JP2015114930A - Fire detection system and fire detection method - Google Patents

Fire detection system and fire detection method Download PDF

Info

Publication number
JP2015114930A
JP2015114930A JP2013257612A JP2013257612A JP2015114930A JP 2015114930 A JP2015114930 A JP 2015114930A JP 2013257612 A JP2013257612 A JP 2013257612A JP 2013257612 A JP2013257612 A JP 2013257612A JP 2015114930 A JP2015114930 A JP 2015114930A
Authority
JP
Japan
Prior art keywords
flame
fire
equivalent diameter
fire detection
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013257612A
Other languages
Japanese (ja)
Other versions
JP6619543B2 (en
Inventor
哲也 長島
Tetsuya Nagashima
哲也 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2013257612A priority Critical patent/JP6619543B2/en
Publication of JP2015114930A publication Critical patent/JP2015114930A/en
Application granted granted Critical
Publication of JP6619543B2 publication Critical patent/JP6619543B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To make it possible to ensure detection of a fire from a certain scale of a fire on the basis of a fire observation image, irrespective of a distance to the fire.SOLUTION: A fire image determination unit 24 determines a fire image in which a fire is present from images picked up by a monitoring camera 10, and an angle-of-view detection unit 26 detects an angle of view of the fire from the fire image. Furthermore, a frequency detection unit 28 detects a fluctuation frequency of the fire, and an equivalent-diameter calculation unit 30 calculates an equivalent diameter of the fire based on the detected fluctuation frequency of the fire by means of a predetermined experimental formula. A length calculation unit 32 calculates a fire length from the monitoring camera 10 to the fire on the basis of the angle of view of the fire and the equivalent diameter of the fire. A fire determination unit 34 determines that the fire is a fire, and outputs a fire detection signal as well as information about the fire length and/or the equivalent diameter if the equivalent diameter of the fire is equal to or larger than a predetermined threshold.

Description

本発明は、監視カメラで撮像した監視領域の画像から火災初期における火炎を検知する火災検知システム及び火災検知方法に関する。
The present invention relates to a fire detection system and a fire detection method for detecting a flame in the early stage of a fire from an image of a monitoring area captured by a monitoring camera.

従来、監視カメラで撮像した監視領域の画像に対し画像処理を施すことにより、火災による火炎を検知するようにした様々な火災検知システムが提案されている。   Conventionally, various fire detection systems have been proposed in which a flame caused by a fire is detected by performing image processing on an image of a monitoring area captured by a monitoring camera.

このような火災検知システムにあっては、火災発生に対する初期消火や避難誘導の観点から火災の早期発見が重要である。   In such a fire detection system, early detection of a fire is important from the viewpoint of initial extinguishing and evacuation guidance for the occurrence of a fire.

このため従来システムにあっては、火炎以外の光源からの光による誤検出を防止するため、対象物画像領域の円形度、大きさの時間的分散率、大きさの時間変化について自己相関を割り出して対象物が火炎であるか否か判断する方法(特許文献1)や、赤外線監視画像につき、高輝度の一定面積以上で、ゆらぎがあり、変化強度の周波数が一定でないこと、高温領域の移動具合がランダムであることを条件に火炎を判別する方法(特許文献2)、撮像された画像から対象物の時間的な拡大と縮小の変化及び又はゆらぎ周波数から火炎を判定する方法(特許文献3)などが知られている。
Therefore, in the conventional system, in order to prevent false detection by light from a light source other than the flame, autocorrelation is calculated for the circularity of the object image area, the temporal dispersion rate of the size, and the temporal change of the size. The method of determining whether or not the object is a flame (Patent Document 1), or the infrared monitoring image has fluctuations over a certain area of high brightness, the frequency of change intensity is not constant, the movement of the high temperature region A method of discriminating a flame on condition that the condition is random (Patent Document 2), a method of determining a flame from a captured image based on a change in temporal enlargement and reduction and / or fluctuation frequency (Patent Document 3) ) Etc. are known.

特開平8−305980号公報JP-A-8-305980 特開2002−279545号公報JP 2002-279545 A 特開2003−270037号公報JP 2003-270037 A

しかしながら、このような従来の火炎の画像から火災を検知する火災検知システムにあっては、監視カメラの近くの小さな火炎を撮像した場合の大きさと、遠くの大きな火炎を撮像した場合の大きさが同じになる場合があり、例えば監視カメラの直近で点火されたライターの火炎を、遠くにある大きな火災による火炎と誤認識することがある。   However, in such a conventional fire detection system that detects a fire from an image of a flame, the size when a small flame near the surveillance camera is imaged and the size when a large large flame is imaged are large. For example, a lighter flame lit in the immediate vicinity of a surveillance camera may be mistaken as a flame from a large fire at a distance.

また、同じ大きさの火炎であっても、遠くにある場合は小さい火炎画像となり、近くにある場合は大きな火炎画像となり、このため遠くで発生した火災については検出感度が落ち、火災が拡大して火炎が大きくならないと火炎画像から火災を検知することができず、火災を検出するまでの時間遅れが大きくなる問題がある。   In addition, even if the flames are the same size, if they are far away, they will be small flame images, and if they are nearby, they will be large flame images. If the flame does not increase, there is a problem that a fire cannot be detected from the flame image, and the time delay until the fire is detected increases.

本発明は、距離と災規模の相違により大きさが変化する火炎の観測画像から、火災を確実に検知すると共に火点まで距離も推定可能とする火災検知システム及び火災検知方法を提供することを目的とする。
The present invention provides a fire detection system and a fire detection method capable of reliably detecting a fire and estimating a distance to a fire point from an observation image of a flame whose size changes due to a difference in distance and disaster scale. Objective.

(火災検知システム)
本発明の火災検知システムは、
監視領域を撮影する撮像手段と、
撮像手段により撮像した画像から火炎が存在する火炎画像を判定する火炎画像判定手段と、
火炎画像判定手段で判定した火炎画像から火炎の見込み角を検出する見込み角検出手段と、
監視領域に存在する火炎のゆらぎ周波数を検出する周波数検出手段と、
周波数検出手段で検出した火炎のゆらぎ周波数に基づき火炎の等価直径を算出する等価直径算出手段と、
見込み角検出手段で検出した火炎の見込み角と等価直径算出手段で算出した火炎の等価直径に基づき、撮像手段から火炎までの火炎距離を算出する距離算出手段と、
等価直径算出手段で算出した火炎の等価直径が所定の閾値以上の場合に火災と判定すると共にそれ以外の場合に非火災と判定し、火災を判定した場合に距離算出手段で算出した火炎距離及び又は等価直径算出手段で算出した火炎の等価直径を示す情報と共に火災検知信号を出力する火災判定手段と、
を設けたことを特徴とする。
(Fire detection system)
The fire detection system of the present invention is
Imaging means for photographing the surveillance area;
Flame image determination means for determining a flame image in which a flame is present from an image captured by the imaging means;
Expected angle detection means for detecting the expected angle of the flame from the flame image determined by the flame image determination means,
A frequency detection means for detecting the fluctuation frequency of the flame present in the monitoring area;
Equivalent diameter calculation means for calculating the equivalent diameter of the flame based on the fluctuation frequency of the flame detected by the frequency detection means;
A distance calculating means for calculating a flame distance from the imaging means to the flame based on the expected angle of the flame detected by the expected angle detecting means and the equivalent diameter of the flame calculated by the equivalent diameter calculating means;
When the equivalent diameter of the flame calculated by the equivalent diameter calculation means is greater than or equal to a predetermined threshold value, it is determined as a fire and in other cases it is determined as a non-fire, and when a fire is determined, the flame distance calculated by the distance calculation means and Or a fire determination means for outputting a fire detection signal together with information indicating the equivalent diameter of the flame calculated by the equivalent diameter calculation means,
Is provided.

(火炎等価直径の算出)
等価直径算出手段は、ゆらぎ周波数をZとした場合、火炎の等価直径2Rを
2R=(Z/18.622)1/-0.554
により算出する。
(Calculation of flame equivalent diameter)
The equivalent diameter calculation means sets the equivalent diameter 2R of the flame to 2R = (Z / 18.622) 1 / −0.554, where Z is the fluctuation frequency.
Calculated by

(火炎等価直径の算出)
距離算出手段は、火炎の等価直径を2R、火炎の見込み角をθとした場合、火炎距離Lを、
L=R/tan(θ/2)
により算出する。
(Calculation of flame equivalent diameter)
When the equivalent diameter of the flame is 2R and the prospective angle of the flame is θ, the distance calculation means calculates the flame distance L,
L = R / tan (θ / 2)
Calculated by

(火炎画像判定)
火炎画像判定手段は、撮像手段により撮像した画像から所定輝度以上の画素の集合となる火炎候補領域を検出し、火炎候補領域の水平画素数が所定の閾値以上の場合に火炎画像と判定する。
(Flame image judgment)
The flame image determination unit detects a flame candidate region that is a set of pixels having a predetermined luminance or higher from the image captured by the imaging unit, and determines that the image is a flame image when the number of horizontal pixels of the flame candidate region is equal to or greater than a predetermined threshold.

(火炎の見込み角の検出)
見込み角検出手段は、撮像手段の水平視野角と水平画素数で決まる1画素当りの見込み角αと、火炎画像から測定した火炎の水平画素数Xとの乗算により、火炎の見込み角θを検出する。
(Detection of the expected angle of flame)
The expected angle detection means detects the expected angle θ of the flame by multiplying the expected angle α per pixel determined by the horizontal viewing angle and the number of horizontal pixels of the imaging means and the horizontal pixel number X of the flame measured from the flame image. To do.

(ゆらぎ周波数の検出)
周波数検出手段は、連続する火炎画像から、画像全体又は火炎候補領域における所定閾値以上となる輝度の画素数の時系列変化から火炎のゆらぎ周波数を検出する。
(Fluctuation frequency detection)
The frequency detection means detects the fluctuation frequency of the flame from successive flame images based on a time-series change in the number of pixels with luminance equal to or higher than a predetermined threshold in the entire image or the flame candidate region.

