JP2015117539A - Abrasion loss estimation method and abrasion loss estimation system - Google Patents

Abrasion loss estimation method and abrasion loss estimation system Download PDF

Info

Publication number
JP2015117539A
JP2015117539A JP2013262479A JP2013262479A JP2015117539A JP 2015117539 A JP2015117539 A JP 2015117539A JP 2013262479 A JP2013262479 A JP 2013262479A JP 2013262479 A JP2013262479 A JP 2013262479A JP 2015117539 A JP2015117539 A JP 2015117539A
Authority
JP
Japan
Prior art keywords
quartz
wear amount
index value
amount estimation
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013262479A
Other languages
Japanese (ja)
Other versions
JP6239966B2 (en
Inventor
勇人 戸邉
Hayato Tobe
勇人 戸邉
山本 拓治
Takuji Yamamoto
拓治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2013262479A priority Critical patent/JP6239966B2/en
Publication of JP2015117539A publication Critical patent/JP2015117539A/en
Application granted granted Critical
Publication of JP6239966B2 publication Critical patent/JP6239966B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Earth Drilling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an abrasion loss estimation method that enables accurate estimation of an abrasion loss of a cutter, and an abrasion loss estimation system.SOLUTION: An abrasion loss estimation method for estimating an abrasion loss of a cutter for excavating a tunnel includes an index value calculation step S200 of calculating a quartz connection index value D5 that is an index indicating connectivity of quartz included in ground 63, and an abrasion loss estimation step S207 of calculating an estimate value D6 associated with the abrasion loss of a disc cutter 61 on the basis of the quartz connection index value D5.

Description

本発明は、トンネルを掘削するカッターの摩耗量を見積もる摩耗量見積方法及び摩耗量見積システムに関するものである。   The present invention relates to a wear amount estimation method and a wear amount estimation system for estimating a wear amount of a cutter excavating a tunnel.

従来、このような分野の技術文献として、下記非特許文献1が知られている。この文献では、TBM施工において、地山の岩石試料の圧縮強度や岩石試料に含まれる石英の含有率が、カッタビットの摩耗量に影響することが示されている。   Conventionally, the following non-patent document 1 is known as a technical document in such a field. This document shows that, in TBM construction, the compressive strength of rock samples in the natural ground and the content of quartz contained in the rock samples affect the wear amount of the cutter bit.

中根達人ら、「TBM施工におけるカッタビット摩耗量と岩石強度及び石英含有率」、土木学会第59回年次学術講演会予稿集、平成16年9月、p693−694.Nakane Tatsuto et al., “Cutterbit Wear and Rock Strength and Quartz Content in TBM Construction”, Proceedings of the 59th Annual Scientific Lecture, Japan Society of Civil Engineers, September 2004, p693-694.

しかしながら、地盤の一軸圧縮強さや石英含有率とカッターの摩耗量との間には十分な相関関係が見られない場合もある。従って、一軸圧縮強さや石英含有率を基にしてはカッターの摩耗量の見積りを正確に得られない場合もある。   However, a sufficient correlation may not be found between the uniaxial compressive strength of the ground, the quartz content, and the amount of wear of the cutter. Therefore, there is a case where the estimation of the amount of wear of the cutter cannot be obtained accurately based on the uniaxial compressive strength and the quartz content.

本発明は、カッターの摩耗量を正確に見積もることができる摩耗量見積方法及び摩耗量見積システムを提供することを目的とする。   An object of the present invention is to provide a wear amount estimation method and a wear amount estimation system capable of accurately estimating the wear amount of a cutter.

本発明者らは、トンネルを掘削するカッターの摩耗量を見積もるにあたり、地盤中の石英の含有率のみならず、その石英の連結性がカッターの摩耗量に影響を及ぼしていることを見出し、本発明を完成させた。   In estimating the amount of wear of a cutter excavating a tunnel, the present inventors have found that not only the content of quartz in the ground but also the connectivity of the quartz affects the amount of wear of the cutter. Completed the invention.

上記の知見に鑑み、本発明の摩耗量見積方法は、トンネルを掘削するカッターの摩耗量を見積もる摩耗量見積方法であって、掘削対象の地盤に含まれる石英の連結性を示す指標である石英連結指標値を算出する指標値算出工程と、石英連結指標値に基づいてカッターの摩耗量に関する推定データを算出する摩耗量推定工程と、を備えたことを特徴とする。   In view of the above knowledge, the wear amount estimation method of the present invention is a wear amount estimation method for estimating the wear amount of a cutter for excavating a tunnel, and is an index indicating the connectivity of quartz contained in the ground to be excavated. An index value calculation step for calculating a connection index value and a wear amount estimation step for calculating estimation data relating to the wear amount of the cutter based on the quartz connection index value.

また、本発明の摩耗量見積システムは、トンネルを掘削するカッターの摩耗量を見積もる摩耗量見積システムであって、掘削対象の地盤に含まれる石英の連結性を示す指標である石英連結指標値を算出する指標値算出手段と、石英連結指標値に基づいてカッターの摩耗量に関する推定データを算出する摩耗量推定手段と、を備えたことを特徴とする。   The wear amount estimation system of the present invention is a wear amount estimation system for estimating the wear amount of a cutter for excavating a tunnel, and a quartz connection index value that is an index indicating the connectivity of quartz contained in the ground to be excavated. An index value calculating means for calculating and a wear amount estimating means for calculating estimated data relating to the wear amount of the cutter based on the quartz connection index value are provided.

