixel substrate 60. The color filter 66 may be a combination of other colors as long as it is colored in a different color. In general, in the color filter 66, the luminance of the green (G) color region is higher than the luminance of the red (R) color region and the blue (B) color region. The color filter 66 may be formed so that the black matrix 76a covers the outer periphery of the pixel Vpix shown in FIG. The black matrix 76a has a lattice shape by being arranged at the boundary between the two-dimensionally arranged pixels Vpix and the pixels Vpix. The black matrix 76a is formed of a material having a high light absorption rate.

第2配向膜67は、第1配向膜62と同様に、液晶層54内の液晶分子を所定の方向に配向させるものであり、液晶層54と直接に接している。第2配向膜67は、例えば、ポリイミドなどの高分子材料からなり、例えば、塗布したポリイミド等に対してラビング処理を施すことにより形成されたものである。位相差板68は、第1偏光板63及び第2偏光板69に生じる偏光板起因の視野角を補償する機能を有する。第2偏光板69は、偏光板吸収軸と平行な直線偏光成分を吸収し、直交する偏光成分を透過する機能を有している。第2偏光板69は、液晶のON/OFF状態に依存して光を透過/遮断する機能を有している。   Similar to the first alignment film 62, the second alignment film 67 aligns the liquid crystal molecules in the liquid crystal layer 54 in a predetermined direction, and is in direct contact with the liquid crystal layer 54. The second alignment film 67 is made of, for example, a polymer material such as polyimide, and is formed, for example, by performing a rubbing process on the applied polyimide or the like. The phase difference plate 68 has a function of compensating for the viewing angle caused by the polarizing plate generated in the first polarizing plate 63 and the second polarizing plate 69. The second polarizing plate 69 has a function of absorbing linearly polarized light components parallel to the polarizing plate absorption axis and transmitting orthogonally polarized light components. The second polarizing plate 69 has a function of transmitting / blocking light depending on the ON / OFF state of the liquid crystal.

次に、図5及び図6を用いて、画素基板60について説明する。図5は、実施形態1に係る液晶表示装置の画素を模式的に示す平面図である。図6は、実施形態1に係る液晶表示装置の画素基板の一例を模式的に示す断面図である。画素基板60は、透光性基板71に各種回路が形成されたTFT基板であり、この画素基板60上にマトリクス状に配設された複数の画素電極72と、共通電極comと、を含む。図6に示すように、画素電極72と共通電極comとは、絶縁層74で絶縁され、画素基板60の表面に垂直な方向において、対向している。画素電極72及び共通電極comは、ITO(Indium Tin Oxide)等の透光性導電材料(透光性導電酸化物)で形成される透光性電極である。   Next, the pixel substrate 60 will be described with reference to FIGS. FIG. 5 is a plan view schematically showing a pixel of the liquid crystal display device according to the first embodiment. FIG. 6 is a cross-sectional view schematically illustrating an example of the pixel substrate of the liquid crystal display device according to the first embodiment. The pixel substrate 60 is a TFT substrate in which various circuits are formed on a translucent substrate 71, and includes a plurality of pixel electrodes 72 arranged in a matrix on the pixel substrate 60 and a common electrode com. As shown in FIG. 6, the pixel electrode 72 and the common electrode com are insulated by an insulating layer 74 and face each other in a direction perpendicular to the surface of the pixel substrate 60. The pixel electrode 72 and the common electrode com are translucent electrodes formed of a translucent conductive material (translucent conductive oxide) such as ITO (Indium Tin Oxide).

画素基板60は、透光性基板71に、上述した各画素Vpixのスイッチング素子である薄膜トランジスタが形成された半導体層90、各画素電極72に画素信号を供給する信号線25、薄膜トランジスタを駆動する走査線24等の配線が絶縁層74を介して積層されている。本実施形態において、共通電位補助配線COMLは、共通電極comへコモン電位Vcomを給電する配線である。   The pixel substrate 60 includes a semiconductor layer 90 on which a thin film transistor that is a switching element of each pixel Vpix is formed on the translucent substrate 71, a signal line 25 that supplies a pixel signal to each pixel electrode 72, and a scan that drives the thin film transistor. Wirings such as the wires 24 are stacked via an insulating layer 74. In the present embodiment, the common potential auxiliary wiring COML is a wiring that supplies the common potential Vcom to the common electrode com.