また、周波数検出手段は、連続する前記火炎画像から、画像全体又は火炎領域における所定閾値以上となる輝度総和の時系列変化から火炎のゆらぎ周波数を検出しても良い。   Further, the frequency detection means may detect the fluctuation frequency of the flame from the successive flame images from the time series change of the luminance sum that is equal to or greater than a predetermined threshold in the entire image or the flame region.

また、周波数検出手段は、監視領域に存在する火炎からの赤外線光又は可視光を受光して受光信号を出力する受光素子手段を備え、前記受光素子手段から出力された受光信号からゆらぎ周波数を検出しても良い。   The frequency detecting means includes a light receiving element means for receiving infrared light or visible light from a flame existing in the monitoring area and outputting a light receiving signal, and detects a fluctuation frequency from the light receiving signal output from the light receiving element means. You may do it.

(火災判定)
火災判定手段は、火炎の等価直径が所定の閾値以上で且つ火炎距離が所定の閾値距離以上の場合に火災と判定し、それ以外の場合に非火災と判定する。
(Fire judgment)
The fire determination means determines a fire when the equivalent diameter of the flame is equal to or greater than a predetermined threshold and the flame distance is equal to or greater than the predetermined threshold distance, and otherwise determines as a non-fire.

(方法)
本発明は、火災検知方法に於いて、
監視領域を撮影する撮像手段により撮像した画像から火炎が存在する火炎画像を判定する火炎画像判定ステップと、
火炎画像判定ステップで判定した火炎画像から火炎の見込み角を検出する見込み角検出ステップと、
監視領域に存在する火炎のゆらぎ周波数を検出する周波数検出ステップと、
周波数検出ステップで検出した火炎のゆらぎ周波数に基づき火炎の等価直径を算出する等価直径算出ステップと、
見込み角検出ステップで検出した火炎の見込み角と等価直径算出ステップで算出した火炎の等価直径に基づき、撮像手段から火炎までの火炎距離を算出する距離算出ステップと、
等価直径算出ステップで算出した火炎の等価直径が所定の閾値以上の場合に火災と判定すると共にそれ以外の場合に非火災と判定し、火災を判定した場合に距離算出ステップで算出した火炎距離及び又は等価直径算出ステップで算出した火炎の等価直径を示す情報と共に火災検知信号を出力する火災判定ステップと、
を設けたことを特徴とする。
(Method)
The present invention provides a fire detection method,
A flame image determination step for determining a flame image in which a flame is present from an image captured by an imaging unit that captures a monitoring region;
A prospective angle detection step of detecting a prospective angle of the flame from the flame image determined in the flame image determination step;
A frequency detection step for detecting the fluctuation frequency of the flame present in the monitoring area;
An equivalent diameter calculating step for calculating the equivalent diameter of the flame based on the fluctuation frequency of the flame detected in the frequency detecting step;
A distance calculating step for calculating a flame distance from the imaging means to the flame based on the estimated angle of the flame detected in the estimated angle detection step and the equivalent diameter of the flame calculated in the equivalent diameter calculating step;
If the equivalent diameter of the flame calculated in the equivalent diameter calculation step is greater than or equal to a predetermined threshold, it is determined as a fire and in other cases it is determined as a non-fire, and if a fire is determined, the flame distance calculated in the distance calculation step and Or a fire determination step for outputting a fire detection signal together with information indicating the equivalent diameter of the flame calculated in the equivalent diameter calculation step;
Is provided.

本発明による火災検知方法の他の特徴は、火災検知システムの場合と基本的に同じになる。   Other features of the fire detection method according to the present invention are basically the same as those of the fire detection system.

(基本的な効果)
本発明の火災検知システムは、監視領域を撮影する撮像手段と、撮像手段により撮像した画像から火炎が存在する火炎画像を判定する火炎画像判定手段と、火炎画像判定手段で判定した火炎画像から火炎の見込み角を検出する見込み角検出手段と、監視領域に存在する火炎のゆらぎ周波数を検出する周波数検出手段と、周波数検出手段で検出した火炎のゆらぎ周波数に基づき火炎の等価直径を算出する等価直径算出手段と、見込み角検出手段で検出した火炎の見込み角と等価直径算出手段で算出した火炎の等価直径に基づき、撮像手段から火炎までの火炎距離を算出する距離算出手段と、等価直径算出手段で算出した火炎の等価直径が所定の閾値以上の場合に火災と判定すると共にそれ以外の場合に非火災と判定し、火災を判定した場合に距離算出手段で算出した火炎距離及び又は等価直径算出手段で算出した火炎の等価直径を示す情報と共に火災検知信号を出力する火災判定手段とを設けるようにしたため、同じ規模の火災による火炎の撮像画像が火点距離により大きさが異なっても、実験式から求めた火炎が大きくなるに従って火炎のゆらぎ周波数が低くなる関係に基づき、火炎のゆらぎ周波数から火炎の等価直径を求めて火炎の大きさを推定することができ、これにより火点距離によらず、火災による火炎を確実に検知して警報可能とする。
(Basic effect)
The fire detection system of the present invention includes an imaging unit that captures a monitoring area, a flame image determination unit that determines a flame image in which a flame is present from an image captured by the imaging unit, and a flame from a flame image determined by the flame image determination unit The expected angle detection means for detecting the expected angle, the frequency detection means for detecting the fluctuation frequency of the flame existing in the monitoring area, and the equivalent diameter for calculating the equivalent diameter of the flame based on the fluctuation frequency of the flame detected by the frequency detection means A calculation means; a distance calculation means for calculating a flame distance from the imaging means to the flame based on the expected angle of the flame detected by the expected angle detection means and the equivalent diameter of the flame calculated by the equivalent diameter calculation means; and an equivalent diameter calculation means If the equivalent flame diameter calculated in step 1 is greater than or equal to a predetermined threshold, it is determined that there is a fire and in other cases it is determined that there is no fire. Since there is provided a fire determination means for outputting a fire detection signal together with information indicating the flame distance calculated by the calculation means and / or the equivalent diameter of the flame calculated by the equivalent diameter calculation means, a captured image of a flame caused by a fire of the same scale is provided. Estimate the size of the flame by calculating the equivalent diameter of the flame from the fluctuation frequency of the flame, based on the relationship that the fluctuation frequency of the flame decreases as the flame obtained from the empirical formula increases, even if the size varies depending on the fire point distance. This makes it possible to reliably detect a fire due to a fire regardless of the fire point distance.

また、異なる規模の火災による火炎画像の大きさが火点距離により同じとなって近くの火炎か遠くの火炎かを識別できない状況にあっても、同様に、実験式から求めた火炎が大きくなるに従って火炎のゆらぎ周波数が低くなる関係に基づき、火炎のゆらぎ周波数から火炎の等価直径を求めて火炎の大きさを推定することができ、これにより火点距離によらず、火災による火炎を確実に検知して警報可能とする。   In addition, even if the flame images of fires of different scales are the same depending on the fire point distance and it is not possible to distinguish between a near flame and a far flame, the flame obtained from the empirical formula also becomes large. The flame size can be estimated by obtaining the equivalent diameter of the flame from the flame fluctuation frequency based on the relationship that the flame fluctuation frequency becomes lower in accordance with the Detect and enable alarm.

また、ゆらぎ周波数から求めた火炎の等価直径に基づき、撮像手段から火炎までの距離を求めて火災検知信号と共に火炎距離及び又は火炎の等価直径を出力することから、例えば火災警報を出力すると共に火炎距離と火炎の等価直径(大きさ)さを表示することで、監視領域における火災の発生状況の把握を容易にして適切な対処を可能とする。   Further, based on the equivalent flame diameter obtained from the fluctuation frequency, the distance from the imaging means to the flame is obtained and the flame distance and / or the equivalent flame diameter are output together with the fire detection signal. For example, a fire alarm is output and the flame is outputted. By displaying the distance and the equivalent diameter (size) of the flame, it is possible to easily grasp the fire occurrence state in the monitoring area and to take appropriate measures.

(火炎等価直径の算出による効果)
また、等価直径算出手段は、ゆらぎ周波数をZとした場合、火炎の等価直径2Rを
2R=(Z/18.622)1/-0.554
により算出することで、簡単に火炎の大きさを推定することを可能とする。
(Effects of calculation of flame equivalent diameter)
The equivalent diameter calculation means sets the equivalent diameter 2R of the flame to 2R = (Z / 18.622) 1 / −0.554, where Z is the fluctuation frequency.
By calculating by this, it is possible to easily estimate the size of the flame.

(火炎等価直径の算出による効果)
また、距離算出手段は、火炎の等価直径を2R、火炎の見込み角をθとした場合、火炎距離Lを、
L=R/tan(θ/2)
により算出するようにしたため、距離に応じて大きさの変化する火炎画像から、火炎までの火点距離を推定することができ火炎の大きさに加え火炎距離がわかることで、監視領域で発生した火災の様子を適確に把握可能とする。
(Effects of calculation of flame equivalent diameter)
Further, the distance calculating means calculates the flame distance L when the equivalent diameter of the flame is 2R and the prospective angle of the flame is θ.
L = R / tan (θ / 2)
Because it is calculated by the above, it is possible to estimate the fire point distance to the flame from the flame image that changes in size according to the distance. Make it possible to accurately grasp the state of the fire.

(火炎画像判定による効果)
また、火炎画像判定手段は、撮像手段により撮像した画像から所定輝度以上の画素の集合となる火炎候補領域を検出し、火炎候補領域の水平画素数が所定の閾値以上の場合に火炎画像と判定するようにしたため、火災による火炎の可能性の高い火炎画像を対象に、火炎画像の見込み角から等価直径を算出して火災を判定し、また、ゆらぎ周波数と等価直径から火炎距離を算出する処理を行うことを可能とし、火炎の可能性の低い画像に対する火災を判定するための処理を不要にして処理負担を低減可能とする。
(Effect by flame image judgment)
The flame image determination unit detects a flame candidate region that is a set of pixels having a predetermined luminance or higher from the image captured by the imaging unit, and determines that the image is a flame image when the number of horizontal pixels of the flame candidate region is equal to or greater than a predetermined threshold. Therefore, for a flame image with a high possibility of a flame due to a fire, the process calculates the equivalent diameter from the expected angle of the flame image to determine the fire, and calculates the flame distance from the fluctuation frequency and the equivalent diameter It is possible to reduce the processing burden by eliminating the need for processing for determining a fire for an image with a low possibility of flame.

