JP2015117212A - Uronic acid derivative which shows longevity gene sirt1 activating action adapting health care culture, and production method thereof - Google Patents

Uronic acid derivative which shows longevity gene sirt1 activating action adapting health care culture, and production method thereof Download PDF

Info

Publication number
JP2015117212A
JP2015117212A JP2013262403A JP2013262403A JP2015117212A JP 2015117212 A JP2015117212 A JP 2015117212A JP 2013262403 A JP2013262403 A JP 2013262403A JP 2013262403 A JP2013262403 A JP 2013262403A JP 2015117212 A JP2015117212 A JP 2015117212A
Authority
JP
Japan
Prior art keywords
uronic acid
acid derivative
rice
longevity gene
production method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013262403A
Other languages
Japanese (ja)
Other versions
JP6048905B2 (en
Inventor
二村 芳弘
Yoshihiro Futamura
芳弘 二村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013262403A priority Critical patent/JP6048905B2/en
Publication of JP2015117212A publication Critical patent/JP2015117212A/en
Application granted granted Critical
Publication of JP6048905B2 publication Critical patent/JP6048905B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Cosmetics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an uronic acid derivative which shows longevity gene Sirt1 activating action adapting health care culture, and to provide a production method thereof.SOLUTION: The target uronic acid derivative comprises a tripeptide consisting of arginine, threonine, and asparagine, and uronic acid. The uronic acid is bound to the arginine of the tripeptide and shows longevity gene Sirt1 activating action. This production method comprises adding branched cyclodextrin into the fermented solution obtained by fermenting unpolished rice, black rice, red-kerneled rice, barley, rice cake wheat, pigeon wheat, foxtail millet, Japanese millet, millet, Sorghum bicolor, soybean, black soybean, adzuki bean, and corn with Bacillus natto, performing protease treatment, subsequently performing alkali reduction of the filtered filtrate.

Description

この発明は養生文化を応用した長寿遺伝子Sirt1活性化作用を呈するウロン酸誘導体及びその製造方法に関するものである。 The present invention relates to a uronic acid derivative exhibiting a longevity gene Sirt1 activating action applying a curing culture and a method for producing the same.

養生文化とは東洋の医学的及び科学的発想であり、生命の根幹に関わるマルチプルな理論であり、その歴史は古く、使用経験も豊富である。 Curative culture is an oriental medical and scientific idea, a multiple theory related to the foundation of life, has a long history, and has extensive experience in use.

養生文化を利用した技術として食事に関するものとして薬膳がある。一方、養生文化を利用した伝承的な美容法も存在し、植物エキスや発酵原料などに利用されている。 A medicinal candy is a food-related technique that uses a culture of healing. On the other hand, there is a traditional beauty method using a curing culture, which is used for plant extracts and fermentation raw materials.

しかし、養生文化を医学的に検証し、それを産業に応用することは難しい。その理由は、特定の成分が同定できず、かつ、その働きが多様であるためである。 However, it is difficult to medically examine the curing culture and apply it to industry. The reason is that specific components cannot be identified and their functions are diverse.

そこで、養生文化を応用するという点で伝統的な発酵法を利用した。さらに、養生文化を遺伝子レベルで解析することにした。長寿遺伝子が生命活動の根幹にかかわることから長寿遺伝子の一つであるSirt1の活性化を標的とした。 Therefore, the traditional fermentation method was used in terms of applying curing culture. Furthermore, we decided to analyze the curing culture at the genetic level. Since the longevity gene is involved in the basis of life activity, the activation of Sirt1, which is one of the longevity genes, was targeted.

たとえば、長寿遺伝子を利用した発明としてはレスベラトール含有組成物および使用方法の発明があるものの、その利用範囲は限定されている(例えば、特許文献1参照)。 For example, as an invention using a longevity gene, there is an invention of a resveratrol-containing composition and a method of use, but the range of use is limited (see, for example, Patent Document 1).

また、化学合成された成分には副作用が認められるという問題点がある。 In addition, the chemically synthesized components have a problem that side effects are observed.

一方、天然物由来の物質は安全性が高い反面、長寿遺伝子Sirt1活性化作用が軽度であり、効果が弱いという欠点があり、産業上の利用は限られている。 On the other hand, a substance derived from a natural product has high safety, but has a disadvantage that the longevity gene Sirt1 activation is mild and its effect is weak, and its industrial use is limited.

特願2013−518563Japanese Patent Application No. 2013-518563

前記したように既存の天然物による長寿遺伝子Sirt1の活性化作用は軽度であり、産業上への利用が限定されるという課題があり、また、化学合成された物質では安全性に問題があり、利用が限られている。 As described above, the activation of the longevity gene Sirt1 by existing natural products is mild, and there is a problem that its use in industry is limited, and there is a problem in safety with chemically synthesized substances, Use is limited.

そこで、副作用が弱く優れた長寿遺伝子Sirt1活性化作用を呈する天然物が望まれている。さらに、長寿遺伝子Sirt1活性化作用を呈する物質を効率良く製造する製造方法が望まれている。 Therefore, a natural product exhibiting an excellent longevity gene Sirt1 activation action with weak side effects is desired. Furthermore, a production method for efficiently producing a substance exhibiting the longevity gene Sirt1 activation action is desired.

上記の目的を達成するために、請求項1に記載の発明は下記の式(1)で示される養生文化を応用した長寿遺伝子Sirt1活性化作用を呈するウロン酸誘導体に関するものである。 In order to achieve the above object, the invention described in claim 1 relates to a uronic acid derivative exhibiting a longevity gene Sirt1 activating action to which a curing culture represented by the following formula (1) is applied.

Figure 2015117212
Figure 2015117212

上記の目的を達成するために、請求項2に記載の発明は養生文化を応用した長寿遺伝子Sirt1活性化作用を呈するウロン酸誘導体の製造方法に関するものである。 In order to achieve the above object, the invention described in claim 2 relates to a method for producing a uronic acid derivative exhibiting a longevity gene Sirt1 activating action by applying a curing culture.

この発明は、以上のように構成されているため、次のような効果を奏する。 Since this invention is comprised as mentioned above, there exist the following effects.

請求項1に記載のウロン酸誘導体によれば、優れた長寿遺伝子Sirt1活性化作用が発揮される。 According to the uronic acid derivative according to claim 1, an excellent longevity gene Sirt1 activation action is exhibited.