この方法及び装置によれば、掘削対象の地盤に含まれる石英の連結性を石英連結指標値として示し、その指標値に基づいてカッターの摩耗量を推定することができるので、地盤中の石英の連結性が反映された正確な摩耗量の見積りを得ることができる。   According to this method and apparatus, the connectivity of quartz contained in the ground to be excavated is shown as a quartz connection index value, and the amount of wear of the cutter can be estimated based on the index value. It is possible to obtain an accurate estimation of the amount of wear reflecting the connectivity.

具体的には、指標値算出工程は、地盤の断面のサンプルの画像を得る画像化工程と、画像化工程で得られた断面画像から石英の粒子の断面に相当する石英領域を抽出する石英領域抽出工程と、石英領域の連結性に基づいて石英連結指標値を算出する連結性分析工程と、を有することとしてもよい。   Specifically, the index value calculating step includes an imaging step for obtaining an image of a sample of a cross section of the ground, and a quartz region for extracting a quartz region corresponding to a cross section of the quartz particle from the sectional image obtained in the imaging step. An extraction step and a connectivity analysis step of calculating a quartz connectivity index value based on the connectivity of the quartz region may be included.

更に具体的には、連結性分析工程は、断面画像を複数の分割領域に分割する画像分割工程と、複数の分割領域のうち、当該分割領域の一端から他端まで連続する石英領域を含むものの存在割合に基づいて石英連結指標値を得る指標値取得工程と、を有することとしてもよい。   More specifically, the connectivity analysis step includes an image division step for dividing the cross-sectional image into a plurality of divided regions, and a quartz region continuous from one end to the other end of the divided regions among the plurality of divided regions. An index value acquisition step of obtaining a quartz connection index value based on the existence ratio.

また、連結性分析工程は、断面画像を複数の分割領域に分割する画像分割工程と、複数の分割領域のうち、当該分割領域の一端から他端まで連続する石英領域を含むものの存在割合を演算する存在割合演算工程と、画像分割工程と、存在割合演算工程と、を分割領域のサイズを変更しながら繰り返し、分割領域のサイズと存在割合との相関関係式を得る分割サイズ相関式取得工程と、相関関係式において、分割領域のサイズに所定の値を代入して得られる存在割合を石英連結指標値として得る指標値取得工程と、を有することとしてもよい。   In addition, the connectivity analysis step calculates the existence ratio of an image dividing step of dividing a cross-sectional image into a plurality of divided regions and a plurality of divided regions including a quartz region continuous from one end to the other end of the divided regions. A division size correlation equation obtaining step of obtaining a correlation equation between the size of the divided region and the existence ratio by repeating the existence ratio calculating step, the image dividing step, and the existence ratio calculating step while changing the size of the divided region; The correlation equation may include an index value acquisition step of obtaining an existence ratio obtained by substituting a predetermined value for the size of the divided region as a quartz connection index value.

またこの場合、所定の値として、カッターの地盤への貫入量に関する値が採用されることとしてもよい。   In this case, a value related to the amount of penetration of the cutter into the ground may be adopted as the predetermined value.

本発明によれば、カッターの摩耗量を正確に見積もることができる摩耗量見積方法及び摩耗量見積システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the wear amount estimation method and wear amount estimation system which can estimate the wear amount of a cutter correctly can be provided.

本発明に係る摩耗量見積システムの一実施形態を示すブロック図である。1 is a block diagram showing an embodiment of a wear amount estimation system according to the present invention. 図1の摩耗量見積システムで取り扱われる二値化画像データの一例を示す図である。It is a figure which shows an example of the binarized image data handled with the abrasion amount estimation system of FIG. 図1の摩耗量見積システムで取り扱われる分割画像データの一例を示す図である。It is a figure which shows an example of the division | segmentation image data handled with the abrasion amount estimation system of FIG. 図1の摩耗量見積システムで取り扱われる分割サイズ相関式のグラフの一例を示す図である。It is a figure which shows an example of the graph of the division | segmentation size correlation type handled with the abrasion loss estimation system of FIG. 図1の摩耗量見積システムのハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of the abrasion loss estimation system of FIG. 本発明に係る摩耗量見積方法のフローチャートである。It is a flowchart of the wear amount estimation method according to the present invention. 地盤に貫入されたディスクカッターと地盤との位置関係を示す断面図である。It is sectional drawing which shows the positional relationship of the disc cutter penetrated into the ground and the ground.

以下、図面を参照しつつ本発明に係る摩耗量見積方法及び摩耗量見積システムの一実施形態について詳細に説明する。   Hereinafter, an embodiment of a wear amount estimating method and a wear amount estimating system according to the present invention will be described in detail with reference to the drawings.

図1は、TBM(tunnel boring machines)によるトンネル掘削工事におけるディスクカッターの摩耗量を見積もるための摩耗量見積システム1を示すブロック図である。摩耗量見積システム1は、指標値算出部(指標値算出手段)10と、摩耗量推定部(摩耗量推定手段)20とを備えている。指標値算出部10は、画像化部11と、石英領域抽出部12と、連結性分析部13とを有している。   FIG. 1 is a block diagram showing a wear amount estimation system 1 for estimating the wear amount of a disk cutter in tunnel excavation work by TBM (tunnel boring machines). The wear amount estimation system 1 includes an index value calculation unit (index value calculation unit) 10 and a wear amount estimation unit (wear amount estimation unit) 20. The index value calculation unit 10 includes an imaging unit 11, a quartz region extraction unit 12, and a connectivity analysis unit 13.