(火炎の見込み角度検出による効果)
また、見込み角検出手段は、撮像手段の水平視野角と水平画素数で決まる1画素当りの見込み角αと、火炎画像から測定した火炎の水平画素数Xとの乗算により、火炎の見込み角θを検出するようにしたため、検出した火炎の見込み角とゆらぎ周波数から検出した火炎の等価直径に基づき、簡単に火点距離を算出することを可能とする。
(Effect by detecting the expected angle of flame)
Further, the prospective angle detection means multiplies the prospective angle α per pixel determined by the horizontal viewing angle and the number of horizontal pixels of the image pickup means and the horizontal pixel number X of the flame measured from the flame image, thereby calculating the expected angle θ of the flame. Therefore, it is possible to easily calculate the fire point distance based on the equivalent diameter of the flame detected from the estimated angle of the flame and the fluctuation frequency.

(ゆらぎ周波数の検出による効果)
また、周波数検出手段は、連続する火炎画像から、画像全体又は火炎候補領域における所定閾値以上となる輝度の画素数の時系列変化から火炎のゆらぎ周波数を検出するか、或いは、連続する火炎画像から、画像全体又は火炎候補領域における所定閾値以上となる輝度総和の時系列変化から火炎のゆらぎ周波数を検出するようにしたため、火炎画像の処理により、火炎の大きさいにより変化するゆらぎ周波数を正確に検出可能とする。
(Effects of fluctuation frequency detection)
Further, the frequency detection means detects the fluctuation frequency of the flame from the continuous flame image, from the time series change of the number of pixels of the brightness that is equal to or higher than the predetermined threshold in the entire image or the flame candidate area, or from the continuous flame image Since the fluctuation frequency of the flame is detected from the time series change of the luminance sum that exceeds the predetermined threshold in the entire image or the flame candidate area, the fluctuation frequency that changes depending on the size of the flame is accurately detected by processing the flame image. Make it possible.

また、周波数検出手段は、監視領域に存在する火炎からの赤外線光又は可視光を受光して受光信号を出力する受光素子手段を備え、受光素子手段から出力された受光信号からゆらぎ周波数を検出するようにしても良く、この場合には、受光素子手段の検出信号から直接的に火炎画像によるゆらぎ周波数の検出が可能となり、火炎画像のように輝度の時系列変化を検出する必要がなく、処理が簡単になる。
The frequency detecting means includes light receiving element means for receiving infrared light or visible light from a flame existing in the monitoring region and outputting a light receiving signal, and detects a fluctuation frequency from the light receiving signal output from the light receiving element means. In this case, it is possible to detect the fluctuation frequency directly from the flame image from the detection signal of the light receiving element means, and it is not necessary to detect the time series change in luminance as in the flame image, Becomes easier.

本発明の火災検知システムを設置した監視領域を示した説明図Explanatory drawing which showed the monitoring area | region which installed the fire detection system of this invention 火炎の等価直径に対する火炎のゆらぎ周波数の変化を示したグラフ図A graph showing the variation of the fluctuation frequency of the flame with respect to the equivalent diameter of the flame 火炎の等価直径とゆらぎ周波数の関係を示す近似式による特性を示したグラフ図A graph showing the characteristics of the approximate equation showing the relationship between the equivalent diameter of the flame and the fluctuation frequency 火炎の見込み角と火炎距離との関係を監視カメラの水平監視領域について示した説明図Explanatory drawing showing the relationship between the expected angle of flame and the flame distance for the horizontal monitoring area of the surveillance camera 本発明による火災検知システムの実施形態を示したブロック図The block diagram which showed embodiment of the fire detection system by this invention 見込み角が同じで火炎距離と大きさの異なる2つの火炎を監視カメラの水平監視領域について対比して示した説明図Explanatory drawing showing two flames with the same angle of view and different flame distance and size in comparison with the horizontal monitoring area of the surveillance camera 大きさが同じで見込み角と火炎距離が異なる2つ火炎を監視カメラの水平監視領域について対比して示した説明図Explanatory drawing showing two flames with the same size but different angle of view and flame distance in comparison with the horizontal monitoring area of the surveillance camera 火災検知処理を示したフローチャートFlow chart showing fire detection process

[火災検知システムの概要]
図1は本発明による火災検知システムを設置した監視領域を示した説明図である。
[Outline of fire detection system]
FIG. 1 is an explanatory diagram showing a monitoring area where a fire detection system according to the present invention is installed.

図1に示すように、監視領域16には撮像手段として機能する監視カメラ10を例えば斜め下向きに設置し、監視領域16を撮像して観測画像を得ている。   As shown in FIG. 1, a monitoring camera 10 functioning as an imaging unit is installed in the monitoring area 16, for example, obliquely downward, and the monitoring area 16 is imaged to obtain an observation image.

監視カメラ10で撮像した監視領域16の観測画像は伝送路を介して管理人室などに設置した画像処理装置12に伝送されており、監視領域16で火災が発生して火源18から火炎20が上がった場合、画像処理により火炎20が存在する観測画像(以下「火炎画像」という)を処理して火炎20のゆらぎ周波数から等価直径を算出して火災を判定すると共に、監視カメラ10から火炎20までの距離(以下「火炎距離」という)Lを算出し、火災検知信号を火炎の等価直径及び又は火炎距離を示す情報と共に火災報知設備14へ送り、火災警報を出力すると共に例えば火炎の大きさを示す等価直径と火炎距離を表示するようにしている。   An observation image of the monitoring area 16 captured by the monitoring camera 10 is transmitted to the image processing apparatus 12 installed in a manager's room or the like via a transmission path, and a fire occurs in the monitoring area 16 from the fire source 18 to the flame 20. , The observation image in which the flame 20 is present (hereinafter referred to as “flame image”) is processed by image processing, the equivalent diameter is calculated from the fluctuation frequency of the flame 20, and a fire is determined. A distance up to 20 (hereinafter referred to as “flame distance”) L is calculated, a fire detection signal is sent to the fire alarm device 14 together with information indicating the equivalent diameter and / or flame distance of the flame, a fire alarm is output, and the magnitude of the flame, for example The equivalent diameter and flame distance are displayed.

[検出原理]
(火炎のゆらぎ周波数と等価直径)
火炎のゆらぎの周波数は、火炎が大きくなるに従って低くなることが知られている。小野らは火炎の等価直径に対する火炎のゆらぎの周波数を、実験により求めた。それによれば火炎の燃焼直径が4〜50cmと大きくなるに従い、火炎の周波数は10〜2Hzへと低い方向に推移する。
[Detection principle]
(Flame fluctuation frequency and equivalent diameter)
It is known that the frequency of flame fluctuation decreases as the flame increases. Ono et al. Experimentally determined the frequency of flame fluctuation with respect to the equivalent diameter of the flame. According to this, as the combustion diameter of the flame increases to 4 to 50 cm, the frequency of the flame changes in a low direction to 10 to 2 Hz.

図2は小野らによる実験結果を示したグラフ図であり、横軸に火炎の等価直径をとり、縦軸に火炎のゆらぎ周波数をとっている。小野らの研究によれば、図2の火炎等価直径とゆらぎ周波数の関係は、材料の違いにより若干のずれがあるものの、ほぼ同じ傾向を示すとされている。   FIG. 2 is a graph showing the experimental results by Ono et al., Where the horizontal axis represents the flame equivalent diameter and the vertical axis represents the flame fluctuation frequency. According to the research by Ono et al., The relationship between the flame equivalent diameter and the fluctuation frequency in FIG. 2 shows almost the same tendency, although there is a slight deviation depending on the material.

本発明にあっては、図2のグラフ図に示す実験結果から近似直線を求め、数式化を図った。最小自乗法によりゆらぎ周波数と等価直径のそれぞれを対数としたグラフ上で求めた近似直線の式は、火炎のゆらぎの周波数をZ(Hz)、火炎の等価直径=を2R(cm)とすると、
Z=18.622(2R)-0.554 (式1)
となる。これを変換して等価直径2Rを求めると、
2R=(Z/18.622)1/-0.554 (式2)
となる。
In the present invention, an approximate straight line is obtained from the experimental results shown in the graph of FIG. The approximate straight line equation obtained on the logarithm of the fluctuation frequency and the equivalent diameter logarithmically by the least square method is as follows: the fluctuation frequency of the flame is Z (Hz) and the equivalent diameter of the flame is 2R (cm).
Z = 18.622 (2R) -0.554 (Formula 1)
It becomes. By converting this and obtaining the equivalent diameter 2R,
2R = (Z / 18.622) 1 / −0.554 (Formula 2)
It becomes.

図3は式2の近似式による火炎の等価直径とゆらぎ周波数の関係を示した対数グラフ図である。したがって、式2により、観測された火炎の周波数Zから、発生している火炎の等価直径2Rを求めることで、火炎の大きさを推定することができる。   FIG. 3 is a logarithmic graph showing the relationship between the equivalent diameter of the flame and the fluctuation frequency according to the approximate expression of Expression 2. Therefore, the magnitude of the flame can be estimated by obtaining the equivalent diameter 2R of the generated flame from the observed flame frequency Z according to Equation 2.

(火炎距離)
火炎のゆらぎ周波数から火炎の等価直径2Rを求めることができると、等価直径2Rに基づいて、図1に示した監視カメラ10から火炎20までの火炎距離Lを求めることができる。
(Flame distance)
If the equivalent diameter 2R of the flame can be obtained from the fluctuation frequency of the flame, the flame distance L from the monitoring camera 10 shown in FIG. 1 to the flame 20 can be obtained based on the equivalent diameter 2R.

図4は火炎の見込み角と火炎距離との関係を監視カメラの水平監視領域について示した説明図である。   FIG. 4 is an explanatory diagram showing the relationship between the expected angle of flame and the flame distance in the horizontal monitoring area of the monitoring camera.

火炎距離Lを算出するためには、まず、観測された火炎画像に存在する火炎20の見込み角θを求める。ここで、見込み角とは監視カメラから特定の対象物を撮像した場合の画角を意味する。   In order to calculate the flame distance L, first, the prospective angle θ of the flame 20 existing in the observed flame image is obtained. Here, the prospective angle means an angle of view when a specific object is imaged from the surveillance camera.

