JP2015113701A - Method for mining methane hydrate - Google Patents

Method for mining methane hydrate Download PDF

Info

Publication number
JP2015113701A
JP2015113701A JP2013273956A JP2013273956A JP2015113701A JP 2015113701 A JP2015113701 A JP 2015113701A JP 2013273956 A JP2013273956 A JP 2013273956A JP 2013273956 A JP2013273956 A JP 2013273956A JP 2015113701 A JP2015113701 A JP 2015113701A
Authority
JP
Japan
Prior art keywords
methane
gas
methane hydrate
hydrate
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013273956A
Other languages
Japanese (ja)
Inventor
篠原 克彦
Katsuhiko Shinohara
克彦 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013273956A priority Critical patent/JP2015113701A/en
Publication of JP2015113701A publication Critical patent/JP2015113701A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an efficient method for mining methane hydrate existing on an abyssal floor or a lake bottom, which minimizes energy to be injected.SOLUTION: All or some of shock waves, heat rays, hot water and high-temperature exhaust gas, which are generated by explosive combustion of mixed gas of ultra-high pressure compressed air and ultra-high pressure compressed methane gas on an abyssal floor or a deep lake bottom, are supplied to a methane hydrate layer so that the methane gas can be separated and recovered.

Description

本発明は、深海又は深湖水に存在するメタンハイドレートを採掘する方法に関する。  The present invention relates to a method for mining methane hydrate present in deep sea or deep lake water.

従来深海又は深湖水に存在するメタンハイドレートの採掘方法がいろいろ研究又試堀されていて、土木的手法、加熱法、減圧法、化学的手法が提案されている。  Various methods of mining methane hydrate existing in the deep sea or deep lake water have been studied and studied, and civil engineering methods, heating methods, decompression methods, and chemical methods have been proposed.

そこで、外部から注入するエネルギーよりも大きなエネルギを採掘したメタンハイドレーから得かつ廃気ガスを大気圏にできるだけ放出しないメタンハイドレート採掘方法が求められていた。  Accordingly, there has been a demand for a methane hydrate mining method that can be obtained from methane hydrate that has mined more energy than that injected from the outside and that does not release waste gas to the atmosphere as much as possible.

特許公開平10−317869Patent Publication No. 10-317869 特許公開2013−120257Patent Publication 2013-120257 ウイキペデイア メタンハイドレート項Wikipedia, methane hydrate term

従来からエネルギー資源としてメタンハイドレートを利用するため研究・試掘が行なわれていたが、メタンハイドレートが深海に存在し又一般的には広く薄く存在するため、採掘に用するエネルギーとコストが得られるメタンガスから得られるエネルギーと利益より大きく実用化されていなかった。  Traditionally, research and trial drilling has been carried out to use methane hydrate as an energy resource, but methane hydrate exists in the deep sea and generally exists widely and thinly, so energy and cost for mining can be obtained. It has not been put to practical use more than the energy and benefits obtained from methane gas.

本発明は、このような従来の問題を解決し、なおかつ安価で自然破壊が少ない採掘方法を提供するものである。  The present invention provides a mining method that solves such conventional problems and that is inexpensive and less susceptible to natural destruction.

そして本発方法は上記目的を達成するために、深海底又は深湖水底近くの水中で、超高圧圧縮空気と採掘された超高圧圧縮メタンガスを混合し、爆発燃焼させ、得られる衝撃波、熱線、温水と高温の排ガスを利用している。  And in order to achieve the above-mentioned purpose, the present method mixes ultra-high pressure compressed air and mined ultra-high pressure compressed methane gas in the water near the deep sea floor or deep lake bottom, and blasts and burns the resulting shock waves, heat rays, Hot water and hot exhaust gas are used.

