JP2015111018A - Metal mold for hexagonal brick, hexagonal brick molding method, and hexagonal brick designing method - Google Patents

Metal mold for hexagonal brick, hexagonal brick molding method, and hexagonal brick designing method Download PDF

Info

Publication number
JP2015111018A
JP2015111018A JP2013253320A JP2013253320A JP2015111018A JP 2015111018 A JP2015111018 A JP 2015111018A JP 2013253320 A JP2013253320 A JP 2013253320A JP 2013253320 A JP2013253320 A JP 2013253320A JP 2015111018 A JP2015111018 A JP 2015111018A
Authority
JP
Japan
Prior art keywords
furnace
hexagonal
face
inner end
outer end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013253320A
Other languages
Japanese (ja)
Other versions
JP6340780B2 (en
Inventor
宏治 景山
Koji Kageyama
宏治 景山
内田 貴之
Takayuki Uchida
貴之 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2013253320A priority Critical patent/JP6340780B2/en
Publication of JP2015111018A publication Critical patent/JP2015111018A/en
Application granted granted Critical
Publication of JP6340780B2 publication Critical patent/JP6340780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hexagonal brick metal mold, a hexagonal brick molding method, and a hexagonal brick designing method capable of molding a plurality of types of hexagonal bricks appropriate for shapes of kilns while suppressing the number of dedicated parts to the minimum.SOLUTION: Provided is a hexagonal brick metal mold for molding a hexagonal brick having a hexagonal truncated pyramid shape and including upper and lower surfaces of an isosceles trapezoid shape arranged in parallel to each other; a pair of upward inclined surfaces connected to both sides of the upper surface and a pair of downward inclined surfaces connected to both sides of the lower surface; and a kiln inner end surface and a kiln outer end surface of a hexagonal shape each connected to the upper surface, the lower surface, the paired upward inclined surfaces, and the downward inclined surfaces. The hexagonal brick metal mold includes: a first flat member 21 and a second flat member 22 arranged in parallel to each other for molding the upper surface and the lower surface, respectively; a first side surface member 23 and a second side surface member 24 including V-grooves 230 and 240, respectively for molding the upward inclined surfaces and the downward inclined surfaces; and a kiln inner end surface member 26 and a kiln outer end surface member 25 for molding the kiln inner end surface and the kiln outer end surface of the hexagonal shape, respectively.

Description

本発明は六角レンガ用金型、六角レンガ成型方法および六角レンガ設計方法に関し、窯炉や取鍋などの耐火物ライニングとして利用される六角レンガに関する。   The present invention relates to a hexagonal brick mold, a hexagonal brick molding method, and a hexagonal brick design method, and relates to a hexagonal brick used as a refractory lining for a kiln or a ladle.

製鉄所においては、高炉をはじめ転炉など様々な窯炉が用いられる。また、各窯炉間で溶銑を搬送するために、取鍋その他の搬送用耐熱容器が用いられる。これらの窯炉あるいは取鍋などにおいては、外殻をなす鉄皮を内部の溶銑の高熱から保護するために、鉄皮の内側に耐火物ライニングを形成している。
このような耐火物ライニングとして、耐火レンガが用いられている。
In steelworks, various kilns such as blast furnaces and converters are used. Moreover, in order to convey hot metal between each kiln, the ladle and other heat-resistant containers for conveyance are used. In these kilns and ladles, a refractory lining is formed inside the iron shell to protect the iron shell forming the outer shell from the high heat of the hot metal inside.
As such a refractory lining, a refractory brick is used.

従来の耐火レンガは、炉内面側および炉外面側の端面形状が矩形である四角錐台形状のものが一般的であった。
このような四角錐台形状の耐火レンガを積む場合、同じ階層の耐火レンガを密接配置し、上面を平坦にしたうえで、その上に次の階層の耐火レンガを配列していた。このような四角錐台形状の耐火レンガを用いた耐火物ライニングは、炉内面側および炉外側面が矩形を交互に重ねたいわゆるレンガ目地となるように形成される。
Conventional refractory bricks generally have a quadrangular frustum shape whose end surfaces on the furnace inner surface side and the furnace outer surface side are rectangular.
When stacking such square pyramid-shaped refractory bricks, the refractory bricks of the same level are closely arranged, the upper surface is flattened, and the refractory bricks of the next level are arranged thereon. The refractory lining using such a pyramid-shaped refractory brick is formed so as to form a so-called brick joint in which the furnace inner surface side and the furnace outer surface are alternately stacked with rectangles.

これに対し、本願の出願人により、炉内面側および炉外面側の端面形状が六角形をなす六角錐台形状の耐火レンガが提案されている(特許文献1参照)。
前述した特許文献1において、六角レンガは、炉内側面および炉外側面がそれぞれ六角形とされ、炉内側から炉外側まで高さ(厚み)が一定であり、六角レンガの上面および下面は幅(炉の周方向の長さ)が炉内側から炉外側に向かって拡がるテーパ状(細長い等脚台形状)に形成されている。
六角レンガの両側面には、それぞれ上面に沿った上向き斜面と下面に沿った下向き斜面とが形成され、各々が接続される稜線が六角レンガの平面形状における最大輪郭となっている。これらの上向き斜面および下向き斜面は、それぞれ炉内側から炉外側まで同じ幅で連続した細長い短冊状に形成され、4つの斜面は互いに同寸法とされている。
On the other hand, the applicant of the present application has proposed a refractory brick having a hexagonal frustum shape in which end face shapes on the furnace inner surface side and the furnace outer surface side are hexagonal shapes (see Patent Document 1).
In Patent Document 1 described above, the hexagonal brick has a hexagonal shape on the inner side and outer side of the furnace, and the height (thickness) is constant from the inner side of the furnace to the outer side of the furnace. The length in the circumferential direction of the furnace) is formed in a tapered shape (elongated isosceles trapezoidal shape) that extends from the inside of the furnace toward the outside of the furnace.
On both sides of the hexagonal brick, an upward slope along the upper surface and a downward slope along the lower surface are formed, and the ridgeline to which each is connected is the maximum contour in the planar shape of the hexagonal brick. The upward slope and the downward slope are each formed in a long and narrow strip shape having the same width from the inside of the furnace to the outside of the furnace, and the four slopes have the same dimensions.

このような六角レンガを積む場合、下の階層の上向きの斜面に上の階層の下向き斜面が密接するように、いわば上下の階層が入れ子状に配列される。その結果、六角レンガで形成される耐火物ライニングの炉内面側および炉外面側には、六角レンガの端面形状によるいわゆるハニカム形状が現れる。
このような六角レンガで耐火物ライニングを形成することで、六角レンガの下の階層と上の階層とが各々の斜面どうしで噛み合うことになり、相互の連結性が向上できるとともに、築造時の作業性の向上も図ることができる。
When stacking such hexagonal bricks, the upper and lower layers are arranged in a nested manner so that the downward slope of the upper layer is in close contact with the upward slope of the lower layer. As a result, a so-called honeycomb shape due to the end face shape of the hexagonal brick appears on the furnace inner surface side and the furnace outer surface side of the refractory lining formed of hexagonal brick.
By forming a refractory lining with such hexagonal bricks, the lower layer and upper layer of the hexagonal brick mesh with each other on each slope, improving mutual connectivity and building work. It is also possible to improve the performance.