絶縁層74は、走査線24と半導体層90との間の絶縁層74aと、画素電極72と共通電極comとの間の絶縁層74bと、が積層されている。より具体的には、絶縁層74aは、各部が透光性基板71または走査線24と接する位置(層)に積層されている。絶縁膜74bは、各部が信号線25、半導体層90または絶縁膜74aの表面に接する位置(層)に積層されている。本実施形態の絶縁膜74a及び絶縁膜74bは、SiNx(窒化シリコン)又は酸化シリコンの無機絶縁層である。なお、絶縁膜74a、74b、74cの各層を形成する材料はこれに限定されない。また、絶縁膜74a、74b、74cは、同じ絶縁材料であってもよく、いずれかが異なる絶縁材料であってもよい。   The insulating layer 74 is formed by laminating an insulating layer 74a between the scanning line 24 and the semiconductor layer 90 and an insulating layer 74b between the pixel electrode 72 and the common electrode com. More specifically, the insulating layer 74 a is laminated at a position (layer) where each part is in contact with the translucent substrate 71 or the scanning line 24. The insulating film 74b is laminated at a position (layer) where each part is in contact with the signal line 25, the semiconductor layer 90, or the surface of the insulating film 74a. The insulating film 74a and the insulating film 74b of this embodiment are inorganic insulating layers of SiNx (silicon nitride) or silicon oxide. Note that the material for forming each layer of the insulating films 74a, 74b, and 74c is not limited to this. The insulating films 74a, 74b, and 74c may be made of the same insulating material or may be made of different insulating materials.

図5及び図6に示すように、走査線24は、半導体層90の一部と立体交差して、薄膜トランジスタTrのゲートとして作用する。走査線24と半導体層90の一部とが立体交差した箇所は1カ所であり、薄膜トランジスタTrは、nチャネルであるチャネル領域chを備えるシングルゲートトランジスタである。半導体層90は、例えば、アモルファスシリコン、低温ポリシリコンなどで形成されている。信号線25は、透光性基板71の表面と平行な平面に延在し、画素に画像を表示するための画素信号を供給する。半導体層90は、一部が信号線25のソース線25aと接し、他の一部が信号線25と同一の層に形成されたドレイン線25bと電気的に接続している。本実施形態のドレイン線25bは、スルーホールSH1において、画素電極72と電気的に接続している。本実施形態において、走査線24は、モリブデン(Mo)、アルミニウム(Al)等の金属の配線であり、信号線25は、アルミニウム等の金属の配線である。共通電位補助配線COMLは、アルミニウム等の金属の配線である。本実施形態の画素基板60は、透光性基板71上に、共通電位補助配線COML、走査線24及び共通電極com、絶縁膜74a、信号線25及び半導体層90、絶縁膜74b、画素電極72、絶縁膜74c、共通電極comの順で積層されている。   As shown in FIGS. 5 and 6, the scanning line 24 three-dimensionally intersects with a part of the semiconductor layer 90 and functions as a gate of the thin film transistor Tr. There is one place where the scanning line 24 and a part of the semiconductor layer 90 are three-dimensionally crossed, and the thin film transistor Tr is a single gate transistor including a channel region ch which is an n channel. The semiconductor layer 90 is made of, for example, amorphous silicon, low-temperature polysilicon, or the like. The signal line 25 extends in a plane parallel to the surface of the translucent substrate 71 and supplies a pixel signal for displaying an image to the pixel. A part of the semiconductor layer 90 is in contact with the source line 25 a of the signal line 25 and the other part is electrically connected to a drain line 25 b formed in the same layer as the signal line 25. In the present embodiment, the drain line 25b is electrically connected to the pixel electrode 72 in the through hole SH1. In the present embodiment, the scanning line 24 is a metal wiring such as molybdenum (Mo) or aluminum (Al), and the signal line 25 is a metal wiring such as aluminum. The common potential auxiliary wiring COML is a wiring made of metal such as aluminum. The pixel substrate 60 of the present embodiment has a common potential auxiliary wiring COML, a scanning line 24 and a common electrode com, an insulating film 74a, a signal line 25 and a semiconductor layer 90, an insulating film 74b, and a pixel electrode 72 on a translucent substrate 71. The insulating film 74c and the common electrode com are stacked in this order.

画素基板60は、各画素Vpixに対応して画素電極72に開口SLが形成されており、共通電極comと画素電極72との間に形成される電界のうち、画素電極72の開口SLからもれた電界(フリンジ電界)で液晶54を駆動させる。   In the pixel substrate 60, an opening SL is formed in the pixel electrode 72 corresponding to each pixel Vpix. Of the electric field formed between the common electrode com and the pixel electrode 72, the pixel substrate 72 also has an opening SL. The liquid crystal 54 is driven by the generated electric field (fringe electric field).

