JP2015117853A - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP2015117853A
JP2015117853A JP2013260215A JP2013260215A JP2015117853A JP 2015117853 A JP2015117853 A JP 2015117853A JP 2013260215 A JP2013260215 A JP 2013260215A JP 2013260215 A JP2013260215 A JP 2013260215A JP 2015117853 A JP2015117853 A JP 2015117853A
Authority
JP
Japan
Prior art keywords
expansion valve
indoor
refrigerant
pulse
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013260215A
Other languages
Japanese (ja)
Inventor
浩史 平野
Hiroshi Hirano
浩史 平野
幸治 緒方
Koji Ogata
幸治 緒方
隆志 木村
Takashi Kimura
隆志 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2013260215A priority Critical patent/JP2015117853A/en
Publication of JP2015117853A publication Critical patent/JP2015117853A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioning system capable of performing stable control even in the use of an electronic expansion valve of which a variation in the opening is greater when increasing/decreasing the number of pulses to be given to a motor by one pulse.SOLUTION: A CPU refers to an expansion valve pulse table stored in a storage part and extracts a pulse increase/decrease value Pa corresponding to a supercooling degree difference Scd from the storage part. The CPU adds/subtracts a decimal part Pam stored in the storage part to/from the extracted pulse increase/decrease value Pa. Then, the CPU divides a new pulse increase/decrease value Pa into an integral part Pai and a decimal part Pam, and gives the integral part Pai to an indoor expansion valve and stores the decimal part Pam in the storage part.

Description

本発明は、空気調和装置に関し、特に、膨張弁の開度の制御を行うものに関わる。   The present invention relates to an air conditioner, and particularly relates to an apparatus for controlling the opening of an expansion valve.

従来、空気調和装置に用いられる膨張弁として、例えば特許文献1に開示されているように、温度センサや圧力センサ等の出力信号に応じて弁の開度を調整する、所謂電子膨張弁が知られている。このような電子膨張弁が備えられた空気調和装置では、上述したセンサからの出力信号に応じて、制御手段から電子膨張弁に備えられたモータに対して制御信号(パルス信号)を出力し、このモータを作動させることによって弁の開度を調整して、冷媒の流量制御を行っている。   2. Description of the Related Art Conventionally, as an expansion valve used in an air conditioner, a so-called electronic expansion valve that adjusts the opening degree of a valve in accordance with an output signal from a temperature sensor, a pressure sensor, or the like is known, as disclosed in Patent Document 1, for example. It has been. In the air conditioner equipped with such an electronic expansion valve, in response to the output signal from the sensor described above, a control signal (pulse signal) is output from the control means to the motor provided in the electronic expansion valve, By operating this motor, the opening degree of the valve is adjusted to control the flow rate of the refrigerant.

電子膨張弁は、先端に向かうほど径が小さくなるような錐状の弁部を備えている。この弁部は、直交する2つの管路の連通部に配置されており、一方の管路に対して長手方向に移動可能に構成されている。このような構成において、モータに与えるパルス信号のパルス数を変化させてモータを駆動することによって弁部の位置を制御することで、電子膨張弁の開度が調整され、冷媒の流量を調整できるようになっている。   The electronic expansion valve includes a conical valve portion whose diameter decreases toward the tip. This valve part is arrange | positioned at the communication part of two orthogonal pipe lines, and is comprised so that a movement to a longitudinal direction is possible with respect to one pipe line. In such a configuration, the opening of the electronic expansion valve can be adjusted and the flow rate of the refrigerant can be adjusted by controlling the position of the valve unit by driving the motor by changing the number of pulses of the pulse signal applied to the motor. It is like that.

特開2003−130426号公報JP 2003-130426 A

ところで、特許文献1に開示されている電子膨張弁には、例えば、固定子の内方に、回転に応じて回転軸方向に移動するようにねじ部の形成された回転子を設けるとともに、回転子に対してその回転軸方向に延びるようにシャフトを設け、回転子の回転に応じてシャフトを軸方向に移動させることで、シャフトの先端に設けられた弁部の位置を調整する(開度が調整される)直動式の電子膨張弁のように、モータに与えるパルス数を1パルス増減させたときの弁部の移動量が大きい(開度の変化量が大きい)ものがある。このような1パルス当たりの開度の変化量が大きい電子膨張弁を空気調和装置に用いた場合、モータに与えるパルス数が1パルス変化したときの冷媒流量が大きく変化する。   By the way, in the electronic expansion valve disclosed in Patent Document 1, for example, a rotor having a threaded portion is provided on the inner side of the stator so as to move in the direction of the rotation axis in accordance with the rotation. A shaft is provided so as to extend in the direction of the rotation axis with respect to the rotor, and the position of the valve portion provided at the tip of the shaft is adjusted by moving the shaft in the axial direction according to the rotation of the rotor (opening degree Some of them have a large amount of movement of the valve portion (a large amount of change in the opening degree) when the number of pulses applied to the motor is increased or decreased by one pulse, such as a direct-acting electronic expansion valve. When such an electronic expansion valve having a large opening change amount per pulse is used in the air conditioner, the refrigerant flow rate when the number of pulses applied to the motor changes by one pulse greatly changes.

例えば、凝縮器の冷媒出口側における冷媒の過冷却度を1℃増減させたいときは、微少な冷媒流量のコントロールが必要となるが、モータに与えるパルス数が1パルス変化したときの冷媒流量の変化が大きくて微少な冷媒流量のコントロールができない電子膨張弁では、モータに与えるパルス数を1パルス増減させるだけで、過冷却度を1℃増減させるのに必要な量以上の冷媒流量の変化となってしまう。このため、過冷却度が1℃以上増減し、これを修正するために再度電子膨張弁の開度調整を行う、ということを繰り返す。このように、電子膨張弁の開度調整が頻繁に行われると、冷媒流量が頻繁に増減し冷媒回路内の冷媒圧力も頻繁に変動するので、空気調和装置の制御が安定しない虞があった。   For example, when the degree of supercooling of the refrigerant on the refrigerant outlet side of the condenser is to be increased or decreased by 1 ° C., a slight control of the refrigerant flow rate is necessary, but the refrigerant flow rate when the number of pulses applied to the motor changes by one pulse is required. In an electronic expansion valve that cannot change the flow rate of refrigerant with a large change, only by increasing or decreasing the number of pulses given to the motor by one pulse, the change in the refrigerant flow rate exceeds the amount necessary to increase or decrease the degree of supercooling by 1 ° C. turn into. For this reason, the degree of supercooling is increased or decreased by 1 ° C. or more, and the adjustment of the opening degree of the electronic expansion valve is repeated to correct this. As described above, when the opening adjustment of the electronic expansion valve is frequently performed, the refrigerant flow rate is frequently increased and decreased, and the refrigerant pressure in the refrigerant circuit also frequently fluctuates. Therefore, the control of the air conditioner may not be stable. .

本発明は以上述べた問題点を解決するものであって、モータに与えるパルス数を1パルス増減させたときの開度の変化量が大きい電子膨張弁を使用しても、安定した制御が行える空気調和装置を提供することを目的とする。   The present invention solves the above-described problems, and stable control can be performed even when an electronic expansion valve having a large amount of change in opening when the number of pulses applied to the motor is increased or decreased by one pulse is used. An object is to provide an air conditioner.

上記の課題を解決するために、本発明の空気調和装置は、圧縮機と、熱源側熱交換器と、利用側熱交換器と、熱源側熱交換器と利用側熱交換器との間に配置される膨張弁と、膨張弁の開度を調整する制御手段とを有するものであって、膨張弁は与えられるパルスの数に応じて開度が制御されるものである。そして、制御手段は、熱源側熱交換器や利用側熱交換器に流入する冷媒量に応じて変動する運転状態量とこの運転状態量の目標値との差に応じて膨張弁に与えるパルスの数を変化させ、膨張弁に与えるパルスの数が整数部と小数部とを有するとき、整数部のみ膨張弁に与えるとともに小数部を記憶し、膨張弁に与える新たなパルスの数に記憶した小数部を加算もしくは減算するものである。   In order to solve the above problems, an air conditioner of the present invention includes a compressor, a heat source side heat exchanger, a use side heat exchanger, a heat source side heat exchanger, and a use side heat exchanger. The expansion valve is arranged and a control means for adjusting the opening degree of the expansion valve, and the opening degree of the expansion valve is controlled according to the number of pulses applied. The control means then applies a pulse to the expansion valve according to the difference between the operating state quantity that varies according to the refrigerant amount flowing into the heat source side heat exchanger or the usage side heat exchanger and the target value of the operating state quantity. When the number of pulses applied to the expansion valve has an integer part and a fractional part when the number is changed, only the integer part is given to the expansion valve, the decimal part is stored, and the decimal number stored in the number of new pulses given to the expansion valve Part is added or subtracted.

上記のように構成した本発明の空気調和装置によれば、膨張弁に与えるパルスの数に整数部と小数部とがあるとき、整数部のみ膨張弁に与えるとともに小数部を記憶し、新たなパルスの数に記憶した小数部を加算もしくは減算する。これにより、膨張弁開度の変化を緩やかにでき、冷媒流量の頻繁な増減が抑制されて冷媒回路内の冷媒圧力の頻繁な変動も抑制できるので、空気調和装置の制御が安定する。   According to the air conditioner of the present invention configured as described above, when there are an integer part and a fractional part in the number of pulses given to the expansion valve, only the integer part is given to the expansion valve and the decimal part is stored. Add or subtract the fraction part stored in the number of pulses. Thereby, the change of the expansion valve opening degree can be moderated, the frequent increase / decrease in the refrigerant flow rate is suppressed, and the frequent fluctuation of the refrigerant pressure in the refrigerant circuit can be suppressed, so that the control of the air conditioner is stabilized.

本発明の実施形態における、空気調和装置の説明図であり、(A)は冷媒回路図、(B)は室外機制御手段および室内機制御手段のブロック図である。It is explanatory drawing of the air conditioning apparatus in embodiment of this invention, (A) is a refrigerant circuit figure, (B) is a block diagram of an outdoor unit control means and an indoor unit control means. 本発明の実施形態における、膨張弁パルステーブルである。It is an expansion valve pulse table in the embodiment of the present invention. 本発明の実施形態における、室内機制御部での処理を説明するフローチャートである。It is a flowchart explaining the process in the indoor unit control part in embodiment of this invention. 本発明の実施形態における、室内機制御手段のCPUの構成ブロック図である。It is a block diagram of the CPU of the indoor unit control means in the embodiment of the present invention.

以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。実施形態としては、1台の室外機に3台の室内機が並列に接続され、全ての室内機で同時に冷房運転あるいは暖房運転が行える空気調和装置を例に挙げて説明する。尚、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. As an embodiment, an air conditioning apparatus will be described as an example in which three indoor units are connected in parallel to one outdoor unit, and cooling operation or heating operation can be performed simultaneously in all indoor units. The present invention is not limited to the following embodiments, and can be variously modified without departing from the gist of the present invention.