画像化部11は、岩石の試料チップ51の切断面を画像データ化する。本実施形態の摩耗量見積方法では、TBM施工の掘削対象となる地盤から岩石の試料が採取される。そして、画像化部11によって、採取された岩石の試料チップの切断面がスキャンされ電子的な断面画像データD1が取得される。画像化部11には、例えばイメージスキャナが含まれる。また、画像化部11が偏光顕微鏡を含み、試料チップ51の切断面の偏光顕微鏡写真が断面画像データD1とされてもよい。   The imaging unit 11 converts the cut surface of the rock sample chip 51 into image data. In the wear amount estimation method of this embodiment, a rock sample is collected from the ground to be excavated for TBM construction. Then, the imaging unit 11 scans the cut surface of the collected rock sample chip to obtain electronic cross-sectional image data D1. The imaging unit 11 includes, for example, an image scanner. Further, the imaging unit 11 may include a polarization microscope, and a polarization microscope photograph of the cut surface of the sample chip 51 may be the cross-sectional image data D1.

石英領域抽出部12は、断面画像データD1から石英の粒子の断面に相当する石英領域を抽出する。一般的に、地盤中の同種の鉱物は類似の色を示すと考えられるので、断面画像データD1から石英の特有の色に近い領域を石英領域として抽出する。例えば、ここでは、図2に示されるように、石英領域E1とそれ以外の領域E2とを含む二値化画像データD2が得られる。例えば石英領域抽出部12は、上述のような色彩に基づいて二値化処理を実行する公知の画像処理プログラムに従って上記の処理を行う。   The quartz region extraction unit 12 extracts a quartz region corresponding to the cross section of the quartz particle from the cross-sectional image data D1. Generally, since it is considered that the same kind of mineral in the ground shows a similar color, an area close to a specific color of quartz is extracted from the cross-sectional image data D1 as a quartz area. For example, as shown in FIG. 2, binarized image data D2 including a quartz region E1 and a region E2 other than that is obtained here. For example, the quartz region extraction unit 12 performs the above processing according to a known image processing program that executes binarization processing based on the above-described color.

連結性分析部13は、二値化画像データD2における石英領域E1の連結性に基づいて石英連結指標値D5を算出する。石英連結指標値D5とは、地盤に含まれる石英の連結性を数値化して示す指標である。石英の連結性とは、地盤中に存在する石英のクラスタの大きさを意味し、石英が地盤中で連続して繋がって存在する度合いを言う。すなわち、地盤中に存在する石英のクラスタが大きく、石英が地盤中で長く連続して繋がって存在するほど、石英の連結性が高く石英連結指標値D5が大きくなる。   The connectivity analysis unit 13 calculates a quartz connectivity index value D5 based on the connectivity of the quartz region E1 in the binarized image data D2. The quartz connection index value D5 is an index indicating the connectivity of quartz contained in the ground in numerical form. Quartz connectivity means the size of quartz clusters present in the ground, and refers to the degree to which quartz is continuously connected in the ground. That is, the larger the cluster of quartz existing in the ground and the longer the quartz is continuously connected in the ground, the higher the quartz connectivity and the greater the quartz connection index value D5.

具体的には、連結性分析部13は、画像分割部13aと、存在割合演算部13bと、分割サイズ相関式取得部13cと、指標値取得部13dと、を有している。   Specifically, the connectivity analysis unit 13 includes an image division unit 13a, an existence ratio calculation unit 13b, a division size correlation expression acquisition unit 13c, and an index value acquisition unit 13d.

画像分割部13aは、二値化画像データD2を所定の分割サイズXの複数の分割領域に分割する。例えば、ここでは、図3に示されるように、二値化画像データD2が一辺Xmmの正方格子で分割され、16個の正方形の分割領域Fに分割された分割画像データD3が得られる。   The image dividing unit 13a divides the binarized image data D2 into a plurality of divided areas having a predetermined division size X. For example, here, as shown in FIG. 3, the binarized image data D2 is divided by a square lattice with one side of Xmm, and divided image data D3 divided into 16 square divided regions F is obtained.

存在割合演算部13bは、分割画像データD3における複数の分割領域Fのうち、正方格子の一端から他端まで(例えばここでは正方格子の上辺から下辺まで)連続する石英領域E1を含むもの(無限クラスタ)の個数を計数し、その無限クラスタの存在割合Yを算出する。図3の例では、符号F1で示される3つの分割領域Fが上記の無限クラスタに該当する。よってこの場合、存在割合Yは3/16となる。   The existence ratio calculation unit 13b includes a quartz region E1 that is continuous from one end to the other end of the square lattice (for example, from the upper side to the lower side of the square lattice) among the plurality of divided regions F in the divided image data D3 (infinite The number of clusters) is counted, and the existence ratio Y of the infinite clusters is calculated. In the example of FIG. 3, the three divided areas F indicated by reference numeral F1 correspond to the infinite cluster. Therefore, in this case, the existence ratio Y is 3/16.

画像分割部13a及び存在割合演算部13bにおいては、分割画像データD3の分割サイズXを変えながら無限クラスタの存在割合Yが複数回算出される。そして、分割サイズ相関式取得部13cは、上記の複数回の算出結果に基づいてYとXとの相関関係を示す近似式Y=f(X)を得る。以下、この近似式Y=f(X)を分割サイズ相関式D4という。図4は、分割サイズ相関式D4のグラフの一例である。図4には、異なる岩石タイプA,B,Cの地盤それぞれに対する3つの分割サイズ相関式D4のグラフの例が示されている。なお、上記の3つの例ともに、分割サイズ相関式D4を2次式で近似しているが、分割サイズ相関式D4の次数はこれに限られない。   In the image dividing unit 13a and the existence ratio calculating unit 13b, the existence ratio Y of the infinite cluster is calculated a plurality of times while changing the division size X of the divided image data D3. Then, the divided size correlation equation acquisition unit 13c obtains an approximate equation Y = f (X) indicating the correlation between Y and X based on the calculation results obtained a plurality of times. Hereinafter, this approximate expression Y = f (X) is referred to as a division size correlation expression D4. FIG. 4 is an example of a graph of the division size correlation equation D4. FIG. 4 shows an example of a graph of three division size correlation equations D4 for the grounds of different rock types A, B, and C, respectively. In each of the above three examples, the division size correlation equation D4 is approximated by a quadratic equation, but the order of the division size correlation equation D4 is not limited to this.