請求項2に記載の製造方法によれば、効率良く長寿遺伝子Sirt1活性化作用を呈するウロン酸誘導体を製造することができる。 According to the manufacturing method of Claim 2, the uronic acid derivative which exhibits a longevity gene Sirt1 activation effect | action efficiently can be manufactured.

以下、この発明を具体化した実施形態について詳細に説明する。 Hereinafter, embodiments embodying the present invention will be described in detail.

長寿遺伝子活性化作用を呈するウロン酸誘導体は、下記の式(1)に示される構造を呈する。 The uronic acid derivative exhibiting the longevity gene activation action has a structure represented by the following formula (1).

Figure 2015117212
Figure 2015117212

ここでいうウロン酸誘導体とはウロン酸とアルギニン、スレオニン、アスパラギンよりなるトリペプチド1分子に2分子のウロン酸が結合したペプチドが結合したウロン酸の結合体である。 The uronic acid derivative here is a conjugate of uronic acid in which a peptide in which two molecules of uronic acid are bound to one tripeptide molecule composed of uronic acid and arginine, threonine, and asparagine is bound.

アルギニン、スレオニン、アスパラギンおよびウロン酸はいずれも天然の植物に含有されており、その安全性も確認されている。 Arginine, threonine, asparagine and uronic acid are all contained in natural plants, and their safety has been confirmed.

トリペプチドはアルギニン、スレオニン、アスパラギンよりなり、N末端側がアルギニンで、中央がスレオニン、C端末側がアスパラギンであり、その間はペプチド結合により結合されている。 The tripeptide is composed of arginine, threonine, and asparagine, the N-terminal side is arginine, the center is threonine, and the C-terminal side is asparagine, and they are bound by peptide bonds.

これらのアミノ酸はいずれもL型である。これらのアミノ酸はいずれも体内に存在する成分であり、その安全性は確認されている。 All of these amino acids are in L form. All of these amino acids are components present in the body, and their safety has been confirmed.

ウロン酸のカルボキシル基がアルギニンのグアニジノ基のアミノ基とペプチド結合している。 The carboxyl group of uronic acid is peptide-bonded to the amino group of the guanidino group of arginine.

このウロン酸誘導体は水溶性が高く、一方、アルコールとの親和性もあることから、エタノール、グリコール類やグリセリン類などに溶解性を示して産業上利用しやすい。 This uronic acid derivative is highly water-soluble and, on the other hand, also has an affinity for alcohol, it exhibits solubility in ethanol, glycols, glycerins, etc. and is industrially easy to use.

このウロン酸誘導体は長寿遺伝子Sirt1活性化に対して2つの作用メカニズムを有している。 This uronic acid derivative has two action mechanisms for activation of the longevity gene Sirt1.

一つは長寿遺伝子Sirt1のプロモーター部位に直接作用してプロモーターとして働き、Sirt1の発現を促進する場合である。Sirt1はサーチュインファミリーを形成しており、遺伝子近傍には豊富なプロモーターが存在している。 One is a case where it acts directly on the promoter site of the longevity gene Sirt1 to act as a promoter and promotes the expression of Sirt1. Sirt1 forms a sirtuin family, and abundant promoters exist in the vicinity of the gene.

このウロン酸誘導体はペプチド部位によりプロモーターと反応し、ウロン酸によりその発現を維持させる。しかし、その働きは、一過性であり、共有結合のような強固な結合ではない。 This uronic acid derivative reacts with the promoter at the peptide site and maintains its expression by uronic acid. However, its function is transient and not a strong bond such as a covalent bond.

もう一つは長寿遺伝子Sirt1の分解の抑制である。その働きはクロマチン部分の安定化による。 The other is suppression of degradation of the longevity gene Sirt1. Its function is by stabilizing the chromatin moiety.

これらの2つの作用が相乗的に働くことにより長寿遺伝子Sirt1の活性化と維持が行われ、長寿遺伝子Sirt1が増加する。 The synergistic action of these two actions activates and maintains the longevity gene Sirt1, and increases the longevity gene Sirt1.

また、このウロン酸誘導体は細胞内に局在するペプチダーゼやエステラーゼにより分解されてペプチドとウロン酸に分解されることから残留性もなく、安全性は高い。 In addition, this uronic acid derivative is decomposed by peptidases and esterases localized in the cells to be decomposed into peptides and uronic acids, so there is no persistence and safety is high.

得られたウロン酸誘導体を医薬品素材として利用する場合、目的とするウロン酸誘導体を分離精製することは、目的とするウロン酸誘導体の純度が高まり、不純物を除去できる点から好ましい。 When the obtained uronic acid derivative is used as a pharmaceutical material, it is preferable to separate and purify the target uronic acid derivative because the purity of the target uronic acid derivative is increased and impurities can be removed.

医薬品として注射剤または経口剤または塗布剤などの非経口剤として利用され、医薬部外品としては、錠剤、カプセル剤、ドリンク剤、石鹸、塗布剤、ゲル剤、歯磨き粉等に配合されて利用される。 It is used as an injectable or parenteral agent such as an oral agent or a coating agent as a pharmaceutical, and as a quasi-drug, it is used in a tablet, capsule, drink, soap, coating agent, gel, toothpaste, etc. The

経口剤としては、錠剤、カプセル剤、散剤、シロップ剤、ドリンク剤等が挙げられる。前記の錠剤及びカプセル剤に混和される場合には、結合剤、賦形剤、膨化剤、滑沢剤、甘味剤、香味剤等とともに用いることができる。前記の錠剤は、シェラックまたは砂糖で被覆することもできる。 Examples of oral preparations include tablets, capsules, powders, syrups, and drinks. When mixed with the above-mentioned tablets and capsules, it can be used together with a binder, excipient, swelling agent, lubricant, sweetener, flavoring agent and the like. The tablets can also be coated with shellac or sugar.

また、前記のカプセル剤の場合には、上記の材料にさらに油脂等の液体担体を含有させることができる。前記のシロップ剤及びドリンク剤の場合には、甘味剤、防腐剤、色素香味剤等を添加することができる。 Moreover, in the case of the said capsule, liquid carriers, such as fats and oils, can be further contained in said material. In the case of the above syrup and drink, sweeteners, preservatives, pigment flavoring agents and the like can be added.