特許5037725号公報Japanese Patent No. 5037725

ところで、前述した特許文献1のような六角レンガを、円筒状の窯炉に周方向に設置する場合、六角レンガの平面形状におけるテーパ角度(炉心における中心角α)は、炉内全周に配列されるレンガの数(分割数N)で決まる(α=360度/N)。また、六角レンガの幅Wは、炉心からの距離(半径R)で決まる(W=2πR/N)。
従って、適用する炉ごとに六角レンガの形状が異なり、これを成型する金型は専用設計となり、製造期間および製造コストがかさむ原因となる、という問題があった。
By the way, when the hexagonal brick as in Patent Document 1 described above is installed in the circumferential direction in a cylindrical kiln, the taper angle in the planar shape of the hexagonal brick (center angle α in the core) is arranged all around the furnace. It is determined by the number of bricks (number of divisions N) (α = 360 degrees / N). Further, the width W of the hexagonal brick is determined by the distance (radius R) from the core (W = 2πR / N).
Therefore, the shape of the hexagonal brick is different for each furnace to be applied, and a mold for molding the hexagonal brick has a dedicated design, which causes a problem that the manufacturing period and the manufacturing cost are increased.

さらに、特許文献1では、直胴(半径が一定の円筒状の部分)に積む例が示されていたが、転炉の上部開口近傍の絞り部などの円錐形状部分では、半径に応じてレンガの形状が異なることになり、膨大な種類のレンガが必要となる。
このような膨大な種類のレンガ成型には、膨大な種類の専用の金型が必要になり、実用化を諦めざるを得ない、という問題もあった。
Furthermore, Patent Document 1 shows an example in which a straight body (cylindrical portion having a constant radius) is stacked. However, in a cone-shaped portion such as a constricted portion near the upper opening of a converter, a brick is formed according to the radius. The shape of this will be different, and a huge variety of bricks will be required.
Such an enormous variety of brick molding has a problem in that an enormous amount of dedicated molds are required and the practical application has to be abandoned.

本発明の目的は、専用部分を最小限に抑制しつつ、窯炉の形状に応じた複数種類の六角レンガを成型できる六角レンガ用金型、六角レンガ成型方法および六角レンガ設計方法を提供することにある。   An object of the present invention is to provide a hexagonal brick mold, a hexagonal brick molding method, and a hexagonal brick design method capable of molding a plurality of types of hexagonal bricks according to the shape of a kiln while minimizing a dedicated portion. It is in.

本発明の六角レンガ用金型は、互いに平行に配置された等脚台形状の上面および下面と、前記上面の両側に接続された一対の上向き斜面および前記下面の両側に接続された一対の下向き斜面と、前記上面、前記下面、一対の前記上向き斜面および一対の前記下向き斜面にそれぞれ接続された六角形状の炉内側端面および炉外側端面とを有する六角錐台形状の六角レンガを成型するための六角レンガ用金型であって、前記上面および前記下面を成型するための互いに平行配置された第1平面部材および第2平面部材と、前記上向き斜面および前記下向き斜面を成型するためのV字溝を有する第1側面部材および第2側面部材と、前記六角形状の炉内側端面および炉外側端面を成型するための炉内側端面部材および炉外側端面部材とを有することを特徴とする。   The hexagonal brick mold according to the present invention includes an isosceles trapezoidal upper and lower surfaces arranged in parallel to each other, a pair of upward slopes connected to both sides of the upper surface, and a pair of downwards connected to both sides of the lower surface. A hexagonal frustum-shaped hexagonal brick having a slope and a hexagonal furnace inner end face and a furnace outer end face connected to the upper face, the lower face, the pair of upward slopes, and the pair of downward slopes, respectively. A hexagonal brick mold, a first planar member and a second planar member arranged in parallel to each other for molding the upper surface and the lower surface, and a V-shaped groove for molding the upward slope and the downward slope. A first side member and a second side member, and a furnace inner end surface member and a furnace outer end surface member for molding the hexagonal furnace inner end surface and the furnace outer end surface. And features.

このような本発明では、V字溝を有する第1側面部材および第2側面部材により、六角レンガの両側のそれぞれ上向き斜面および下向き斜面を、所定の角度および寸法で成型することができる。
従って、これらの第1側面部材および第2側面部材を六角レンガの幅方向寸法に応じた所定の距離で配置し、その際に第1平面部材から第2平面部材までの距離を上面から下面までの高さに合わせ、六角形状の炉内側端面から炉外側端面までの距離を炉内側端面部材から炉外側端面部材までの長さに合わせることで、これらに囲まれた内部には六角レンガに相当する空間が形成され、この空間に胚土を充填することで、六角レンガを成型することができる。
そして、六角レンガの上向き斜面および下向き斜面、つまり六角レンガでは最も複雑な形状をなす部分の成型を同じ第1側面部材および第2側面部材で行うようにし、この部分を複数種類の六角レンガで共用するとともに、上面、下面、炉内側端面および炉外側端面など他の部分は単純な平面の成型とすることで、汎用の金型部分の調整で対応することもでき、あるいは専用の金型部分としてもコストを十分に抑制することができる。
以上により、本発明の六角レンガ用金型では、専用部分を最小限に抑制しつつ窯炉の形状に応じた複数種類の六角レンガを成型することができる。
In the present invention, the upward slope and the downward slope on both sides of the hexagonal brick can be molded at a predetermined angle and size by the first side face member and the second side face member having the V-shaped groove.
Accordingly, the first side surface member and the second side surface member are arranged at a predetermined distance according to the width direction dimension of the hexagonal brick, and the distance from the first planar member to the second planar member at that time is from the upper surface to the lower surface. By adjusting the distance from the hexagonal furnace inner end face to the furnace outer end face to the length from the furnace inner end face member to the furnace outer end face member, the inside surrounded by these is equivalent to a hexagonal brick. A space to be formed is formed, and hexagonal bricks can be molded by filling the space with embryo soil.
Then, the upward slope and downward slope of the hexagonal brick, that is, the most complicated shape of the hexagonal brick, is molded by the same first side member and second side member, and this part is shared by multiple types of hexagonal bricks. In addition, other parts such as the upper surface, the lower surface, the furnace inner end face and the furnace outer end face are formed by a simple flat surface, which can be accommodated by adjusting a general-purpose mold part, or as a dedicated mold part. The cost can be sufficiently suppressed.
As described above, in the hexagonal brick mold of the present invention, it is possible to mold a plurality of types of hexagonal bricks according to the shape of the kiln while minimizing the dedicated portion.

本発明の六角レンガ用金型において、前記第1平面部材、前記第2平面部材、前記炉内側端面部材および前記炉外側端面部材が順次接続されて筒状に形成され、その筒状の一方の開口に前記第1側面部材が固定されるとともに、前記筒状の内部には前記第2側面部材が前記第1側面部材に向けて近接可能かつ離隔可能に配置された構成とすることができる。   In the hexagonal brick mold according to the present invention, the first planar member, the second planar member, the furnace inner end surface member, and the furnace outer end surface member are sequentially connected to form a cylindrical shape. The first side surface member may be fixed to the opening, and the second side surface member may be disposed in the cylindrical shape so as to be able to approach and be separated from the first side surface member.

このような本発明においては、第1平面部材、第2平面部材、炉内側端面部材、炉外側端面部材および第1側面部材が有底筒状の構造を形成し、その内部に胚土を充填して第2側面部材で圧縮することで、内部に六角レンガを成型することができる。
この際、第1平面部材および第2平面部材の距離は、六角レンガの上面から下面までの設計上の高さHで固定しておく。炉内側端面部材および炉外側端面部材の距離は、六角レンガの上面および下面の炉内側から炉外側までの設計上の長さLで固定しておく。そして、第2側面部材を第1側面部材に向けて移動させ、互いの距離が、六角レンガの上面および下面の炉内側端または炉外側の設計上の幅寸法Wnとなる位置で停止させることで、所期の六角レンガを成型することができる。
このような本発明によれば、同じ金型で寸法が異なる複数の六角レンガを成型できるとともに、第1平面部材、第2平面部材、第1側面部材、第2側面部材、炉内側端面部材および炉外側端面部材の全てを共用化することができる。
In the present invention, the first planar member, the second planar member, the furnace inner end surface member, the furnace outer end surface member, and the first side member form a bottomed cylindrical structure, and the inside is filled with germ soil And a hexagonal brick can be shape | molded inside by compressing with a 2nd side member.
At this time, the distance between the first planar member and the second planar member is fixed at a design height H from the upper surface to the lower surface of the hexagonal brick. The distance between the furnace inner end face member and the furnace outer end face member is fixed at a design length L from the furnace inner side to the furnace outer side of the upper surface and the lower surface of the hexagonal brick. Then, the second side member is moved toward the first side member and stopped at a position where the mutual distance becomes the designed width dimension Wn on the furnace inner end or the furnace outer side of the upper surface and the lower surface of the hexagonal brick. The desired hexagonal brick can be molded.
According to such this invention, while being able to shape | mold the several hexagonal brick from which a dimension differs with the same metal mold | die, a 1st plane member, a 2nd plane member, a 1st side member, a 2nd side member, a furnace inner end surface member, and All of the furnace outer end face members can be shared.