共通電位補助配線COMLは、共通電極comへコモン電位Vcomを給電する配線であるが、チャネル領域chを覆う透光性の導電層73にもコモン電位VcomをスルーホールSH2で電気的に接続することで給電している。導電層73は、画素電極72と同時にパターニングされ、形成されたITOであることが、プロセス工数を削減するために好ましい。これにより、図6に示す導電層73と半導体層90とが絶縁層74bを介して、対向し、導電層73に給電された電位が薄膜トランジスタTrのチャネル領域chの動作へ影響を及ぼすことができる。絶縁層74bは、画素基板60の表面に垂直な方向においてチャネル領域chとオーバーラップし、厚みdは50nm以上1000nm以下であることが好ましい。絶縁層74bの厚みdは50nm以上とすることで、導電層73とソース線25aとの絶縁性を確保できる。絶縁層74bの厚みdは1000nm以下とすることで、導電層73に給電された電位が薄膜トランジスタTrのチャネル領域chの動作へ影響を高めることができる。   The common potential auxiliary wiring COML is a wiring for supplying the common potential Vcom to the common electrode com. The common potential Vcom is also electrically connected to the translucent conductive layer 73 covering the channel region ch through the through hole SH2. Power is supplied with. The conductive layer 73 is preferably ITO formed by patterning at the same time as the pixel electrode 72 in order to reduce the number of process steps. Accordingly, the conductive layer 73 and the semiconductor layer 90 shown in FIG. 6 face each other through the insulating layer 74b, and the potential supplied to the conductive layer 73 can affect the operation of the channel region ch of the thin film transistor Tr. . The insulating layer 74b overlaps with the channel region ch in a direction perpendicular to the surface of the pixel substrate 60, and the thickness d is preferably 50 nm or more and 1000 nm or less. By setting the thickness d of the insulating layer 74b to 50 nm or more, the insulation between the conductive layer 73 and the source line 25a can be secured. By setting the thickness d of the insulating layer 74b to 1000 nm or less, the potential supplied to the conductive layer 73 can increase the influence on the operation of the channel region ch of the thin film transistor Tr.

図7は、スイッチング素子の特性を説明するための説明図である。図7に示すように、スイッチング素子である薄膜トランジスタTrは、所定の電流−電圧特性(I−V特性)を有しており、電流を本来流さないTFTオフ時のオフリークを低減する必要がある。本発明者らは、画素基板60の表面に垂直な方向において薄膜トランジスタTrに積層された無機絶縁層74bを介して設けられ、チャネル領域chを覆う、導電層73を備え、導電層73には、正の電位が印加されていれば、導電層73に電位が印加されていないI−V特性曲線Cnよりも、電圧の振幅が大きなI−V特性曲線Cpとすることができ、電流Iが本来流れていない領域のオフリークの電流量を低減することを見いだした。逆に、上述した特許文献の技術のように導電層73には、負の電位が印加されていると、導電層73に電位が印加されていないI−V特性曲線Cnよりも、電圧の振幅が小さなI−V特性曲線Cmとなり、電流Iが本来流れていない領域のオフリークの電流量が増加してしまう可能性がある。   FIG. 7 is an explanatory diagram for explaining the characteristics of the switching element. As shown in FIG. 7, the thin film transistor Tr serving as a switching element has a predetermined current-voltage characteristic (IV characteristic), and it is necessary to reduce off-leakage when the TFT is turned off, in which no current flows. The inventors include a conductive layer 73 provided via an inorganic insulating layer 74b stacked on the thin film transistor Tr in a direction perpendicular to the surface of the pixel substrate 60, and covering the channel region ch. If a positive potential is applied, an IV characteristic curve Cp having a larger voltage amplitude than that of the IV characteristic curve Cn in which no potential is applied to the conductive layer 73 can be obtained. It has been found that the amount of off-leakage current in the non-flowing region can be reduced. Conversely, when a negative potential is applied to the conductive layer 73 as in the technique of the above-mentioned patent document, the amplitude of the voltage is higher than the IV characteristic curve Cn in which no potential is applied to the conductive layer 73. Becomes a small IV characteristic curve Cm, and there is a possibility that the amount of off-leakage current increases in a region where the current I does not originally flow.