非経口剤としては、軟膏剤、クリーム剤、水剤等の外用剤の他に、注射剤が挙げられる。外用剤の基材としては、ワセリン、パラフィン、油脂類、ラノリン、マクロゴールド等が用いられ、通常の方法によって軟膏剤やクリーム剤等とすることができる。 Examples of parenteral preparations include injections in addition to external preparations such as ointments, creams, and liquids. Vaseline, paraffin, fats and oils, lanolin, macro gold, etc. are used as a base material for external preparations, and can be made into ointments, creams, and the like by ordinary methods.

注射剤には、液剤があり、その他、凍結乾燥剤がある。これは使用時、注射用蒸留水や生理食塩液等に無菌的に溶解して用いられる。 Injections include liquids, and other lyophilization agents. This is used aseptically dissolved in distilled water for injection or physiological saline at the time of use.

食品製剤として長寿遺伝子Sirt1活性化を目的とし、アンチエイジングの目的で健康食品や食品などに利用される。また、保健機能食品として栄養機能食品や特定保健用食品に利用することは好ましい。 As a food preparation, it is intended to activate the longevity gene Sirt1, and is used for health foods and foods for anti-aging purposes. Moreover, it is preferable to use as a health functional food for a nutritional functional food or a food for specified health use.

得られた食品製剤をイヌやネコなどのペットや家畜動物に利用する場合、アンチエイジングを目的として、飼料やサプリメントとして利用される。 When the obtained food preparation is used for pets and livestock animals such as dogs and cats, it is used as feed or supplement for the purpose of anti-aging.

化粧料として常法に従って界面活性化剤、溶剤、増粘剤、賦形剤等とともに用いることができる。例えば、クリーム、毛髪用ジェル、洗顔剤、美容液、化粧水等の形態とすることができる。 As a cosmetic, it can be used together with surfactants, solvents, thickeners, excipients and the like according to a conventional method. For example, it can be in the form of cream, gel for hair, facial cleanser, cosmetic liquid, lotion and the like.

化粧料の形態は任意であり、溶液状、クリーム状、ペースト状、ゲル状、ジェル状、固形状または粉末状として用いられる。 The form of the cosmetic is arbitrary, and is used as a solution, cream, paste, gel, gel, solid or powder.

得られた化粧料は長寿遺伝子Sirt1を増加させ、アンチエイジングにより皮膚機能を発揮し、シワの防止やタルミの改善に利用される。 The obtained cosmetic increases the longevity gene Sirt1, exhibits skin function by anti-aging, and is used for preventing wrinkles and improving tarmi.

次に、玄米、黒米、赤米、大麦、もち麦、はと麦、粟、稗、黍、たかきび、大豆、黒豆、小豆及びトウモロコシを納豆菌により発酵させた発酵液に分岐シクロデキストリンを添加してプロテアーゼ処理した後、濾過したろ液をアルカリ還元する工程からなる長寿遺伝子Sirt1活性化作用を呈するウロン酸誘導体の製造方法について説明する。 Next, branched cyclodextrin is added to fermentation broth fermented brown rice, black rice, red rice, barley, glutinous wheat, wheat, potatoes, rice cakes, rice cakes, oysters, soybeans, black beans, red beans and corn with natto bacteria A method for producing a uronic acid derivative exhibiting the longevity gene Sirt1 activation action comprising the step of subjecting the filtrate to alkali reduction after the protease treatment will be described.

ここでいうウロン酸誘導体とはウロン酸とアルギニン、スレオニン、アスパラギンよりなるトリペプチド1分子に2分子のウロン酸が結合したペプチドウロン酸結合体である。 The uronic acid derivative here is a peptide uronic acid conjugate in which two molecules of uronic acid are bound to one tripeptide molecule composed of uronic acid and arginine, threonine, and asparagine.

アルギニン、スレオニン、アスパラギンおよびウロン酸はいずれも天然の植物に含有されており、その安全性も確認されている。 Arginine, threonine, asparagine and uronic acid are all contained in natural plants, and their safety has been confirmed.

トリペプチドはアルギニン、スレオニン、アスパラギンよりなり、N末端側がアルギニンで、中央がスレオニン、C端末側がアスパラギンであり、その間はペプチド結合により結合されている。 The tripeptide is composed of arginine, threonine, and asparagine, the N-terminal side is arginine, the center is threonine, and the C-terminal side is asparagine, and they are bound by peptide bonds.

これらのアミノ酸はいずれもL型である。これらのアミノ酸はいずれも体内に存在する成分であり、その安全性は確認されている。 All of these amino acids are in L form. All of these amino acids are components present in the body, and their safety has been confirmed.

ウロン酸のカルボキシル基がアルギニンのグアニジノ基のアミノ基とペプチド結合している。 The carboxyl group of uronic acid is peptide-bonded to the amino group of the guanidino group of arginine.

このウロン酸誘導体は水溶性が高く、一方、アルコールとの親和性もあることから、エタノール、グリコール類やグリセリン類などに溶解性を示して産業上利用しやすい。 This uronic acid derivative is highly water-soluble and, on the other hand, also has an affinity for alcohol, it exhibits solubility in ethanol, glycols, glycerins, etc. and is industrially easy to use.

このウロン酸誘導体は長寿遺伝子Sirt1活性化作用を呈する。 This uronic acid derivative exhibits the longevity gene Sirt1 activation action.

原料となる物質は玄米、黒米、赤米、大麦、もち麦、はと麦、粟、稗、黍、たかきび、大豆、黒豆、小豆及びトウモロコシである。これらの穀物は有機栽培されたものが好ましい。つまり、発酵が効率的であり、目的とするウロン酸誘導体を高い収量で得られることから好ましい。 The raw materials are brown rice, black rice, red rice, barley, glutinous wheat, wheat wheat, rice bran, rice bran, rice bran, oysters, soybeans, black beans, red beans and corn. These grains are preferably organically grown. That is, fermentation is efficient, and the desired uronic acid derivative can be obtained in high yield.

また、生産国はいずれの国でも良いが、地産地消の点から日本国産のものが好ましい。 Moreover, although any country may be sufficient as a producing country, the thing from Japan is preferable from the point of local production for local consumption.

これらの穀物は水洗後、裁断機や粉砕機により細切して粉砕物が得られる。この粉砕物を乾燥させて、穀物の粉末が得られる。 These cereals are washed with water and then chopped by a cutter or a pulverizer to obtain a pulverized product. The pulverized product is dried to obtain a cereal powder.