本発明の六角レンガ用金型において、前記第1平面部材、前記第2平面部材、前記第1側面部材および前記第2側面部材が順次接続されて筒状に形成され、その筒状の一方の開口に前記炉内側端面部材が固定されるとともに、前記筒状の内部には前記炉外側端面部材が前記炉内側端面部材に向けて近接可能かつ離隔可能に配置された構成とすることもできる。   In the hexagonal brick mold according to the present invention, the first planar member, the second planar member, the first side member, and the second side member are sequentially connected to form a cylindrical shape. The furnace inner end face member may be fixed to the opening, and the furnace outer end face member may be disposed in the cylindrical shape so as to be close to and separated from the furnace inner end face member.

このような本発明においては、第1平面部材、第2平面部材、第1側面部材、第2側面部材および炉内側端面部材が有底筒状の構造を形成し、その内部に胚土を充填して炉外側端面部材で圧縮することで、内部に六角レンガを成型することができる。
この際、第1平面部材および第2平面部材の距離は、六角レンガの上面から下面までの設計上の高さHで固定しておく。第1側面部材および第2側面部材の距離は、六角レンガの上面および下面の炉内側端または炉外側の設計上の幅寸法Wnとなるように固定しておく。そして、炉外側端面部材を炉内側端面部材に向けて移動させ、互いの距離が、六角レンガの上面および下面の炉内側から炉外側までの設計上の長さLとなる位置で停止させることで、所期の六角レンガを成型することができる。なお、移動する炉外側端面部材の輪郭形状および寸法は、前述した停止位置において第1平面部材、第2平面部材、第1側面部材、第2側面部材が形成する筒状の内周形状に準じて設計しておく。
このような本発明によれば、同じ金型で寸法が異なる複数の六角レンガを成型できるとともに、第1平面部材、第2平面部材、第1側面部材、第2側面部材、炉内側端面部材および炉外側端面部材の全てを共用化することができる。
In the present invention, the first flat member, the second flat member, the first side member, the second side member, and the furnace inner end surface member form a bottomed cylindrical structure, and the inside is filled with germ soil And a hexagonal brick can be shape | molded inside by compressing with a furnace outer end surface member.
At this time, the distance between the first planar member and the second planar member is fixed at a design height H from the upper surface to the lower surface of the hexagonal brick. The distance between the first side surface member and the second side surface member is fixed so as to be the designed width dimension Wn on the furnace inner end or the furnace outer side of the upper surface and the lower surface of the hexagonal brick. Then, the furnace outer end face member is moved toward the furnace inner end face member, and the mutual distance is stopped at a position where the upper surface and the lower surface of the hexagonal brick are the design length L from the furnace inner side to the furnace outer side. The desired hexagonal brick can be molded. Note that the contour shape and dimensions of the moving furnace outer end surface member conform to the cylindrical inner peripheral shape formed by the first planar member, the second planar member, the first side member, and the second side member at the stop position described above. Design.
According to such this invention, while being able to shape | mold the several hexagonal brick from which a dimension differs with the same metal mold | die, a 1st plane member, a 2nd plane member, a 1st side member, a 2nd side member, a furnace inner end surface member, and All of the furnace outer end face members can be shared.

本発明の六角レンガ用金型において、前記炉内側端面部材および前記炉外側端面部材の少なくとも何れかに沿って端部調整部材が設置されている構成とすることができる。
このような本発明によれば、成型される六角レンガの炉内側端面および炉内側端面の傾きや形状を端部調整部材によって調整することができる。そして、端部調整部材のみを専用部材とすることで、端部形状が異なる六角レンガに対して他の金型各部材を共用化することができ、本発明の共用化の効果を更に促進することができる。
In the hexagonal brick mold of the present invention, an end adjustment member may be installed along at least one of the furnace inner end surface member and the furnace outer end surface member.
According to the present invention as described above, the inclination and shape of the furnace inner end face and the furnace inner end face of the hexagonal brick to be molded can be adjusted by the end adjustment member. And by using only the end adjustment member as a dedicated member, other mold members can be shared for hexagonal bricks having different end shapes, and the sharing effect of the present invention is further promoted. be able to.

なお、端部調整部材としては、金型各部材(第1平面部材、第2平面部材、第1側面部材、第2側面部材、炉内側端面部材および炉外側端面部材)と同様な材質で形成された部材が利用できる。
さらに、端部調整部材としては、成型する六角レンガの端部形状に準じた形状の隔壁を、成型品となる部分との境界に設置し、この隔壁と炉内側端面部材または炉外側端面部材との間に、成型する六角レンガの胚土と同様だがバインダを含まないバインダなし胚土を充填し、これらにより端部調整部材を形成してもよい。
このようなバインダなし胚土を用いた端部調整部材では、胚土は再利用することができ、隔壁のみが専用品となり、金型各部材の共用化を一層促進することができる。
In addition, as an edge part adjustment member, it forms with the material similar to each metal mold | die (a 1st plane member, a 2nd plane member, a 1st side member, a 2nd side member, a furnace inner side end surface member, and a furnace outer side end surface member). Can be used.
Furthermore, as the end adjustment member, a partition wall having a shape conforming to the end shape of the hexagonal brick to be molded is installed at the boundary with the portion to be a molded product, and this partition wall and the furnace inner end surface member or the furnace outer end surface member In the meantime, it is also possible to fill a binderless germ soil which is similar to the hexagonal brick germ soil to be molded but does not contain a binder, thereby forming an end adjustment member.
In such an end adjustment member using a binderless germ soil, the germ soil can be reused, and only the partition wall becomes a dedicated product, and the sharing of each member of the mold can be further promoted.