このように、実施形態1に係る表示装置1は、第1基板である画素基板60と、画素電極72に対向配置された第2基板である対向基板64と、画素基板60と対向基板64との間に配置される液晶層54と、を備える。画素基板60は、マトリクス状に配置された複数の画素電極72と、画素電極72のそれぞれに接続されるスイッチング素子である薄膜トランジスタTrと、画素基板60の表面に垂直な方向において薄膜トランジスタTrに積層された無機絶縁層74bを介して設けられ、チャネル領域chを覆う、導電層73とを備える。そして、導電層73には、正の電位が印加されている。これにより、薄膜トランジスタTrのスイッチングオフ時のオフリーク電流を低減することができる。リーク電流に起因する、液晶層54の表示ムラが抑制され、表示装置1は、表示品質が向上する。表示装置1を利用した電子機器は、表示品質が向上するので、操作性が向上する。   As described above, the display device 1 according to the first embodiment includes the pixel substrate 60 that is the first substrate, the counter substrate 64 that is the second substrate disposed to face the pixel electrode 72, the pixel substrate 60, and the counter substrate 64. And a liquid crystal layer 54 disposed therebetween. The pixel substrate 60 is stacked on the plurality of pixel electrodes 72 arranged in a matrix, the thin film transistor Tr that is a switching element connected to each of the pixel electrodes 72, and the thin film transistor Tr in a direction perpendicular to the surface of the pixel substrate 60. A conductive layer 73 provided through the inorganic insulating layer 74b and covering the channel region ch. A positive potential is applied to the conductive layer 73. Thereby, the off-leakage current when the thin film transistor Tr is switched off can be reduced. Display unevenness of the liquid crystal layer 54 due to the leakage current is suppressed, and the display device 1 has improved display quality. Since the electronic equipment using the display device 1 has improved display quality, operability is improved.

導電層73には、正の電位が印加されていれば、導電層73への給電用の専用配線を備えてもよい。上述したように、実施形態1の共通電位補助配線COMLは、共通電極comへコモン電位Vcomを給電する配線であるが、チャネル領域chを覆う透光性の導電層73にもコモン電位VcomをスルーホールSH2で電気的に接続することで給電している。これにより、導電層73への給電用の専用配線を削減できるので、表示に寄与しない配線領域を低減できる。   As long as a positive potential is applied to the conductive layer 73, a dedicated wiring for supplying power to the conductive layer 73 may be provided. As described above, the common potential auxiliary wiring COML of the first embodiment is a wiring that feeds the common potential Vcom to the common electrode com. However, the common potential Vcom is also passed through the translucent conductive layer 73 that covers the channel region ch. Power is supplied by being electrically connected in the hall SH2. As a result, the number of dedicated lines for supplying power to the conductive layer 73 can be reduced, so that the wiring area that does not contribute to display can be reduced.

実施形態1の共通電位補助配線COMLは、チャネル領域chを覆う透光性の導電層73にもコモン電位VcomをスルーホールSH2で電気的に接続する。導電層73の電位は、共通電極comの電位Vcomと同じである。コモン電位Vcomは、正の電圧+DCで一定であり、図7に示すように、コモン電位Vcomを基準として映像信号Videoの極性を所定の周期で反転させるカラム反転又はドット反転により薄膜トランジスタTrが駆動される。これにより、液晶の比抵抗(物質固有の抵抗値)等の劣化を抑制できる。   The common potential auxiliary wiring COML of the first embodiment electrically connects the common potential Vcom to the translucent conductive layer 73 covering the channel region ch through the through hole SH2. The potential of the conductive layer 73 is the same as the potential Vcom of the common electrode com. The common potential Vcom is constant at a positive voltage + DC, and as shown in FIG. 7, the thin film transistor Tr is driven by column inversion or dot inversion that inverts the polarity of the video signal Video at a predetermined cycle with reference to the common potential Vcom. The Thereby, it is possible to suppress the deterioration of the specific resistance (substance value specific to the substance) of the liquid crystal.