指標値取得部13dは、所定の入力値D11を分割サイズ相関式D4のXに代入して得られるYの値を石英連結指標値D5とする。ここで上記入力値D11は、例えばユーザによって予め入力された情報である。   The index value acquisition unit 13d sets the Y value obtained by substituting the predetermined input value D11 into X of the division size correlation equation D4 as the quartz connection index value D5. Here, the input value D11 is, for example, information input in advance by the user.

以上のように、指標値算出部10は、TBM施工の掘削対象となる地盤に含まれる石英の連結性を石英連結指標値D5として数値化する機能を有する。   As described above, the index value calculation unit 10 has a function of digitizing the connectivity of quartz contained in the ground to be excavated for TBM construction as the quartz connection index value D5.

摩耗量推定部20は、指標値算出部10で得られた石英連結指標値D5に基づいて、掘削時におけるディスクカッターの摩耗量の推定値(推定データ)D6を算出し出力する。具体的には、摩耗量推定部20は、推定値D6と石英連結指標値D5との既知の相関関係を参照して推定値D6を算出する。なお、推定値D6と石英連結指標値D5との既知の相関関係は、事前の実験によって求められ、例えば数式やテーブルとして摩耗量推定部20に事前に保存されている。推定値D6としては、例えば、掘削体積あたりの摩耗量の推定値(単位:mm/m)等が用いられる。 The wear amount estimation unit 20 calculates and outputs an estimated value (estimated data) D6 of the wear amount of the disk cutter during excavation based on the quartz connection index value D5 obtained by the index value calculation unit 10. Specifically, the wear amount estimation unit 20 calculates an estimated value D6 with reference to a known correlation between the estimated value D6 and the quartz connection index value D5. The known correlation between the estimated value D6 and the quartz connection index value D5 is obtained by a prior experiment, and is stored in advance in the wear amount estimating unit 20 as, for example, a mathematical expression or a table. As the estimated value D6, for example, an estimated value (unit: mm / m 3 ) of the wear amount per excavation volume is used.

図5は、摩耗量見積システム1のハードウェア構成図である。摩耗量見積システム1は、物理的には、図5に示すように、CPU111、主記憶装置であるRAM112及びROM113、ハードディスク等の補助記憶装置115、入力デバイスであるキーボード、マウス、及びイメージ取得装置(例えば、イメージスキャナ、偏光顕微鏡等)などを含む入力装置116、ディスプレイ等の出力装置117、ネットワークカード等のデータ送受信デバイスである通信モジュール114などを含むコンピュータシステムとして構成されている。   FIG. 5 is a hardware configuration diagram of the wear amount estimation system 1. As shown in FIG. 5, the wear amount estimation system 1 physically includes a CPU 111, a RAM 112 and a ROM 113 as main storage devices, an auxiliary storage device 115 such as a hard disk, a keyboard, a mouse as an input device, and an image acquisition device. It is configured as a computer system including an input device 116 (for example, an image scanner, a polarization microscope, etc.), an output device 117 such as a display, and a communication module 114 that is a data transmission / reception device such as a network card.

図1において説明した指標値算出部10、摩耗量推定部20、画像化部11、石英領域抽出部12、連結性分析部13、画像分割部13a、存在割合演算部13b、分割サイズ相関式取得部13c、及び指標値取得部13dは、図5に示すCPU111、RAM112等のハードウェア上に所定のコンピュータソフトウェアを読み込ませることにより、CPU111の制御のもとで通信モジュール114、入力装置116、出力装置117を動作させるとともに、RAM112や補助記憶装置115におけるデータの読み出し及び書き込みを行うことで実現される。   The index value calculation unit 10, wear amount estimation unit 20, imaging unit 11, quartz region extraction unit 12, connectivity analysis unit 13, image division unit 13 a, existence ratio calculation unit 13 b, and division size correlation equation acquisition described in FIG. The unit 13c and the index value acquisition unit 13d read predetermined computer software on hardware such as the CPU 111 and the RAM 112 shown in FIG. 5, thereby controlling the communication module 114, the input device 116, and the output under the control of the CPU 111. This is realized by operating the device 117 and reading and writing data in the RAM 112 and the auxiliary storage device 115.

摩耗量見積システム1を用いて実行される、本実施形態の摩耗量見積方法について説明する。図6は、摩耗量見積方法のフローチャートである。摩耗量見積方法は、掘削対象の地盤の石英連結指標値D5を算出する指標値算出工程S200と、当該石英連結指標値D5に基づいてディスクカッターの摩耗量の推定値D6を算出する摩耗量推定工程S207とを備えている。指標値算出工程S200は、画像化工程S201と、石英領域抽出工程S203と、 連結性分析工程S205と、を有している。   The wear amount estimation method of this embodiment, which is executed using the wear amount estimation system 1, will be described. FIG. 6 is a flowchart of the wear amount estimation method. The wear amount estimation method includes an index value calculation step S200 for calculating the quartz connection index value D5 of the ground to be excavated, and a wear amount estimation for calculating an estimated value D6 of the disk cutter wear amount based on the quartz connection index value D5. Step S207. The index value calculation step S200 includes an imaging step S201, a quartz region extraction step S203, and a connectivity analysis step S205.