本発明の六角レンガ成型方法は、互いに平行に配置された等脚台形状の上面および下面と、前記上面の両側に接続された一対の上向き斜面および前記下面の両側に接続された一対の下向き斜面と、前記上面、前記下面、一対の前記上向き斜面および一対の前記下向き斜面にそれぞれ接続された六角形状の炉内側端面および炉外側端面とを有する六角錐台形状の六角レンガを成型するための六角レンガ成型方法であって、前記上面および前記下面を成型するための互いに平行配置された第1平面部材および第2平面部材と、前記上向き斜面および前記下向き斜面を成型するためのV字溝を有する第1側面部材および第2側面部材と、前記六角形状の炉内側端面および炉外側端面を成型するための炉内側端面部材および炉外側端面部材とを用い、前記六角レンガの前記上面から前記下面までの設計上の高さH、前記上面および前記下面の炉内側端または炉外側の幅寸法Wn、前記上面および前記下面の炉内側から炉外側までの長さLとして、前記第1平面部材および前記第2平面部材の距離を前記高さHで固定し、前記炉内側端面部材および前記炉外側端面部材の距離を前記長さLで固定し、前記第1側面部材を、前記第1平面部材、前記第2平面部材、前記炉内側端面部材および前記炉外側端面部材に固定して有底筒状に形成しておき、これらの内側に胚土を充填し、前記第2側面部材を前記第1側面部材に向けて距離が前記幅寸法Wnとなるまで近接させ、前記第1平面部材、前記第2平面部材、前記第1側面部材、前記第2側面部材、前記炉内側端面部材および前記炉外側端面部材で囲われた空間内で前記胚土を圧縮成型することを特徴とする。   The hexagonal brick molding method of the present invention includes an isosceles trapezoidal top and bottom surfaces arranged in parallel to each other, a pair of upward slopes connected to both sides of the top surface, and a pair of downward slopes connected to both sides of the bottom surface And a hexagonal frustum-shaped hexagonal brick for forming a hexagonal frustum-shaped hexagonal brick having a top surface, a bottom surface, a pair of upward slopes, and a hexagonal furnace inner end face and a furnace outer end face connected to the pair of downward slopes, respectively. A brick molding method comprising a first plane member and a second plane member arranged in parallel to each other for molding the upper surface and the lower surface, and a V-shaped groove for molding the upward slope and the downward slope. Using the first side surface member and the second side surface member, and the furnace inner end surface member and the furnace outer end surface member for molding the hexagonal furnace inner end surface and the furnace outer end surface, The design height H of the hexagonal brick from the upper surface to the lower surface, the width Wn of the upper surface and the lower surface on the furnace inner side or the outer side of the furnace, and the length of the upper surface and the lower surface from the furnace inner side to the furnace outer side L, the distance between the first planar member and the second planar member is fixed at the height H, the distance between the furnace inner end surface member and the furnace outer end surface member is fixed at the length L, and the first Side members are fixed to the first planar member, the second planar member, the furnace inner end surface member, and the furnace outer end surface member to form a bottomed cylinder, and the inside is filled with germ soil. The second side member is made to approach the first side member until the distance reaches the width dimension Wn, and the first planar member, the second planar member, the first side member, and the second side member. The furnace inner end face member and the furnace outer end face portion Characterized by compression molding the embryos soil with enclosed within space.

このような本発明によれば、同じ金型で寸法が異なる複数の六角レンガを成型できるとともに、第1平面部材、第2平面部材、第1側面部材、第2側面部材、炉内側端面部材および炉外側端面部材の全てを共用化することができる。   According to such this invention, while being able to shape | mold the several hexagonal brick from which a dimension differs with the same metal mold | die, a 1st plane member, a 2nd plane member, a 1st side member, a 2nd side member, a furnace inner end surface member, and All of the furnace outer end face members can be shared.

本発明の六角レンガ成型方法は、互いに平行に配置された等脚台形状の上面および下面と、前記上面の両側に接続された一対の上向き斜面および前記下面の両側に接続された一対の下向き斜面と、前記上面、前記下面、一対の前記上向き斜面および一対の前記下向き斜面にそれぞれ接続された六角形状の炉内側端面および炉外側端面とを有する六角錐台形状の六角レンガを成型するための六角レンガ成型方法であって、前記上面および前記下面を成型するための互いに平行配置された第1平面部材および第2平面部材と、前記上向き斜面および前記下向き斜面を成型するためのV字溝を有する第1側面部材および第2側面部材と、前記六角形状の炉内側端面および炉外側端面を成型するための炉内側端面部材および炉外側端面部材とを用い、前記六角レンガの前記上面から前記下面までの設計上の高さH、前記上面および前記下面の炉内側端または炉外側の幅寸法Wn、前記上面および前記下面の炉内側から炉外側までの長さLとして、前記第1平面部材および前記第2平面部材の距離を前記高さHで固定し、前記第1側面部材および前記第2側面部材の距離を前記幅寸法Wnで固定し、前記炉内側端面部材を、前記第1平面部材、前記第2平面部材、前記第1側面部材および前記第2側面部材に固定して有底筒状に形成しておき、これらの内側に胚土を充填し、前記炉外側端面部材を前記炉内側端面部材に向けて距離が前記長さLとなるまで近接させ、前記第1平面部材、前記第2平面部材、前記第1側面部材、前記第2側面部材、前記炉内側端面部材および前記炉外側端面部材で囲われた空間内で前記胚土を圧縮成型することを特徴とする。   The hexagonal brick molding method of the present invention includes an isosceles trapezoidal top and bottom surfaces arranged in parallel to each other, a pair of upward slopes connected to both sides of the top surface, and a pair of downward slopes connected to both sides of the bottom surface And a hexagonal frustum-shaped hexagonal brick for forming a hexagonal frustum-shaped hexagonal brick having a top surface, a bottom surface, a pair of upward slopes, and a hexagonal furnace inner end face and a furnace outer end face connected to the pair of downward slopes, respectively. A brick molding method comprising a first plane member and a second plane member arranged in parallel to each other for molding the upper surface and the lower surface, and a V-shaped groove for molding the upward slope and the downward slope. Using the first side surface member and the second side surface member, and the furnace inner end surface member and the furnace outer end surface member for molding the hexagonal furnace inner end surface and the furnace outer end surface, The design height H of the hexagonal brick from the upper surface to the lower surface, the width Wn of the upper surface and the lower surface on the furnace inner side or the outer side of the furnace, and the length of the upper surface and the lower surface from the furnace inner side to the furnace outer side L, the distance between the first planar member and the second planar member is fixed at the height H, the distance between the first lateral member and the second lateral member is fixed at the width dimension Wn, and the inside of the furnace The end surface member is fixed to the first planar member, the second planar member, the first side surface member, and the second side surface member and formed into a bottomed cylindrical shape, and embryo soil is filled inside these end surface members. The furnace outer end face member is brought close to the furnace inner end face member until the distance reaches the length L, and the first planar member, the second planar member, the first side member, and the second side member. The furnace inner end face member and the furnace outer end face member Characterized by compression molding the embryos soil in enclosed in a space.

このような本発明によれば、同じ金型で寸法が異なる複数の六角レンガを成型できるとともに、第1平面部材、第2平面部材、第1側面部材、第2側面部材、炉内側端面部材および炉外側端面部材の全てを共用化することができる。   According to such this invention, while being able to shape | mold the several hexagonal brick from which a dimension differs with the same metal mold | die, a 1st plane member, a 2nd plane member, a 1st side member, a 2nd side member, a furnace inner end surface member, and All of the furnace outer end face members can be shared.

本発明の六角レンガ成型方法において、前記胚土を充填する前に、前記炉内側端面部材および前記炉外側端面部材の少なくとも何れかに沿って端部調整部材を設置しておくことができる。
このような本発明によれば、成型される六角レンガの炉内側端面および炉内側端面の傾きや形状を端部調整部材によって調整することができる。そして、端部調整部材のみを専用部材とすることで、端部形状が異なる六角レンガに対して他の金型各部材を共用化することができ、本発明の共用化の効果を更に促進することができる。
なお、端部調整部材としては、本発明の六角レンガ用金型の説明で述べた通りである。
In the hexagonal brick molding method of the present invention, an end adjustment member can be installed along at least one of the furnace inner end surface member and the furnace outer end surface member before filling the germ soil.
According to the present invention as described above, the inclination and shape of the furnace inner end face and the furnace inner end face of the hexagonal brick to be molded can be adjusted by the end adjustment member. And by using only the end adjustment member as a dedicated member, other mold members can be shared for hexagonal bricks having different end shapes, and the sharing effect of the present invention is further promoted. be able to.
In addition, as an edge part adjustment member, it is as having described by description of the metal mold | die for hexagonal bricks of this invention.