(変形例)
図8は、実施形態1に係る液晶表示装置の画素基板の変形例を模式的に示す断面図である。図8に示すように、絶縁層74は、走査線24と半導体層90との間の絶縁層74aと、信号線25のソース線25aと導電層73との間の絶縁層74bと、絶縁層74bの平坦化のための絶縁層74cと、画素電極72と共通電極comとの間の絶縁層74dと、が積層されている。本実施形態の絶縁層74a、74b、74dは、SiNx(窒化シリコン)、SiO等の無機系絶縁材料で形成されている。また、絶縁膜74cは、ポリイミド樹脂などの有機系絶縁材料で形成されている。また、絶縁膜74cは、SiNx(窒化シリコン)、SiO等の無機系絶縁材料で形成されている。なお、絶縁膜74a、74b、74dの各層を形成する材料はこれに限定されない。また、絶縁膜74a、74b、74dは、同じ絶縁材料であってもよく、いずれかが異なる絶縁材料であってもよい。
(Modification)
FIG. 8 is a cross-sectional view schematically showing a modification of the pixel substrate of the liquid crystal display device according to the first embodiment. As shown in FIG. 8, the insulating layer 74 includes an insulating layer 74a between the scanning line 24 and the semiconductor layer 90, an insulating layer 74b between the source line 25a of the signal line 25 and the conductive layer 73, and an insulating layer. An insulating layer 74c for flattening 74b and an insulating layer 74d between the pixel electrode 72 and the common electrode com are stacked. Insulating layer 74a, 74b, 74d of the present embodiment, SiNx (silicon nitride) and is formed with an inorganic insulating material such as SiO 2. The insulating film 74c is formed of an organic insulating material such as polyimide resin. The insulating film 74c is, SiNx (silicon nitride) and is formed with an inorganic insulating material such as SiO 2. Note that the material for forming each layer of the insulating films 74a, 74b, and 74d is not limited to this. The insulating films 74a, 74b, and 74d may be made of the same insulating material or may be made of different insulating materials.

(実施形態2)
図9は、実施形態2に係る液晶表示装置の画素を模式的に示す平面図である。図10は、実施形態2に係る液晶表示装置の画素基板の一例を模式的に示す断面図である。上述した本実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。実施形態1の画素電極72は、共通電極comよりも液晶層54側にある。実施形態2の共通電極comは、画素電極72よりも液晶層54側にある。このため、画素基板60は、各画素Vpixに対応して共通電極comに開口SLが形成されており、共通電極comと画素電極72との間に形成される電界のうち、共通電極comの開口SLからもれた電界(フリンジ電界)で液晶54を駆動させる。このような構造にすることにより、実施形態1で配置した共通電位補助配線COMLを備えなくてもよい。その結果、開口効率を向上させることができる。
(Embodiment 2)
FIG. 9 is a plan view schematically showing pixels of the liquid crystal display device according to the second embodiment. FIG. 10 is a cross-sectional view schematically illustrating an example of the pixel substrate of the liquid crystal display device according to the second embodiment. The same components as those described in the above-described embodiment are denoted by the same reference numerals, and redundant description is omitted. The pixel electrode 72 of the first embodiment is closer to the liquid crystal layer 54 than the common electrode com. The common electrode com of the second embodiment is closer to the liquid crystal layer 54 than the pixel electrode 72. Therefore, in the pixel substrate 60, an opening SL is formed in the common electrode com corresponding to each pixel Vpix, and the opening of the common electrode com out of the electric field formed between the common electrode com and the pixel electrode 72 is formed. The liquid crystal 54 is driven by an electric field (fringe electric field) leaking from the SL. By adopting such a structure, the common potential auxiliary wiring COML arranged in the first embodiment may not be provided. As a result, the aperture efficiency can be improved.

実施形態2に係る表示装置1は、第1基板である画素基板60と、画素電極72に対向配置された第2基板である対向基板64と、画素基板60と対向基板64との間に配置される液晶層54と、を備える。画素基板60は、マトリクス状に配置された複数の画素電極72と、画素電極72のそれぞれに接続されるスイッチング素子である薄膜トランジスタTrと、画素基板60の表面に垂直な方向において薄膜トランジスタTrに積層された無機絶縁層74bを介して設けられ、チャネル領域chを覆う、導電層としての共通電極comとを備える。そして、チャネル領域chを覆う、導電層としての共通電極comには、正の電位が印加されている。これにより、薄膜トランジスタTrのスイッチングオフ時のオフリーク電流を低減することができる。リーク電流に起因する、液晶層54の表示ムラが抑制され、表示装置1は、表示品質が向上する。表示装置1を利用した電子機器は、表示品質が向上するので、操作性が向上する。   The display device 1 according to the second embodiment includes a pixel substrate 60 that is a first substrate, a counter substrate 64 that is a second substrate disposed to face the pixel electrode 72, and the pixel substrate 60 and the counter substrate 64. A liquid crystal layer 54 to be provided. The pixel substrate 60 is stacked on the plurality of pixel electrodes 72 arranged in a matrix, the thin film transistor Tr that is a switching element connected to each of the pixel electrodes 72, and the thin film transistor Tr in a direction perpendicular to the surface of the pixel substrate 60. And a common electrode com as a conductive layer that is provided via the inorganic insulating layer 74b and covers the channel region ch. A positive potential is applied to the common electrode com serving as a conductive layer covering the channel region ch. Thereby, the off-leakage current when the thin film transistor Tr is switched off can be reduced. Display unevenness of the liquid crystal layer 54 due to the leakage current is suppressed, and the display device 1 has improved display quality. Since the electronic equipment using the display device 1 has improved display quality, operability is improved.