(画像化工程S201)
ディスクカッターで掘削される地盤の岩石サンプルを約3.5cm程度のチップに切断し、切断面を研磨する。その試料チップの研磨面をイメージスキャナでコンピュータに取り込み、断面画像データD1を得る。スキャンの解像度は例えば400dpiとする。上記のイメージスキャナ及びコンピュータは、摩耗量見積システム1に含まれる。なお、ここでは特定の鉱物のみを選択的に染色する薬剤を研磨面に塗布し、当該特定の鉱物のみを染色するようにしてもよい。
(Imaging process S201)
A ground rock sample excavated with a disk cutter is cut into chips of about 3.5 cm, and the cut surface is polished. The polished surface of the sample chip is taken into a computer by an image scanner to obtain cross-sectional image data D1. The scanning resolution is, for example, 400 dpi. The image scanner and the computer are included in the wear amount estimation system 1. Here, a chemical agent that selectively stains only a specific mineral may be applied to the polished surface to stain only the specific mineral.

(石英領域抽出工程S203)
続いて、上記のコンピュータ上で所定の画像処理プログラムを実行する。以下の処理は、当該プログラムによって自動的に実行される。まず、断面画像データD1から石英の特有の色に近い領域が石英領域E1として抽出される。例えば、ここでは、図2に示されるように、石英領域E1とそれ以外の領域E2とを含む二値化画像データD2が得られる。図2の例の場合、石英領域E1が白、それ以外の領域E2が黒で表されている。
なお、この石英領域抽出工程S203は、ユーザがコンピュータの画面で断面画像データD1を確認しながら手動で実行してもよい。
(Quartz region extraction step S203)
Subsequently, a predetermined image processing program is executed on the computer. The following processing is automatically executed by the program. First, a region close to a specific color of quartz is extracted from the cross-sectional image data D1 as a quartz region E1. For example, as shown in FIG. 2, binarized image data D2 including a quartz region E1 and a region E2 other than that is obtained here. In the example of FIG. 2, the quartz region E1 is represented by white, and the other region E2 is represented by black.
The quartz region extraction step S203 may be executed manually while the user confirms the cross-sectional image data D1 on the computer screen.

(連結性分析工程S205)
次に、例えば図3に示されるように、二値化画像データD2が所定のサイズの正方格子で分割される(画像分割工程S205a)。図3の例の場合、分割サイズX=7.5mmであり、縦横に4分割され16個の分割領域Fが形成された分割画像データD3が得られる。
(Connectivity analysis step S205)
Next, as shown in FIG. 3, for example, the binarized image data D2 is divided by a square lattice having a predetermined size (image division step S205a). In the case of the example of FIG. 3, the division size X = 7.5 mm, and divided image data D3 is obtained in which the divided areas are divided into four vertically and horizontally and 16 divided regions F are formed.

次に、分割画像データD3における複数の分割領域Fのうち、正方格子の上辺から下辺まで連続する石英領域E1を含むもの(無限クラスタ)の個数が計数され、その無限クラスタの存在割合Yが算出される(存在割合演算工程S205b)。図3の例では、符号F1で示される3つの分割領域Fが上記の無限クラスタに該当する。従って、X=7.5の場合において無限クラスタの存在割合Yは3/16=0.1875と算出される。   Next, among the plurality of divided regions F in the divided image data D3, the number of those including the quartz region E1 continuous from the upper side to the lower side of the square lattice (infinite clusters) is counted, and the existence ratio Y of the infinite clusters is calculated. (Existence ratio calculation step S205b). In the example of FIG. 3, the three divided areas F indicated by reference numeral F1 correspond to the infinite cluster. Therefore, in the case of X = 7.5, the existence ratio Y of infinite clusters is calculated as 3/16 = 0.1875.

そして、上記分割サイズXを変えながら上記の画像分割工程S103aと存在割合演算工程S103bとが所定回数繰り返される。すなわち、分割サイズXを変えながら、分割サイズXに対する存在割合Yが複数回算出され、その複数回の結果に基づいて分割サイズ相関式D4(図4参照)が得られる(分割サイズ相関式取得工程S205c)。   Then, the image division step S103a and the existence ratio calculation step S103b are repeated a predetermined number of times while changing the division size X. That is, the existence ratio Y with respect to the division size X is calculated a plurality of times while changing the division size X, and a division size correlation equation D4 (see FIG. 4) is obtained based on the results of the plurality of times (division size correlation equation acquisition step). S205c).

その後、入力値D11を上記分割サイズ相関式D4に代入して得られたYの値が石英連結指標値D5とされる(指標値取得工程S205d)。ここでは、入力値D11は、ディスクカッターの地盤への貫入幅のサイズを採用することが好ましい。図7に示されるように、貫入幅(符号jで示す)とは、ディスクカッター61のうち地盤63に貫入された部分61aの幅であり、ディスクカッター61の貫入量hと、ディスクカッター61の先端形状と、から幾何学的に求められる。ユーザが摩耗量見積システム1に入力する入力値D11として、貫入幅jのサイズを採用することにより、石英連結指標値D5と推定値D6との相関関係がより高くなる。   Thereafter, the Y value obtained by substituting the input value D11 into the division size correlation equation D4 is set as the quartz connection index value D5 (index value acquisition step S205d). Here, the input value D11 preferably employs the size of the penetration width of the disc cutter into the ground. As shown in FIG. 7, the penetration width (indicated by the symbol j) is the width of the portion 61 a of the disc cutter 61 that penetrates the ground 63, and the penetration amount h of the disc cutter 61 and the disc cutter 61 It is geometrically determined from the tip shape. By adopting the size of the penetration width j as the input value D11 that the user inputs to the wear amount estimation system 1, the correlation between the quartz connection index value D5 and the estimated value D6 becomes higher.