図1(A)に示すように、本実施例における空気調和装置1は、屋外に設置される1台の室外機2と、屋内に設置され室外機2に液管8およびガス管9で並列に接続された3台の室内機5a〜5cとを備えている。詳細には、液管8は、一端が室外機2の閉鎖弁25に、他端が分岐して室内機5a〜5cの各液管接続部53a〜53cに、それぞれ接続されている。また、ガス管9は、一端が室外機2の閉鎖弁26に、他端が分岐して室内機5a〜5cの各ガス管接続部54a〜54cに、それぞれ接続されている。以上により、空気調和装置1の冷媒回路100が構成されている。   As shown in FIG. 1A, an air conditioner 1 according to the present embodiment includes one outdoor unit 2 installed outdoors and a liquid pipe 8 and a gas pipe 9 installed indoors and connected to the outdoor unit 2. And three indoor units 5a to 5c connected to each other. Specifically, the liquid pipe 8 has one end connected to the closing valve 25 of the outdoor unit 2 and the other end branched to be connected to the liquid pipe connecting portions 53a to 53c of the indoor units 5a to 5c. The gas pipe 9 has one end connected to the closing valve 26 of the outdoor unit 2 and the other end branched to be connected to the gas pipe connecting portions 54a to 54c of the indoor units 5a to 5c. The refrigerant circuit 100 of the air conditioner 1 is configured as described above.

まずは、室外機2について説明する。室外機2は、圧縮機21と、四方弁22と、熱源側熱交換器である室外熱交換器23と、室外膨張弁24と、液管8の一端が接続された閉鎖弁25と、ガス管9の一端が接続された閉鎖弁26と、室外ファン27とを備えている。そして、室外ファン27を除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路100の一部をなす室外機冷媒回路20を構成している。   First, the outdoor unit 2 will be described. The outdoor unit 2 includes a compressor 21, a four-way valve 22, an outdoor heat exchanger 23 that is a heat source side heat exchanger, an outdoor expansion valve 24, a closing valve 25 to which one end of the liquid pipe 8 is connected, a gas A shutoff valve 26 to which one end of the pipe 9 is connected and an outdoor fan 27 are provided. These devices other than the outdoor fan 27 are connected to each other through refrigerant pipes described in detail below to constitute an outdoor unit refrigerant circuit 20 that forms part of the refrigerant circuit 100.

圧縮機21は、インバータにより回転数が制御される図示しないモータによって駆動されることで、運転容量を可変できる能力可変型圧縮機である。圧縮機21の冷媒吐出側は、後述する四方弁22のポートaに吐出管41で接続されており、また、圧縮機21の冷媒吸入側は、後述する四方弁22のポートcに吸入管42で接続されている。   The compressor 21 is a variable capacity compressor that can vary its operating capacity by being driven by a motor (not shown) whose rotation speed is controlled by an inverter. The refrigerant discharge side of the compressor 21 is connected to a port a of a four-way valve 22 which will be described later by a discharge pipe 41, and the refrigerant suction side of the compressor 21 is connected to a port c of the four-way valve 22 which will be described later. Connected with.

四方弁22は、冷媒の流れる方向を切り換えるための弁であり、a、b、c、dの4つのポートを備えている。ポートaは、上述したように圧縮機21の冷媒吐出側に吐出管41で接続されている。ポートbは、室外熱交換器23の一方の冷媒出入口と冷媒配管43で接続されている。ポートcは、上述したように圧縮機21の冷媒吸入側と吸入管42で接続されている。そして、ポートdは、閉鎖弁26と室外機ガス管45で接続されている。   The four-way valve 22 is a valve for switching the direction in which the refrigerant flows, and includes four ports a, b, c, and d. The port a is connected to the refrigerant discharge side of the compressor 21 by the discharge pipe 41 as described above. The port b is connected to one refrigerant inlet / outlet of the outdoor heat exchanger 23 by a refrigerant pipe 43. The port c is connected to the refrigerant suction side of the compressor 21 by the suction pipe 42 as described above. The port d is connected to the closing valve 26 by an outdoor unit gas pipe 45.

室外熱交換器23は、冷媒と、後述する室外ファン27の回転により室外機2内部に取り込まれた外気とを熱交換させるものである。室外熱交換器23の一方の冷媒出入口は、上述したように四方弁22のポートbに冷媒配管43で接続され、他方の冷媒出入口は室外機液管44で閉鎖弁25に接続されている。   The outdoor heat exchanger 23 exchanges heat between the refrigerant and the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 27 described later. As described above, one refrigerant inlet / outlet of the outdoor heat exchanger 23 is connected to the port b of the four-way valve 22 by the refrigerant pipe 43, and the other refrigerant inlet / outlet is connected to the closing valve 25 by the outdoor unit liquid pipe 44.

室外膨張弁24は、室外機液管44に設けられている。室外膨張弁24は、その開度が調整されることで、室外熱交換器23に流入する冷媒量、あるいは、室外熱交換器23から流出する冷媒量を調整する。室外膨張弁24の開度は、空気調和装置1が冷房運転を行っている場合は全開とされる。また、空気調和装置1が暖房運転を行っている場合は、後述する吐出温度センサ33で検出した圧縮機21の吐出温度に応じて制御することで、吐出温度が性能上限値を超えないようにしている。   The outdoor expansion valve 24 is provided in the outdoor unit liquid pipe 44. The outdoor expansion valve 24 adjusts the amount of refrigerant flowing into the outdoor heat exchanger 23 or the amount of refrigerant flowing out of the outdoor heat exchanger 23 by adjusting the opening thereof. The opening degree of the outdoor expansion valve 24 is fully opened when the air conditioner 1 is performing a cooling operation. Moreover, when the air conditioning apparatus 1 is performing the heating operation, the discharge temperature does not exceed the upper limit of performance by controlling according to the discharge temperature of the compressor 21 detected by the discharge temperature sensor 33 described later. ing.

室外ファン27は樹脂材で形成されており、室外熱交換器23の近傍に配置されている。室外ファン27は、図示しないファンモータによって回転することで図示しない吸込口から室外機2内部へ外気を取り込み、室外熱交換器23において冷媒と熱交換した外気を図示しない吹出口から室外機2外部へ放出する。   The outdoor fan 27 is formed of a resin material and is disposed in the vicinity of the outdoor heat exchanger 23. The outdoor fan 27 is rotated by a fan motor (not shown) to take outside air into the outdoor unit 2 from a suction port (not shown), and the outdoor air exchanged heat with the refrigerant in the outdoor heat exchanger 23 from the blower outlet (not shown) to the outside of the outdoor unit 2. To release.

以上説明した構成の他に、室外機2には各種のセンサが設けられている。図1(A)に示すように、吐出管41には、圧縮機21から吐出される冷媒の圧力を検出する高圧センサ31と、圧縮機21から吐出される冷媒の温度を検出する吐出温度センサ33が設けられている。吸入管42には、圧縮機21に吸入される冷媒の圧力(吸入圧力)を検出する低圧センサ32と、圧縮機21に吸入される冷媒の温度(吸入温度)を検出する吸入温度センサ34とが設けられている。   In addition to the configuration described above, the outdoor unit 2 is provided with various sensors. As shown in FIG. 1A, a discharge pipe 41 includes a high-pressure sensor 31 that detects the pressure of refrigerant discharged from the compressor 21, and a discharge temperature sensor that detects the temperature of refrigerant discharged from the compressor 21. 33 is provided. The suction pipe 42 includes a low pressure sensor 32 that detects the pressure (suction pressure) of the refrigerant sucked into the compressor 21, and a suction temperature sensor 34 that detects the temperature (suction temperature) of the refrigerant sucked into the compressor 21. Is provided.

室外機液管44における室外熱交換器23と室外膨張弁24との間には、室外熱交換器23に流入する冷媒の温度あるいは室外熱交換器23から流出する冷媒の温度を検出するための熱交温度センサ35が設けられている。そして、室外機2の図示しない吸込口付近には、室外機2内に流入する外気の温度、すなわち外気温度を検出する外気温度センサ36が備えられている。   Between the outdoor heat exchanger 23 and the outdoor expansion valve 24 in the outdoor unit liquid pipe 44, the temperature of the refrigerant flowing into the outdoor heat exchanger 23 or the temperature of the refrigerant flowing out of the outdoor heat exchanger 23 is detected. A heat exchanger temperature sensor 35 is provided. An outdoor air temperature sensor 36 that detects the temperature of the outside air flowing into the outdoor unit 2, that is, the outside air temperature, is provided near a suction port (not shown) of the outdoor unit 2.

また、室外機2には、室外機制御手段200が備えられている。室外機制御手段200は、室外機2の図示しない電装品箱に格納されている制御基板に搭載されている。図2(B)に示すように、室外機制御手段200は、CPU210と、記憶部220と、通信部230と、センサ入力部240とを備えている。   The outdoor unit 2 includes an outdoor unit control means 200. The outdoor unit control means 200 is mounted on a control board stored in an electrical component box (not shown) of the outdoor unit 2. As shown in FIG. 2B, the outdoor unit control means 200 includes a CPU 210, a storage unit 220, a communication unit 230, and a sensor input unit 240.

記憶部220は、ROMやRAMで構成されており、室外機2の制御プログラムや各種センサからの検出信号に対応した検出値、圧縮機21や室外ファン27の制御状態、後述する室外ファン制御テーブル300や室外ファン回転数テーブル400、等を記憶している。通信部230は、室内機5a〜5cとの通信を行うインターフェイスである。センサ入力部240は、室外機2の各種センサでの検出結果を取り込んでCPU210に出力する。   The storage unit 220 includes a ROM and a RAM, and includes detection values corresponding to control programs for the outdoor unit 2 and detection signals from various sensors, control states of the compressor 21 and the outdoor fan 27, and an outdoor fan control table to be described later. 300, outdoor fan rotation speed table 400, and the like are stored. The communication unit 230 is an interface that performs communication with the indoor units 5a to 5c. The sensor input unit 240 captures detection results from various sensors of the outdoor unit 2 and outputs them to the CPU 210.