本発明メタンハイドレート採掘方法は、上記の様な形態をとっているので、深海、深湖底で大きさが調節できる衝撃波が水中で発生し、熱線、温水、高温排気ガスと一緒になってロスが少なくメタンハイドレート層に照射でき、それぞれ単独よりも相乗効果で効率よくメタンガスを発生さしている。  Since the methane hydrate mining method of the present invention takes the form as described above, a shock wave whose size can be adjusted in the deep sea or deep lake bottom is generated in the water, and is lost along with hot rays, hot water, and hot exhaust gas. It can irradiate the methane hydrate layer with less and more efficiently generate methane gas by synergistic effect than each.

又特許文献2の発電用内燃機関を深海底で使用することで、発電効率がよく又排ガス問題もなく発電さす事ができ、その電力を現場で利用でき、高温排ガスも砂層型メタンハイドレート層にピストンの重みで、ゆっくりと供給できている。  Further, by using the power generation internal combustion engine of Patent Document 2 on the deep sea floor, it is possible to generate power with good power generation efficiency and no problem of exhaust gas, and the power can be used in the field, and high temperature exhaust gas is also sand layer type methane hydrate layer. It is possible to supply slowly with the weight of the piston.

砂層型メタンハイドレート層に温たかい気体の排気ガスを供給するので、液体と異なり冷めがたくかつ、砂層メタンハイドレート層に滲透しやすく、メタンガスも気体の排気ガスに混ざりやすく、効率よくメタンガスを回収できている。  Since the warm gas exhaust gas is supplied to the sand layer methane hydrate layer, unlike the liquid, it is difficult to cool and easily penetrates into the sand layer methane hydrate layer, and the methane gas easily mixes with the gas exhaust gas. It has been recovered.

水底の浅い層にあるメタンハイドレート採掘説明ブロック図  Methane hydrate mining explanation block diagram in shallow layer of water bottom 水底の深い層にある砂層型メタンハイドレート採掘説明ブロック図  Block diagram explaining sand layer type methane hydrate mining in the deep bottom

以下本発明メタンハイドレート採掘方法の実施例を図に基づいて説明する。  Embodiments of the methane hydrate mining method of the present invention will be described below with reference to the drawings.

日本海に存在するメタンハイドレート層は、海底から比較的浅い層に塊状にメタンハイドレート層が露出している事が多いので、  The methane hydrate layer that exists in the Sea of Japan has many methane hydrate layers exposed in bulk from the seabed to a relatively shallow layer.

図1に示す様に、海底から浅い所にあるメタンハイドレート塊1に先端が尖った側孔2を有するパイプ3を突き刺す。  As shown in FIG. 1, a pipe 3 having a side hole 2 with a sharp tip is pierced into a methane hydrate lump 1 located shallow from the seabed.

パイプ3の上端には、筒状の爆発燃焼室4を有し、側孔5に弁6がついている。  A pipe-shaped explosion combustion chamber 4 is provided at the upper end of the pipe 3, and a valve 6 is attached to the side hole 5.

又筒状の爆発燃焼室4の上部には、空気管7、メタン注入管8、排気管9をつけ、排気管9は下降して側孔5の近くで、熱交換器10に継がっている。  In addition, an air pipe 7, a methane injection pipe 8, and an exhaust pipe 9 are attached to the upper part of the cylindrical explosion combustion chamber 4. The exhaust pipe 9 descends and is connected to the heat exchanger 10 near the side hole 5. Yes.

そして最上部は漏斗11が全体を覆っている。  And the uppermost part has the funnel 11 covering the whole.

爆発燃焼室4の側孔5の弁6を開いて筒状の爆発燃焼室4に海水を注入し空気管7メタン注入管8より空気とメタンガスの超高圧混合ガスを、筒状の爆発燃焼室4の上部に送り込む。  Opening the valve 6 of the side hole 5 of the explosion combustion chamber 4 to inject seawater into the cylindrical explosion combustion chamber 4, air pipe 7, super-high pressure mixed gas of air and methane gas from the methane injection pipe 8, cylindrical explosion combustion chamber 4 is sent to the top.