監視カメラ10により撮像された火炎画像の中の火炎の大きさは、火炎の見込み角を表すものであり、見込み角が同じであっても、監視カメラ10からの距離により火炎画像20の大きさは変化してしまう。   The size of the flame in the flame image captured by the monitoring camera 10 represents the expected angle of the flame. Even if the expected angle is the same, the size of the flame image 20 depends on the distance from the monitoring camera 10. Will change.

いま、監視カメラ10の画面サイズを(水平)×(垂直)=1280×960画素とし、監視カメラ10の撮影領域15の水平方向片側角度を45°とすると、1画素当りの見込み角αは
α=45°/640=0.070(°/画素)
となる。なお、以下の説明では、画素をピクセルという場合があり、また、画素数の単位として(pxl)を表記する場合がある。
Now, assuming that the screen size of the monitoring camera 10 is (horizontal) × (vertical) = 1280 × 960 pixels and the horizontal one-side angle of the imaging region 15 of the monitoring camera 10 is 45 °, the expected angle α per pixel is α = 45 ° / 640 = 0.070 (° / pixel)
It becomes. In the following description, a pixel may be referred to as a pixel, and (pxl) may be expressed as a unit of the number of pixels.

ここで、監視カメラ10により撮像された火炎画像の所定閾値輝度以上となる火炎候補領域の水平方向の画素数をXピクセルとすると、火炎の見込み角θは、
θ=αX(°) (式3)
となる。
Here, assuming that the number of pixels in the horizontal direction of the flame candidate region that is equal to or higher than the predetermined threshold luminance of the flame image captured by the monitoring camera 10 is X pixels, the expected angle θ of the flame is
θ = αX (°) (Formula 3)
It becomes.

このように火炎の見込み角θが求まると、前記式2から求めた火炎の等価直径2Rとに基づき、監視カメラ10から火炎20までの火炎距離Lは、
L = R/tan(θ/2) (式4)
となる。
When the expected angle θ of the flame is obtained in this way, the flame distance L from the monitoring camera 10 to the flame 20 based on the equivalent diameter 2R of the flame obtained from the equation 2 is
L = R / tan (θ / 2) (Formula 4)
It becomes.

なお、図4は監視カメラ10の光軸上に火炎20が存在した場合を例にとっているが、同じ火炎距離Lとなる光軸から外れた位置に存在する同じ大きさの火炎20aについても、光軸上の火炎20と同様にして、火炎の等価直径2Rと火炎距離Lが算出できる。   FIG. 4 shows an example in which the flame 20 exists on the optical axis of the surveillance camera 10, but the same size flame 20a existing at a position away from the optical axis having the same flame distance L is also used for the light. Similarly to the flame 20 on the shaft, the equivalent diameter 2R of the flame and the flame distance L can be calculated.

[火災検知システム]
(火災検知システムの機能構成)
図5は本発明による火災検知システムの機能構成の概略を示したブロック図である。図5に示すように、火災検知システムは、監視カメラ10と画像処理装置12で構成され、画像処理装置12は、そのハードウェアとしてCPU、メモリ、各種の入出力ポート等を備えたコンピュータ回路等で構成される。
[Fire detection system]
(Functional configuration of fire detection system)
FIG. 5 is a block diagram showing an outline of the functional configuration of the fire detection system according to the present invention. As shown in FIG. 5, the fire detection system includes a monitoring camera 10 and an image processing device 12. The image processing device 12 includes a computer circuit having a CPU, a memory, various input / output ports and the like as hardware. Consists of.

画像処理装置12は、CPUによるプログラムの実行により実現される機能として、火炎画素測定手段として機能する火炎画像判定部24、見込み角検出手段として機能する見込み角検出部26、ゆらぎ周波数検出手段として機能する周波数検出部28、等価直径算出手段として機能する等価直径算出部30、距離算出手段として機能する距離算出部32及び火災判定手段として機能する火災判定部34を設けている。また、伝送部22は監視カメラ10で撮像した画像データを受信する適宜の伝送インタフェースが使用される。   The image processing apparatus 12 functions as a flame image determination unit 24 that functions as a flame pixel measurement unit, a prospective angle detection unit 26 that functions as a prospective angle detection unit, and a fluctuation frequency detection unit as functions realized by execution of a program by the CPU. A frequency detecting unit 28, an equivalent diameter calculating unit 30 functioning as an equivalent diameter calculating unit, a distance calculating unit 32 functioning as a distance calculating unit, and a fire determining unit 34 functioning as a fire determining unit. The transmission unit 22 uses an appropriate transmission interface for receiving image data captured by the monitoring camera 10.

撮像手段として機能する監視カメラ10は、伝送部22の伝送制御により動画像データとして、例えば毎秒30フレームとなる監視領域の画像データを伝送し、画像処理装置12に設けた図示しないメモリに記憶する。本実施形態にあっては、例えば水平画素数が1280ピクセルで垂直画素数が960ピクセルの解像度をもつ監視カメラ10を使用する。   The monitoring camera 10 that functions as an imaging unit transmits image data of a monitoring area, for example, 30 frames per second as moving image data by transmission control of the transmission unit 22, and stores it in a memory (not shown) provided in the image processing device 12. . In the present embodiment, for example, the surveillance camera 10 having a resolution of 1280 pixels in horizontal pixels and 960 pixels in vertical pixels is used.

火炎画像判定部24は、監視カメラ10により撮像した画像から火炎が存在する火炎画像を判定する。火炎画像判定部24による火炎画像の判定は、例えば、炎と判定可能な所定の閾値輝度以上となる画素の集合で形成される火炎候補領域を検出し、検出した火炎候補領域の水平画素数Xが所定の閾値以上の場合に火炎が存在する火炎画像と判定し、判定した火炎画像における火災候補領域の水平画素数Xを見込み角検出部26に出力すると共に、周波数検出部28に判定した火炎画像を送ってゆらぎ周波数の検出動作を指示する。   The flame image determination unit 24 determines a flame image in which a flame exists from the image captured by the monitoring camera 10. The determination of the flame image by the flame image determination unit 24 is performed by, for example, detecting a flame candidate area formed by a set of pixels having a predetermined threshold luminance or higher that can be determined as a flame, and the horizontal pixel count X of the detected flame candidate area Is determined to be a flame image in which a flame is present, and the horizontal pixel number X of the candidate fire area in the determined flame image is output to the prospective angle detector 26 and the flame determined to the frequency detector 28 An image is sent to instruct the fluctuation frequency detection operation.

見込み角検出部26は、火炎画像判定部24で判定した火炎画像における火炎候補領域の水平画素数Xから、前記式3により火炎の見込み角θを算出し、距離算出部32に出力する。   The expected angle detection unit 26 calculates the expected angle θ of the flame from the horizontal pixel number X of the flame candidate area in the flame image determined by the flame image determination unit 24, and outputs it to the distance calculation unit 32.

一方、周波数検出部28は、監視領域に存在する火炎のゆらぎ周波数Zを検出する。周波数検出部28は、例えば、火炎画像判定部24で判定された連続する火炎画像から、画像全体又は火炎画像判定部24で判定した火炎候補領域における所定閾値以上となる輝度の画素数の時系列変化から、例えばフーリエ変換に基づき火炎のゆらぎ周波数Zを検出する。   On the other hand, the frequency detector 28 detects the fluctuation frequency Z of the flame present in the monitoring area. The frequency detection unit 28 is, for example, a time series of the number of pixels having a luminance equal to or higher than a predetermined threshold in the entire image or the flame candidate region determined by the flame image determination unit 24 from the continuous flame images determined by the flame image determination unit 24. The fluctuation frequency Z of the flame is detected from the change based on, for example, Fourier transform.

また、周波数検出部28の他の実施形態として、火炎画像判定部24で判定された連続する火炎画像から、画像全体又は火炎画像判定部24で判定した火炎候補領域における所定閾値以上となる輝度総和の時系列変化から例えばフーリエ変換により火炎のゆらぎ周波数Zを検出する。   Further, as another embodiment of the frequency detection unit 28, a luminance sum that is equal to or greater than a predetermined threshold in the entire image or the flame candidate region determined by the flame image determination unit 24 from the continuous flame images determined by the flame image determination unit 24. For example, the fluctuation frequency Z of the flame is detected from the time series change by Fourier transform.

ここで、火炎候補領域の輝度による火炎の揺らぎ周波数Zの検出は、画像全体を複数のブロックに分割し、火炎が検出された分割ブロックに着目して輝度を検出することで、S/N比を高めることができる。   Here, the detection of the flame fluctuation frequency Z based on the luminance of the flame candidate region is performed by dividing the entire image into a plurality of blocks and detecting the luminance by paying attention to the divided blocks where the flame is detected. Can be increased.

また、周波数検出部28の他の実施形態としては、監視領域に存在する火炎からの赤外線光又は可視光を受光して受光信号を出力する焦電素子やホトダイオード等の受光素子を設け、この受光素子から出力された受光信号のフーリエ変換等によりからゆらぎ周波数Zを検出する。   As another embodiment of the frequency detector 28, a light receiving element such as a pyroelectric element or a photodiode that receives infrared light or visible light from a flame existing in the monitoring region and outputs a light receiving signal is provided. The fluctuation frequency Z is detected from the received light signal output from the element by Fourier transform or the like.

また、周波数検出部28の他の実施形態としては、火炎画像判定部24で判定した所定の閾値輝度以上となる画素の集合で形成される火炎候補領域の面積、高さ、監視カメラ10から縦方向の見込み角等の時系列変化からフーリエ変換により火炎のゆらぎ周波数を検出しても良い。   As another embodiment of the frequency detection unit 28, the area and height of a flame candidate region formed by a set of pixels having a predetermined threshold luminance or higher determined by the flame image determination unit 24, The fluctuation frequency of the flame may be detected by a Fourier transform from a time-series change such as an expected angle of direction.

等価直径算出部30は、周波数検出部28で検出した火炎のゆらぎ周波数Zから、前記式2に基づき、火炎の等価直径2Rを算出する。   The equivalent diameter calculation unit 30 calculates the equivalent diameter 2R of the flame from the flame fluctuation frequency Z detected by the frequency detection unit 28 based on the above equation 2.