CPU210は、前述した室外機2の各センサでの検出結果をセンサ入力部240を介して取り込む。また、CPU210は、室内機5a〜5cから送信される制御信号を通信部230を介して取り込む。CPU210は、取り込んだ検出結果や制御信号に基づいて、圧縮機21や室外ファン27の駆動制御を行う。また、CPU210は、取り込んだ検出結果や制御信号に基づいて、四方弁22の切り換え制御を行う。さらには、CPU210は、取り込んだ検出結果や制御信号に基づいて、室外膨張弁24の開度制御を行う。   CPU210 takes in the detection result in each sensor of outdoor unit 2 mentioned above via sensor input part 240. FIG. In addition, the CPU 210 takes in control signals transmitted from the indoor units 5 a to 5 c via the communication unit 230. The CPU 210 performs drive control of the compressor 21 and the outdoor fan 27 based on the detection results and control signals taken in. In addition, the CPU 210 performs switching control of the four-way valve 22 based on the detection results and control signals taken in. Furthermore, the CPU 210 controls the opening degree of the outdoor expansion valve 24 based on the acquired detection result and control signal.

次に、3台の室内機5a〜5cについて説明する。3台の室内機5a〜5cは、利用側熱交換器である室内熱交換器51a〜51cと、室内流量調整手段である室内膨張弁52a〜52cと、分岐した液管8の他端が接続された液管接続部53a〜53cと、分岐したガス管9の他端が接続されたガス管接続部54a〜54cと、室内ファン55a〜55cとを備えている。そして、室内ファン55a〜55cを除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路100の一部をなす室内機冷媒回路50a〜50cを構成している。   Next, the three indoor units 5a to 5c will be described. The three indoor units 5a to 5c are connected to the indoor heat exchangers 51a to 51c which are use side heat exchangers, the indoor expansion valves 52a to 52c which are indoor flow rate adjusting means, and the other end of the branched liquid pipe 8. Liquid pipe connection parts 53a to 53c, gas pipe connection parts 54a to 54c to which the other ends of the branched gas pipes 9 are connected, and indoor fans 55a to 55c. And these each apparatus except indoor fan 55a-55c is mutually connected by each refrigerant | coolant piping explained in full detail below, and comprises the indoor unit refrigerant circuit 50a-50c which makes a part of refrigerant circuit 100. FIG.

尚、室内機5a〜5cの構成は全て同じであるため、以下の説明では、室内機5aの構成についてのみ説明を行い、その他の室内機5b、5cについては説明を省略する。また、図1では、室内機5aの構成装置に付与した番号の末尾をaからbおよびcにそれぞれ変更したものが、室外機5aの構成装置と対応する室内機5b、5cの構成装置となる。   In addition, since the structure of all the indoor units 5a-5c is the same, in the following description, only the structure of the indoor unit 5a is demonstrated and description is abbreviate | omitted about the other indoor units 5b and 5c. Moreover, in FIG. 1, what changed the end of the number provided to the component apparatus of the indoor unit 5a from a to b and c becomes the component apparatus of the indoor units 5b and 5c corresponding to the component apparatus of the outdoor unit 5a. .

室内熱交換器51aは、冷媒と後述する室内ファン55aにより図示しない吸込口から室内機5a内部に取り込まれた室内空気とを熱交換させるものであり、一方の冷媒出入口が液管接続部53aに室内機液管71aで接続され、他方の冷媒出入口がガス管接続部54aに室内機ガス管72aで接続されている。室内熱交換器51aは、室内機5aが冷房運転を行う場合は蒸発器として機能し、室内機5aが暖房運転を行う場合は凝縮器として機能する。
尚、液管接続部53aやガス管接続部54aは、各冷媒配管が溶接やフレアナット等により接続されている。
The indoor heat exchanger 51a exchanges heat between the refrigerant and indoor air taken into the indoor unit 5a from a suction port (not shown) by an indoor fan 55a described later, and one refrigerant inlet / outlet is connected to the liquid pipe connection portion 53a. The other refrigerant inlet / outlet port is connected to the gas pipe connecting portion 54a via the indoor unit gas pipe 72a. The indoor heat exchanger 51a functions as an evaporator when the indoor unit 5a performs a cooling operation, and functions as a condenser when the indoor unit 5a performs a heating operation.
Note that the refrigerant pipes of the liquid pipe connecting part 53a and the gas pipe connecting part 54a are connected by welding, flare nuts, or the like.

室内膨張弁52aは、室内機液管71aに設けられている。室内膨張弁52aは直動式電子膨張弁であり、図示は省略するが、モータの固定子の内側に回転に応じて回転軸方向に移動するようにねじ部の形成された回転子を設けるとともに、回転子に対して回転軸方向に延びるようにシャフトを設け、回転子の回転に応じてシャフトを軸方向に移動させることで、シャフトの先端に設けた弁部の位置を調整するものである。室内機液管71aは、室内熱交換器51aが蒸発器として機能する場合は、その開度が室内熱交換器51aの冷媒出口(ガス管接続部54a側)での過熱度が目標過熱度となるように調整され、室内熱交換器51aが凝縮器として機能する場合は、その開度が室内熱交換器51aの冷媒出口(液管接続部53a側)での過冷却度が目標過冷却度となるように調整される。ここで、目標過熱度および目標過冷却度は、室内機5aで十分な暖房能力あるいは冷房能力が発揮されるための過熱度および過冷却度である。   The indoor expansion valve 52a is provided in the indoor unit liquid pipe 71a. The indoor expansion valve 52a is a direct-acting electronic expansion valve, and although not shown, a rotor having a threaded portion is provided inside the stator of the motor so as to move in the direction of the rotation axis in accordance with the rotation. The shaft is provided so as to extend in the direction of the rotation axis with respect to the rotor, and the position of the valve portion provided at the tip of the shaft is adjusted by moving the shaft in the axial direction according to the rotation of the rotor. . When the indoor heat exchanger 51a functions as an evaporator, the opening degree of the indoor unit liquid pipe 71a is the degree of superheat at the refrigerant outlet (gas pipe connection part 54a side) of the indoor heat exchanger 51a. When the indoor heat exchanger 51a functions as a condenser, the degree of supercooling at the refrigerant outlet (liquid pipe connection 53a side) of the indoor heat exchanger 51a is the target supercooling degree. It is adjusted to become. Here, the target degree of superheat and the target degree of supercooling are the degree of superheat and the degree of supercooling required for the indoor unit 5a to exhibit sufficient heating capacity or cooling capacity.

室内ファン55aは樹脂材で形成されており、室内熱交換器51aの近傍に配置されている。室内ファン55aは、図示しないファンモータによって回転することで、図示しない吸込口から室内機5a内に室内空気を取り込み、室内熱交換器51aにおいて冷媒と熱交換した室内空気を図示しない吹出口から室内へ供給する。   The indoor fan 55a is formed of a resin material and is disposed in the vicinity of the indoor heat exchanger 51a. The indoor fan 55a is rotated by a fan motor (not shown) to take indoor air into the indoor unit 5a from a suction port (not shown), and the indoor air exchanged with the refrigerant in the indoor heat exchanger 51a from the blower outlet (not shown) to the room. To supply.

以上説明した構成の他に、室内機5aには各種のセンサが設けられている。室内機液管71aにおける室内熱交換器51aと室内膨張弁52aとの間には、室内熱交換器51aに流入あるいは室内熱交換器51aから流出する液冷媒の温度を検出する液側温度センサ61aが設けられている。室内機ガス管72aには、室内熱交換器51aから流出あるいは室内熱交換器51aに流入するガス冷媒の温度を検出するガス側温度センサ62aが設けられている。そして、室内機5aの図示しない吸込口付近には、室内機5a内に流入する室内空気の温度、すなわち室内温度を検出する室内温度センサ63aが備えられている。   In addition to the configuration described above, the indoor unit 5a is provided with various sensors. Between the indoor heat exchanger 51a and the indoor expansion valve 52a in the indoor unit liquid pipe 71a, a liquid side temperature sensor 61a that detects the temperature of the liquid refrigerant flowing into or out of the indoor heat exchanger 51a. Is provided. The indoor unit gas pipe 72a is provided with a gas side temperature sensor 62a for detecting the temperature of the gas refrigerant flowing out from the indoor heat exchanger 51a or flowing into the indoor heat exchanger 51a. An indoor temperature sensor 63a that detects the temperature of the indoor air flowing into the indoor unit 5a, that is, the indoor temperature, is provided in the vicinity of a suction port (not shown) of the indoor unit 5a.

また、室内機5aには、室内機制御手段500aが備えられている。室内機制御手段500aは、室内機5aの図示しない電装品箱に格納された制御基板に搭載されており、図1(B)に示すように、図示しないタイマー計測機能を有するCPU510aと、記憶部520aと、通信部530aと、センサ入力部540aとを備えている。   The indoor unit 5a includes an indoor unit control means 500a. The indoor unit control means 500a is mounted on a control board stored in an electrical component box (not shown) of the indoor unit 5a. As shown in FIG. 1 (B), a CPU 510a having a timer measurement function (not shown) and a storage unit 520a, a communication unit 530a, and a sensor input unit 540a.

記憶部520aは、ROMやRAMで構成されており、室内機5aの制御プログラムや各種センサからの検出信号に対応した検出値、使用者による空調運転に関する設定情報等を記憶する。通信部530aは、室外機2および他の室内機5b、5cとの通信を行うインターフェイスである。センサ入力部540aは、室内機5aの各種センサでの検出結果を取り込んでCPU510aに出力する。   The storage unit 520a includes a ROM and a RAM, and stores a control program for the indoor unit 5a, detection values corresponding to detection signals from various sensors, setting information regarding air conditioning operation by the user, and the like. The communication unit 530a is an interface that communicates with the outdoor unit 2 and the other indoor units 5b and 5c. The sensor input unit 540a captures detection results from various sensors of the indoor unit 5a and outputs them to the CPU 510a.

CPU510aは、前述した室内機5aの各センサでの検出結果をセンサ入力部540aを介して取り込む。また、CPU510aは、使用者が図示しないリモコンを操作して設定した運転情報やタイマー運転設定等を含んだ信号を図示しないリモコン受光部を介して取り込む。CPU510aは、取り込んだ検出結果やリモコンから送信された信号に基づいて、室内膨張弁52aの開度制御や、室内ファン55aの駆動制御を行う。また、CPU510aは、運転開始/停止信号や運転情報(設定温度や室内温度等)を含んだ制御信号を、通信部530aを介して室外機2に送信する。
尚、以上説明した室外機制御手段200と室内機制御手段500a〜500cとで、本発明の制御手段が構成される。
The CPU 510a takes in the detection result of each sensor of the indoor unit 5a described above via the sensor input unit 540a. Further, the CPU 510a takes in a signal including operation information set by operating a remote controller (not shown), a timer operation setting, and the like via a remote control light receiving unit (not shown). The CPU 510a performs the opening degree control of the indoor expansion valve 52a and the drive control of the indoor fan 55a based on the acquired detection result and the signal transmitted from the remote controller. In addition, the CPU 510a transmits a control signal including an operation start / stop signal and operation information (set temperature, indoor temperature, etc.) to the outdoor unit 2 via the communication unit 530a.
The outdoor unit control unit 200 and the indoor unit control units 500a to 500c described above constitute the control unit of the present invention.