次に上記混合ガスを点火し、筒状の爆発燃焼室4下部に溜まっている海水をメタンハイドレート塊1に注入する。この操作を繰り返すことで、注入される海水は温水となる  Next, the mixed gas is ignited, and seawater accumulated in the lower portion of the cylindrical explosion combustion chamber 4 is injected into the methane hydrate lump 1. By repeating this operation, the injected seawater becomes warm water.

この時、衝撃波、熱線も供にメタンハイドレート塊1に照射される。従って、衝撃波でメタンハイドレート塊1を砕き、粗密波の波の粗の時にメタンハイドレート塊1はメタンガスとなり共に供給される熱で再びメタンハイドレートになるのを防いでいる。  At this time, the methane hydrate lump 1 is irradiated with shock waves and heat rays. Therefore, the methane hydrate lump 1 is crushed by the shock wave, and the methane hydrate lump 1 becomes methane gas at the time of rough wave of the dense wave and prevents it from becoming methane hydrate again by the heat supplied together.

高温の排気ガスは、筒状の爆発燃焼室4の側孔5近くにある熱交換器10に送られ付近の海水を温め、効率よくメタンハイドレート塊1に温まった海水が注入されている。  The hot exhaust gas is sent to the heat exchanger 10 near the side hole 5 of the cylindrical explosion combustion chamber 4 to warm the nearby seawater, and the warmed seawater is efficiently injected into the methane hydrate lump 1.

この一連の操作によって、メタンハイドレート塊1より発生したメタンガスは、パイプ3の周囲から上昇し、漏斗11の天井部分に溜ってくる。  By this series of operations, methane gas generated from the methane hydrate lump 1 rises from the periphery of the pipe 3 and accumulates on the ceiling portion of the funnel 11.

このたまったメタンガスを排気管12で、海上に導びき出して回収している。  The accumulated methane gas is led to the sea by the exhaust pipe 12 and collected.

メタンハイドレート塊1を掘削した空洞には、周囲の海底の泥を注入し、パイプ3を抜去した孔には、特許文献1に開示されているセメントを注入し蓋をしている。
この時、空洞内にも海底の泥とセメントを混合して注入すれば、より強固となり海底の崩壊を防ぐ効果がある。
In the cavity where the methane hydrate lump 1 has been excavated, mud on the surrounding seabed is injected, and in the hole from which the pipe 3 has been removed, the cement disclosed in Patent Document 1 is injected and covered.
At this time, if the mud and cement in the seabed are mixed and injected into the cavity, it becomes stronger and has the effect of preventing the collapse of the seabed.

そして役目を終えた排気ガスは、排気管9から海水に放出される。従ってCO、窒素酸化物は海水に溶解して、大気中に排出されない。The exhaust gas that has finished its role is discharged from the exhaust pipe 9 into seawater. Therefore, CO 2 and nitrogen oxides dissolve in seawater and are not discharged into the atmosphere.

この衝撃波は、メタンハイドレート塊1の遠い所まで伝達されるが、その強弱は調節でき、有効伝達範はコントロール可能で、メタンガスのブローアウトの可能性はない。  This shock wave is transmitted to a distant place of the methane hydrate lump 1, but its strength can be adjusted, the effective transmission range can be controlled, and there is no possibility of blowout of methane gas.

非特許文献1に開示している大平洋の深海底の地下深くにある砂層型と呼ばれる砂と交じり合っているメタンハイドレートからメタンを採掘するには  To mine methane from methane hydrate mixed with sand called sand layer type deep in the deep ocean floor of the Pacific Ocean disclosed in Non-Patent Document 1

図2に示す様に、砂層型メタンハイドレート層13に向かって、海底から立杭14を掘削し、  As shown in FIG. 2, the pile 14 is excavated from the seabed toward the sand layer type methane hydrate layer 13,

先端に側孔15を有する排ガス管16を立杭14内に挿入する。そして排気ガス管16の海底側には特許文献2に開示されている発電用内燃機関17と衝撃波発生器18が接続されている。  An exhaust gas pipe 16 having a side hole 15 at the tip is inserted into the standing pile 14. A power generation internal combustion engine 17 and a shock wave generator 18 disclosed in Patent Document 2 are connected to the seabed side of the exhaust gas pipe 16.