距離算出部32は、見込み角検出部26で検出した火炎の見込み角θと等価直径算出部30で算出した火炎の等価直径2Rから、前記式4に基づき、監視カメラ10から火炎までの火炎距離Lを算出する。   The distance calculation unit 32 calculates the flame distance from the monitoring camera 10 to the flame based on the equation 4 based on the expected angle θ of the flame detected by the expected angle detection unit 26 and the equivalent diameter 2R of the flame calculated by the equivalent diameter calculation unit 30. L is calculated.

火災判定部34は、等価直径算出部30で算出した火炎の等価直径2Rが所定の閾値以上の場合に火災と判定し、それ以外の場合は非火災と判定し、火災と判定した場合には、等価直径算出部30で算出した等価直径2R及び又は距離算出部32で算出した火炎距離Lのデータと共に火災検知信号を外部の火災報知設備14に出力し、火災警報を出力させると共に例えば火炎の等価直径2R及び又は火炎距離Lを表示させる。   The fire determination unit 34 determines a fire when the equivalent diameter 2R of the flame calculated by the equivalent diameter calculation unit 30 is equal to or greater than a predetermined threshold value. Otherwise, the fire determination unit 34 determines a non-fire and determines a fire. The fire detection signal is output to the external fire alarm device 14 together with the data of the equivalent diameter 2R calculated by the equivalent diameter calculator 30 and / or the flame distance L calculated by the distance calculator 32, and a fire alarm is output and, for example, a flame The equivalent diameter 2R and / or the flame distance L are displayed.

このような火災報知設備14において監視領域における火炎の大きさと距離を把握することで、例えば初期火災の段階にあるか、ある程度時間が過ぎて火災が拡大しているかといった火災の状況を適確に把握して初期消火や到着した消防隊に対する状況説明を可能とする。   By grasping the size and distance of the flame in the monitoring area in such a fire alarm facility 14, it is possible to accurately determine the state of the fire, for example, whether it is in the initial fire stage or whether the fire has spread over a certain period of time. It is possible to grasp the situation and explain the situation to the initial fire fighting and the fire brigade that arrived.

[火炎検出の具体例]
いま、火炎画像判定部24で判定した火炎候補領域の水平画素数XがX=57ピクセルであったとすると、見込み角算出部26で算出する見込み角θは前記式3から
θ=0.070×57=4°
となる。
[Specific examples of flame detection]
Now, assuming that the number X of horizontal pixels of the flame candidate region determined by the flame image determination unit 24 is X = 57 pixels, the expected angle θ calculated by the expected angle calculation unit 26 is θ = 0.070 × 57 = 4 °
It becomes.

このとき周波数検出部28で火炎画像から検出した火炎のゆらぎ周波数Zが例えばZ=2(Hz)であったとすると、等価直径算出部30は前記式2により、炎の等価直径2Rを
2R=56.1(cm)
と算出する。
At this time, assuming that the flame fluctuation frequency Z detected from the flame image by the frequency detection unit 28 is, for example, Z = 2 (Hz), the equivalent diameter calculation unit 30 sets the equivalent diameter 2R of the flame to 2R = 56 according to the above equation 2. .1 (cm)
And calculate.

また距離算出部32は、前記式4により、監視カメラ10から火炎までの火炎距離Lを
L=1607(cm)
と算出する。
Further, the distance calculation unit 32 calculates the flame distance L from the monitoring camera 10 to the flame by L = 1607 (cm) according to the equation 4.
And calculate.

火災判定部34は、等価直径算出部30で算出した火炎の等価直径2Rから火災と判定する所定の閾値2Rthを、例えば2R=10cm)とすると、このとき算出した等価直径2R=56.1(cm)は閾値2Rth=10(cm)以上であることから、火災による火炎と判定する。   If the predetermined threshold value 2Rth for determining fire from the equivalent diameter 2R of the flame calculated by the equivalent diameter calculation unit 30 is 2R = 10 cm, for example, the fire determination unit 34 calculates the equivalent diameter 2R = 56.1 ( cm) is equal to or greater than the threshold value 2Rth = 10 (cm), so it is determined that the flame is a fire.

一方、距離算出部32は算出した火炎の等価直径2R=56.1(cm)に基づき、前記式4により、火炎距離Lを
L=1607(cm)
と算出する。
On the other hand, based on the calculated equivalent flame diameter 2R = 56.1 (cm), the distance calculating unit 32 sets the flame distance L to L = 1607 (cm) according to the above equation 4.
And calculate.

このため火災判定部34は、火災検知信号を火炎の等価直径データ及び火炎距離データと共に火災報知設備14に出力し、火災警報の出力と共に等価直径2R=56.1(cm)と火炎距離L=1607(cm)を表示させ、監視領域で発生した火災の状況を確認可能とする。   For this reason, the fire determination unit 34 outputs a fire detection signal together with the equivalent diameter data and flame distance data of the flame to the fire alarm equipment 14, and together with the output of the fire alarm, the equivalent diameter 2R = 56.1 (cm) and the flame distance L = 1607 (cm) is displayed, and the status of the fire that occurred in the monitoring area can be confirmed.

一方、火炎画像の水平画素数XがX=57ピクセルであり、見込み角θが同じθ=4°であっても、火炎画像のゆらぎ周波数Zが例えばZ=8(Hz)であったとすると、この場合の火炎の等価直径2Rは式2から
2R=4.6(cm)
となり、また監視カメラ10から火炎までの火炎距離Lは式4から
L=13.2(cm)
となる。
On the other hand, when the horizontal pixel number X of the flame image is X = 57 pixels and the prospective angle θ is the same θ = 4 °, the fluctuation frequency Z of the flame image is, for example, Z = 8 (Hz). In this case, the equivalent diameter 2R of the flame is 2R = 4.6 (cm) from Equation 2
The flame distance L from the monitoring camera 10 to the flame is L = 13.2 (cm) from the equation 4.
It becomes.

この場合、火炎の等価直径2R=4.6(cm)は火災を判定する閾値Rth=10(cm)未満であり、非火災と判定される。また、このときの火炎距離LはL=13.2(cm)と監視カメラ10の直近であることから、非火災と判定した火炎は、監視カメラ10の近くにあるライター等による小さな炎であることが分かる。   In this case, the equivalent diameter 2R = 4.6 (cm) of the flame is less than the threshold value Rth = 10 (cm) for determining fire, and it is determined that there is no fire. Further, since the flame distance L at this time is L = 13.2 (cm), which is close to the monitoring camera 10, the flame determined as non-fire is a small flame caused by a lighter or the like near the monitoring camera 10. I understand that.

(見込み角が同一で距離及び大きさの異なる火炎)
図6は見込み角が同じで火炎距離と大きさの異なる2つの火炎を監視カメラの水平監視領域について対比して示した説明図である。
(Flames with the same angle of view and different distances and sizes)
FIG. 6 is an explanatory view showing two flames having the same angle of view and different flame distances and sizes in comparison with the horizontal monitoring area of the monitoring camera.

図6に示すように、監視カメラ10から離れた位置に発生した火炎20−1の見込み角θは、監視カメラ10で撮像した火炎画像における火災候補領域の水平画素数Xにより前記式3から算出される角度である。この火炎20−1はゆらぎ周波数Zの検出から前記式2で算出された等価直径2R1であり、前記式3から火炎距離L1が算出され、火炎20−2の等価直径2R1が閾値以上となることで火災を判定する。 As shown in FIG. 6, the prospective angle θ of the flame 20-1 generated at a position distant from the monitoring camera 10 is calculated from the above equation 3 based on the horizontal pixel number X of the fire candidate area in the flame image captured by the monitoring camera 10. Is the angle to be. The flame 20-1 is equivalent diameters 2R 1 calculated by the formula 2 from the detection of the fluctuation frequency Z, flame distance L1 is calculated from the equation 3, and the equivalent diameter 2R 1 flame 20-2 is equal to or more than the threshold The fire is judged by becoming.

この火炎20−1と同じ見込み角θとなる火炎としては、例えば監視カメラ10の近くで発生した小さい火炎20−2があり、この火炎20−2のゆらぎ周波数Zの検出から前記式2により小さな等価直径2R2が検出され、また前記式3から短い火炎距離L2が算出され、例えば火炎20−2の等価直径2R2が閾値未満となることで非火災を判定する。 For example, a small flame 20-2 generated near the monitoring camera 10 is used as the flame having the same prospective angle θ as that of the flame 20-1, and is smaller by the above equation 2 from the detection of the fluctuation frequency Z of the flame 20-2. The equivalent diameter 2R 2 is detected, and a short flame distance L2 is calculated from the above equation 3. For example, the non-fire is determined when the equivalent diameter 2R 2 of the flame 20-2 is less than the threshold value.

このように見込み角が同じ火炎20−1と火炎20−2を監視カメラ10で撮像すると、それぞれの画像に存在する火炎20−1と火炎20−2の大きさ同じになるが、本実施形態にあっては、それぞれの異なるゆらぎ周波数から等価直径2R1,2R2を推定することで、見込み角が同一となって画面上で同じ大きさとなる火炎20−1から火災を判定し、火炎20−2については非火災を判定することができる。 As described above, when the monitoring camera 10 captures the flame 20-1 and the flame 20-2 having the same angle of view, the sizes of the flame 20-1 and the flame 20-2 existing in the respective images are the same. Then, by estimating the equivalent diameters 2R 1 and 2R 2 from the different fluctuation frequencies, the fire is determined from the flame 20-1 having the same angle of view and the same size on the screen. For -2, non-fire can be determined.

(大きさが同じで見込み角と距離が異なる火炎)
図7は大きさが同じで見込み角と火炎距離が異なる2つ火炎を監視カメラの水平監視領域について対比して示した説明図である。
(Flames with the same size but different angles and distances)
FIG. 7 is an explanatory view showing two flames having the same size but different angles of view and flame distances in comparison with the horizontal monitoring area of the monitoring camera.