これらの穀物の粉末には炭水化物、脂質、たんぱく質やペプチド成分の他、ウロン酸や桂皮酸などのウロン酸が含有されている。 These cereal powders contain uronic acids such as uronic acid and cinnamic acid in addition to carbohydrates, lipids, proteins and peptide components.

これらの穀物の粉末は清浄な水を添加して懸濁される。穀物の粉末100gに対して水10リットルから20リットルを添加し、攪拌される。 These cereal powders are suspended with the addition of clean water. 10 to 20 liters of water is added to 100 g of cereal powder and stirred.

これらの穀物は煮沸滅菌され、発酵タンクに添加される。 These grains are sterilized by boiling and added to the fermentation tank.

発酵は静置法または撹拌法のいずれでも良いが、発酵を短時間で実施できる点から撹拌法が好ましい。 Fermentation may be either a stationary method or a stirring method, but a stirring method is preferred because fermentation can be performed in a short time.

発酵は39〜49℃で12時間から36時間行われることが好ましい。温度が低く、時間が短い場合には発酵が進まず、温度が高く、時間が長い場合には目的とするウロン酸誘導体が分解されてしまうおそれがある。 Fermentation is preferably performed at 39 to 49 ° C. for 12 to 36 hours. When the temperature is low and the time is short, the fermentation does not proceed, and when the temperature is high and the time is long, the target uronic acid derivative may be decomposed.

この発酵液は濾過布などにより濾過されることは以下の工程を容易に行えることから好ましい。 The fermentation broth is preferably filtered with a filter cloth or the like because the following steps can be easily performed.

このろ液に分岐シクロデキストリンが添加される。 Branched cyclodextrin is added to the filtrate.

分岐シクロデキストリンは環状ブドウ糖の一つであり、ブドウ糖が環状に結合し、食品や化粧料に利用されることから好ましい。この分岐シクロデキストリンは内腔に疎水性部分を有することから疎水性の高い物質を吸着しやすい。塩水港精糖社製の分岐シクロデキストリンは品質が高いことから好ましい。 A branched cyclodextrin is one of cyclic glucose, and is preferable because glucose is bound cyclically and used in foods and cosmetics. Since this branched cyclodextrin has a hydrophobic portion in the lumen, it is easy to adsorb highly hydrophobic substances. Branched cyclodextrins manufactured by Shimizu Minato Sugar Co., Ltd. are preferred because of their high quality.

添加される分岐シクロデキストリンは穀物10gに対して0.5gから5gが好ましい。この分岐シクロデキストリンにより穀物中のペプチドとウロン酸の結合体が包みこまれる。 The branched cyclodextrin added is preferably 0.5 to 5 g per 10 g of cereal. This branched cyclodextrin encapsulates the peptide-uronic acid conjugate in the grain.

この分岐シクロデキストリンとの懸濁液は攪拌されることが好ましい。 The suspension with the branched cyclodextrin is preferably stirred.

穀物と分岐シクロデキストリンとの懸濁液にプロテアーゼが添加される。用いるプロテアーゼとしては天野エンザイム社製の食品加工用プロテアーゼであるプロテアーゼA「アマノ」SD、プロテアーゼM「アマノ」SDまたはプロテアーゼP「アマノ」3SDの品質が安定し、使用実績が豊富なことから好ましい。 Protease is added to the suspension of cereal and branched cyclodextrin. As the protease to be used, the quality of protease A “Amano” SD, protease M “Amano” SD or protease P “Amano” 3SD, which are food processing proteases manufactured by Amano Enzyme, is preferable because of its stable use.

添加されるプロテアーゼは穀物1gに対して0.02gから0.1gが好ましい。このプロテアーゼは精製水に懸濁して添加されることは反応が進むことから好ましい。 The protease to be added is preferably 0.02 to 0.1 g per gram of cereal. It is preferable that the protease is suspended in purified water because the reaction proceeds.

この懸濁液は反応を促進するために加温され、攪拌されることは好ましい。加温としては30〜45℃が好ましい。また、攪拌は1分間当り10〜30回が好ましい。 This suspension is preferably warmed and stirred to promote the reaction. As heating, 30-45 degreeC is preferable. Moreover, stirring is preferably 10 to 30 times per minute.

このプロテアーゼ反応液は濾過される。濾紙やメンブランフィルターを用いることにより効率良くろ過される。ろ過してろ液を得ることにより反応していない成分や原料を排除できることから好ましい。 This protease reaction solution is filtered. Efficient filtration is achieved by using filter paper or membrane filter. It is preferable because unreacted components and raw materials can be excluded by filtering to obtain a filtrate.

得られた反応物はアルカリ還元処理される。アルカリ還元処理はアルカリ還元装置やアルカリ還元整水器により実施されることが好ましい。 The obtained reaction product is subjected to alkali reduction treatment. The alkali reduction treatment is preferably performed by an alkali reduction device or an alkali reduction water conditioner.

例えば、ゼマイティス製のアルカリ還元水・強酸化水連続生成器「プロテックATX−501」、エヌアイシー製のアルカリ還元水製造装置「テクノスーパー502」、マルタカ製「ミネリア・CE−212」、クレッセント製「アキュラブルー」、株式会社日本鉱泉研究所製「ミネラル還元整水器」などの装置を用いることがさらに好ましい。 For example, a continuous generator of alkaline reduced water / strongly oxidized water “Protech ATX-501” manufactured by Zemaitis, an alkali reduced water production device “Techno Super 502” manufactured by NCI, “Mineria CE-212” manufactured by Maltaca, manufactured by Crescent It is more preferable to use devices such as “Acura Blue” and “Mineral Reduction Water Conditioner” manufactured by Nippon Kosen Co., Ltd.

電気分解されて陰極側から目的とするウロン酸誘導体とペプチドとの結合体が溶液として得られる。このアルカリ還元によりウロン酸およびペプチドの結合が生じる。 By electrolysis, a conjugate of the desired uronic acid derivative and peptide is obtained as a solution from the cathode side. This alkali reduction results in binding of uronic acid and peptide.

アルカリ還元処理を2〜10回繰り返すことにより反応が高まることから好ましい。得られた結合体は、凍結乾燥することにより粉末化され、用いられる。 It is preferable because the reaction is enhanced by repeating the alkali reduction treatment 2 to 10 times. The obtained conjugate is powdered by lyophilization and used.