この発電用内燃機関17は海中で作動する様にピストンとシリンダーの間の間隙は上下で少し広くとっていて、その間隙には海水をろ過して接続的に注入している。  The internal combustion engine 17 for electric power generation has a gap between the piston and the cylinder that is slightly wide at the top and bottom so that it operates in the sea, and the seawater is filtered and injected into the gap.

超高圧圧縮空気と超高圧メタンガスの混合ガスの爆発燃焼時にピストンが持ち上げられ、この時発電し、次にピストンが落下する圧力で、高温の排気ガスが排気ガス管16に導びかれて砂層型メタンハイドレート層13に注入される。  At the time of explosion combustion of the mixed gas of ultra high pressure compressed air and ultra high pressure methane gas, the piston is lifted, and at this time, power is generated, and then the high temperature exhaust gas is guided to the exhaust gas pipe 16 by the pressure at which the piston falls and the sand layer type It is injected into the methane hydrate layer 13.

この時、この排ガスにできるだけ酸素を含ませないように、十分量のメタンガスを空気に混合されている。  At this time, a sufficient amount of methane gas is mixed with air so that the exhaust gas contains as little oxygen as possible.

衝撃波発生装置18も超高圧圧縮空気と超高圧圧縮メタンガスの混合ガスを爆発燃焼さして得られ、発生した衝撃波を排ガス管16に導いている。  The shock wave generator 18 is also obtained by explosive combustion of a mixed gas of ultra high pressure compressed air and ultra high pressure compressed methane gas, and guides the generated shock wave to the exhaust gas pipe 16.

砂層型メタンハイドレート層13に供給された温かい排ガスと照射された衝撃波によりメタンハイドレートからメタンガスが分離され、そのメタンガスが排ガス管16の周囲より上昇して、その上部にある漏斗19の天井に溜められる。  The methane gas is separated from the methane hydrate by the warm exhaust gas supplied to the sand layer type methane hydrate layer 13 and the irradiated shock wave, and the methane gas rises from the periphery of the exhaust gas pipe 16, and reaches the ceiling of the funnel 19 at the top. Can be stored.

漏斗19の上部に溜められた排気ガスとメタンガスの混合ガスは、外部に導びかれ、海水と深海底で混合する事でメタンガスと炭酸ガスがそれぞれハイドレートとなり、メタンハイドレーの方が高い温度でメタンに分解され分離して取り出し、残りの炭酸ガスハイドレートは、採掘終了後排ガス管16内に送り圧力をかけて砂層型メタンハイドレート層13に注入する。発生したメタンガスは再度メタンハイドレートにして海上に送る事もできる。砂層型メタンハイドレート層に送られた排気ガス中には炭酸ガスが多量に含まれ、メタンガスとして採掘されたあとに炭酸ガスハイドートとして残る  The mixed gas of exhaust gas and methane gas stored in the upper part of the funnel 19 is guided to the outside, and mixed at the bottom of the sea with the seawater, so that the methane gas and the carbon dioxide gas become hydrate, respectively, and the methane hydrate has a higher temperature Then, the remaining carbon dioxide hydrate is separated into methane and taken out, and the remaining carbon dioxide hydrate is fed into the exhaust gas pipe 16 and injected into the sand layer methane hydrate layer 13 after completion of mining. The generated methane gas can be sent to the sea again as methane hydrate. The exhaust gas sent to the sand-type methane hydrate layer contains a large amount of carbon dioxide, which remains as carbon dioxide hydrate after being mined as methane gas.