図7に示すように、火炎20−1と火炎20−2は、ゆらぎ周波数Zが同じであることから等価直径2Rも同じであるが、監視カメラ10からの距離が相違するため、火炎画像に存在する火災候補領域の水平画素数がX1,X2と相違し、これにより見込み角かθ1,θ2と相違する。このように火炎20−1,20−2の見込み角がθ1,θ2と相違すると、火炎20−1,20−2の同じ等価直径2Rから前記式4により算出される火源距離はL1,L2と相違する。   As shown in FIG. 7, the flame 20-1 and the flame 20-2 have the same equivalent diameter 2R because the fluctuation frequency Z is the same. However, since the distance from the monitoring camera 10 is different, The number of horizontal pixels of the existing fire candidate area is different from X1 and X2, and thus the prospective angle is different from θ1 and θ2. As described above, when the prospective angles of the flames 20-1 and 20-2 are different from θ1 and θ2, the fire source distance calculated by the above equation 4 from the same equivalent diameter 2R of the flames 20-1 and 20-2 is L1, L2. Is different.

このように同じ大きさの火災であっても、火炎画像に存在する火炎候補領域の水平画素数の相違から火源距離が異なっていることがわかり、火災検知信号に基づく火災警報の出力に加えて火炎の等価直径及び火炎距離を表示することで、例えば火災が初期段階にあるといった火災の発生状況を適切に把握可能とする。   In this way, even in the case of a fire of the same size, it can be seen that the fire source distance is different due to the difference in the number of horizontal pixels of the flame candidate area present in the flame image, and in addition to the output of the fire alarm based on the fire detection signal By displaying the equivalent diameter of the flame and the flame distance, it is possible to appropriately grasp the occurrence of the fire, for example, that the fire is in the initial stage.

[火災検知処理]
図8は、図5の実施形態による火災検知処理を示したフローチャートである。図8に示すように、まずステップS1(以下「ステップ」は省略)で火炎画像における火炎候補領域を判定する水平画素数の閾値Xth、監視カメラ10における1画素当りの見込み角α、火炎の等価直径から火災を判定する火災判定閾値2Rthを定数として設定する。
[Fire detection processing]
FIG. 8 is a flowchart showing a fire detection process according to the embodiment of FIG. As shown in FIG. 8, first, in step S1 (hereinafter, “step” is omitted), a threshold Xth of the number of horizontal pixels for determining a flame candidate area in the flame image, a prospective angle α per pixel in the monitoring camera 10, an equivalent of flame A fire determination threshold value 2Rth for determining a fire from the diameter is set as a constant.

続いてS2に進み、監視カメラ10で撮像した観測画像から所定輝度以上となる画素集合で形成される火炎候補領域を検出し、火炎候補領域の水平画素数Xを求め、S3で所定の閾値Xth以上であれば火炎画像と判定し、S4に進む。   Subsequently, the process proceeds to S2, where a flame candidate area formed by a pixel set having a predetermined luminance or higher is detected from the observation image captured by the monitoring camera 10, the horizontal pixel number X of the flame candidate area is obtained, and a predetermined threshold value Xth is obtained in S3. If it is above, it determines with a flame image and progresses to S4.

S4では、S2で検出した火炎の水平画素数Xから見込み角θを算出し、続いてS5に進み、連続する火炎画像から火炎のゆらぎ周波数Zを検出する。続いてS6に進み、ゆらぎ周波数Zから火炎の等価直径2Rを算出し、続いてS7に進んで、火炎の見込み角θと等価直径2Rから火炎距離Lを算出する。   In S4, a prospective angle θ is calculated from the horizontal pixel number X of the flame detected in S2, and then the process proceeds to S5, where a flame fluctuation frequency Z is detected from successive flame images. Subsequently, the process proceeds to S6, where the equivalent diameter 2R of the flame is calculated from the fluctuation frequency Z, and then, the process proceeds to S7, where the flame distance L is calculated from the expected angle θ of the flame and the equivalent diameter 2R.

続いてS8に進み、火炎の等価直径2Rが火災閾値2Rth以上であれば火災と判定し、S9で火災検知信号を、火炎の等価直径2R及び又は火炎距離Lのデータと共に出力する。   In S8, if the equivalent flame diameter 2R is equal to or greater than the fire threshold value 2Rth, it is determined that there is a fire. In S9, a fire detection signal is output together with data on the equivalent flame diameter 2R and / or the flame distance L.

[火炎距離及び等価直径の応用]
(火源距離の推定に基づく応用)
上記の実施形態で画像処理装置12で火災を判定した場合に出力される火炎距離Lを利用することで、図1の監視領域10における火炎20の位置を特定することができる。
[Application of flame distance and equivalent diameter]
(Application based on estimation of fire source distance)
By using the flame distance L that is output when the image processing apparatus 12 determines a fire in the above embodiment, the position of the flame 20 in the monitoring region 10 of FIG. 1 can be specified.

例えば、監視カメラ10からの光軸の垂直方向に対する傾斜角βが決まっていることから、火炎までの水平距離をLsinβとして算出することができ、また火炎20から監視カメラ10までの高さをLcosθとして算出することができ、更に図4に示すように監視カメラ10から見た火炎20の光軸に対する水平方向の角度が分かることで、監視空間の所定位置を原点とした三次元座標空間における火炎20の位置を求めることができる。   For example, since the inclination angle β with respect to the vertical direction of the optical axis from the monitoring camera 10 is determined, the horizontal distance to the flame can be calculated as Lsinβ, and the height from the flame 20 to the monitoring camera 10 is calculated as Lcosθ. Further, as shown in FIG. 4, the horizontal angle with respect to the optical axis of the flame 20 viewed from the monitoring camera 10 is known, so that the flame in a three-dimensional coordinate space with a predetermined position in the monitoring space as the origin is obtained. Twenty positions can be determined.

このように監視領域16における火炎20の位置が求まると、例えば火炎の位置情報を消火装置に送ることで適正な消火が可能となる。例えば、遠隔制御可能なスプリンクラーヘッドを備えたスプリンクラー消火設備を設置している場合には、火源位置に近いスプリンクラーヘッドだけを作動させる。また、移動可能な消火ロボットを火炎付近まで自動で移動させる。また、放水銃の位置制御を行う。   When the position of the flame 20 in the monitoring region 16 is obtained in this manner, for example, proper fire extinguishing can be performed by sending flame position information to the fire extinguishing device. For example, when a sprinkler fire extinguishing equipment having a remotely controllable sprinkler head is installed, only the sprinkler head close to the fire source position is operated. A movable fire extinguishing robot is automatically moved to near the flame. In addition, the position of the water gun is controlled.

また、工場や自動倉庫等、自動化された大空間施設では、火炎位置を知ることで対象となる設備の運転停止や、付属する消火装置の稼働等、適切な処置が可能となる。   In an automated large space facility such as a factory or an automatic warehouse, knowing the flame position enables appropriate measures such as stopping the operation of the target equipment and operating the attached fire extinguishing device.

また、人による初期消火活動の際にも、火炎位置に直行することができ、迅速な対応が可能となる。また、避難誘導の際、的確なルートの設定ができる。更に、消防隊員に火点の正確な位置を情報提供することができ、消火効率の向上を果たせることで人命救助と損害抑制に繋がる。これ以外にも、火炎距離が分かることで、様々な対処が可能となる。   In addition, even during the initial fire extinguishing activity by a person, it is possible to go straight to the flame position, and a quick response is possible. In addition, an accurate route can be set for evacuation guidance. Furthermore, it is possible to provide information on the exact location of the fire point to fire fighters, and to improve the fire extinguishing efficiency, leading to life saving and damage suppression. Besides this, various measures can be taken by knowing the flame distance.

(火炎の等価直径の推定に基づく応用)
上記の実施形態で画像処理装置12で火災を判定した場合に出力される火炎の等価直径2R、即ち火炎の大きさ(規模)の推定値を利用することで次のような応用が可能となる。
(Application based on estimation of equivalent diameter of flame)
The following application is possible by using the equivalent diameter 2R of the flame output when the image processing apparatus 12 determines a fire in the above embodiment, that is, the estimated value of the size (scale) of the flame. .

例えば、火炎の大きさ(規模)に合わせた適正な消火剤を使用することが可能となり、少ない消火剤で確実に消火可能となり、汚損防止や財産保護に繋がる。   For example, it is possible to use an appropriate extinguishing agent that matches the size (scale) of the flame, and it is possible to reliably extinguish with a small amount of extinguishing agent, leading to prevention of pollution and property protection.

また、火炎の等価直径の急激な拡大変化から急激な火災の拡大が分かり、火炎の大きさに合わせて早期に適切な方法で避難誘導を開始することを可能とし、人命救助に繋がる。これ以外にも、火炎の大きさが分かることで、様々な対処が可能となる。   In addition, the sudden expansion of the equivalent diameter of the flame reveals a rapid expansion of the fire, and it is possible to start evacuation guidance in an appropriate manner at an early stage according to the size of the flame, leading to lifesaving. Besides this, various measures can be taken by knowing the size of the flame.

〔本発明の変形例〕
(火炎の等価直径)
上記の実施形態は、火炎画像から火災と判定した場合に、火災検知信号に加え、推定した火炎の等価直径2R及び又は火炎距離Lの距離データを出力するようにしているが、火災検知信号のみを出力するようにしても良い。
[Modification of the present invention]
(Equivalent diameter of flame)
In the above embodiment, when a fire is determined from the flame image, in addition to the fire detection signal, the estimated flame equivalent diameter 2R and / or the distance data of the flame distance L are output. However, only the fire detection signal is output. May be output.

(火炎の非火災判定)
上記の実施形態は、火炎の等価直径が所定の閾値以上の場合に火災と判定して火災検知信号と共に火炎距離及び又は等価直径を示すデータを出力しているが、非火災と判定した場合にも、非火災の炎検出信号と共に火炎距離及び又は等価直径を示すデータを出力し、例えばライターの火炎について炎検知による注意警報を出力すると共に、火炎距離と等価直径を表示することで、火気厳禁となっている監視領域での火気の使用を報知し、例えば放火などに対処することを可能とする。
(Flame non-fire judgment)
In the above embodiment, when the equivalent diameter of the flame is equal to or greater than a predetermined threshold value, it is determined as a fire, and data indicating the flame distance and / or the equivalent diameter is output together with the fire detection signal. In addition, data indicating the flame distance and / or equivalent diameter is output together with the non-fire flame detection signal, for example, a warning warning is output for the lighter flame by detecting the flame, and flame is prohibited by displaying the flame distance and equivalent diameter. It is possible to notify the use of fire in the monitoring area and to deal with, for example, arson.