本発明の六角レンガ設計方法は、互いに平行に配置された等脚台形状の上面および下面と、前記上面の両側に接続された一対の上向き斜面および前記下面の両側に接続された一対の下向き斜面と、前記上面、前記下面、一対の前記上向き斜面および一対の前記下向き斜面にそれぞれ接続された六角形状の炉内側端面および炉外側端面とを有する六角錐台形状の六角レンガを成型するための六角レンガ設計方法であって、設置対象の窯炉における前記炉内側端面または前記炉外側端面の設置半径R、分割数N、前記上向き斜面および前記下向き斜面の幅方向寸法Weとして、先ず、設置半径Rを分割数Nで除算して炉内側端または炉外側端のピッチPn=R/Nを計算し、次に、前記ピッチPnから前記幅方向寸法Weを減算して前記上面および前記下面の炉内側端または炉外側端の上下面幅Wnfを計算し、前記ピッチPnに前記幅方向寸法Weを加算して炉内側端または炉外側端での最大幅Wncを計算することを特徴とする。   The hexagonal brick design method of the present invention includes an isosceles trapezoidal upper and lower surfaces arranged parallel to each other, a pair of upward slopes connected to both sides of the upper surface, and a pair of downward slopes connected to both sides of the lower surface. And a hexagonal frustum-shaped hexagonal brick for forming a hexagonal frustum-shaped hexagonal brick having a top surface, a bottom surface, a pair of upward slopes, and a hexagonal furnace inner end face and a furnace outer end face connected to the pair of downward slopes, respectively. In the brick design method, the installation radius R of the furnace inner end face or the furnace outer end face, the division number N, and the width direction dimension We of the upward slope and the downward slope in the furnace to be installed are first set as the installation radius R. Is divided by the division number N to calculate the pitch Pn = R / N of the furnace inner end or the furnace outer end, and then subtracting the width direction dimension We from the pitch Pn. The upper and lower surface width Wnf of the furnace inner end or furnace outer end of the lower surface is calculated, and the maximum width Wnc at the furnace inner end or the furnace outer end is calculated by adding the width direction dimension We to the pitch Pn. And

このような本発明では、例えば異なる仕様の窯炉や同じ窯炉でも半径が漸次変化する絞り部等に設置されるなど、設置半径Rが変化する場合であっても、六角レンガ両側の幅方向寸法Weを一定とすることで上向き斜面および下向き斜面を共通化することができる。そして、設置半径Rに応じたピッチPnの変化に対しては、幅寸法(上下面幅Wnfおよび最大幅Wnc)の増減で専ら対応することができ、つまり六角レンガの上面、下面、炉内側端面および炉外側端面の幅寸法を一様に増減することで対応できる。
このため、形状が比較的複雑な上向き斜面および下向き斜面の成型に必要な金型部分は共用化し、単純な形状の上面、下面、炉内側端面および炉外側端面を専用化することで済み、前述した本発明の六角レンガ用金型による製造に好適な六角レンガの設計を行うことができる。
In such a present invention, for example, even when the installation radius R is changed, such as in a kiln having different specifications or in the same kiln, the radius of the hexagonal brick is changed in the width direction. By making the dimension We constant, the upward slope and the downward slope can be shared. And the change of the pitch Pn according to the installation radius R can be dealt with exclusively by the increase / decrease of the width dimension (upper and lower surface width Wnf and maximum width Wnc), that is, the upper surface, the lower surface, and the furnace inner end surface of the hexagonal brick. This can be dealt with by uniformly increasing or decreasing the width of the outer end face of the furnace.
For this reason, the mold parts necessary for molding the upward slope and the downward slope with relatively complex shapes are shared, and the simple top and bottom surfaces, the furnace inner end face and the furnace outer end face can be dedicated, The hexagonal brick suitable for manufacture by the hexagonal brick mold of the present invention can be designed.

このような本発明の六角レンガ用金型、六角レンガ成型方法および六角レンガ設計方法によれば、成型金型において専用部分を最小限に抑制しつつ、窯炉の形状に応じた複数種類の六角レンガを成型することができる。   According to the hexagonal brick mold, hexagonal brick molding method, and hexagonal brick design method of the present invention, a plurality of types of hexagons according to the shape of the kiln are provided while minimizing a dedicated portion in the molding die. Brick can be molded.

本発明の第1実施形態である成型装置を示す側面図。The side view which shows the molding apparatus which is 1st Embodiment of this invention. 前記第1実施形態で成型する六角レンガを示す斜視図。The perspective view which shows the hexagonal brick shape | molded by the said 1st Embodiment. 前記第1実施形態で用いる成型金型を示す分解斜視図。The disassembled perspective view which shows the molding die used in the said 1st Embodiment. 前記第1実施形態で成型する六角レンガの設計手順を示す平面図。The top view which shows the design procedure of the hexagonal brick shape | molded by the said 1st Embodiment. 前記第1実施形態で成型する六角レンガの設計手順を示す正面図。The front view which shows the design procedure of the hexagonal brick shape | molded by the said 1st Embodiment. 前記第1実施形態で成型する六角レンガの設計手順を示す模式図。The schematic diagram which shows the design procedure of the hexagonal brick shape | molded by the said 1st Embodiment. 本発明の第2実施形態で成型する六角レンガを示す側面図。The side view which shows the hexagonal brick shape | molded by 2nd Embodiment of this invention. 前記第2実施形態における成型金型の準備段階を示す断面図。Sectional drawing which shows the preparation step of the shaping die in the said 2nd Embodiment. 前記第1実施形態における端部調整部材の設置段階を示す断面図。Sectional drawing which shows the installation stage of the edge part adjustment member in the said 1st Embodiment. 前記第1実施形態における胚土の充填段階を示す断面図。Sectional drawing which shows the filling stage of the embryo soil in the said 1st Embodiment. 本発明の第3実施形態の成型金型を示す分解斜視図。The disassembled perspective view which shows the molding die of 3rd Embodiment of this invention.

以下、本発明の実施形態を図面に基づいて説明する。
〔第1実施形態〕
図1〜図8を用いて本発明の第1実施形態を説明する。
図1において、本実施形態では、本発明に基づく六角レンガ10を成型するために、本発明に基づく成型金型20が装着された成型装置1を用いる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[First Embodiment]
1st Embodiment of this invention is described using FIGS.
In FIG. 1, in this embodiment, in order to mold the hexagonal brick 10 based on this invention, the molding apparatus 1 with which the molding die 20 based on this invention was mounted | worn is used.

成型装置1は、既存のプレス装置を利用したものであり、ベース2の上にコラム3が設置され、このコラム3にはシリンダ4が支持されている。シリンダ4からベース2に向けてロッド5が延びており、外部からの油圧供給によりロッド5が昇降される。
成型金型20は、成型装置1のベース2の上面に固定されている。成型金型20の一部(本実施形態では後述する第2側面部材24)は、有底筒状に一体化された成型金型20の他の部分に対して移動可能とされている。移動可能とされた一部は、成型装置1のロッド5に接続され、シリンダ4で昇降駆動される。
成型装置1においては、シリンダ4で成型金型20の前述した一部を駆動することで、成型金型20の内部で六角レンガ10の成型が行われる。
The molding apparatus 1 uses an existing press apparatus, and a column 3 is installed on a base 2, and a cylinder 4 is supported on the column 3. A rod 5 extends from the cylinder 4 toward the base 2, and the rod 5 is moved up and down by supplying hydraulic pressure from the outside.
The molding die 20 is fixed to the upper surface of the base 2 of the molding apparatus 1. A part of the molding die 20 (second side member 24 described later in the present embodiment) is movable with respect to the other part of the molding die 20 integrated into a bottomed cylindrical shape. A part that is movable is connected to the rod 5 of the molding apparatus 1 and is driven up and down by the cylinder 4.
In the molding apparatus 1, the hexagonal brick 10 is molded inside the molding die 20 by driving the aforementioned part of the molding die 20 with the cylinder 4.