(摩耗量推定工程S207)
次に、上記の連結性分析工程で得られた石英連結指標値D5がパラメータとされ、予め定められた石英連結指標値D5と摩耗量の推定値D6との既知の相関関係に基づいて、摩耗量の推定値D6が得られる。得られた推定値D6は、例えば、摩耗量見積システム1の出力装置117が備えるディスプレイ画面に表示される。
(Abrasion amount estimation step S207)
Next, the quartz connection index value D5 obtained in the above connectivity analysis step is used as a parameter, and the wear is determined based on a known correlation between the predetermined quartz connection index value D5 and the estimated wear amount D6. A quantity estimate D6 is obtained. The obtained estimated value D6 is displayed on, for example, a display screen included in the output device 117 of the wear amount estimation system 1.

続いて、本発明者らが行った実験について説明する。   Subsequently, an experiment conducted by the present inventors will be described.

上述の摩耗量見積方法及び摩耗量見積システム1を用い、岩石のタイプA,Cについて石英連結指標値D5を算出した。ここでは、分割サイズをX7.5mmとした場合と10mmとした場合との2通りを求めた。なお、解析に使用した機材・ソフトウェアは以下の通りである。イメージスキャナ:FUJIXEROX 社製ApeosPortIV,PC:Lenovo 社製ThinkCentre(CPU:Core2Duo2.93GHz,メモリ2GB),画像処理ソフト:GimPhoto ver1.4.3(フリーソフト)。解析プログラム開発言語:文教大学白石和夫氏作,十進BASIC。測定時間は1 回あたり1 分程度であった。   Using the wear amount estimation method and the wear amount estimation system 1 described above, quartz connection index values D5 were calculated for rock types A and C. Here, two types of cases, when the division size is X7.5 mm and when it is 10 mm, were obtained. The equipment and software used for the analysis are as follows. Image scanner: ApeosPortIV manufactured by FUJIXEROX, PC: ThinkCentre (CPU: Core2Duo2.93GHz, memory 2GB) manufactured by Lenovo, Image processing software: GimPhoto ver1.4.3 (free software). Analysis program development language: Bunkyo University Kazuo Shiraishi, Decimal BASIC. The measurement time was about 1 minute per time.

その一方、岩石タイプA,B,Cについて一軸圧縮強さと石英含有率とを測定した。また、岩石タイプA,B,Cを含む地盤の掘削で実際に使用したディスクカッターについて、転動距離当たりの摩耗量と掘削体積当たりの摩耗量とを測定し、石英連結指標値D5と比較した。下表1に示されるように、一軸圧縮強さ及び石英含有率は、ディスクカッターの摩耗量との間に相関関係が見られなかったが、分割サイズ7.5mmの場合の石英連結指標値D5は、ディスクカッターの掘削体積当たり摩耗量との間に相関関係が見られた。また、分割サイズ10mmに比較して分割サイズ7.5mmの場合に、掘削体積当たり摩耗量と石英連結指標値D5との相関性が高いことが判った。これは、実際のディスクカッターの貫入幅のサイズ約7.5mmとほぼ一致するものであった。
On the other hand, uniaxial compressive strength and quartz content were measured for rock types A, B, and C. In addition, for the disk cutter actually used in excavation of the ground including rock types A, B and C, the wear amount per rolling distance and the wear amount per excavation volume were measured and compared with the quartz connection index value D5. . As shown in Table 1 below, the uniaxial compressive strength and the quartz content did not correlate with the wear amount of the disk cutter, but the quartz connection index value D5 when the division size was 7.5 mm. There was a correlation between the amount of wear per digging volume of the disk cutter. Further, it was found that the wear amount per excavation volume and the quartz connection index value D5 are highly correlated when the division size is 7.5 mm as compared with the division size of 10 mm. This substantially coincided with the size of the actual penetration width of the disc cutter of about 7.5 mm.

以上、本発明の一実施形態について説明したが、本発明は、上述の実施形態に限られるものではなく、各請求項に記載した要旨を変更しない範囲で変形したものであってもよい。例えば、石英抽出工程S203以降の工程がコンピュータプログラムによって自動的に進行してもよいが、一部にユーザの手作業が含まれていてもよい。また、例えば、分割サイズ相関式取得工程S205cまでをコンピュータで実行し、その後の指標値取得工程S205d及び摩耗量推定工程S207はコンピュータから出力された分割サイズ相関式D4に基づいてユーザが手作業で実行してもよい。   As mentioned above, although one Embodiment of this invention was described, this invention is not restricted to the above-mentioned embodiment, You may change in the range which does not change the summary described in each claim. For example, the steps after the quartz extraction step S203 may be automatically advanced by a computer program, but some manual operations of the user may be included. Further, for example, the process up to the division size correlation equation acquisition step S205c is executed by the computer, and the subsequent index value acquisition step S205d and wear amount estimation step S207 are manually performed by the user based on the division size correlation equation D4 output from the computer. May be executed.

1…摩耗量見積システム、10…指標値算出部(指標値算出手段)、11…画像化部、12…石英領域抽出部、13…連結性分析部、13a…画像分割部、13b…存在割合演算部、13c…分割サイズ相関式取得部、13d…指標値取得部、20…摩耗量推定部(摩耗量推定手段)、61…ディスクカッター、63…地盤、D1…断面画像データ(断面のサンプルの画像)、D5…石英連結指標値、E1…石英領域、F…分割領域、j…貫入幅、S200…指標値算出工程、S201…画像化工程、S203…石英領域抽出工程、S205…連結性分析工程、S205a…画像分割工程、S205b…存在割合演算工程、S205c…分割サイズ相関式取得工程、S205d…指標値取得工程、S207…摩耗量推定工程。   DESCRIPTION OF SYMBOLS 1 ... Wear amount estimation system, 10 ... Index value calculation part (index value calculation means), 11 ... Imaging part, 12 ... Quartz area extraction part, 13 ... Connectivity analysis part, 13a ... Image division part, 13b ... Presence ratio Calculation unit, 13c: Division size correlation equation acquisition unit, 13d: Index value acquisition unit, 20 ... Wear amount estimation unit (wear amount estimation means), 61 ... Disc cutter, 63 ... Ground, D1 ... Cross-section image data (section sample) D5 ... quartz connection index value, E1 ... quartz region, F ... divided region, j ... penetration width, S200 ... index value calculation step, S201 ... imaging step, S203 ... quartz region extraction step, S205 ... connectivity Analysis step, S205a ... Image division step, S205b ... Presence ratio calculation step, S205c ... Division size correlation equation acquisition step, S205d ... Index value acquisition step, S207 ... Wear amount estimation step.