前記の還元反応物から、目的とするウロン酸誘導体を分離し、精製することは純度の高い物質として摂取量を減少させることができる点から好ましい。この精製の方法としては、分離用の樹脂などの精製操作を利用することが好ましい。 Separating and purifying the target uronic acid derivative from the reduction reaction product is preferable because the intake can be reduced as a highly pure substance. As a purification method, it is preferable to use a purification operation such as a separation resin.

例えば、分離用担体または樹脂により分離され、分取されることにより目的とするウロン酸誘導体が得られる。分離用担体または樹脂としては、表面が後述のようにコーティングされた、多孔性の多糖類、酸化珪素化合物、ポリアクリルアミド、ポリスチレン、ポリプロピレン、スチレン−ビニルベンゼン共重合体等が用いられる。0.1〜300μmの粒度を有するものが好ましく、粒度が細かい程、精度の高い分離が行なわれるが、分離時間が長い欠点がある。 For example, the target uronic acid derivative can be obtained by separation with a separation carrier or resin and fractionation. As the separation carrier or resin, porous polysaccharides, silicon oxide compounds, polyacrylamide, polystyrene, polypropylene, styrene-vinylbenzene copolymers, etc., whose surfaces are coated as described later, are used. Those having a particle size of 0.1 to 300 μm are preferred. The finer the particle size, the higher the accuracy of the separation, but the longer the separation time.

例えば、逆相担体または樹脂として表面が疎水性化合物でコーティングされたものは、疎水性の高い物質の分離に利用される。陽イオン物質でコーティングされたものは陰イオン性に荷電した物質の分離に適している。また、陰イオン物質でコーティングされたものは陽イオン性に荷電した物質の分離に適している。特異的な抗体をコーティングした場合には、特異的な物質のみを分離するアフィニティ担体または樹脂として利用される。 For example, a reverse phase carrier or resin whose surface is coated with a hydrophobic compound is used for separation of a highly hydrophobic substance. Those coated with a cationic substance are suitable for the separation of anionically charged substances. Also, those coated with an anionic substance are suitable for separating a cationically charged substance. When a specific antibody is coated, it is used as an affinity carrier or resin for separating only a specific substance.

アフィニティ担体または樹脂は、抗原抗体反応を利用して抗原の特異的な調製に利用される。分配性担体または樹脂は、シリカゲル(メルク社製)等のように、物質と分離用溶媒の間の分配係数に差異がある場合、それらの物質の単離に利用される。 The affinity carrier or resin is used for specific preparation of an antigen using an antigen-antibody reaction. A partitionable carrier or resin is used for isolation of a substance such as silica gel (manufactured by Merck) if there is a difference in partition coefficient between the substance and the solvent for separation.

これらのうち、製造コストを低減することができる点から、吸着性担体または樹脂、分配性担体または樹脂、分子篩用担体または樹脂及びイオン交換担体または樹脂が好ましい。さらに、分離用溶媒に対して分配係数の差異が大きい点から、逆相担体または樹脂及び分配性担体または樹脂はより好ましい。 Among these, an adsorbent carrier or resin, a dispersible carrier or resin, a molecular sieve carrier or resin, and an ion exchange carrier or resin are preferable from the viewpoint of reducing production costs. Furthermore, the reverse phase carrier or resin and the dispersible carrier or resin are more preferable because the difference in the distribution coefficient with respect to the separation solvent is large.

分離用溶媒として有機溶媒を用いる場合には、有機溶媒に耐性を有する担体または樹脂が用いられる。また、医薬品製造または食品製造に利用される担体または樹脂は好ましい。 When an organic solvent is used as the separation solvent, a carrier or resin having resistance to the organic solvent is used. Moreover, the carrier or resin used for pharmaceutical manufacture or food manufacture is preferable.

これらの点から吸着性担体としてダイヤイオン(三菱化学(株)社製)及びXAD−2またはXAD−4(ロームアンドハース社製)、分子篩用担体としてセファデックスLH−20(アマシャムファルマシア社製)、分配用担体としてシリカゲル、イオン交換担体としてIRA−410(ロームアンドハース社製)、逆相担体としてDM1020T(富士シリシア社製)がより好ましい。 From these points, Diaion (Mitsubishi Chemical Co., Ltd.) and XAD-2 or XAD-4 (Rohm and Haas) are used as the adsorptive carrier, and Sephadex LH-20 (Amersham Pharmacia) is used as the molecular sieve carrier. Silica gel as the distribution carrier, IRA-410 (Rohm and Haas) as the ion exchange carrier, and DM1020T (Fuji Silysia) as the reverse phase carrier are more preferable.

これらのうち、ダイヤイオン、セファデックスLH−20及びDM1020Tはさらに好ましい。 Of these, Diaion, Sephadex LH-20 and DM1020T are more preferred.

得られた抽出物は、分離前に分離用担体または樹脂を膨潤化させるための溶媒に溶解される。その量は、分離効率の点から抽出物の重量に対して1〜30倍量が好ましく、5〜20倍量がより好ましい。分離の温度としては物質の安定性の点から4〜30℃が好ましく、10〜25℃がより好ましい。 The obtained extract is dissolved in a solvent for swelling the carrier for separation or the resin before separation. The amount is preferably 1 to 30 times, more preferably 5 to 20 times the weight of the extract from the viewpoint of separation efficiency. The separation temperature is preferably 4 to 30 ° C., more preferably 10 to 25 ° C. from the viewpoint of the stability of the substance.

分離用溶媒には、水、または、水を含有する低級アルコール、親水性溶媒、親油性溶媒が用いられる。低級アルコールとしては、メタノール、エタノール、プロパノール、ブタノールが用いられるが、食用として利用されているエタノールが好ましい。 As the separation solvent, water or a lower alcohol containing water, a hydrophilic solvent, or a lipophilic solvent is used. As the lower alcohol, methanol, ethanol, propanol and butanol are used, and ethanol used for food is preferable.

セファデックスLH−20を用いる場合、分離用溶媒には低級アルコールが好ましい。シリカゲルを用いる場合、分離用溶媒にはクロロホルム、メタノール、酢酸またはそれらの混合液が好ましい。 When Sephadex LH-20 is used, a lower alcohol is preferable as the separation solvent. When silica gel is used, the separation solvent is preferably chloroform, methanol, acetic acid or a mixture thereof.

ダイヤイオン及びDM1020Tを用いる場合、分離用溶媒はメタノール、エタノール等の低級アルコールまたは低級アルコールと水の混合液が好ましい。 When Diaion and DM1020T are used, the separation solvent is preferably a lower alcohol such as methanol or ethanol or a mixed solution of lower alcohol and water.