現場で必要な電力は、発電用内燃機関17で発生した電力を当てている。そして現場で必要なメタンガスは採取したメタンガスを使用している。この様にすることで、電気の送伝ロスやメタンガスを超高圧に圧縮して送るエネルギーロスをなくしている。  The electric power required at the site is the electric power generated by the power generation internal combustion engine 17. The methane gas that is collected on site is used. By doing so, the loss of electricity transmission and the energy loss of sending methane gas compressed to ultra high pressure are eliminated.

衝撃波発生装置18を別に設けている事により衝撃波強度の微調節ができている。  By providing the shock wave generator 18 separately, the shock wave intensity can be finely adjusted.

排気ガスは主に窒素と炭酸ガスから出来ている気体であるので、液体に比較して熱伝導率が小さいので、冷めにくく又メタンとすばやくよく混合し、メタンガスが再びメタンハイドレートになるのを防いでいる。  Since the exhaust gas is mainly a gas made of nitrogen and carbon dioxide, it has a lower thermal conductivity than liquid, so it is difficult to cool and mix quickly with methane, so that methane gas becomes methane hydrate again. It is preventing.

そして排気ガスは砂層型メタンハイドレート層13に良く浸透する。陽圧をかけているので排ガス管16が砂で詰る事はない。  The exhaust gas penetrates well into the sand layer type methane hydrate layer 13. Since the positive pressure is applied, the exhaust pipe 16 is not clogged with sand.

メタンハイドレート掘削が終わったなら、排ガス16内に特許文献1にて開示されている海底の泥とセメントを混ぜて発電用内燃機関17から発生した高温高圧排気ガスで押し込んでいる。  When the methane hydrate excavation is finished, the seabed mud and cement disclosed in Patent Document 1 are mixed into the exhaust gas 16 and pushed in with the high-temperature and high-pressure exhaust gas generated from the power generation internal combustion engine 17.

海底の大規模崩壊を防ぐため、事前の海底の地型とメタンハイドレート層を調査して、メタンハイドレートの掘削位置の順番を決定する。  In order to prevent large-scale collapse of the seabed, the geological pattern of the seabed and the methane hydrate layer will be investigated in advance to determine the order of methane hydrate excavation positions.

排ガス管16を砂層型メタンハイドレート層13に添って伸ばす実施例がある。There is an embodiment in which the exhaust gas pipe 16 is extended along the sand layer type methane hydrate layer 13.

空気を海底又は湖底に送るためには圧縮に大きなエネルギーを消費するので、下方が開いた気体を入れる入れ物に空気を入れて自身の重さで海底又は湖底まで沈める。そして中の空気を使用してしまった後に採取したメタンガスを詰めて海上又は湖上に浮上させる。この作業を操り返す事で空気とメタンガス輸送に用するエネルギーを小さくできる。  In order to send air to the sea bottom or the lake bottom, a large amount of energy is consumed for compression. Therefore, air is put into a container containing a gas that opens downward, and is submerged to the sea bottom or lake bottom under its own weight. Then, the methane gas collected after using the air inside is packed and floated on the sea or lake. By repeating this work, the energy used for transporting air and methane gas can be reduced.

気体は海底や湖底では高圧がかかり圧縮され浮力が非常に減少するので、ロープ又は鎖を下方が開いている気体を入れる入れ物につなぎ、そのロープ又は鎖の下におもりをつけることで、浮き沈みに外から加える力がいらないので、より空気とメタンガスの輸送に必要なエネルギーを節約できている。  The gas is compressed at the bottom of the sea or lake and is compressed and the buoyancy is greatly reduced, so the rope or chain is connected to a container containing the open gas, and a weight is placed under the rope or chain, so Since no external force is required, the energy required for transporting air and methane gas can be saved.

本発明は、海底、湖底にあるメタンハイドレート掘削に利用できる。  The present invention can be used for methane hydrate excavation on the seabed and lake bottom.