(監視カメラ)
上記の実施形態にあっては、説明を簡単にするため監視カメラの視野角θを45°とした場合を例にとっているが、適宜の視野角に適用できる。また、監視カメラの水平及び垂直の画素数も(640×480)ピクセルに限定されず、適宜の解像度のものが使用できる。
(Surveillance camera)
In the above embodiment, the case where the viewing angle θ of the surveillance camera is set to 45 ° is taken as an example in order to simplify the explanation, but the embodiment can be applied to an appropriate viewing angle. Further, the number of horizontal and vertical pixels of the surveillance camera is not limited to (640 × 480) pixels, and those having an appropriate resolution can be used.

(画像処理装置)
上記の実施形態にあっては、監視カメラと画像処理装置を分離配置して伝送路により接続しているが、両者を一体化した装置としても良い。
(Image processing device)
In the above embodiment, the surveillance camera and the image processing apparatus are separately arranged and connected by a transmission path, but an apparatus in which both are integrated may be used.

(その他)
また、本発明は上記の実施形態に限定されず、その目的と利点を損なうことのない適宜の変形を含み、更に上記の実施形態に示した数値による限定は受けない。
(Other)
The present invention is not limited to the above-described embodiment, includes appropriate modifications without impairing the object and advantages thereof, and is not limited by the numerical values shown in the above-described embodiment.

10:監視カメラ
12:画像処理装置
14:火災報知設備
15:撮像領域
16:監視領域
18:火源
20,20A,20−1,20−2:火炎
22:伝送部
24:火炎画像判定部
26:見込み角算出部
28:周波数検出部
30:等価直径算出部
32:距離算出部
34:火災判定部
10: surveillance camera 12: image processing device 14: fire alarm equipment 15: imaging area 16: monitoring area 18: fire source 20, 20A, 20-1, 20-2: flame 22: transmission unit 24: flame image determination unit 26 : Expected angle calculation unit 28: Frequency detection unit 30: Equivalent diameter calculation unit 32: Distance calculation unit 34: Fire determination unit

Claims (16)

監視領域を撮影する撮像手段と、
前記撮像手段により撮像した画像から火炎が存在する火炎画像を判定する火炎画像判定手段と、
前記火炎画像判定手段で判定した火炎画像から火炎の見込み角を検出する見込み角検出手段と、
監視領域に存在する火炎のゆらぎ周波数を検出する周波数検出手段と、
前記周波数検出手段で検出した火炎のゆらぎ周波数に基づき火炎の等価直径を算出する等価直径算出手段と、
前記見込み角検出手段で検出した火炎の見込み角と前記等価直径算出手段で算出した火炎の等価直径に基づき、前記撮像手段から前記火炎までの火炎距離を算出する距離算出手段と、
前記等価直径算出手段で算出した火炎の等価直径が所定の閾値以上の場合に火災と判定すると共にそれ以外の場合に非火災と判定し、火災を判定した場合に前記距離算出手段で算出した火炎距離及び又は前記等価直径算出手段で算出した火炎の等価直径を示す情報と共に火災検知信号を出力する火災判定手段と、
を設けたことを特徴とする火災検知システム。
Imaging means for photographing the surveillance area;
Flame image determination means for determining a flame image in which a flame exists from an image captured by the imaging means;
Expected angle detection means for detecting the expected angle of the flame from the flame image determined by the flame image determination means,
A frequency detection means for detecting the fluctuation frequency of the flame present in the monitoring area;
Equivalent diameter calculating means for calculating an equivalent diameter of the flame based on the fluctuation frequency of the flame detected by the frequency detecting means;
A distance calculating means for calculating a flame distance from the imaging means to the flame based on the expected angle of the flame detected by the expected angle detecting means and the equivalent diameter of the flame calculated by the equivalent diameter calculating means;
The flame calculated by the distance calculating means when the equivalent diameter of the flame calculated by the equivalent diameter calculating means is determined to be a fire when the equivalent diameter is greater than or equal to a predetermined threshold and otherwise determined to be a non-fire, and when a fire is determined Fire determining means for outputting a fire detection signal together with information indicating the distance and / or the equivalent diameter of the flame calculated by the equivalent diameter calculating means;
A fire detection system characterized by the provision of
請求項1記載の火災検知システムに於いて、前記等価直径算出手段は、ゆらぎ周波数をZとした場合、火炎の等価直径2Rを
2R=(Z/18.622)1/-0.554
により算出することを特徴とする火災検知システム。
2. The fire detection system according to claim 1, wherein the equivalent diameter calculation means sets the equivalent diameter 2R of the flame to 2R = (Z / 18.622) 1 / −0.554 when the fluctuation frequency is Z.
Fire detection system characterized by calculating by
請求項1記載の火災検知システムに於いて、前記距離算出手段は、火炎の等価直径を2R、火炎の見込み角をθとした場合、火炎距離Lを、
L=R/tan(θ/2)
により算出することを特徴とする火災検知システム。
The fire detection system according to claim 1, wherein the distance calculation means calculates the flame distance L when the equivalent diameter of the flame is 2R and the expected angle of the flame is θ.
L = R / tan (θ / 2)
Fire detection system characterized by calculating by
請求項1記載の火災検知システムに於いて、前記火炎画像判定手段は、前記撮像手段により撮像した画像から所定輝度以上の画素の集合となる火炎候補領域を検出し、前記火炎候補領域の水平画素数が所定の閾値以上の場合に火炎画像と判定することを特徴とする火災検知システム。
2. The fire detection system according to claim 1, wherein the flame image determination unit detects a flame candidate region which is a set of pixels having a predetermined luminance or higher from an image captured by the imaging unit, and a horizontal pixel of the flame candidate region. A fire detection system, wherein a flame image is determined when the number is equal to or greater than a predetermined threshold.
請求項1記載の火災検知システムに於いて、前記見込み角検出手段は、前記撮像手段の水平視野角と水平画素数で決まる1画素当りの見込み角αと、前記火炎画像から測定した火炎の水平画素数Xとの乗算により、火炎の見込み角θを検出することを特徴とする火災検知システム。
2. The fire detection system according to claim 1, wherein the prospective angle detecting means includes a prospective angle α per pixel determined by a horizontal viewing angle and the number of horizontal pixels of the imaging means, and a horizontal flame measured from the flame image. A fire detection system that detects an expected angle θ of a flame by multiplication with the number of pixels X.
請求項4記載の火災検知システムに於いて、前記周波数検出手段は、連続する前記火炎画像から、画像全体又は前記火炎候補領域における所定閾値以上となる輝度の画素数の時系列変化から火炎のゆらぎ周波数を検出することを特徴とする火災検知システム。
5. The fire detection system according to claim 4, wherein the frequency detection means detects a fluctuation of the flame from a continuous flame image based on a time-series change in the number of pixels having a luminance equal to or higher than a predetermined threshold in the entire image or the flame candidate region. A fire detection system characterized by detecting the frequency.
請求項4記載の火災検知システムに於いて、前記周波数検出手段は、連続する前記火炎画像から、画像全体又は前記火炎候補領域における所定閾値以上となる輝度総和の時系列変化から火炎のゆらぎ周波数を検出することを特徴とする火災検知システム。
5. The fire detection system according to claim 4, wherein the frequency detection means calculates a flame fluctuation frequency from a continuous flame image based on a time-series change in luminance sum that is equal to or greater than a predetermined threshold in the entire image or the flame candidate region. A fire detection system characterized by detection.
請求項1記載の火災検知システムに於いて、前記周波数検出手段は、監視領域に存在する火炎からの赤外線光又は可視光を受光して受光信号を出力する受光素子手段を備え、前記受光素子手段から出力された受光信号からゆらぎ周波数を検出することを特徴とする火災検知システム。
2. The fire detection system according to claim 1, wherein the frequency detection means includes light receiving element means for receiving infrared light or visible light from a flame existing in a monitoring area and outputting a light reception signal. A fire detection system that detects a fluctuation frequency from a light-receiving signal output from a light source.
監視領域を撮影する撮像手段
により撮像した画像から火炎が存在する火炎画像を判定する火炎画像判定ステップと、
前記火炎画像判定ステップで判定した火炎画像から火炎の見込み角を検出する見込み角検出ステップと、
監視領域に存在する火炎のゆらぎ周波数を検出する周波数検出ステップと、
前記周波数検出ステップで検出した火炎のゆらぎ周波数に基づき火炎の等価直径を算出する等価直径算出ステップと、
前記見込み角検出ステップで検出した火炎の見込み角と前記等価直径算出ステップで算出した火炎の等価直径に基づき、前記撮像手段から前記火炎までの火炎距離を算出する距離算出ステップと、
前記等価直径算出ステップで算出した火炎の等価直径が所定の閾値以上の場合に火災と判定すると共にそれ以外の場合に非火災と判定し、火災を判定した場合に前記距離算出ステップで算出した火炎距離及び又は前記等価直径算出ステップで算出した火炎の等価直径を示す情報と共に火災検知信号を出力する火災判定手段と、
を設けたことを特徴とする火災検知方法。
A flame image determination step for determining a flame image in which a flame is present from an image captured by an imaging unit that captures a monitoring region;
A prospective angle detection step of detecting a prospective angle of the flame from the flame image determined in the flame image determination step;
A frequency detection step for detecting the fluctuation frequency of the flame present in the monitoring area;
An equivalent diameter calculating step for calculating the equivalent diameter of the flame based on the fluctuation frequency of the flame detected in the frequency detecting step;
A distance calculating step for calculating a flame distance from the imaging means to the flame based on the estimated angle of the flame detected in the estimated angle detection step and the equivalent diameter of the flame calculated in the equivalent diameter calculating step;
The flame calculated in the distance calculating step when the equivalent diameter of the flame calculated in the equivalent diameter calculating step is determined to be a fire when the equivalent diameter of the flame is equal to or larger than a predetermined threshold and otherwise determined to be a non-fire. Fire determining means for outputting a fire detection signal together with information indicating the distance and / or the equivalent diameter of the flame calculated in the equivalent diameter calculating step;
The fire detection method characterized by providing.
請求項9記載の火災検知方法に於いて、前記等価直径算出ステップは、ゆらぎ周波数をZとした場合、火炎の等価直径2Rを
2R=(Z/18.622)1/-0.554
により算出することを特徴とする火災検知方法。
10. The fire detection method according to claim 9, wherein the equivalent diameter calculation step sets the equivalent diameter 2R of the flame to 2R = (Z / 18.622) 1 / −0.554 when the fluctuation frequency is Z.
The fire detection method characterized by calculating by the above.
請求項9記載の火災検知方法に於いて、前記距離算出ステップは、火炎の等価直径を2R、火炎の見込み角をθとした場合、火炎距離Lを、
L=R/tan(θ/2)
により算出することを特徴とする火災検知方法。
10. The fire detection method according to claim 9, wherein the distance calculating step sets the flame distance L when the equivalent diameter of the flame is 2R and the expected angle of the flame is θ.
L = R / tan (θ / 2)
The fire detection method characterized by calculating by the above.
請求項9記載の火災検知方法に於いて、前記火炎画像判定ステップは、前記撮像手段により撮像した画像から所定輝度以上の画素の集合となる火炎候補領域を検出し、前記火炎候補領域の火炎の水平画素数が所定の閾値以上の場合に火炎画像と判定することを特徴とする火災検知方法。
The fire detection method according to claim 9, wherein the flame image determination step detects a flame candidate region that is a set of pixels having a predetermined luminance or higher from an image captured by the imaging unit, and detects a flame of the flame candidate region. A fire detection method characterized by determining a flame image when the number of horizontal pixels is equal to or greater than a predetermined threshold.
請求項9記載の火災検知方法に於いて、前記見込み角検出ステップは、前記撮像手段の水平視野角と水平画素数で決まる1画素当りの見込み角αと、前記火炎画像から測定した火炎の水平画素数Xとの乗算により、火炎の見込み角θを検出することを特徴とする火災検知方法。
10. The fire detection method according to claim 9, wherein the expected angle detection step includes a predicted angle α per pixel determined by a horizontal viewing angle and a number of horizontal pixels of the imaging means, and a horizontal flame measured from the flame image. A fire detection method characterized by detecting an expected flame angle θ by multiplication with the number of pixels X.
請求項12記載の火災検知方法に於いて、前記周波数検出ステップは、連続する前記火炎画像から、画像全体又は前記火炎候補領域における所定閾値以上となる輝度の画素数の時系列変化から火炎のゆらぎ周波数を検出することを特徴とする火災検知方法。
13. The fire detection method according to claim 12, wherein the frequency detection step includes, from the continuous flame image, a flame fluctuation based on a time-series change in the number of pixels having a luminance equal to or higher than a predetermined threshold in the entire image or the flame candidate region. A fire detection method characterized by detecting a frequency.
請求項12記載の火災検知方法に於いて、前記周波数検出ステップは、連続する前記火炎画像から、画像全体又は前記火炎候補領域における所定閾値以上となる輝度総和の時系列変化から火炎のゆらぎ周波数を検出することを特徴とする火災検知方法。
13. The fire detection method according to claim 12, wherein the frequency detection step calculates a flame fluctuation frequency from a continuous flame image based on a time series change of a luminance sum that is equal to or greater than a predetermined threshold in the entire image or the flame candidate region. A fire detection method characterized by detecting.
請求項9記載の火災検知方法に於いて、前記周波数検出ステップは、監視領域に存在する火炎からの赤外線光又は可視光を受光して受光信号を出力する受光素子手段を備え、前記受光素子手段から出力された受光信号からゆらぎ周波数を検出することを特徴とする火災検知方法。   10. The fire detection method according to claim 9, wherein the frequency detection step includes light receiving element means for receiving infrared light or visible light from a flame existing in a monitoring area and outputting a light reception signal. A fire detection method, wherein a fluctuation frequency is detected from a light reception signal output from a light source.
JP2013257612A 2013-12-13 2013-12-13 Fire detection system and fire detection method Active JP6619543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013257612A JP6619543B2 (en) 2013-12-13 2013-12-13 Fire detection system and fire detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013257612A JP6619543B2 (en) 2013-12-13 2013-12-13 Fire detection system and fire detection method