次に、本実施形態における空気調和装置1の空調運転時の冷媒回路100における冷媒の流れや各部の動作について、図1(A)を用いて説明する。尚、以下の説明では、室内機5a〜5cが暖房運転を行う場合について説明し、冷房/除湿運転を行う場合については詳細な説明を省略する。また、図1(A)における矢印は暖房運転時の冷媒の流れを示している。   Next, the flow of the refrigerant and the operation of each part in the refrigerant circuit 100 during the air conditioning operation of the air-conditioning apparatus 1 in the present embodiment will be described with reference to FIG. In the following description, the case where the indoor units 5a to 5c perform the heating operation will be described, and the detailed description will be omitted when the cooling / dehumidifying operation is performed. Moreover, the arrow in FIG. 1 (A) has shown the flow of the refrigerant | coolant at the time of heating operation.

図1(A)に示すように、室内機5a〜5cが暖房運転を行う場合、室外機制御手段200は、四方弁22を実線で示す状態、すなわち、四方弁22のポートaとポートdとが連通するよう、また、ポートbとポートcとが連通するよう、切り換える。これにより、室外熱交換器23が蒸発器として機能するとともに、室内熱交換器51a〜51cが凝縮器として機能する。   As shown in FIG. 1 (A), when the indoor units 5a to 5c perform the heating operation, the outdoor unit control means 200 is a state in which the four-way valve 22 is indicated by a solid line, that is, the ports a and d of the four-way valve 22. Are switched so as to communicate with each other, and port b and port c communicate with each other. Thereby, the outdoor heat exchanger 23 functions as an evaporator, and the indoor heat exchangers 51a to 51c function as condensers.

圧縮機21から吐出された高圧の冷媒は、吐出管41を流れて四方弁22に流入し、四方弁22から室外機ガス管45、ガス管9、接続部54a〜54cを流れて室内機5a〜5cに流入する。室内機5a〜5cに流入した冷媒は、室内機ガス管72a〜72cを流れて室内熱交換器51a〜51cに流入し、室内ファン55a〜55cの回転により室内機5a〜5c内部に取り込まれた室内空気と熱交換を行って凝縮する。このように、室内熱交換器51a〜51cが凝縮器として機能し、室内熱交換器51a〜51cで冷媒と熱交換を行った室内空気が図示しない吹出口から室内に吹き出されることによって、室内機5a〜5cが設置された室内の暖房が行われる。   The high-pressure refrigerant discharged from the compressor 21 flows through the discharge pipe 41 and flows into the four-way valve 22, and flows from the four-way valve 22 through the outdoor unit gas pipe 45, the gas pipe 9, and the connection portions 54a to 54c to the indoor unit 5a. To 5c. The refrigerant flowing into the indoor units 5a to 5c flows through the indoor unit gas pipes 72a to 72c, flows into the indoor heat exchangers 51a to 51c, and is taken into the indoor units 5a to 5c by the rotation of the indoor fans 55a to 55c. It exchanges heat with room air and condenses. As described above, the indoor heat exchangers 51a to 51c function as condensers, and the indoor air that has exchanged heat with the refrigerant in the indoor heat exchangers 51a to 51c is blown into the room from a blowout port (not shown), thereby The room where the machines 5a to 5c are installed is heated.

室内熱交換器51a〜51cから流出した冷媒は室内機液管71a〜71cを流れ、室内膨張弁52a〜52cを通過して減圧される。減圧された冷媒は、室内機液管71a〜71c、接続部53a〜53cを流れて液管8に流入する。   The refrigerant flowing out of the indoor heat exchangers 51a to 51c flows through the indoor unit liquid pipes 71a to 71c, passes through the indoor expansion valves 52a to 52c, and is decompressed. The decompressed refrigerant flows through the indoor unit liquid pipes 71 a to 71 c and the connection parts 53 a to 53 c and flows into the liquid pipe 8.

液管8、閉鎖弁25を流れて室外機2に流入した冷媒は、室外機液管44を流れ、吐出温度センサ33で検出した圧縮機21の吐出温度に応じた開度とされた室外膨張弁24を通過するときにさらに減圧される。室外機液管44から室外熱交換器23に流入した冷媒は、室外ファン27の回転により室外機2内部に取り込まれた外気と熱交換を行って蒸発する。室外熱交換器23から流出した冷媒は、冷媒配管43、吸入管42を流れ、圧縮機21に吸入されて再び圧縮される。
以上説明したように冷媒回路100を冷媒が循環することで、空気調和装置1の暖房運転が行われる。
The refrigerant that has flowed into the outdoor unit 2 through the liquid pipe 8 and the closing valve 25 flows through the outdoor unit liquid pipe 44, and is expanded outdoors with the opening degree corresponding to the discharge temperature of the compressor 21 detected by the discharge temperature sensor 33. The pressure is further reduced when passing through the valve 24. The refrigerant flowing into the outdoor heat exchanger 23 from the outdoor unit liquid pipe 44 evaporates by exchanging heat with the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 27. The refrigerant flowing out of the outdoor heat exchanger 23 flows through the refrigerant pipe 43 and the suction pipe 42, is sucked into the compressor 21, and is compressed again.
As described above, when the refrigerant circulates through the refrigerant circuit 100, the air-conditioning apparatus 1 is heated.

尚、室内機5a〜5cが冷房/除湿運転を行う場合、室外機制御手段200は、四方弁22が破線で示す状態、すなわち、四方弁22のポートaとポートbとが連通するよう、また、ポートcとポートdとが連通するよう、切り換える。これにより、室外熱交換器23が凝縮器として機能するとともに、室内熱交換器51a〜51cが蒸発器として機能する。   When the indoor units 5a to 5c perform the cooling / dehumidifying operation, the outdoor unit control means 200 is configured so that the four-way valve 22 is in a state indicated by a broken line, that is, the port a and the port b of the four-way valve 22 communicate with each other. The port c and the port d are switched so as to communicate with each other. Thereby, the outdoor heat exchanger 23 functions as a condenser, and the indoor heat exchangers 51a to 51c function as evaporators.

次に、図1および図2を用いて、本実施形態の空気調和装置1において、本発明に関わる膨張弁の開度制御やその作用、および、効果について説明する。以下の説明では、空気調和装置1が暖房運転を行うとき、室内熱交換器51a〜51cの冷媒出口側(室内機液管71a〜71c側)における冷媒の過冷却度を、室内機5a〜5cで暖房能力が十分に発揮できることが確認されている値である目標過冷却度とするために、室内膨張弁52a〜52cの開度を調整して室内熱交換器51a〜51cに流入する冷媒量を制御する場合を例に挙げて説明する。尚、本実施形態においては、冷媒の過冷却度が本発明の運転状態量に該当する。   Next, in FIG. 1 and FIG. 2, in the air conditioning apparatus 1 of this embodiment, the opening degree control of the expansion valve related to the present invention, its operation, and effects will be described. In the following description, when the air conditioner 1 performs the heating operation, the degree of supercooling of the refrigerant on the refrigerant outlet side (the indoor unit liquid pipes 71a to 71c side) of the indoor heat exchangers 51a to 51c is expressed as the indoor units 5a to 5c. The amount of refrigerant flowing into the indoor heat exchangers 51a to 51c by adjusting the opening degree of the indoor expansion valves 52a to 52c in order to obtain the target supercooling degree that is a value that has been confirmed that the heating capacity can be sufficiently exhibited at The case of controlling is described as an example. In the present embodiment, the degree of supercooling of the refrigerant corresponds to the operating state quantity of the present invention.

尚、以下の説明では、室内熱交換器51a〜51cの冷媒出口側における冷媒の過冷却度(以降、現在の過冷却度と記載)をScn、目標過冷却度をSct、目標過冷却度Sctから現在の過冷却度Scnを減じた値である過冷却度差をScd、暖房運転開始時に室内膨張弁52a〜52cに与える初期パルス数をPs、パルス数の増減値をPa、液側温度センサ61a〜61cで検出する冷媒温度である液側冷媒温度をTrl、室外機2の高圧センサ31で検出した吐出圧力を用いて算出する高圧飽和温度をTh、として説明する。   In the following description, the subcooling degree of the refrigerant on the refrigerant outlet side of the indoor heat exchangers 51a to 51c (hereinafter referred to as the current supercooling degree) is Scn, the target subcooling degree is Sct, and the target subcooling degree Sct. The subcooling degree difference, which is a value obtained by subtracting the current supercooling degree Scn from Scd, Scs, the initial pulse number given to the indoor expansion valves 52a to 52c at the start of heating operation, Ps, the increase / decrease value of the pulse number, Pa, and the liquid side temperature sensor The liquid side refrigerant temperature, which is the refrigerant temperature detected by 61a to 61c, will be described as Trl, and the high pressure saturation temperature calculated using the discharge pressure detected by the high pressure sensor 31 of the outdoor unit 2 will be described as Th.

空気調和装置1が暖房運転を行うときは、室内機制御部500a〜500cのCPU510a〜510cは、各室内機5a〜5cで暖房能力が十分に発揮されるようにするため、現在の過冷却度Scnが目標過冷却度Sctとなるように室内膨張弁52a〜52cの開度調整を行う。尚、目標過冷却度Sctは、予め試験で求めて記憶部520a〜520cに記憶されている。また、現在の過冷却度Scnは、CPU510a〜510cによって、室外機2から取り込んだ高圧飽和温度Thから液側温度センサ61a〜61cから取り込んだ液側冷媒温度Trlを減じて算出される。   When the air-conditioning apparatus 1 performs the heating operation, the CPUs 510a to 510c of the indoor unit control units 500a to 500c are configured so that the heating capacity is sufficiently exhibited in the indoor units 5a to 5c. The opening degree adjustment of the indoor expansion valves 52a to 52c is performed so that Scn becomes the target supercooling degree Sct. The target supercooling degree Sct is obtained in advance by a test and stored in the storage units 520a to 520c. Further, the current degree of supercooling Scn is calculated by the CPUs 510a to 510c by subtracting the liquid side refrigerant temperature Trl taken from the liquid side temperature sensors 61a to 61c from the high pressure saturation temperature Th taken from the outdoor unit 2.

室内膨張弁52a〜52cの開度調整は次のように行われる。まず、現在の過冷却度Scnが目標過冷却度Sctより大きいとき、つまり、過冷却度差Scdがマイナスの値のときは、CPU510a〜510cは、室内膨張弁52a〜52cの開度を現在の開度より大きくする。これにより、室内熱交換器51a〜51cに流入する冷媒量が増加するので、現在の過冷却度Scnが小さくなって目標過冷却度Sctに近づく。   The opening adjustment of the indoor expansion valves 52a to 52c is performed as follows. First, when the current supercooling degree Scn is larger than the target supercooling degree Sct, that is, when the supercooling degree difference Scd is a negative value, the CPUs 510a to 510c set the opening degrees of the indoor expansion valves 52a to 52c to the current degree. Make it larger than the opening. Thereby, since the refrigerant | coolant amount which flows in into the indoor heat exchangers 51a-51c increases, the present supercooling degree Scn becomes small and approaches the target supercooling degree Sct.