1 メタンハイドレート塊
2,5,15 側孔
3 パイプ
4 筒状の爆発燃焼室
6 弁
7 空気管
8 メタン注入管
9,12 排気管
10 熱交換器
11,19 漏斗
13 砂層型メタンハイドレート層
14 立杭
16 排ガス管
17 発電用内燃機関
18 衝撃波発生器
DESCRIPTION OF SYMBOLS 1 Methane hydrate lump 2,5,15 Side hole 3 Pipe 4 Cylindrical explosion combustion chamber 6 Valve 7 Air pipe 8 Methane injection pipe 9,12 Exhaust pipe 10 Heat exchanger 11, 19 Funnel 13 Sand layer type methane hydrate layer 14 Standing pile 16 Exhaust gas pipe 17 Internal combustion engine for power generation 18 Shock wave generator

Claims (6)

水中で燃料を爆発燃焼さして得た衝撃波、熱線、温水、排気ガスの全部又は一部を、メタンハイドレート含有層に照射してメタンガスを分離採取するメタンハイドレート採掘方法。  A methane hydrate mining method that separates and collects methane gas by irradiating the methane hydrate-containing layer with all or part of shock waves, heat rays, hot water, and exhaust gas obtained by exploding fuel in water. 筒状の内部に圧縮空気と圧縮メタンガスを送り爆発燃焼さすことにより、衝撃波、熱線、温水又高温高圧の排ガスを発生させる請求項1記載のメタンハイドレート採掘方法。  The methane hydrate mining method according to claim 1, wherein compressed air and compressed methane gas are sent into a cylindrical shape and explosive combustion is performed to generate shock waves, heat rays, hot water, or high-temperature and high-pressure exhaust gas. 水中で作動する内燃機関から得られる排気ガスをメタンハイドレート含有層に供給する請求項1記載のメタンハイドレート採掘方法。  The methane hydrate mining method according to claim 1, wherein exhaust gas obtained from an internal combustion engine operating in water is supplied to the methane hydrate-containing layer. メタンハイドレート含有層に供給した炭酸ガスと発生したメタンガスを、それぞれ炭酸ガスハイドレートとメタンハイドレートに変化さして、それぞれの分解温度の差異でもってメタンガスを分離する請求項1記載のメタンハイドレート採掘方法。  The methane hydrate mining according to claim 1, wherein the carbon dioxide gas supplied to the methane hydrate-containing layer and the generated methane gas are changed into a carbon dioxide hydrate and a methane hydrate, respectively, and the methane gas is separated according to a difference in decomposition temperature thereof. Method. 下方が開いている気体を入れる入れ物に空気を入れて海底又は湖底又その近くに沈め、その中の空気を使用してしまった後にメタンガスを詰めて海上又は湖上に浮上させる請求項1記載のメタンハイドレート採掘方法。  The methane according to claim 1, wherein air is put into a container containing a gas that is open at the bottom and submerged at or near the bottom of the sea or at the bottom of the lake, and after the air has been used, the methane gas is filled and floated on the sea or on the lake. Hydrate mining method. 下方が開いている気体を入れる入れ物にロープ又は鎖をつなぎ、その下におもりをつける請求項5記載のメタンハイドレート採掘方法。  6. The method of mining methane hydrate according to claim 5, wherein a rope or chain is connected to a container for containing a gas that is open downward, and a weight is attached below the rope or chain.
JP2013273956A 2013-12-09 2013-12-09 Method for mining methane hydrate Pending JP2015113701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013273956A JP2015113701A (en) 2013-12-09 2013-12-09 Method for mining methane hydrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013273956A JP2015113701A (en) 2013-12-09 2013-12-09 Method for mining methane hydrate

Publications (1)

Publication Number Publication Date
JP2015113701A true JP2015113701A (en) 2015-06-22