図10に示すチャネル領域chを覆う導電層としての共通電極comと半導体層90とが絶縁層74bを介して対向し、共通電極comに給電された電位が薄膜トランジスタTrのチャネル領域chの動作へ影響を及ぼすことができる。絶縁層74cは、スルーホールSH3で取り除かれているので、チャネル領域chを覆う導電層としての共通電極comと半導体層90との間隔である、絶縁層74bの厚みdは50nm以上1000nm以下であることが好ましい。これにより、チャネル領域chを覆う導電層としての共通電極comに給電された電位が薄膜トランジスタTrのチャネル領域chの動作へ影響を高めることができる。   The common electrode com as a conductive layer covering the channel region ch shown in FIG. 10 and the semiconductor layer 90 face each other through the insulating layer 74b, and the potential supplied to the common electrode com affects the operation of the channel region ch of the thin film transistor Tr. Can affect. Since the insulating layer 74c is removed by the through hole SH3, the thickness d of the insulating layer 74b, which is the distance between the common electrode com as a conductive layer covering the channel region ch and the semiconductor layer 90, is 50 nm or more and 1000 nm or less. It is preferable. Thereby, the potential supplied to the common electrode com as a conductive layer covering the channel region ch can increase the influence on the operation of the channel region ch of the thin film transistor Tr.

(変形例1)
図11は、実施形態2の変形例1に係る液晶表示装置の画素基板を模式的に示す断面図である。図11に示すように、図10に示す平坦化層74cを形成しなくてもよい。これにより、製造プロセスを短縮することができる。
(Modification 1)
FIG. 11 is a cross-sectional view schematically showing a pixel substrate of the liquid crystal display device according to the first modification of the second embodiment. As shown in FIG. 11, the planarization layer 74c shown in FIG. 10 need not be formed. Thereby, a manufacturing process can be shortened.

(変形例2)
図12は、実施形態2の変形例2に係る液晶表示装置の画素基板を模式的に示す断面図である。図12に示すように、図10に示す平坦化層74cを形成しなくてもよい。これにより、製造プロセスを短縮することができる。さらに、実施形態2の変形例2に係る液晶表示装置の画素基板60は、実施形態1と同様に共通電位補助配線COMLを備えている。
(Modification 2)
FIG. 12 is a cross-sectional view schematically illustrating a pixel substrate of a liquid crystal display device according to the second modification of the second embodiment. As shown in FIG. 12, the planarization layer 74c shown in FIG. 10 need not be formed. Thereby, a manufacturing process can be shortened. Further, the pixel substrate 60 of the liquid crystal display device according to the second modification of the second embodiment includes the common potential auxiliary wiring COML as in the first embodiment.

(適用例)
次に、図13を参照して、実施形態で説明した表示装置1の適用例について説明する。図13は、本実施形態に係る液晶表示装置を適用する電子機器の一例を示す図である。本実施形態に係る表示装置1は、カーナビゲーションシステム、テレビジョン装置、デジタルカメラ、ノート型パーソナルコンピュータ、携帯電話等の携帯端末装置あるいはビデオカメラなどのあらゆる分野の電子機器に適用することが可能である。言い換えると、本実施形態に係る表示装置1は、外部から入力された映像信号あるいは内部で生成した映像信号を、画像あるいは映像として表示するあらゆる分野の電子機器に適用することが可能である。電子機器は、液晶表示装置に映像信号を供給し、液晶表示装置の動作を制御する制御装置を備える。
(Application example)
Next, an application example of the display device 1 described in the embodiment will be described with reference to FIG. FIG. 13 is a diagram illustrating an example of an electronic apparatus to which the liquid crystal display device according to this embodiment is applied. The display device 1 according to the present embodiment can be applied to electronic devices in various fields such as a car navigation system, a television device, a digital camera, a notebook personal computer, a mobile terminal device such as a mobile phone, or a video camera. is there. In other words, the display device 1 according to the present embodiment can be applied to electronic devices in various fields that display an externally input video signal or an internally generated video signal as an image or video. The electronic apparatus includes a control device that supplies a video signal to the liquid crystal display device and controls the operation of the liquid crystal display device.