一方、現在の過冷却度Scnが目標過冷却度Sctより小さいとき、つまり、過冷却度差Scdがプラスの値のときは、CPU510a〜510cは、室内膨張弁52a〜52cの開度を現在の開度より小さくする。これにより、室内熱交換器51a〜51cに流入する冷媒量が減少するので、現在の過冷却度Scnが大きくなって目標過冷却度Sctに近づく。   On the other hand, when the current supercooling degree Scn is smaller than the target supercooling degree Sct, that is, when the supercooling degree difference Scd is a positive value, the CPUs 510a to 510c set the opening degrees of the indoor expansion valves 52a to 52c to the current degree. Make it smaller than the opening. Thereby, since the refrigerant | coolant amount which flows in into the indoor heat exchangers 51a-51c reduces, the present supercooling degree Scn becomes large and approaches the target supercooling degree Sct.

ここで、室内膨張弁52a〜52cが、本実施形態で示す直動式膨張弁のようなモータに与えるパルス数を1パルス増減させたときの開度の変化量が大きい電子膨張弁である場合、以下に記載する理由により、過冷却度差Scdに応じた室内膨張弁52a〜52cの開度調整を行うと、冷媒回路100の制御が安定しないという問題がある。   Here, when the indoor expansion valves 52a to 52c are electronic expansion valves having a large amount of change in opening when the number of pulses given to the motor is increased or decreased by one pulse, such as the direct acting expansion valve shown in the present embodiment. For the reasons described below, when the opening adjustments of the indoor expansion valves 52a to 52c according to the supercooling degree difference Scd are performed, there is a problem that the control of the refrigerant circuit 100 is not stable.

例えば、過冷却度差Scdが±2や±3といった小さい値である場合は、室内熱交換器51a〜52cに流入する冷媒量を少量変化させることで、現在の過冷却度Scnを目標過冷却度Sctとすることができる。   For example, when the supercooling degree difference Scd is a small value such as ± 2 or ± 3, the current supercooling degree Scn is set to the target supercooling by changing a small amount of the refrigerant flowing into the indoor heat exchangers 51a to 52c. Degree Sct.

通常、室内膨張弁52a〜52cの開度を調整するときは、プラスの整数値であるパルス数(例えば、+2や+3)やマイナスの整数値であるパルス数(例えば、−2や−3)、といった整数値のパルス数増減値を室内膨張弁52a〜52cに与える。そして、パルス数増減値は整数値であることから、その最小単位は1であり、室内膨張弁52a〜52cの開度は、1パルス増減する毎に1ステップ開度が大きくあるいは小さくなる。従って、室内膨張弁52a〜52cが、モータに与えるパルス数を1パルス増減させたときの開度の変化量が大きい電子膨張弁である場合は、室内膨張弁52a〜52cに与えるパルス数が1パルス増減するだけで、室内膨張弁52a〜52cを流れる冷媒量の変化量も大きくなる。   Usually, when adjusting the opening degree of the indoor expansion valves 52a to 52c, the number of pulses that is a positive integer value (for example, +2 or +3) or the number of pulses that is a negative integer value (for example, -2 or -3). ), And so on, are given to the indoor expansion valves 52a to 52c. Since the pulse number increase / decrease value is an integer value, the minimum unit thereof is 1, and the opening degree of the indoor expansion valves 52a to 52c increases or decreases by one step each time the pulse increases or decreases by one pulse. Therefore, when the indoor expansion valves 52a to 52c are electronic expansion valves that have a large change in opening when the number of pulses given to the motor is increased or decreased by one pulse, the number of pulses given to the indoor expansion valves 52a to 52c is 1. The amount of change in the amount of refrigerant flowing through the indoor expansion valves 52a to 52c increases only by increasing or decreasing the pulse.

以上説明したようなモータに与えるパルス数を1パルス増減させたときの開度の変化量が大きい室内膨張弁52a〜52cにおいて、過冷却度差Scdが±2や±3といった小さい値であるときに、室内膨張弁52a〜52cに与えるパルス数を1パルス増減して開度調整を行った場合、室内膨張弁52a〜52cの開度の変化量が大きくなる。従って、室内膨張弁52a〜52cを流れる冷媒量の変化量が大きくなって、過冷却度差Scdが大きく変動する。   When the supercooling degree difference Scd is a small value such as ± 2 or ± 3 in the indoor expansion valves 52a to 52c having a large change in opening when the number of pulses given to the motor as described above is increased or decreased by one pulse. In addition, when the opening degree is adjusted by increasing or decreasing the number of pulses given to the indoor expansion valves 52a to 52c, the amount of change in the opening degree of the indoor expansion valves 52a to 52c increases. Accordingly, the amount of change in the amount of refrigerant flowing through the indoor expansion valves 52a to 52c increases, and the supercooling degree difference Scd varies greatly.

過冷却度差Scdが大きく変動すると、目標過冷却度Sctより大きかった現在の過冷却度Scnが、逆に目標過冷却度Sctより小さくなったり、目標過冷却度Sctより小さかった現在の過冷却度Scnが、逆に目標過冷却度Sctより大きくなったりする。そして、新たに発生した過冷却度差Scdを小さくするために室内膨張弁52a〜52cに新たにパルス数増減値を与える、ということを短時間で繰り返す虞がある。   When the supercooling degree difference Scd varies greatly, the current supercooling degree Scn that is larger than the target supercooling degree Sct becomes smaller than the target supercooling degree Sct or is smaller than the target supercooling degree Sct. Conversely, the degree Scn may become larger than the target supercooling degree Sct. In order to reduce the newly generated supercooling degree difference Scd, there is a possibility that a new pulse number increase / decrease value is given to the indoor expansion valves 52a to 52c in a short time.

室内膨張弁52a〜52cの開度調整を短時間で繰り返すと、室内膨張弁52a〜52cの開度が変化する度に室内熱交換器51a〜51cへ流入する冷媒量が変化するので、短時間で冷媒回路100の圧力(圧縮機21の吐出圧力や吸入圧力等)が変動する。そして、冷媒回路100の圧力変動を抑えるために、室外機制御部200のCPU210が頻繁に圧縮機21の回転数を増減させるので、冷媒回路100の制御が安定せずひいては空気調和装置1の制御が安定しない虞があった。   If the adjustment of the opening degree of the indoor expansion valves 52a to 52c is repeated in a short time, the amount of refrigerant flowing into the indoor heat exchangers 51a to 51c changes every time the opening degree of the indoor expansion valves 52a to 52c changes. Thus, the pressure of the refrigerant circuit 100 (the discharge pressure, the suction pressure, etc. of the compressor 21) varies. And in order to suppress the pressure fluctuation of the refrigerant circuit 100, since CPU210 of the outdoor unit control part 200 frequently increases / decreases the rotation speed of the compressor 21, the control of the refrigerant circuit 100 is not stabilized and the control of the air conditioner 1 is performed. However, there was a possibility that it was not stable.

そこで、本発明では、図2に示す膨張弁パルステーブル300を用いて、モータに与えるパルス数を1パルス増減させたときの開度の変化量が大きい室内膨張弁51a〜51cを備えた冷媒回路100の制御を安定して行えるようにしている。以下の説明では、まず図2を用いて膨張弁パルステーブル300について説明し、次に、図3を用いて、膨張弁パルステーブル300を用いた室内膨張弁51a〜51cの開度調整を行う際の処理について説明する。   Therefore, in the present invention, the refrigerant circuit provided with the indoor expansion valves 51a to 51c having a large amount of change in opening when the number of pulses given to the motor is increased or decreased by one using the expansion valve pulse table 300 shown in FIG. 100 can be controlled stably. In the following description, first, the expansion valve pulse table 300 will be described with reference to FIG. 2, and then the opening adjustment of the indoor expansion valves 51 a to 51 c using the expansion valve pulse table 300 will be described with reference to FIG. 3. The process will be described.

室内機5a〜5cの室内機制御部500a〜500cに備えられている記憶部520a〜520cには、図2に示す膨張弁パルステーブル300が予め記憶されている。膨張弁パルステーブル300は、目標過冷却度Sctから現在の過冷却度Scnを減じた値である過冷却度差Scd(単位:℃)に応じて、室内膨張弁52a〜52cのモータに与えられるパルス増減値Pa、および、パルス増減値Paを算出する際の基準値である基準パルス増減値Paeが、それぞれ定められたものである。尚、基準パルス増減値Paeは、以下にパルス増減値Paの算出方法を説明する際に必要となるために、便宜上図2に示す膨張弁パルステーブル300に掲載しているものであり、実際の膨張弁パルステーブル300では、室内機制御部500a〜500cの制御に使用するパルス増減値Paのみが過冷却度差Scdに応じて定められ、記憶部520a〜520cに記憶されている。   The expansion valve pulse table 300 shown in FIG. 2 is stored in advance in the storage units 520a to 520c provided in the indoor unit control units 500a to 500c of the indoor units 5a to 5c. The expansion valve pulse table 300 is given to the motors of the indoor expansion valves 52a to 52c in accordance with a supercooling degree difference Scd (unit: ° C.) that is a value obtained by subtracting the current supercooling degree Scn from the target supercooling degree Sct. The pulse increase / decrease value Pa and the reference pulse increase / decrease value Pae, which is a reference value for calculating the pulse increase / decrease value Pa, are respectively determined. Note that the reference pulse increase / decrease value Pae is necessary for explaining the calculation method of the pulse increase / decrease value Pa in the following, so it is listed in the expansion valve pulse table 300 shown in FIG. In the expansion valve pulse table 300, only the pulse increase / decrease value Pa used for the control of the indoor unit control units 500a to 500c is determined according to the supercooling degree difference Scd and stored in the storage units 520a to 520c.