Claims (6)

トンネルを掘削するカッターの摩耗量を見積もる摩耗量見積方法であって、
掘削対象の地盤に含まれる石英の連結性を示す指標である石英連結指標値を算出する指標値算出工程と、
前記石英連結指標値に基づいて前記カッターの摩耗量に関する推定データを算出する摩耗量推定工程と、を備えたことを特徴とする摩耗量見積方法。
A wear amount estimation method for estimating the wear amount of a cutter excavating a tunnel,
An index value calculating step for calculating a quartz connection index value, which is an index indicating the connectivity of quartz contained in the ground to be excavated;
A wear amount estimation method comprising: a wear amount estimation step of calculating estimated data related to the wear amount of the cutter based on the quartz connection index value.
前記指標値算出工程は、
前記地盤の断面のサンプルの画像を得る画像化工程と、
前記画像化工程で得られた断面画像から前記石英の粒子の断面に相当する石英領域を抽出する石英領域抽出工程と、
前記石英領域の連結性に基づいて前記石英連結指標値を算出する連結性分析工程と、を有することを特徴とする請求項1に記載の摩耗量見積方法。
The index value calculation step includes
An imaging step of obtaining an image of a sample of a cross section of the ground;
A quartz region extraction step of extracting a quartz region corresponding to a cross section of the quartz particles from the cross-sectional image obtained in the imaging step;
The wear amount estimation method according to claim 1, further comprising a connectivity analysis step of calculating the quartz connection index value based on the connectivity of the quartz region.
前記連結性分析工程は、
前記断面画像を複数の分割領域に分割する画像分割工程と、
複数の前記分割領域のうち、当該分割領域の一端から他端まで連続する前記石英領域を含むものの存在割合に基づいて前記石英連結指標値を得る指標値取得工程と、を有することを特徴とする請求項2に記載の摩耗量見積方法。
The connectivity analysis step includes
An image dividing step of dividing the cross-sectional image into a plurality of divided regions;
An index value obtaining step of obtaining the quartz connection index value based on the existence ratio of the plurality of the divided areas including the quartz area continuous from one end to the other end of the divided areas. The wear amount estimation method according to claim 2.
前記連結性分析工程は、
前記断面画像を複数の分割領域に分割する画像分割工程と、
複数の前記分割領域のうち、当該分割領域の一端から他端まで連続する前記石英領域を含むものの存在割合を演算する存在割合演算工程と、
前記画像分割工程と、前記存在割合演算工程と、を前記分割領域のサイズを変更しながら繰り返し、前記分割領域のサイズと前記存在割合との相関関係式を得る分割サイズ相関式取得工程と、
前記相関関係式において、前記分割領域のサイズに所定の値を代入して得られる前記存在割合を前記石英連結指標値として得る指標値取得工程と、を有することを特徴とする請求項2に記載の摩耗量見積方法。
The connectivity analysis step includes
An image dividing step of dividing the cross-sectional image into a plurality of divided regions;
An abundance ratio calculating step of calculating an abundance ratio of the plurality of divided areas including the quartz area continuous from one end to the other end of the divided areas;
A division size correlation equation obtaining step of repeating the image division step and the existence ratio calculation step while changing the size of the division area to obtain a correlation formula between the size of the division area and the existence ratio;
3. The index value obtaining step of obtaining, in the correlation formula, the existence ratio obtained by substituting a predetermined value for the size of the divided region as the quartz connection index value. Wear amount estimation method.
前記所定の値として、前記カッターの前記地盤への貫入量に関する値が採用されることを特徴とする請求項4に記載の摩耗量見積方法。   The wear amount estimation method according to claim 4, wherein a value related to an amount of penetration of the cutter into the ground is adopted as the predetermined value. トンネルを掘削するカッターの摩耗量を見積もる摩耗量見積システムであって、
掘削対象の地盤に含まれる石英の連結性を示す指標である石英連結指標値を算出する指標値算出手段と、
前記石英連結指標値に基づいて前記カッターの摩耗量に関する推定データを算出する摩耗量推定手段と、を備えたことを特徴とする摩耗量見積システム。
A wear amount estimation system for estimating the wear amount of a cutter excavating a tunnel,
Index value calculating means for calculating a quartz connection index value, which is an index indicating the connectivity of quartz contained in the ground to be excavated;
A wear amount estimation system comprising wear amount estimation means for calculating estimated data related to the wear amount of the cutter based on the quartz connection index value.
JP2013262479A 2013-12-19 2013-12-19 Wear amount estimation method and wear amount estimation system Active JP6239966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013262479A JP6239966B2 (en) 2013-12-19 2013-12-19 Wear amount estimation method and wear amount estimation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013262479A JP6239966B2 (en) 2013-12-19 2013-12-19 Wear amount estimation method and wear amount estimation system

Publications (2)

Publication Number Publication Date
JP2015117539A true JP2015117539A (en) 2015-06-25
JP6239966B2 JP6239966B2 (en) 2017-11-29