ウロン酸誘導体を含む画分を採取して乾燥または真空乾燥により溶媒を除去し、目的とするウロン酸誘導体を粉末または濃縮液として得ることは溶媒による影響を除外できることから、好ましい。 It is preferable to collect a fraction containing a uronic acid derivative and remove the solvent by drying or vacuum drying to obtain the target uronic acid derivative as a powder or a concentrated liquid because the influence of the solvent can be excluded.

また、このウロン酸誘導体を粉末化することは防腐の目的から好ましい。 Further, it is preferable to powder this uronic acid derivative for the purpose of preserving.

以下、前記実施形態を実施例及び試験例を用いて具体的に説明する。なお、これらは一例であり、素材、原料や検体の違いに応じて常識の範囲内で条件を変更させることが可能である。 Hereinafter, the embodiment will be specifically described with reference to examples and test examples. These are merely examples, and conditions can be changed within the range of common sense according to differences in materials, raw materials, and specimens.

有機栽培または減農薬栽培された新潟県産の玄米、黒米及び赤米、山形県産の大麦及びもち麦、鳥取県産のはと麦、静岡産の粟、稗及び黍、宮崎県産のたかきび、茨城県産の大豆、京都府産の黒豆、三重県産の小豆及び北海道産のトウモロコシをそれぞれ購入して用いた。 Organically grown or reduced pesticide-grown brown rice, black rice and red rice from Niigata Prefecture, barley and glutinous wheat from Yamagata Prefecture, wheat and wheat from Tottori Prefecture, straw, rice cake and straw from Shizuoka Prefecture, Taka from Miyazaki Prefecture Millet, soybeans from Ibaraki Prefecture, black beans from Kyoto Prefecture, red beans from Mie Prefecture, and corn from Hokkaido were purchased and used.

これらを水洗後、粉砕機(株式会社奈良機械製作所製のスーパー自由ミル)に精製水とともに粉砕して粉砕物9kgを得た。 These were washed with water and then pulverized together with purified water in a pulverizer (Super Free Mill manufactured by Nara Machinery Co., Ltd.) to obtain 9 kg of pulverized product.

この粉砕物を乾燥器により乾燥し、穀物粉末を得た。この穀物粉末8.5kgを清浄なステンレス製の寸胴に移し、精製水を15L添加して懸濁した。 The pulverized product was dried with a drier to obtain a cereal powder. 8.5 kg of this cereal powder was transferred to a clean stainless steel cylinder, and 15 L of purified water was added and suspended.

これらを95℃で1時間煮沸滅菌した。これらを80kg容量の横河電機社製の撹拌式発酵タンク(FP211)に移し、41℃で24時間発酵させた。 These were sterilized by boiling at 95 ° C. for 1 hour. These were transferred to an agitation type fermentation tank (FP211) manufactured by Yokogawa Electric Co., Ltd. with a capacity of 80 kg and fermented at 41 ° C. for 24 hours.

得られた発酵液の上清を濾過布により粗濾過してろ液を得た。 The obtained supernatant of the fermentation broth was roughly filtered through a filter cloth to obtain a filtrate.

このろ液に塩水港精糖社製の分岐シクロデキストリン240gを添加して攪拌した。 To this filtrate, 240 g of branched cyclodextrin manufactured by Shimizu Minato Sugar Co., Ltd. was added and stirred.

さらに、天野エンザイム製のプロテアーゼM「アマノ」SD20gを添加し、38℃に加温して攪拌した。 Furthermore, 20 g of protease M “Amano” SD manufactured by Amano Enzyme was added, and the mixture was heated to 38 ° C. and stirred.

攪拌は攪拌装置を用いて室温で4時間実施した。得られた反応液を東洋濾紙の濾紙により吸引ろ過し、ろ液を得た。 Stirring was carried out for 4 hours at room temperature using a stirrer. The obtained reaction solution was subjected to suction filtration with a filter paper of Toyo filter paper to obtain a filtrate.

得られた反応液をパールウォーターDX−7000に供し、電気分解し、陰極側からアルカリ還元された溶液を得た。 The obtained reaction solution was subjected to Pearl Water DX-7000 and electrolyzed to obtain an alkali-reduced solution from the cathode side.

この溶液を凍結乾燥させて目的とする粉末230gを得た。これを検体1とした。この検体1は薄黄色であった。 This solution was lyophilized to obtain 230 g of the desired powder. This was designated as Sample 1. This specimen 1 was light yellow.

前述の検体1の粉末100gに10%エタノール含有精製水2Lを添加し、ダイアイオン(三菱化学製)500gを5%エタノール液に懸濁して充填したカラムに供した。 2 L of 10% ethanol-containing purified water was added to 100 g of the aforementioned sample 1 powder, and 500 g of Diaion (manufactured by Mitsubishi Chemical) was suspended in a 5% ethanol solution and packed in a column.

これに4Lの5%エタノール液を添加して清浄し、さらに、80%エタノール液を1L添加して目的とするウロン酸誘導体を溶出させた。精製されたウロン酸誘導体は減圧蒸留により、エタノール部分を除去してこれを検体2とした。この検体2は無味無臭で透明な水溶性であった。 4 L of 5% ethanol solution was added thereto for cleaning, and then 1 L of 80% ethanol solution was added to elute the desired uronic acid derivative. The purified uronic acid derivative was subjected to distillation under reduced pressure to remove the ethanol portion, and this was used as Sample 2. Sample 2 was tasteless and odorless and transparent and water-soluble.

以下に、ウロン酸誘導体の構造解析に関する試験方法及び結果について説明する。
(試験例1)
Below, the test method regarding the structural analysis of a uronic acid derivative and a result are demonstrated.
(Test Example 1)

上記のように得られた検体2を精製水に溶解し、精密ろ過後、質量分析器付き高速液体クロマトグラフィ(HPLC、島津製作所)で分析した。 The specimen 2 obtained as described above was dissolved in purified water, subjected to microfiltration, and then analyzed by high performance liquid chromatography with a mass spectrometer (HPLC, Shimadzu Corporation).

さらに、核磁気共鳴装置(NMR、ブルカー製、AC−250)で解析した。構造解析の結果、検体2からウロン酸、アルギニン、スレオニン、アスパラギンが結合した結合体が検出された。 Furthermore, it analyzed with the nuclear magnetic resonance apparatus (NMR, the Bruker make, AC-250). As a result of structural analysis, a conjugate in which uronic acid, arginine, threonine, and asparagine were bound was detected from specimen 2.