Publications (2)

Publication Number Publication Date
JP2015114930A true JP2015114930A (en) 2015-06-22
JP6619543B2 JP6619543B2 (en) 2019-12-11

Family

ID=53528653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013257612A Active JP6619543B2 (en) 2013-12-13 2013-12-13 Fire detection system and fire detection method

Country Status (1)

Country Link
JP (1) JP6619543B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101784755B1 (en) * 2016-12-26 2017-10-16 한림대학교 산학협력단 Apparatus for learning painting, method thereof and computer recordable medium storing program to perform the method
CN109598193A (en) * 2018-10-25 2019-04-09 安徽新浩信息科技有限公司 A kind of flame image recognition methods based on artificial intelligence
CN110580449A (en) * 2019-08-09 2019-12-17 北京准视科技有限公司 Image type flame identification and detection method
JP2020088688A (en) * 2018-11-28 2020-06-04 アースアイズ株式会社 Monitoring device, monitoring system, monitoring method, and monitoring program
JP2020088840A (en) * 2019-04-11 2020-06-04 アースアイズ株式会社 Monitoring device, monitoring system, monitoring method, and monitoring program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04330597A (en) * 1991-01-18 1992-11-18 Hochiki Corp Fire annunciator
JPH08138169A (en) * 1994-11-10 1996-05-31 Nittan Co Ltd Device and method for detecting flame
JPH08219775A (en) * 1995-02-16 1996-08-30 Mitsubishi Heavy Ind Ltd Distance measuring device
JPH08263768A (en) * 1995-03-09 1996-10-11 Nittan Co Ltd Device and method for detecting flame
US6184792B1 (en) * 2000-04-19 2001-02-06 George Privalov Early fire detection method and apparatus
JP2006107359A (en) * 2004-10-08 2006-04-20 Electronic Navigation Research Institute Identifying and monitoring device for mobile body
JP2010249769A (en) * 2009-04-20 2010-11-04 Oki Denki Bosai Kk Flame monitoring device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04330597A (en) * 1991-01-18 1992-11-18 Hochiki Corp Fire annunciator
JPH08138169A (en) * 1994-11-10 1996-05-31 Nittan Co Ltd Device and method for detecting flame
JPH08219775A (en) * 1995-02-16 1996-08-30 Mitsubishi Heavy Ind Ltd Distance measuring device
JPH08263768A (en) * 1995-03-09 1996-10-11 Nittan Co Ltd Device and method for detecting flame
US6184792B1 (en) * 2000-04-19 2001-02-06 George Privalov Early fire detection method and apparatus
JP2006107359A (en) * 2004-10-08 2006-04-20 Electronic Navigation Research Institute Identifying and monitoring device for mobile body
JP2010249769A (en) * 2009-04-20 2010-11-04 Oki Denki Bosai Kk Flame monitoring device
EP2423896A1 (en) * 2009-04-20 2012-02-29 Oki Denki Bohsai Co., Ltd. Flame monitoring device and flame monitoring method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101784755B1 (en) * 2016-12-26 2017-10-16 한림대학교 산학협력단 Apparatus for learning painting, method thereof and computer recordable medium storing program to perform the method
CN109598193A (en) * 2018-10-25 2019-04-09 安徽新浩信息科技有限公司 A kind of flame image recognition methods based on artificial intelligence
JP2020088688A (en) * 2018-11-28 2020-06-04 アースアイズ株式会社 Monitoring device, monitoring system, monitoring method, and monitoring program
WO2020111053A1 (en) * 2018-11-28 2020-06-04 アースアイズ株式会社 Monitoring device, monitoring system, monitoring method, and monitoring program
JP2020088840A (en) * 2019-04-11 2020-06-04 アースアイズ株式会社 Monitoring device, monitoring system, monitoring method, and monitoring program
CN110580449A (en) * 2019-08-09 2019-12-17 北京准视科技有限公司 Image type flame identification and detection method
CN110580449B (en) * 2019-08-09 2023-05-02 北京准视科技有限公司 Image type flame identification and detection method

Also Published As

Publication number Publication date
JP6619543B2 (en) 2019-12-11

Similar Documents

Publication Publication Date Title
JP6619543B2 (en) Fire detection system and fire detection method
KR101339405B1 (en) Method for sensing a fire and transferring a fire information
US20090045937A1 (en) Hazard and Threat Assessment System
US11877094B2 (en) Monitoring system, monitoring method, and monitoring program
KR101485022B1 (en) Object tracking system for behavioral pattern analysis and method thereof
JP2014241062A (en) Processor and monitoring system
JP2011166243A (en) Monitoring system
KR102357736B1 (en) Fire detection system
EP1689344A2 (en) Fire location detection and estimation of fire spread through image processing based analysis of detector activation
JP2017134790A (en) Disaster prevention system
KR101543095B1 (en) Overheating monitoring method using low pixel thermal image sensor and monitoring system for thereof
JP6317116B2 (en) Fire detection system and fire detection method
KR20110129117A (en) Fire detecting system and method using image recognition and motion sensor
KR20230089493A (en) Multi-camera fire detector
TW202246152A (en) Method and system for detecting a temperature of conveyor system
JP6345931B2 (en) Fire detection system and fire detection method
KR20220089446A (en) Fire detecting system and ship having the same
JP5309069B2 (en) Smoke detector
JP2019519033A (en) Detection apparatus, method for detecting an event, and computer program
US20140321235A1 (en) Acoustic sonar imaging and detection system for firefighting applications
KR102033498B1 (en) Fire extinguishing system, method, program and computer readable medium for controlling of the same
CN111354149A (en) Fire alarm method, fire alarm device and storage medium based on Internet of things
JP6912623B2 (en) Disaster prevention system
KR102585768B1 (en) Fire prevention system and method using thermal imaging camera
KR20230094466A (en) System and method for monitoring operator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180824

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180831

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20181026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191115

R150 Certificate of patent or registration of utility model

Ref document number: 6619543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150