図2に示すように、本実施形態で成型する六角レンガ10は、互いに平行に配置された等脚台形状の上面11および下面12と、上面11の両側に接続された一対の上向き斜面131,141および下面12の両側に接続された一対の下向き斜面132,142と、上面11、下面12、一対の上向き斜面131,141および一対の下向き斜面132,142にそれぞれ接続された六角形状の炉内側端面16および炉外側端面15とを有する六角錐台形状とされている。   As shown in FIG. 2, the hexagonal brick 10 to be molded in the present embodiment includes an isosceles trapezoidal top surface 11 and a bottom surface 12 arranged in parallel to each other, and a pair of upward slopes 131 connected to both sides of the top surface 11, 141 and a pair of downward slopes 132, 142 connected to both sides of the lower surface 12, and a hexagonal furnace interior connected to the upper surface 11, the lower surface 12, a pair of upward slopes 131, 141, and a pair of downward slopes 132, 142, respectively. A hexagonal frustum shape having an end face 16 and a furnace outer end face 15 is formed.

六角レンガ10においては、上向き斜面131と下向き斜面132とからなる山形形状130により側面13が形成され、上向き斜面141と下向き斜面142とからなる山形形状140により側面14が形成されている。
これらの上向き斜面131,141および下向き斜面132,142は、それぞれ同寸法の長方形とされ、互いに全周が重なるように密接可能である。
In the hexagonal brick 10, the side surface 13 is formed by a mountain shape 130 composed of an upward slope 131 and a downward slope 132, and the side surface 14 is formed by a mountain shape 140 composed of an upward slope 141 and a downward slope 142.
The upward slopes 131 and 141 and the downward slopes 132 and 142 are rectangular with the same dimensions, respectively, and can be in close contact with each other so that their entire circumferences overlap each other.

六角レンガ10において、上面11と下面12との距離、つまり六角レンガ10の高さは、設計上の高さHで一定とされる。六角形状の炉外側端面15と炉内側端面16との距離、つまり六角レンガ10の長さは、設計上の長さLとされている。
上面11および下面12の側縁(側面13,14に接続される辺縁)は、六角レンガ10の長さ方向(炉外側端面15および炉内側端面16に垂直な方向)に対して角度α/2だけ傾いている。
In the hexagonal brick 10, the distance between the upper surface 11 and the lower surface 12, that is, the height of the hexagonal brick 10 is constant at the design height H. The distance between the hexagonal furnace outer end face 15 and the furnace inner end face 16, that is, the length of the hexagonal brick 10 is a design length L.
Side edges of the upper surface 11 and the lower surface 12 (edges connected to the side surfaces 13, 14) are at an angle α / with respect to the length direction of the hexagonal brick 10 (direction perpendicular to the furnace outer end face 15 and the furnace inner end face 16). Tilt by 2.

炉外側端面15および炉内側端面16の上縁および下縁の長さは、炉内側端(炉内側端面16と接続する位置)で上下面幅Wif、炉外側端(炉外側端面15と接続する位置)で上下面幅Wofとされている。炉外側端面15の最大幅Wic、炉内側端面16の最大幅Wocとされている。
ここで、角度αは六角レンガ10のテーパ角度あるいは扇形中心角であり、上面11および下面12の側縁の互いのなす角、あるいは側面13,14の稜線(六角レンガ10の最大幅Wic,Wocとなる部分)の互いになす角は、それぞれこのテーパ角度αとなる。
The lengths of the upper edge and the lower edge of the furnace outer end face 15 and the furnace inner end face 16 are the upper and lower surface widths Wif and the furnace outer end (connected to the furnace outer end face 15) at the furnace inner end (position connected to the furnace inner end face 16). Position) and the upper and lower surface width Wof. The maximum width Wic of the furnace outer end face 15 and the maximum width Woc of the furnace inner end face 16 are set.
Here, the angle α is a taper angle or a fan-shaped central angle of the hexagonal brick 10, and an angle between side edges of the upper surface 11 and the lower surface 12 or ridgelines of the side surfaces 13 and 14 (the maximum widths Wic and Woc of the hexagonal brick 10). The angle between the two portions) is the taper angle α.

本実施形態においては、六角レンガ10のサイズを識別するための公称寸法として、上面11および下面12の幅寸法Wnを用いる。この幅寸法Wnとしては、上述した炉内側の上下面幅Wifまたは炉外側の上下面幅Wofの何れか、あるいはその中間値とすることができる。
これらの六角レンガ10の形状寸法に関しては、異なる寸法の六角レンガ10を同じ成型金型20を用いて成型するための設計手順と併せて、後に図4〜図6を参照して詳細に説明する。
このような六角レンガ10を成型するために、成型金型20が用いられる。
In the present embodiment, the width dimension Wn of the upper surface 11 and the lower surface 12 is used as a nominal dimension for identifying the size of the hexagonal brick 10. The width dimension Wn may be either the above-described upper and lower surface width Wif of the furnace or the upper and lower surface width Wof of the furnace outside, or an intermediate value thereof.
The shape dimensions of these hexagonal bricks 10 will be described later in detail with reference to FIGS. 4 to 6 together with a design procedure for molding hexagonal bricks 10 of different dimensions using the same molding die 20. .
In order to mold such a hexagonal brick 10, a molding die 20 is used.

図3において、成型金型20は、一対の第1平面部材21および第2平面部材22と、同じく一対の第1側面部材23および第2側面部材24と、同じく一対の炉内側端面部材26および炉外側端面部材25とを備えている。
これらの各部材21〜26は、それぞれ鋼製の板材またはブロックで形成され、各対の対向面は金型として必要な平滑性が得られるように処理されている。
In FIG. 3, the mold 20 includes a pair of first planar members 21 and second planar members 22, a pair of first side members 23 and a second side member 24, a pair of furnace inner end surface members 26 and A furnace outer end face member 25.
Each of these members 21 to 26 is formed of a steel plate or block, and the opposing surfaces of each pair are processed so as to obtain the smoothness required as a mold.

第1平面部材21および第2平面部材22は、六角レンガ10の上面11および下面12(図2参照)を成型するために、互いの距離が高さHとなるように平行配置される。
炉内側端面部材26および炉外側端面部材25は、炉内側端面16および炉外側端面15(図2参照)を成型するために、互いに距離が長さLとなるように平行配置される。
これらの第1平面部材21、第2平面部材22、炉内側端面部材26および炉外側端面部材25は、互いに矩形筒状に連結される。
The first planar member 21 and the second planar member 22 are arranged in parallel so that the distance between them becomes a height H in order to mold the upper surface 11 and the lower surface 12 (see FIG. 2) of the hexagonal brick 10.
The furnace inner end face member 26 and the furnace outer end face member 25 are arranged in parallel so that the distance between them becomes a length L in order to mold the furnace inner end face 16 and the furnace outer end face 15 (see FIG. 2).
The first planar member 21, the second planar member 22, the furnace inner end surface member 26, and the furnace outer end surface member 25 are connected to each other in a rectangular cylindrical shape.

第1平面部材21、第2平面部材22、炉内側端面部材26および炉外側端面部材25で囲われた空間には、当該空間の一方の端部開口面に沿って、第1側面部材23が配置されている。
第1側面部材23は、その全周をそれぞれ第1平面部材21、第2平面部材22、炉内側端面部材26および炉外側端面部材25に密着するように固定されている。
第1側面部材23と、第1平面部材21、第2平面部材22、炉内側端面部材26および炉外側端面部材25との固定には、溶接あるいはボルト等による締結が利用される。
これにより、成型金型20を構成する各部材のうち、第1平面部材21、第2平面部材22、炉内側端面部材26、炉外側端面部材25および第1側面部材23が一体化され、有底筒状に形成されている。
第2側面部材24は、前述した有底筒状の残された開口側から内部へと挿入され、有底筒状に組み込まれている第1側面部材23と対向配置することができる。
In the space surrounded by the first planar member 21, the second planar member 22, the furnace inner end surface member 26, and the furnace outer end surface member 25, the first side surface member 23 extends along one end opening surface of the space. Is arranged.
The 1st side member 23 is being fixed so that the perimeter may be closely_contact | adhered to the 1st plane member 21, the 2nd plane member 22, the furnace inner side end surface member 26, and the furnace outer side end surface member 25, respectively.
For fixing the first side member 23, the first planar member 21, the second planar member 22, the furnace inner end surface member 26, and the furnace outer end surface member 25, fastening by welding or bolts or the like is used.
As a result, among the members constituting the molding die 20, the first planar member 21, the second planar member 22, the furnace inner end surface member 26, the furnace outer end surface member 25 and the first side member 23 are integrated. It is formed in a bottom cylinder shape.
The second side member 24 can be inserted into the inside of the above-described bottomed cylindrical opening from the left side, and can be disposed opposite to the first side member 23 incorporated in the bottomed cylindrical shape.