また、アミノ酸分析装置(島津製作所製)によりアルギニン、スレオニン、アスパラギンが同定された。 Arginine, threonine, and asparagine were identified by an amino acid analyzer (manufactured by Shimadzu Corporation).

以下に、ヒト皮膚細胞を用いた長寿遺伝子Sirt1活性化の確認試験について述べる。
(試験例2)
The confirmation test for the longevity gene Sirt1 activation using human skin cells is described below.
(Test Example 2)

この試験はヒト由来の皮膚細胞に検体を添加して培養し、長寿遺伝子Sirt1のRNA量をRT−PCR法により分析するという細胞分子学的な方法である。これらの方法は一般的な分析方法として確立されている。 This test is a cytomolecular method in which a specimen is added to human-derived skin cells and cultured, and the RNA amount of the longevity gene Sirt1 is analyzed by the RT-PCR method. These methods are established as general analytical methods.

すなわち、正常ヒト由来皮膚細胞を専用培養液にて培養した。これに、実施例1で得られた検体2、ウロン酸、アルギニンの0.1mgを5%エタノール含有PBS溶液にて添加し、37℃で、24時間培養した。なお、溶媒対照を設定して対照群とした。 That is, normal human-derived skin cells were cultured in a dedicated culture solution. To this, 0.1 mg of Specimen 2, uronic acid, and arginine obtained in Example 1 was added in a 5% ethanol-containing PBS solution, and cultured at 37 ° C. for 24 hours. A solvent control was set as a control group.

細胞数を計数後、細胞懸濁液を超音波破砕して細胞懸濁液を調製した。この細胞液からRNA抽出キット(フナコシ製)によりRNA分画を採取した。 After counting the number of cells, the cell suspension was sonicated to prepare a cell suspension. An RNA fraction was collected from this cell solution using an RNA extraction kit (Funakoshi).

このRNA分画をRT−PCR法により長寿遺伝子Sirt1をプローブとして電気移動法により分析し、長寿遺伝子Sirt1含量を定量した。 This RNA fraction was analyzed by the electromigration method using the longevity gene Sirt1 as a probe by the RT-PCR method, and the longevity gene Sirt1 content was quantified.

その結果、検体2の処理により、溶媒対照に比して長寿遺伝子Sirt1は452%となり、明らかな増加が認められた。一方、ウロン酸添加の場合は120%、アルギニン添加の場合は103%となり、溶媒対照と同程度であった。 As a result, the longevity gene Sirt1 was 452% as compared with the solvent control, and a clear increase was observed by the treatment of specimen 2. On the other hand, it was 120% when uronic acid was added, and 103% when arginine was added, which was similar to the solvent control.

以下に、ヒト皮膚細胞を用いたエラスチン分解試験について述べる。
(試験例3)
The elastin degradation test using human skin cells is described below.
(Test Example 3)

精製エラスチンをSigma社より購入した。エラスチンをトリス緩衝液(pH7.4)に溶解した。これにエラスターゼを処理してエラスチンを分解し、280nmの吸光度の変化を指標としてエラスチンの分解率を計数した。 Purified elastin was purchased from Sigma. Elastin was dissolved in Tris buffer (pH 7.4). This was treated with elastase to decompose elastin, and the degradation rate of elastin was counted using the change in absorbance at 280 nm as an index.

この条件下で検体2の0.1mg/mL溶液を添加してエラスチンの分解率を測定した。 Under this condition, a 0.1 mg / mL solution of Specimen 2 was added and the degradation rate of elastin was measured.

その結果、溶媒対照に比して検体2を添加した場合、エラスチンの分解率は55%に低下した。検体2にはエラスチン分解抑制作用が認められた。 As a result, when specimen 2 was added as compared with the solvent control, the degradation rate of elastin decreased to 55%. Specimen 2 showed an elastin degradation inhibitory effect.

以下に、ヒト神経細胞を用いた長寿遺伝子Sirt1活性化の確認試験について述べる。
(試験例2)
Below, the confirmation test of longevity gene Sirt1 activation using a human nerve cell is described.
(Test Example 2)

この試験はヒト由来の神経細胞(クラボウ製)に検体を添加して培養し、長寿遺伝子Sirt1のRNA量を分析した。 In this test, a sample was added to a human-derived nerve cell (manufactured by Kurabo Industries) and cultured, and the RNA amount of the longevity gene Sirt1 was analyzed.

すなわち、正常ヒト由来神経細胞を専用培養液にて培養した。これに、実施例1で得られた検体2の0.1mgを5%エタノール含有PBS溶液にて添加し、37℃で、40時間培養した。なお、溶媒対照を設定して対照群とした。 That is, normal human-derived nerve cells were cultured in a dedicated culture solution. To this, 0.1 mg of the specimen 2 obtained in Example 1 was added in a PBS solution containing 5% ethanol, and cultured at 37 ° C. for 40 hours. A solvent control was set as a control group.

細胞数を計数後、細胞懸濁液を超音波破砕して細胞懸濁液を調製した。この細胞液からRNA抽出キット(フナコシ製)によりRNA分画を採取した。 After counting the number of cells, the cell suspension was sonicated to prepare a cell suspension. An RNA fraction was collected from this cell solution using an RNA extraction kit (Funakoshi).

このRNA分画をRT−PCR法により長寿遺伝子Sirt1をプローブとして電気移動法により分析し、長寿遺伝子Sirt1含量を定量した。 This RNA fraction was analyzed by the electromigration method using the longevity gene Sirt1 as a probe by the RT-PCR method, and the longevity gene Sirt1 content was quantified.

その結果、検体2の処理により、溶媒対照に比して長寿遺伝子Sirt1は503%となり、明らかな増加が認められた。 As a result, the longevity gene Sirt1 was 503% compared to the solvent control by the treatment of the specimen 2, and an obvious increase was observed.

本発明で得られるウロン酸誘導体は長寿遺伝子Sirt1活性化作用を呈し、かつ、副作用が少ないことから、抗炎症剤として国民のQOLを改善し、医療費を削減できる。 The uronic acid derivative obtained by the present invention exhibits the longevity gene Sirt1 activating action and has few side effects. Therefore, it can improve national QOL as an anti-inflammatory agent and reduce medical costs.