具体的には、過冷却度差Scdが−2℃超+2℃未満である場合の基準パルス増減値Paeおよびパルス増減値Paを0としている。そして、過冷却度差Scdが−14℃以下である場合の基準パルス増減値Paeを最大の+10.0、パルス増減値Paを最大の+2.8とし、過冷却度差Scdが−14℃超−12℃以下である場合の基準パルス増減値Paeを+8.0、パルス増減値Paを+2.2とし、過冷却度差Scdが−12℃超−10℃以下である場合の基準パルス増減値Paeを+6.0、パルス増減値Paを+1.7とし、・・・というように、過冷却度差Scdが負(つまり、現在の過冷却度Scnが目標過冷却度Sctより大きい)の大きな値から0に近づくにつれて、基準パルス増減値Paeおよびパルス増減値Paが小さくなるように設定されている。   Specifically, the reference pulse increase / decrease value Pae and the pulse increase / decrease value Pa when the supercooling degree difference Scd is more than −2 ° C. and less than 2 ° C. are set to 0. When the supercooling degree difference Scd is −14 ° C. or less, the reference pulse increase / decrease value Pae is set to the maximum +10.0, the pulse increase / decrease value Pa is set to +2.8, and the supercooling degree difference Scd exceeds −14 ° C. Reference pulse increase / decrease value Pae in the case of −12 ° C. or less is +8.0, pulse increase / decrease value Pa is +2.2, and reference pulse increase / decrease value in the case where the supercooling difference Scd is −12 ° C. or more and −10 ° C. or less. Assuming that Pae is +6.0, the pulse increase / decrease value Pa is +1.7, and so on, the supercooling degree difference Scd is negative (that is, the current supercooling degree Scn is larger than the target supercooling degree Sct). As the value approaches 0, the reference pulse increase / decrease value Pae and the pulse increase / decrease value Pa are set to be smaller.

一方、過冷却度差Scdが+14℃以上である場合の基準パルス増減値Paeを最小の−10.0、パルス増減値Paを最小の−2.8とし、過冷却度差Scdが+12℃以上+14℃未満である場合の基準パルス増減値Paeを−8.0、パルス増減値Paを−2.2、とし、過冷却度差Scdが+10℃以上+12℃未満である場合の基準パルス増減値Paeを−6.0、パルス増減値Paを−1.7、とし、・・・というように、過冷却度差Scdが正(つまり、現在の過冷却度Scnが目標過冷却度Sctより小さい)の大きな値から0に近づくにつれて、基準パルス増減値Paeおよびパルス増減値Paが大きくなるように設定されている。   On the other hand, when the supercooling degree difference Scd is + 14 ° C. or more, the reference pulse increase / decrease value Pae is set to the minimum −10.0, the pulse increase / decrease value Pa is set to the minimum −2.8, and the supercooling degree difference Scd is + 12 ° C. The reference pulse when the reference pulse increase / decrease value Pae is −8.0, the pulse increase / decrease value Pa is −2.2 when the temperature is less than + 14 ° C. and the supercooling degree difference Scd is + 10 ° C. or more and less than + 12 ° C. The increase / decrease value Pae is set to -6.0, the pulse increase / decrease value Pa is set to -1.7, and the like, the supercooling degree difference Scd is positive (that is, the current supercooling degree Scn is the target supercooling degree Sct). The reference pulse increase / decrease value Pae and the pulse increase / decrease value Pa are set to increase as the value approaches 0 from a larger value (smaller).

ここで、基準パルス増減値Paeとは、例えば、パルスモータの回転によってギアを駆動しギアに連結された弁部に開閉動作を行わせるギア式膨張弁のように、直動式膨張弁と比べて1パルス増減させたときの開度の変化量が小さい膨張弁において、過冷却度差Scdに応じて定められたパルス増減値である。1パルス増減させたときの開度の変化量が小さい膨張弁では、与えられるパルス増減値が1パルス変化したときの膨張弁を流れる冷媒量の変化量が、1パルス増減させたときの開度の変化量が大きい膨張弁を流れる冷媒量の変化量より小さくなるため、過冷却度差Scdに応じた基準パルス増減値Paeは全て整数値とすることができる。尚、基準パルス増減値Paeは、予め試験によって求められるものである。   Here, the reference pulse increase / decrease value Pae is, for example, compared with a direct-acting expansion valve, such as a gear-type expansion valve that drives a gear by rotation of a pulse motor and causes a valve unit connected to the gear to open and close. This is a pulse increase / decrease value determined according to the supercooling degree difference Scd in an expansion valve with a small amount of change in opening when increasing / decreasing by 1 pulse. For an expansion valve that has a small amount of change in opening when it is increased or decreased by one pulse, the amount of change in the amount of refrigerant flowing through the expansion valve when the given pulse increase or decrease changes by one pulse is the degree of opening when the pulse is increased or decreased by one pulse. Therefore, the reference pulse increase / decrease value Pae corresponding to the supercooling degree difference Scd can all be an integer value. The reference pulse increase / decrease value Pae is obtained in advance by a test.

これに対し、パルス増減値Paは、1パルス増減させたときの開度の変化量が大きい本実施形態の室内膨張弁52a〜52cにおいて、過冷却度差Scdに応じて定められたパルス増減値であり、基準パルス増減値Paeを用いて算出されるものである。具体的には、1パルス増減させたときの開度の変化量が小さい膨張弁と室内膨張弁52a〜52cとの開度の変化量の差を表す特性差に応じた値で基準パルス増減値Paeを除して算出される。つまり、1パルス増減させたときの開度の変化量が小さい膨張弁で過冷却度差Scdを小さくするために膨張弁に与える基準パルス増減値Paeを、1パルス増減させたときの開度の変化量が大きい室内膨張弁52a〜52cで同じ過冷却度差Scdを小さくするために室内膨張弁52a〜52cに与えるパルス増減値Paに、特性差を用いて換算している。   On the other hand, the pulse increase / decrease value Pa is a pulse increase / decrease value determined according to the supercooling degree difference Scd in the indoor expansion valves 52a to 52c of the present embodiment having a large change amount of the opening when increasing / decreasing one pulse. It is calculated using the reference pulse increase / decrease value Pae. Specifically, the reference pulse increase / decrease value is a value corresponding to the characteristic difference representing the difference in the change amount of the opening between the expansion valve 52a to 52c and the expansion valve having a small change amount of the opening when increasing / decreasing one pulse. Calculated by dividing Pae. That is, the reference pulse increase / decrease value Pae given to the expansion valve in order to reduce the supercooling degree difference Scd with an expansion valve with a small change amount of the opening when increasing / decreasing one pulse, In order to reduce the same supercooling degree difference Scd in the indoor expansion valves 52a to 52c having a large change amount, the pulse increase / decrease value Pa given to the indoor expansion valves 52a to 52c is converted using the characteristic difference.

尚、特性差としては、例えば、膨張弁の流量係数(横軸に膨張弁開度、縦軸に膨張弁を流れる冷媒量をとったグラフの傾き)を使用し、本実施形態の場合は、1パルス増減させたときの開度の変化量が小さい膨張弁の流量係数に対し室内膨張弁52a〜52cの流量係数が3.6倍であり、基準パルス増減値Paeを3.6で除した値がパルス増減値Paである。   As the characteristic difference, for example, the flow coefficient of the expansion valve (inclination of the graph in which the horizontal axis indicates the expansion valve opening and the vertical axis indicates the amount of refrigerant flowing through the expansion valve) is used. The flow coefficient of the indoor expansion valves 52a to 52c is 3.6 times the flow coefficient of the expansion valve that has a small amount of change in opening when increasing or decreasing one pulse, and the reference pulse increase / decrease value Pae is divided by 3.6. The value is the pulse increase / decrease value Pa.

以上説明したように、膨張弁パルステーブル300に定められているパルス増減値Paは、基準パルス増減値Paeを用いて算出しているため、少数点以下の数値が存在する値となる。しかし、上述したように、膨張弁には整数値のパルス数しか与えられない。そこで、本発明では、以下に説明する方法で、少数点以下の数値が存在するパルス増減値Paを用いても室内膨張弁52a〜52cの開度調整を行えるようにしている。例えば、算出した過冷却度差Scdが−8℃であった場合、CPU510a〜510cは、膨張弁パルステーブル300を参照してパルス増減値Pa:+1.4を抽出する。   As described above, since the pulse increase / decrease value Pa defined in the expansion valve pulse table 300 is calculated using the reference pulse increase / decrease value Pae, the numerical value below the decimal point is present. However, as described above, only an integer number of pulses is given to the expansion valve. Therefore, in the present invention, the opening degree of the indoor expansion valves 52a to 52c can be adjusted by using the pulse increase / decrease value Pa having a numerical value of the decimal point or less by the method described below. For example, when the calculated supercooling degree difference Scd is −8 ° C., the CPUs 510 a to 510 c extract the pulse increase / decrease value Pa: +1.4 with reference to the expansion valve pulse table 300.

しかし、上述したように、室内膨張弁51a〜51cに与えるパルス数の最小単位は1であり、+1.4のパルス数を与えることはできない。そこで、CPU510a〜510cは、パルス増減値Paを整数部Pai(この場合、+1)と小数部Pam(この場合、+0.4)とに分割し、整数部Paiを室内膨張弁52a〜52cに与えるとともに、小数部Pamは記憶部520a〜520cに記憶する。   However, as described above, the minimum unit of the number of pulses given to the indoor expansion valves 51a to 51c is 1, and a pulse number of +1.4 cannot be given. Therefore, the CPUs 510a to 510c divide the pulse increase / decrease value Pa into an integer part Pai (in this case, +1) and a decimal part Pam (in this case, +0.4), and give the integer part Pai to the indoor expansion valves 52a to 52c. At the same time, the decimal part Pam is stored in the storage units 520a to 520c.

CPU510a〜510cは、上記室内膨張弁51a〜51cの開度調整を所定時間(例えば、20秒)毎に繰り返すが、次に算出した過冷却度差Scdが−4℃であった場合、CPU510a〜510cは、膨張弁パルステーブル300を参照してパルス増減値Pa:+0.6を抽出する。次に、CPU510a〜510cは、記憶部520a〜520cに記憶している小数部Pamに今回抽出したパルス増減値Paに加算する。ここでは、記憶している小数部Pamが+0.4であるので、これを加算したパルス増減値Paは+1.0となる。   The CPUs 510a to 510c repeat the opening adjustments of the indoor expansion valves 51a to 51c every predetermined time (for example, 20 seconds). If the next calculated subcooling degree Scd is −4 ° C., the CPUs 510a to 510c 510c refers to the expansion valve pulse table 300 to extract the pulse increase / decrease value Pa: +0.6. Next, the CPUs 510a to 510c add the pulse increase / decrease value Pa extracted this time to the decimal part Pam stored in the storage units 520a to 520c. Here, since the stored fractional part Pam is +0.4, the pulse increase / decrease value Pa obtained by adding this is +1.0.

そして、CPU510a〜510cは、パルス増減値Pa:+1.0を、整数部Pai(この場合、+1)と小数部Pam(この場合、+0.0)とに分割し、整数部Paiを室内膨張弁52a〜52cに与えるとともに、小数部Pamを記憶部520a〜520cに記憶する。以降、CPU510a〜510cは、暖房運転を継続する限り上記制御を所定時間毎に繰り返す。   Then, the CPUs 510a to 510c divide the pulse increase / decrease value Pa: +1.0 into an integer part Pai (in this case, +1) and a decimal part Pam (in this case, +0.0), and the integer part Pai is expanded indoors. While giving to valves 52a-52c, decimal part Pam is memorized by storage parts 520a-520c. Thereafter, the CPUs 510a to 510c repeat the above control every predetermined time as long as the heating operation is continued.