第1側面部材23および第2側面部材24は、それぞれの対向面にV字溝230,240を有する。V字溝230,240は、それぞれ所定角度をなす斜面231,232あるいは斜面241,242を有する。斜面231〜242は、前述した六角レンガ10の上向き斜面131,141および下向き斜面132,142(図2参照)に対応した形状寸法とされ、第1側面部材23および第2側面部材24の反対側の面に対しても角度α/2の傾きとされている。
第1側面部材23および第2側面部材24においては、このような斜面231〜242に六角レンガ10となるべき胚土を押し付けることで、この胚土に三角山形状の側面13,14を成型することができる。
The first side member 23 and the second side member 24 have V-shaped grooves 230 and 240 on their opposing surfaces. The V-shaped grooves 230 and 240 have slopes 231 and 232 or slopes 241 and 242 that form a predetermined angle, respectively. The slopes 231 to 242 are shaped and correspond to the upward slopes 131 and 141 and the downward slopes 132 and 142 (see FIG. 2) of the hexagonal brick 10 described above, and are opposite to the first side member 23 and the second side member 24. The angle α / 2 is also inclined with respect to the surface.
In the 1st side surface member 23 and the 2nd side surface member 24, the triangle soil-shaped side surfaces 13 and 14 are shape | molded in this embryo soil by pressing the embryo soil which should become the hexagonal brick 10 against such slope 231-242. be able to.

このような本実施形態においては、次のような手順で六角レンガ10の成型を行う。
先ず、図3のように、成型金型20においては、第1平面部材21、第2平面部材22、炉内側端面部材26、炉外側端面部材25および第1側面部材23を一体化して有底筒状としておき、図1のように、この有底筒状の構造をベース2の上に固定する。
これにより、第1平面部材21と第2平面部材22とは六角レンガ10の設計上の高さHを隔てて固定され、炉内側端面部材26と炉外側端面部材25とは六角レンガ10の設計上の長さLを隔てて固定される。
In such this embodiment, the hexagonal brick 10 is shape | molded in the following procedures.
First, as shown in FIG. 3, in the molding die 20, the first planar member 21, the second planar member 22, the furnace inner end surface member 26, the furnace outer end surface member 25, and the first side member 23 are integrated to have a bottom. As shown in FIG. 1, the bottomed cylindrical structure is fixed on the base 2.
Thereby, the 1st plane member 21 and the 2nd plane member 22 are fixed through the design height H of the hexagonal brick 10, and the furnace inner end surface member 26 and the furnace outer end surface member 25 are designed of the hexagonal brick 10. The upper length L is fixed.

次に、有底筒状とされた第1平面部材21、第2平面部材22、炉内側端面部材26、炉外側端面部材25および第1側面部材23の内部に、六角レンガ10となるべき胚土を所定量だけ充填する。
続いて、成型装置1のシリンダ4を作動させ、第2側面部材24を有底筒状の内部へ導入するとともに、更に第2側面部材24を第1側面部材23に向けて移動させる。これにより、有底筒状の内部の胚土が徐々に圧縮され、第1平面部材21、第2平面部材22、炉内側端面部材26、炉外側端面部材25、第1側面部材23および第2側面部材24により賦形されてゆく。
そして、第2側面部材24と第1側面部材23との距離が、六角レンガ10の設計上の幅寸法Wnとなる所定の位置で停止させることで、内部には所期の六角レンガ10が成型される。
Next, the embryo to be the hexagonal brick 10 is formed inside the first flat member 21, the second flat member 22, the furnace inner end face member 26, the furnace outer end face member 25, and the first side face member 23 that have a bottomed cylindrical shape. Fill the soil with a predetermined amount.
Subsequently, the cylinder 4 of the molding apparatus 1 is operated to introduce the second side member 24 into the bottomed cylindrical shape, and further move the second side member 24 toward the first side member 23. Thereby, the germinal soil in the bottomed cylindrical shape is gradually compressed, and the first planar member 21, the second planar member 22, the furnace inner end surface member 26, the furnace outer end surface member 25, the first side surface member 23 and the second surface member. It is shaped by the side member 24.
Then, the desired hexagonal brick 10 is molded inside by stopping at a predetermined position where the distance between the second lateral member 24 and the first lateral member 23 becomes the designed width dimension Wn of the hexagonal brick 10. Is done.

このような本実施形態においては、同じ成型金型20を用いつつ、第2側面部材24の移動位置を変更するだけで、幅寸法Wnが異なる複数の六角レンガ10を成型することができる。つまり、寸法が異なる六角レンガ10を成型する場合でも、第1平面部材21、第2平面部材22、第1側面部材23、第2側面部材24、炉内側端面部材26および炉外側端面部材25の全てを共用化することができる。
とくに、六角レンガ10のなかでも形状が比較的複雑な部分である上向き斜面131,141および下向き斜面132,142を、それぞれ第1側面部材23および第2側面部材24を用いて一括して成型できるとともに、これらの第1側面部材23および第2側面部材24を複数サイズの六角レンガ10に共用することができ、金型コストを大幅に低減させ、かつ製作期間を短縮することができる。
In this embodiment, a plurality of hexagonal bricks 10 having different width dimensions Wn can be molded simply by changing the movement position of the second side member 24 while using the same molding die 20. That is, even when the hexagonal bricks 10 having different dimensions are molded, the first planar member 21, the second planar member 22, the first side member 23, the second side member 24, the furnace inner end surface member 26, and the furnace outer end surface member 25 All can be shared.
In particular, the upward slopes 131 and 141 and the downward slopes 132 and 142, which are relatively complicated parts in the hexagonal brick 10, can be collectively molded using the first side member 23 and the second side member 24, respectively. In addition, the first side surface member 23 and the second side surface member 24 can be shared by the hexagonal bricks 10 of a plurality of sizes, so that the mold cost can be greatly reduced and the production period can be shortened.

〔第1実施形態に適したレンガ設計手順〕
ところで、本発明の第1実施形態の成型装置1は、前述した通り、同じ成型金型20を用いつつ寸法が異なる複数の六角レンガ10の成型に適用できる。ただし、成型金型20を共用するためには、寸法が異なる複数の六角レンガ10が、成型金型20に対応した設計手順で設計されている必要がある。
この設計手順を、図4、図5および図6に基づいて説明する。
[Brick design procedure suitable for the first embodiment]
By the way, the molding apparatus 1 of 1st Embodiment of this invention is applicable to shaping | molding of the several hexagon brick 10 from which a dimension differs, using the same molding die 20, as mentioned above. However, in order to share the molding die 20, a plurality of hexagonal bricks 10 having different dimensions need to be designed by a design procedure corresponding to the molding die 20.
This design procedure will be described based on FIG. 4, FIG. 5 and FIG.