本発明で得られるウロン酸誘導体の製造方法は食品としても利用できることから、食品業界の発展に寄与する。 Since the method for producing a uronic acid derivative obtained in the present invention can also be used as a food, it contributes to the development of the food industry.

本発明で得られるウロン酸誘導体は化粧料としてシワやシミの改善に利用され、化粧品業界の発展に寄与する。 The uronic acid derivative obtained in the present invention is used as a cosmetic for improving wrinkles and spots and contributes to the development of the cosmetic industry.

Claims (2)

下記の式(1)に示される長寿遺伝子Sirt1活性化作用を呈するウロン酸誘導体。
Figure 2015117212
The uronic acid derivative which exhibits the longevity gene Sirt1 activation action shown by following formula (1).
Figure 2015117212
玄米、黒米、赤米、大麦、もち麦、はと麦、粟、稗、黍、たかきび、大豆、黒豆、小豆及びトウモロコシを納豆菌により発酵させた発酵液に分岐シクロデキストリンを添加してプロテアーゼ処理した後、濾過したろ液をアルカリ還元する工程からなる長寿遺伝子Sirt1活性化作用を呈するウロン酸誘導体の製造方法。 Brown rice, black rice, red rice, barley, glutinous wheat, hato barley, rice cake, rice cake, rice bran, oysters, soybeans, black beans, red beans and corn fermented with natto bacteria to add a branched cyclodextrin to protease The manufacturing method of the uronic acid derivative which exhibits the longevity gene Sirt1 activation action which consists of the process of carrying out the alkali reduction of the filtrate which processed and filtered.
JP2013262403A 2013-12-19 2013-12-19 Uronic acid derivatives exhibiting an action to increase the expression level of longevity gene Sirt1 applying curing culture Active JP6048905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013262403A JP6048905B2 (en) 2013-12-19 2013-12-19 Uronic acid derivatives exhibiting an action to increase the expression level of longevity gene Sirt1 applying curing culture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013262403A JP6048905B2 (en) 2013-12-19 2013-12-19 Uronic acid derivatives exhibiting an action to increase the expression level of longevity gene Sirt1 applying curing culture

Publications (2)

Publication Number Publication Date
JP2015117212A true JP2015117212A (en) 2015-06-25
JP6048905B2 JP6048905B2 (en) 2016-12-21

Family

ID=53530275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013262403A Active JP6048905B2 (en) 2013-12-19 2013-12-19 Uronic acid derivatives exhibiting an action to increase the expression level of longevity gene Sirt1 applying curing culture

Country Status (1)

Country Link
JP (1) JP6048905B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004175790A (en) * 2002-11-12 2004-06-24 Arita Junichi ZINC-CONTAINING MATERIAL HAVING alpha-GLUCOSIDASE INHIBITORY EFFECT
JP2011526781A (en) * 2008-06-24 2011-10-20 ネステク ソシエテ アノニム Maillard flavor composition and method for making such composition
JP2012240956A (en) * 2011-05-19 2012-12-10 Kakei Gakuen Resveratrol-containing agent and composition
JP2013133279A (en) * 2011-12-26 2013-07-08 Hokkaido Univ EXPRESSION ENHANCER OF Sirt1-RELATED GENE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004175790A (en) * 2002-11-12 2004-06-24 Arita Junichi ZINC-CONTAINING MATERIAL HAVING alpha-GLUCOSIDASE INHIBITORY EFFECT
JP2011526781A (en) * 2008-06-24 2011-10-20 ネステク ソシエテ アノニム Maillard flavor composition and method for making such composition
JP2012240956A (en) * 2011-05-19 2012-12-10 Kakei Gakuen Resveratrol-containing agent and composition
JP2013133279A (en) * 2011-12-26 2013-07-08 Hokkaido Univ EXPRESSION ENHANCER OF Sirt1-RELATED GENE

Also Published As

Publication number Publication date
JP6048905B2 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
JP2007176814A (en) Zeaxanthin derivative having inhibiting action on production of inflammatory cytokine, and food product preparation, cosmetics, and anti-inflammatory agent comprising same
JP5583259B1 (en) Novel derivative having collagen producing action and method for producing the same
JP6369751B2 (en) Curcumin derivative exhibiting keratin producing action and method for producing the same
JP5399468B2 (en) Composition exhibiting lipolytic activity
JP6388201B2 (en) Carotenoid derivatives with cytokeratin increasing action
JP6273551B2 (en) Nervonic acid derivatives exhibiting amyloid formation inhibitory action
JP6436337B2 (en) Quercetin derivative exhibiting elastin producing action and method for producing the same
JP6974661B2 (en) Cyclic peptide derivative exhibiting water-soluble extract transport action
JP6241672B2 (en) Ellagic acid derivative exhibiting antiviral action and method for producing the same
JP6292072B2 (en) Fatty acid derivative exhibiting hyaluronic acid synthase inducing action and process for producing the same
JP2015117212A (en) Uronic acid derivative which shows longevity gene sirt1 activating action adapting health care culture, and production method thereof
JP6741965B2 (en) Dehydroretinol derivative exhibiting keratin increasing action
JP6751838B2 (en) Neuraminic acid derivative exhibiting Langerhans cell activating action and its production method
JP5585958B2 (en) Method for producing caffeic acid derivative exhibiting blood pressure lowering action
JP2016056103A (en) Polyphenol derivative exhibiting keratin increasing activity and method for producing the same
JP5399467B2 (en) Composition exhibiting skin epithelial cell proliferation promoting action
JP6859559B2 (en) Phenyl peptide derivative with anti-allergic effect
JP6471974B2 (en) Indole derivatives exhibiting NF-κB class II inhibitory action and method for producing the same
JP6032618B2 (en) Organic acid derivative exhibiting action of inhibiting fatty acid synthase and method for producing the same
JP7015775B2 (en) Polyphenol derivative exhibiting gene repair action
JP6876217B2 (en) Peptidoglycan derivative with anti-inflammatory effect
JP6606635B2 (en) Carotenoid derivatives with cytokeratin increasing action
JP6010073B2 (en) Resveratrol derivative producing hydrogen gas and exhibiting keratin production action and method for producing the same
JP6891364B2 (en) Fumaric acid derivative exhibiting gene repair action
JP2017141497A (en) Manufacturing method of methyl lanthionine derivative exhibiting elastin increasing effect

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161112

R150 Certificate of patent or registration of utility model

Ref document number: 6048905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350