以上説明した室内膨張弁52a〜52cの開度調整では、過冷却度差Scdに応じた基準パルス増減値Paeを用いて算出したパルス増減値Paを用い、パルス増減値Paの小数部Pamを、次のタイミングで算出したパルス増減値Paに加算もしくは減算しているので、室内膨張弁52a〜52cに整数値のパルス増減値を与えた場合の開度の変化に比べて、開度の変化が緩やかになる。この結果、室内膨張弁52a〜52cの開度調整に応じた冷媒流量の変化量も小さくなり、冷媒回路100における圧力変動も緩やかになる。結果、冷媒回路100の制御が安定する。   In the opening adjustment of the indoor expansion valves 52a to 52c described above, the pulse increase / decrease value Pa calculated using the reference pulse increase / decrease value Pae corresponding to the supercooling degree difference Scd is used, and the decimal part Pam of the pulse increase / decrease value Pa is Since the pulse increase / decrease value Pa calculated at the next timing is added or subtracted, the change in the opening is smaller than the change in the opening when an integer pulse increase / decrease value is given to the indoor expansion valves 52a to 52c. Be gentle. As a result, the amount of change in the refrigerant flow rate corresponding to the adjustment of the opening degree of the indoor expansion valves 52a to 52c becomes small, and the pressure fluctuation in the refrigerant circuit 100 also becomes gentle. As a result, the control of the refrigerant circuit 100 is stabilized.

次に、図1乃至図3を用いて、本実施形態の空気調和装置1の暖房運転時における、膨張弁パルステーブル300を用いた室内膨張弁52a〜52cの制御について説明する。図3は、空気調和装置1が暖房運転を行う場合の、室内機制御部500a〜500cのCPU510a〜510cが行う制御に関する処理の流れを示すものである。図3において、STはステップを表し、これに続く数字はステップ番号を表している。尚、図3では本発明に関わる処理を中心に説明しており、これ以外の処理、例えば、使用者の指示した設定温度や風量等の運転条件に対応した冷媒回路100の制御、といった、空気調和装置1に関わる一般的な処理については説明を省略している。   Next, control of the indoor expansion valves 52a to 52c using the expansion valve pulse table 300 during the heating operation of the air-conditioning apparatus 1 of the present embodiment will be described with reference to FIGS. FIG. 3 shows the flow of processing related to the control performed by the CPUs 510a to 510c of the indoor unit control units 500a to 500c when the air conditioning apparatus 1 performs the heating operation. In FIG. 3, ST represents a step, and the number following this represents a step number. Note that FIG. 3 mainly illustrates the processing related to the present invention, and other processing, for example, control of the refrigerant circuit 100 corresponding to the operating conditions such as the set temperature and the air volume instructed by the user. Description of general processing related to the harmony device 1 is omitted.

使用者による暖房運転開始の指示により空気調和装置1が暖房運転を開始すると、CPU510a〜510cは、室内膨張弁51a〜51cに初期パルス数Psを与える(ST1)。これにより、室内膨張弁51a〜51cの開度は、初期パルス数Psに応じた開度となる。尚、初期パルスPsは、予め試験により求められて記憶部520a〜520cに記憶されている。この後、CPU510a〜510cは、室内ファン55a〜55cを起動して室内機5a〜5cの暖房運転を開始する。   When the air-conditioning apparatus 1 starts the heating operation according to the instruction for starting the heating operation by the user, the CPUs 510a to 510c give the initial number of pulses Ps to the indoor expansion valves 51a to 51c (ST1). Thereby, the opening degree of the indoor expansion valves 51a-51c becomes an opening degree according to the initial pulse number Ps. The initial pulse Ps is obtained in advance by a test and stored in the storage units 520a to 520c. Thereafter, the CPUs 510a to 510c start the indoor fans 55a to 55c and start the heating operation of the indoor units 5a to 5c.

次に、CPU510a〜510cは、タイマー計測を開始し(ST2)、液側冷媒温度Trlを取り込む(ST3)。次に、CPU510a〜510cは、現在の過冷却度Scnを算出する(ST4)。具体的には、CPU510a〜510cは、室外機2から取り込んで記憶部520a〜520cに記憶している高圧飽和温度Thから、液側温度センサ61a〜61cで検出した液冷媒温度Trlを減じて現在の過冷却度Scnを算出し、算出した現在の過冷却度Scnを記憶部520a〜520cに記憶する。   Next, the CPUs 510a to 510c start timer measurement (ST2) and take in the liquid side refrigerant temperature Trl (ST3). Next, the CPUs 510a to 510c calculate the current degree of supercooling Scn (ST4). Specifically, the CPUs 510a to 510c subtract the liquid refrigerant temperature Trl detected by the liquid side temperature sensors 61a to 61c from the high pressure saturation temperature Th taken in from the outdoor unit 2 and stored in the storage units 520a to 520c. Is calculated, and the calculated current supercooling degree Scn is stored in the storage units 520a to 520c.

次に、CPU510a〜510cは、過冷却度差Scdを算出する(ST5)。具体的には、CPU510a〜510cは、記憶部520a〜520cに記憶している目標過冷却度Sctと現在の過冷却度Scnとを用い、目標過冷却度Sctから現在の過冷却度Scnを減じて過冷却度差Scdを算出し、算出した過冷却度差Scdを記憶部520a〜520cに記憶する。   Next, the CPUs 510a to 510c calculate a supercooling degree difference Scd (ST5). Specifically, the CPUs 510a to 510c use the target supercooling degree Sct and the current supercooling degree Scn stored in the storage units 520a to 520c, and subtract the current supercooling degree Scn from the target supercooling degree Sct. Then, the supercooling degree difference Scd is calculated, and the calculated supercooling degree difference Scd is stored in the storage units 520a to 520c.

次に、CPU510a〜510cは、記憶部520a〜520cに記憶している膨張弁パルステーブル300を参照し、同じく記憶部520a〜520cに記憶している過冷却度差Scdに応じたパルス増減値Paを抽出する(ST6)。   Next, the CPUs 510a to 510c refer to the expansion valve pulse table 300 stored in the storage units 520a to 520c, and the pulse increase / decrease value Pa corresponding to the supercooling degree difference Scd stored in the storage units 520a to 520c. Is extracted (ST6).

次に、CPU510a〜510cは、記憶部510a〜510cに記憶している小数部Pamを、ST6で抽出したパルス増減値Paに加算もしくは減算する(ST7)。   Next, the CPUs 510a to 510c add or subtract the decimal part Pam stored in the storage units 510a to 510c to the pulse increase / decrease value Pa extracted in ST6 (ST7).

次に、CPU510a〜510cは、ST7で算出したパルス増減値Paを整数部Paiと小数部Pamとに分割し(ST8)、整数部Paiを室内膨張弁52a〜52cに与えるとともに、小数部Pamを記憶部520a〜520cに記憶する(ST9)。   Next, the CPUs 510a to 510c divide the pulse increase / decrease value Pa calculated in ST7 into an integer part Pai and a decimal part Pam (ST8), and supply the integer part Pai to the indoor expansion valves 52a to 52c, and the decimal part Pam. It memorize | stores in the memory | storage parts 520a-520c (ST9).

次に、CPU510a〜510cは、使用者から運転停止指示あるいは運転モード切替(暖房運転から冷房/除湿運転への切替)指示があるか否かを判断する(ST10)。運転停止指示あるいは運転モード切替指示がある場合は(ST10−Yes)、CPU510a〜510cは、処理を終了する。運転停止指示あるいは運転モード切替指示がない場合は(ST10−No)、CPU510a〜510cは、ST2でタイマー計測を開始してから所定時間が経過したか否かを判断する(ST11)。所定時間が経過していなければ(ST11−No)、CPU510a〜510cは、ST10に処理を戻し、所定時間が経過していれば(ST11−Yes)、CPU510a〜510cは、タイマーをリセットし(ST12)、ST2に処理を戻す。   Next, CPUs 510a to 510c determine whether or not there is an operation stop instruction or an operation mode switching instruction (switching from heating operation to cooling / dehumidification operation) from the user (ST10). When there is an operation stop instruction or an operation mode switching instruction (ST10-Yes), the CPUs 510a to 510c end the processing. When there is no operation stop instruction or operation mode switching instruction (ST10-No), CPUs 510a to 510c determine whether or not a predetermined time has elapsed since the start of timer measurement in ST2 (ST11). If the predetermined time has not elapsed (ST11-No), the CPUs 510a to 510c return the processing to ST10, and if the predetermined time has elapsed (ST11-Yes), the CPUs 510a to 510c reset the timer (ST12). ), The process is returned to ST2.

尚、以上説明した実施形態では、室内機制御手段500a〜500cのCPU510a〜510cが、パルス増減値Paの整数部Paiと小数部Pamとへの分割、パルス増減値Paへの小数部Pamの加減算、および、整数部Paiを室内膨張弁52a〜52cへ与える、といった処理を行うとして説明したが、より詳細には、図4に示すように、CPU510a〜510cは上記各処理を行う構成を備えている。すなわち、CPU510a〜510cは、パルス増減値Paの整数部Paiと小数部Pamとへの分割するパルス分割部510aa〜510acと、パルス増減値Paへの小数部Pamの加減算を行う小数部加減部510ba〜510bcと、整数部Paiを室内膨張弁52a〜52cへ与えるパルス出力部510ca〜510ccとを備えている。   In the embodiment described above, the CPUs 510a to 510c of the indoor unit control means 500a to 500c divide the pulse increase / decrease value Pa into the integer part Pai and the decimal part Pam, and add / subtract the decimal part Pam to the pulse increase / decrease value Pa. And the processing of giving the integer part Pai to the indoor expansion valves 52a to 52c has been described, but more specifically, as shown in FIG. 4, the CPUs 510a to 510c have a configuration for performing each of the above processes. Yes. That is, the CPUs 510a to 510c have pulse division units 510aa to 510ac that divide the pulse increase / decrease value Pa into an integer part Pai and a fractional part Pam, and a decimal part addition / subtraction part 510ba that performs addition / subtraction of the decimal part Pam to the pulse increase / decrease value Pa. ˜510bc and pulse output parts 510ca˜510 cc for supplying the integer part Pai to the indoor expansion valves 52a˜52c.