図13に示す電子機器は、本実施形態に係る表示装置1が適用されるカーナビゲーション装置である。表示装置1は、自動車の車内のダッシュボード300に設置される。具体的にはダッシュボード300の運転席311と助手席312の間に設置される。カーナビゲーション装置の表示装置1は、ナビゲーション表示、音楽操作画面の表示、又は、映画再生表示等に利用される。   The electronic device shown in FIG. 13 is a car navigation device to which the display device 1 according to this embodiment is applied. The display device 1 is installed on a dashboard 300 in a car. Specifically, it is installed between the driver's seat 311 and the passenger seat 312 of the dashboard 300. The display device 1 of the car navigation device is used for navigation display, music operation screen display, movie playback display, and the like.

また、上述した内容により実施形態が限定されるものではない。また、上述した実施形態の構成要素には、当業者が容易に想到できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、上述の実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換及び変更を行うことができる。   In addition, the embodiment is not limited by the above-described content. The constituent elements of the above-described embodiment include those that can be easily conceived by those skilled in the art, those that are substantially the same, and those that are so-called equivalent ranges. Furthermore, various omissions, substitutions, and changes of the constituent elements can be made without departing from the spirit of the above-described embodiment.

1 表示装置
2 液晶表示部
6 バックライト
11 ガラス基板
11gr、11gl 額縁領域
21 表示エリア部
22A 第1垂直ドライバ
22B 第2垂直ドライバ
24 走査線
25 信号線
64 対向基板
66 カラーフィルタ
71 透光性基板
72 画素電極
73 導電層
90 半導体層
LC 液晶素子
Tr 薄膜トランジスタ(スイッチング素子)
SH1 スルーホール
SH2 スルーホール
SH3 スルーホール
com 共通電極(導電層)
Vpix 画素
DESCRIPTION OF SYMBOLS 1 Display apparatus 2 Liquid crystal display part 6 Backlight 11 Glass substrate 11gr, 11gl Frame area | region 21 Display area part 22A 1st vertical driver 22B 2nd vertical driver 24 Scan line 25 Signal line 64 Opposite board | substrate 66 Color filter 71 Translucent board | substrate 72 Pixel electrode 73 Conductive layer 90 Semiconductor layer LC Liquid crystal element Tr Thin film transistor (switching element)
SH1 Through hole SH2 Through hole SH3 Through hole com Common electrode (conductive layer)
Vpix pixel

Claims (4)

第1基板と、前記第1基板に対向配置された第2基板と、前記第1基板と前記第2基板との間に配置される液晶層と、を備える液晶表示装置であって、
前記第1基板は、
マトリクス状に配置された複数の画素電極と、
前記画素電極のそれぞれに接続されるスイッチング素子と、
前記第1基板の表面に垂直な方向において前記スイッチング素子に積層された無機絶縁層を介して設けられ、かつ前記スイッチング素子のチャネル領域を覆う、導電層を備え、
前記導電層には、正の電位が印加されている、液晶表示装置。
A liquid crystal display device comprising: a first substrate; a second substrate disposed opposite to the first substrate; and a liquid crystal layer disposed between the first substrate and the second substrate,
The first substrate is
A plurality of pixel electrodes arranged in a matrix;
A switching element connected to each of the pixel electrodes;
A conductive layer provided via an inorganic insulating layer stacked on the switching element in a direction perpendicular to the surface of the first substrate and covering a channel region of the switching element;
A liquid crystal display device, wherein a positive potential is applied to the conductive layer.
前記第1基板は、画素電極と共通電極とを有し、
前記導電層の電位は、前記共通電極の電位と同じである請求項1に記載の液晶表示装置。
The first substrate has a pixel electrode and a common electrode,
The liquid crystal display device according to claim 1, wherein a potential of the conductive layer is the same as a potential of the common electrode.
カラム反転又はドット反転により前記スイッチング素子が駆動される、請求項1又は2に記載の液晶表示装置。   The liquid crystal display device according to claim 1, wherein the switching element is driven by column inversion or dot inversion. 請求項1から3のいずれか一項に記載の液晶表示装置と、前記液晶表示装置に映像信号を供給し、前記液晶表示装置の動作を制御する制御装置とを備える、電子機器。   An electronic apparatus comprising: the liquid crystal display device according to claim 1; and a control device that supplies a video signal to the liquid crystal display device and controls an operation of the liquid crystal display device.
JP2013260578A 2013-12-17 2013-12-17 Liquid crystal display device and electronic equipment Pending JP2015118189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013260578A JP2015118189A (en) 2013-12-17 2013-12-17 Liquid crystal display device and electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013260578A JP2015118189A (en) 2013-12-17 2013-12-17 Liquid crystal display device and electronic equipment