Family

ID=53527763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013273956A Pending JP2015113701A (en) 2013-12-09 2013-12-09 Method for mining methane hydrate

Country Status (1)

Country Link
JP (1) JP2015113701A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019148155A (en) * 2018-02-28 2019-09-05 清水建設株式会社 Resource mining method and resource mining system
CN110410060A (en) * 2019-06-19 2019-11-05 中国矿业大学 A kind of effective radius of influence rapid assay methods of drilling
CN113445966A (en) * 2021-08-02 2021-09-28 西南石油大学 Ocean natural gas hydrate exploitation analogue means
CN116378605A (en) * 2023-06-02 2023-07-04 北京永瑞达科技有限公司 Ocean hydrate movable mining device and mining method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019148155A (en) * 2018-02-28 2019-09-05 清水建設株式会社 Resource mining method and resource mining system
CN110410060A (en) * 2019-06-19 2019-11-05 中国矿业大学 A kind of effective radius of influence rapid assay methods of drilling
CN110410060B (en) * 2019-06-19 2020-07-31 中国矿业大学 Method for rapidly measuring effective influence radius of drill hole
CN113445966A (en) * 2021-08-02 2021-09-28 西南石油大学 Ocean natural gas hydrate exploitation analogue means
CN116378605A (en) * 2023-06-02 2023-07-04 北京永瑞达科技有限公司 Ocean hydrate movable mining device and mining method
CN116378605B (en) * 2023-06-02 2023-08-15 北京永瑞达科技有限公司 Ocean hydrate movable mining device and mining method

Similar Documents

Publication Publication Date Title
CN109025937B (en) Hydraulic slotting and multistage combustion shock wave combined fracturing coal body gas extraction method
CN105625998B (en) A kind of reverse recovery method of sea bed gas hydrate stabilized zone and its winning apparatus
WO2019242190A1 (en) Multi-stage combustion shock wave-induced cracked coal body and heat injection alternating reinforced gas extraction method
CN105587303B (en) The lasting exploit method and quarrying apparatus of the non-diagenesis gas hydrates of sea-bottom shallow
CN106437669B (en) A kind of thermal cracking seam method and system for deep hot dry rock formation production
JP2015113701A (en) Method for mining methane hydrate
CN104314606B (en) Hydraulic slotted liner technique and the combined reinforced pumping method of gas explosion fracturing coal body in a kind of boring
CN112878978B (en) Supercritical water fracturing synergistic hydrogen production method for underground coal gasification
JP2010502860A (en) Method for storing separated greenhouse gases in deep underground storage tanks
CN103216219A (en) Method for extracting natural gas hydrate through CO2/N2 underground replacement
CN106522914B (en) Underground gasification furnace parking and burned out area restoration processing method for coal underground gasifying technology
CN109252832A (en) A kind of the hydrate recovery method and quarrying apparatus stable based on reservoir
CN106437653A (en) Method for jointly exploiting hydrates and hermetically storing carbon dioxide by aid of quicklime and carbon dioxide injection processes
CN112228075A (en) Device and method for exploiting marine weakly consolidated non-diagenetic natural gas hydrate
CN114293963A (en) Closed-loop system for increasing permeability of underground gas extraction utilization and reinjection coal seam and working method
EP2660555A3 (en) A method of detaching a monolith from rock massif and a device for application of the method
CN111608618A (en) Low-carbon ocean hydrate exploitation and power generation utilization system
RU2382879C1 (en) Underground gasification method
RU2383728C1 (en) Method for underground gasification
RU2385411C1 (en) Underground gas generator
CN109488273A (en) A kind of device of carbon dioxide and water fluid-mixing pressure break limestone roof
RU2385412C1 (en) Underground gasification method
CN108194055B (en) method for exploiting combustible ice
CN104533367A (en) Natural gas hydrate fire flooding mining method
Sajjad et al. Review on the existing and developing underground coal gasification techniques in abandoned coal seam gas blocks: Australia and global context