以上説明したように、本発明の空気調和装置は、膨張弁に与えるパルスの数に整数部と小数部とがあるとき、整数部のみ膨張弁に与えるとともに小数部を記憶し、新たなパルスの数に記憶した小数部を加算もしくは減算する。これにより、膨張弁開度の変化を緩やかにでき、冷媒流量の頻繁な増減が抑制されて冷媒回路内の冷媒圧力の頻繁な変動も抑制できるので、空気調和装置の制御が安定する。   As described above, when there are an integer part and a decimal part in the number of pulses given to the expansion valve, the air conditioner of the present invention gives only the integer part to the expansion valve and stores the decimal part. Add or subtract the decimal part stored in the number. Thereby, the change of the expansion valve opening degree can be moderated, the frequent increase / decrease in the refrigerant flow rate is suppressed, and the frequent fluctuation of the refrigerant pressure in the refrigerant circuit can be suppressed, so that the control of the air conditioner is stabilized.

尚、以上説明した実施形態では、運転状態量として、空気調和装置1が暖房運転を行うときの室内熱交換器51a〜51cの冷媒出口側における冷媒の過冷却度を例に挙げて説明したが、これに限るものではなく、空気調和装置1が冷房運転を行うときの室内熱交換器51a〜51cの冷媒出口側における冷媒の過熱度や、凝縮圧力や蒸発圧力等の冷媒回路100での冷媒圧力のような、室内熱交換器51a〜51cや室外熱交換器23に流入する冷媒量に応じて変動するものであればよい。   In the above-described embodiment, as the operation state quantity, the supercooling degree of the refrigerant on the refrigerant outlet side of the indoor heat exchangers 51a to 51c when the air conditioner 1 performs the heating operation is described as an example. Not limited to this, the refrigerant in the refrigerant circuit 100 such as the degree of superheat of the refrigerant on the refrigerant outlet side of the indoor heat exchangers 51a to 51c, the condensation pressure, and the evaporation pressure when the air conditioner 1 performs the cooling operation. What is necessary is just to change according to the refrigerant | coolants amount which flows into the indoor heat exchangers 51a-51c and the outdoor heat exchanger 23 like a pressure.

1 空気調和装置
2 室外機
5a〜5c 室内機
21 圧縮機
31 吐出圧力センサ
51a〜51c 室内熱交換器
52a〜52c 室内膨張弁
61a〜61c 液側温度センサ
100 冷媒回路
300 膨張弁パルステーブル
500a〜500c 室外機制御部
510a〜510c CPU
510aa〜510ac パルス分割部
510ba〜510bc 小数部加減部
510ca〜510cc パルス出力部
520a〜520c 記憶部
目標過冷却度 Sct
現在の過冷却度 Scn
過冷却度差 Scd
初期パルス数 Ps
パルス増減値 Pa
増減値の整数部 Pai
増減値の小数部 Pam
液冷媒温度 Trl
高圧飽和温度 Th
DESCRIPTION OF SYMBOLS 1 Air conditioning apparatus 2 Outdoor unit 5a-5c Indoor unit 21 Compressor 31 Discharge pressure sensor 51a-51c Indoor heat exchanger 52a-52c Indoor expansion valve 61a-61c Liquid side temperature sensor 100 Refrigerant circuit 300 Expansion valve pulse table 500a-500c Outdoor unit controller 510a to 510c CPU
510aa to 510ac Pulse division unit 510ba to 510bc Decimal part addition / subtraction unit 510ca to 510cc Pulse output unit 520a to 520c Storage unit Target supercooling degree Sct
Current degree of supercooling Scn
Subcooling degree difference Scd
Initial number of pulses Ps
Pulse increase / decrease value Pa
Integer part of increase / decrease value Pai
Decimal part of increase / decrease value Pam
Liquid refrigerant temperature Trl
High pressure saturation temperature Th

Claims (3)

圧縮機と、熱源側熱交換器と、利用側熱交換器と、前記熱源側熱交換器と前記利用側熱交換器との間に配置される膨張弁と、前記膨張弁の開度を調整する制御手段とを有する空気調和装置であって、
前記膨張弁は、同膨張弁に与えられるパルスの数に応じて開度が制御され、
前記制御手段は、
前記熱源側熱交換器や前記利用側熱交換器に流入する冷媒量に応じて変動する運転状態量と同運転状態量の目標値との差に応じて、前記膨張弁に与えるパルスの数を変化させ、
前記膨張弁に与えるパルスの数が整数部と小数部とを有するとき、
前記整数部のみ前記膨張弁に与えるとともに前記小数部を記憶し、
前記膨張弁に与える新たなパルスの数に記憶した前記小数部を加算もしくは減算する、
ことを特徴とする空気調和装置。
A compressor, a heat source side heat exchanger, a use side heat exchanger, an expansion valve disposed between the heat source side heat exchanger and the use side heat exchanger, and an opening degree of the expansion valve is adjusted An air conditioner having a control means for
The opening of the expansion valve is controlled according to the number of pulses given to the expansion valve,
The control means includes
The number of pulses given to the expansion valve according to the difference between the operating state quantity that varies according to the amount of refrigerant flowing into the heat source side heat exchanger and the usage side heat exchanger and the target value of the operating state quantity, Change
When the number of pulses applied to the expansion valve has an integer part and a decimal part,
Giving only the integer part to the expansion valve and storing the fractional part;
Adding or subtracting the fractional part stored in the number of new pulses applied to the expansion valve;
An air conditioner characterized by that.
前記制御手段は、
前記膨張弁に与えるパルスの数を前記整数部と前記小数部とに分割するパルス分割手段と、
前記膨張弁に与える新たなパルスの数に記憶した前記小数部を加算もしくは減算する小数部加減手段と、
前記整数部を前記膨張弁に与えるパルス出力手段と、
を有する請求項1に記載の空気調和装置。
The control means includes
Pulse dividing means for dividing the number of pulses applied to the expansion valve into the integer part and the decimal part;
Decimal part addition / subtraction means for adding or subtracting the decimal part stored in the number of new pulses applied to the expansion valve;
Pulse output means for providing the integer part to the expansion valve;
The air conditioning apparatus according to claim 1, comprising:
前記運転状態量は、前記熱交換器が凝縮器として機能する際の、前記熱交換器の冷媒出口における冷媒の過冷却度であること、
を特徴とする請求項1に記載の空気調和装置。
The operating state quantity is a degree of supercooling of the refrigerant at the refrigerant outlet of the heat exchanger when the heat exchanger functions as a condenser,
The air conditioning apparatus according to claim 1.
JP2013260215A 2013-12-17 2013-12-17 Air conditioning system Pending JP2015117853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013260215A JP2015117853A (en) 2013-12-17 2013-12-17 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013260215A JP2015117853A (en) 2013-12-17 2013-12-17 Air conditioning system

Publications (1)

Publication Number Publication Date
JP2015117853A true JP2015117853A (en) 2015-06-25

Family

ID=53530734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013260215A Pending JP2015117853A (en) 2013-12-17 2013-12-17 Air conditioning system

Country Status (1)

Country Link
JP (1) JP2015117853A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107062556A (en) * 2017-05-11 2017-08-18 广东志高暖通设备股份有限公司 A kind of control method of refrigerant flow of module water dispenser
CN107655174A (en) * 2017-10-26 2018-02-02 重庆美的通用制冷设备有限公司 The anti-step-out control method and control device of air-conditioning system and its electric expansion valve
WO2018159202A1 (en) * 2017-02-28 2018-09-07 三菱重工サーマルシステムズ株式会社 Refrigerant charge determination device, air conditioning system, refrigerant charge determination method, and program
WO2019207619A1 (en) * 2018-04-23 2019-10-31 三菱電機株式会社 Refrigeration cycle device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0264361A (en) * 1988-08-30 1990-03-05 Ulvac Corp Control method for expansion valve for refrigerating and cooling
JP2001012808A (en) * 1999-06-29 2001-01-19 Matsushita Electric Ind Co Ltd Method of and apparatus for controlling expansion valve of air conditioner
JP2007003015A (en) * 2005-06-21 2007-01-11 Daikin Ind Ltd Refrigerating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0264361A (en) * 1988-08-30 1990-03-05 Ulvac Corp Control method for expansion valve for refrigerating and cooling
JP2001012808A (en) * 1999-06-29 2001-01-19 Matsushita Electric Ind Co Ltd Method of and apparatus for controlling expansion valve of air conditioner
JP2007003015A (en) * 2005-06-21 2007-01-11 Daikin Ind Ltd Refrigerating device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159202A1 (en) * 2017-02-28 2018-09-07 三菱重工サーマルシステムズ株式会社 Refrigerant charge determination device, air conditioning system, refrigerant charge determination method, and program
CN107062556A (en) * 2017-05-11 2017-08-18 广东志高暖通设备股份有限公司 A kind of control method of refrigerant flow of module water dispenser
CN107655174A (en) * 2017-10-26 2018-02-02 重庆美的通用制冷设备有限公司 The anti-step-out control method and control device of air-conditioning system and its electric expansion valve
CN107655174B (en) * 2017-10-26 2020-05-08 重庆美的通用制冷设备有限公司 Air conditioning system and anti-desynchronization control method and device for electronic expansion valve of air conditioning system
WO2019207619A1 (en) * 2018-04-23 2019-10-31 三菱電機株式会社 Refrigeration cycle device
JPWO2019207619A1 (en) * 2018-04-23 2021-02-12 三菱電機株式会社 Refrigeration cycle equipment
GB2588714A (en) * 2018-04-23 2021-05-05 Mitsubishi Electric Corp Refrigeration cycle device
GB2588714B (en) * 2018-04-23 2022-10-19 Mitsubishi Electric Corp Refrigeration cycle apparatus

Similar Documents

Publication Publication Date Title
JP5549773B1 (en) Air conditioner
JP6693312B2 (en) Air conditioner
KR101508448B1 (en) Heat source system and number-of-machines control method for heat source system
JP5692302B2 (en) Air conditioner
JP5549771B1 (en) Air conditioner
WO2017026310A1 (en) Air conditioner and method of operating same
US10527330B2 (en) Refrigeration cycle device
WO2009116160A1 (en) Indoor unit and air conditioning apparatus including the same
EP3040651B1 (en) Variable refrigerant flow system operation in low ambient conditions
US8020395B2 (en) Air conditioning apparatus
WO2015015814A1 (en) Air conditioner
JP6870382B2 (en) Air conditioner
JP2016061456A (en) Air conditioning device
JP6834616B2 (en) Air conditioner
AU2011309325A1 (en) Outdoor unit of refrigeration apparatus
JP2014037911A (en) Cascade heat pump cycle
JP2017067301A (en) Air conditioning device
JP2015117853A (en) Air conditioning system
WO2018164253A1 (en) Air-conditioning device
WO2017109906A1 (en) Air conditioner
JP6191490B2 (en) Air conditioner
JP5787102B2 (en) Separable air conditioner
JP6428221B2 (en) Air conditioner
JP2018017479A (en) Air conditioner
JP2019020093A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170912