Family

ID=53530527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013262479A Active JP6239966B2 (en) 2013-12-19 2013-12-19 Wear amount estimation method and wear amount estimation system

Country Status (1)

Country Link
JP (1) JP6239966B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105352463A (en) * 2015-09-23 2016-02-24 中国人民解放军军事交通学院 Real-time calculation method of abrasion loss of disc cutter of hard rock tunnelling boring machine
CN108181484A (en) * 2017-12-25 2018-06-19 中铁工程装备集团有限公司 A kind of normal pressure cutterhead hobboing cutter rotating speed and temperature measuring equipment and abrasion amount measuring method
CN111428544A (en) * 2019-01-10 2020-07-17 百度在线网络技术(北京)有限公司 Scene recognition method and device, electronic equipment and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5253723A (en) * 1990-01-26 1993-10-19 Stein Narvestad Ring cutter for tunnel drilling in rock
JPH10266783A (en) * 1997-03-28 1998-10-06 Komatsu Ltd Disk cutter wear detection method and wear detector
JPH11210381A (en) * 1998-01-30 1999-08-03 Hitachi Zosen Corp Disc cutter
JP2003344163A (en) * 2002-05-23 2003-12-03 Ohbayashi Corp Stone classifying method and method of manufacturing structure using the same
US20130045055A1 (en) * 2009-12-22 2013-02-21 Jean-Noël Derycke Method for replacing a tunnel boring machine roller cutter, handling device and roller cutter suited to such a method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5253723A (en) * 1990-01-26 1993-10-19 Stein Narvestad Ring cutter for tunnel drilling in rock
JPH10266783A (en) * 1997-03-28 1998-10-06 Komatsu Ltd Disk cutter wear detection method and wear detector
JPH11210381A (en) * 1998-01-30 1999-08-03 Hitachi Zosen Corp Disc cutter
JP2003344163A (en) * 2002-05-23 2003-12-03 Ohbayashi Corp Stone classifying method and method of manufacturing structure using the same
US20130045055A1 (en) * 2009-12-22 2013-02-21 Jean-Noël Derycke Method for replacing a tunnel boring machine roller cutter, handling device and roller cutter suited to such a method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105352463A (en) * 2015-09-23 2016-02-24 中国人民解放军军事交通学院 Real-time calculation method of abrasion loss of disc cutter of hard rock tunnelling boring machine
CN108181484A (en) * 2017-12-25 2018-06-19 中铁工程装备集团有限公司 A kind of normal pressure cutterhead hobboing cutter rotating speed and temperature measuring equipment and abrasion amount measuring method
CN108181484B (en) * 2017-12-25 2021-04-02 中铁工程装备集团有限公司 Device for measuring rotating speed and temperature of hobbing cutter of normal-pressure cutter head and method for measuring abrasion loss
CN111428544A (en) * 2019-01-10 2020-07-17 百度在线网络技术(北京)有限公司 Scene recognition method and device, electronic equipment and storage medium
CN111428544B (en) * 2019-01-10 2023-05-26 百度在线网络技术(北京)有限公司 Scene recognition method and device, electronic equipment and storage medium

Also Published As

Publication number Publication date
JP6239966B2 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
US9396547B2 (en) Output display for segmented digital volume representing porous media
CN107923240B (en) Method for determining porosity associated with organic matter in a well or formation
CN104823202B (en) Computed tomography (CT) system and method for the analysis variation of the rock property caused by handling
RU2656256C2 (en) Determination of trends using digital physics wastes and their application for scaling
US20130182819A1 (en) Method Of Determining Reservoir Properties And Quality With Multiple Energy X-Ray Imaging
RU2014151234A (en) METHOD AND SYSTEM FOR EVALUATING ROCK PROPERTIES BASED ON ROCK SAMPLES USING DIGITAL VISUALIZATION OF ROCK PHYSICAL PROPERTIES
NO20191018A1 (en) Automated well-log correlation using descriptors
CN106918607B (en) A kind of pore structure acquisition methods and device
Walls et al. Shale reservoir properties from digital rock physics
KR101509143B1 (en) Method for Handling 3-Dimensional Scanning Data for Excavation and Analysis of Cultural Assets
JP6239966B2 (en) Wear amount estimation method and wear amount estimation system
Yesiloglu-Gultekin et al. A computer program (TSecSoft) to determine mineral percentages using photographs obtained from thin sections
US20160093094A1 (en) Digital pore alteration methods and systems
Al Ibrahim et al. An automated petrographic image analysis system: Capillary pressure curves using confocal microscopy
CN113609696A (en) Multi-scale multi-component digital core construction method and system based on image fusion
Payton et al. The influence of grain shape and size on the relationship between porosity and permeability in sandstone: A digital approach
Mutlutürk Determining the amount of marketable blocks of dimensional stone before actual extraction
CN113435457A (en) Clastic rock component identification method, clastic rock component identification device, clastic rock component identification terminal and clastic rock component identification medium based on images
Vocke et al. Estimation of petrophysical properties of tight rocks from drill cuttings using image analysis: An integrated laboratory-based approach
Yee et al. Preliminary analysis of rock mass weathering grade using image analysis of CIELAB color space with the validation of Schmidt hammer: A case study
CN111402361A (en) Geological data processing method, system, device and storage medium
Zeng et al. CEmin: a MATLAB‐based software for computational phenocryst extraction and statistical petrology
CN111784059B (en) Method for predicting dominant development azimuth of coal seam macroscopic crack
Li et al. Rock physical properties computed from digital core and cuttings with applications to deep gas exploration and development
Hussain et al. Rock Texture Characterization from Automated Petrographic Analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171102

R150 Certificate of patent or registration of utility model

Ref document number: 6239966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250