Publications (1)

Publication Number Publication Date
JP2015118189A true JP2015118189A (en) 2015-06-25

Family

ID=53530970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013260578A Pending JP2015118189A (en) 2013-12-17 2013-12-17 Liquid crystal display device and electronic equipment

Country Status (1)

Country Link
JP (1) JP2015118189A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094682A1 (en) * 2015-12-01 2017-06-08 シャープ株式会社 Semiconductor device, and method for manufacturing same
WO2020003625A1 (en) * 2018-06-27 2020-01-02 三菱電機株式会社 Thin-film transistor substrate, method for manufacturing said substrate, and liquid crystal display device comprising said substrate
WO2023062695A1 (en) * 2021-10-11 2023-04-20 シャープディスプレイテクノロジー株式会社 Display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428622A (en) * 1987-07-24 1989-01-31 Hitachi Ltd Liquid crystal display device
JPH11153812A (en) * 1992-09-03 1999-06-08 Sharp Corp Active matrix substrate
JP2001330841A (en) * 2000-03-16 2001-11-30 Internatl Business Mach Corp <Ibm> Liquid crystal display device
JP2010145862A (en) * 2008-12-19 2010-07-01 Toshiba Mobile Display Co Ltd Liquid crystal display device
JP2010251735A (en) * 2009-03-27 2010-11-04 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428622A (en) * 1987-07-24 1989-01-31 Hitachi Ltd Liquid crystal display device
JPH11153812A (en) * 1992-09-03 1999-06-08 Sharp Corp Active matrix substrate
JP2001330841A (en) * 2000-03-16 2001-11-30 Internatl Business Mach Corp <Ibm> Liquid crystal display device
JP2010145862A (en) * 2008-12-19 2010-07-01 Toshiba Mobile Display Co Ltd Liquid crystal display device
JP2010251735A (en) * 2009-03-27 2010-11-04 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094682A1 (en) * 2015-12-01 2017-06-08 シャープ株式会社 Semiconductor device, and method for manufacturing same
WO2020003625A1 (en) * 2018-06-27 2020-01-02 三菱電機株式会社 Thin-film transistor substrate, method for manufacturing said substrate, and liquid crystal display device comprising said substrate
JP6678830B1 (en) * 2018-06-27 2020-04-08 三菱電機株式会社 Thin film transistor substrate, method of manufacturing the same, and liquid crystal display device having the same
WO2023062695A1 (en) * 2021-10-11 2023-04-20 シャープディスプレイテクノロジー株式会社 Display device

Similar Documents

Publication Publication Date Title
US11754897B2 (en) Liquid crystal display
US10578932B2 (en) Liquid crystal display device and electronic apparatus
US8441606B2 (en) Electro-optical device and electronic apparatus
US10371978B2 (en) Liquid crystal display device and electronic apparatus
US9857613B2 (en) Liquid crystal display device and electronic apparatus
US9188824B2 (en) Display device
JP2014106428A (en) Display device and electronic device
JP2015118189A (en) Liquid crystal display device and electronic equipment
JP2014149322A (en) Liquid crystal display panel and electronic apparatus
JP6087956B2 (en) Thin film transistor array substrate and liquid crystal display device
JP6326518B2 (en) Liquid crystal display
JP2014178629A (en) Liquid crystal display panel and electronic equipment
JP2014235420A (en) Liquid crystal display panel, electronic apparatus, and method for manufacturing pixel substrate
JP2015219381A (en) Method for laminating conductive film and display device
JP2015084034A (en) Display device
JP2015219380A (en) Liquid crystal display device
JP2017005155A (en) Thin film transistor, thin film transistor manufacturing method and display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170131