設計の前提として、六角レンガ10には、図2でも説明した通り、高さH、長さL、テーパ角度αが設定されているとともに、炉内側の上下面幅Wifおよび最大幅Wic、炉外側の上下面幅Wofおよび最大幅Wocが設定されている(図4および図5参照)。
さらに、六角レンガ10においては、側面13,14を構成する上向き斜面131,141および下向き斜面132,142が、それぞれ上面11および下面12に対して角度Aの傾きとされている(図5参照)。
As a premise of the design, the height H, the length L, and the taper angle α are set in the hexagonal brick 10 as described in FIG. 2, and the upper and lower surface width Wif and maximum width Wic inside the furnace, the outside of the furnace The upper and lower surface width Wof and the maximum width Woc are set (see FIGS. 4 and 5).
Furthermore, in the hexagonal brick 10, the upward slopes 131, 141 and the downward slopes 132, 142 constituting the side faces 13, 14 are inclined at an angle A with respect to the upper surface 11 and the lower surface 12, respectively (see FIG. 5). .

側面13,14は、上向き斜面131,141および下向き斜面132,142が側方に張り出しており、この張り出した斜面部分の幅方向寸法はWeとされている。
斜面部分の幅方向寸法Weは、上向き斜面131,141および下向き斜面132,142が接続する稜線(最大幅Woc,Wicを与える部分)と、各斜面が接続する上面11および下面12の側縁との幅方向の距離で与えられる。
斜面部分の幅方向寸法Weは、We=(Wic−Wif)/2=(Wo−Wof)/2であり、炉内側でも炉外側でも同じである。
On the side surfaces 13 and 14, upward slopes 131 and 141 and downward slopes 132 and 142 project laterally, and the widthwise dimension of the projecting slope portion is We.
The width direction dimension We of the slope portion is defined by the ridgeline (the portion that gives the maximum widths Woc and Wic) connected by the upward slopes 131 and 141 and the downward slopes 132 and 142, and the side edges of the upper surface 11 and the lower surface 12 to which each slope is connected. Is given by the distance in the width direction.
The width direction dimension We of the slope portion is We = (Wic−Wif) / 2 = (Wo−Wof) / 2, and is the same inside and outside the furnace.

六角レンガ10においては、上向き斜面131,141および下向き斜面132,142における角度Aおよび斜面部分の幅方向寸法Weが、六角レンガ10の炉内側端面16から炉外側端面15までのどの部分でも同一である。
これにより、六角レンガ10は、その幅寸法(炉内側の上下面幅Wifおよび最大幅Wic、炉外側の上下面幅Wofおよび最大幅Woc)が異なる場合でも、側面13,14における角度Aおよび斜面部分の幅方向寸法Weが同じであり、隣接する(階層も上下に隣接する)六角レンガ10どうしが側面13,14を介して互いに接続することができる。
In the hexagonal brick 10, the angle A on the upward slopes 131, 141 and the downward slopes 132, 142 and the width direction dimension We of the slope part are the same in any part from the furnace inner end surface 16 to the furnace outer end surface 15 of the hexagonal brick 10. is there.
Thereby, even if the hexagonal brick 10 has different width dimensions (upper and lower width Wif and maximum width Wic inside the furnace, upper and lower width Wof and maximum width Woc outside the furnace), the angle A and the slope on the side surfaces 13 and 14 are different. The width-direction dimension We of the part is the same, and the hexagonal bricks 10 which adjoin (a hierarchy is adjacent also up and down) can mutually connect via the side surfaces 13 and 14. FIG.

このような前提のもと、六角レンガ10の設計は以下のように行われる。
六角レンガ10の設計条件として、設置対象の窯炉における炉内側端面または炉外側端面の設置半径R、分割数N、上向き斜面および下向き斜面の幅方向寸法Weを決定しておく。
Under such a premise, the hexagonal brick 10 is designed as follows.
As design conditions for the hexagonal brick 10, the installation radius R of the furnace inner end face or furnace outer end face, the division number N, the width direction dimension We of the upward slope and the downward slope are determined in advance.

設置半径Rは、六角レンガ10の炉内側端面16における設置半径Riまたは炉外側端面15における設置半径Roの何れかが利用できる。これらの設置半径Ri,Roは、窯炉の設計情報から、鉄皮内側の耐火物ライニングの炉内側端面または炉外側端面の設置半径として取得することができる。これらの設置半径Ri,Roの差から六角レンガ10の長さL=Ro−Riが計算できる。この長さLは耐火物ライニングの厚み寸法となる。   As the installation radius R, either the installation radius Ri on the furnace inner end face 16 of the hexagonal brick 10 or the installation radius Ro on the furnace outer end face 15 can be used. These installation radii Ri and Ro can be obtained from the design information of the furnace as the installation radii of the furnace inner end face or the furnace outer end face of the refractory lining inside the iron skin. The length L = Ro−Ri of the hexagonal brick 10 can be calculated from the difference between the installation radii Ri and Ro. This length L is the thickness dimension of the refractory lining.

分割数Nは、窯炉における耐火物ライニングの一周に対して割り当てられる六角レンガ10の数であり、耐火物ライニングの周長と六角レンガ10の一般的な大きさとを考慮して決定される。
幅方向寸法Weは、六角レンガ10の一般的な大きさに基づいて側面13,14の上向き斜面131,141および下向き斜面132,142の形状から決定される。ただし、既に確定している成型金型20を用いる場合、その成型金型20に設定された値が用いられる。
The division number N is the number of hexagonal bricks 10 assigned to one round of the refractory lining in the kiln, and is determined in consideration of the circumferential length of the refractory lining and the general size of the hexagonal brick 10.
The width direction dimension We is determined from the shapes of the upward slopes 131 and 141 and the downward slopes 132 and 142 of the side faces 13 and 14 based on the general size of the hexagonal brick 10. However, when using the mold 20 that has already been determined, the value set for the mold 20 is used.

これらの設計条件が決定したら、次のような手順で六角レンガ10の形状寸法を確定する。
図4において、前述した設置半径R、分割数Nから、六角レンガ10のテーパ角度α=360度/N、六角レンガ10を周方向に配列するピッチPn=2πR/Nとなる。
具体的には、炉内側端面16では炉内側設置半径Riであり、炉内側ピッチPin=2πRi/Nとなる。また、炉外側端面15では炉外側設置半径Roであり、炉外側ピッチPon=2πRo/Nとなる。これらは、内外両方の値を用いる必要はなく、何れか一方だけ用いてもよい。
When these design conditions are determined, the shape dimension of the hexagonal brick 10 is determined by the following procedure.
In FIG. 4, the taper angle α of the hexagonal brick 10 = 360 degrees / N and the pitch Pn = 2πR / N for arranging the hexagonal bricks 10 in the circumferential direction are obtained from the installation radius R and the division number N described above.
Specifically, the furnace inner end face 16 has the furnace inner installation radius Ri, and the furnace inner pitch Pin = 2πRi / N. The furnace outer end face 15 has a furnace outer installation radius Ro, and the furnace outer pitch Pon = 2πRo / N. For these, it is not necessary to use both the inside and outside values, and only one of them may be used.

図6において、例えば第1の窯炉における設置半径R1とすると、配列ピッチP1=2πR1/Nとなる。このため、第1の窯炉で用いる六角レンガ10では上下面幅Wf1=P1−We、最大幅Wc1=P1+Weとなる。
一方、第2の窯炉における設置半径R2とすると、配列ピッチP2=2πR2/Nとなり、第2の窯炉で用いる六角レンガ10では上下面幅Wf2=P2−We、最大幅Wc2=P2+Weとなる。
In FIG. 6, for example, when the installation radius R1 in the first kiln is set, the arrangement pitch P1 = 2πR1 / N. For this reason, in the hexagonal brick 10 used in the first kiln, the vertical width Wf1 = P1−We and the maximum width Wc1 = P1 + We.
On the other hand, when the installation radius R2 in the second kiln is set, the arrangement pitch P2 = 2πR2 / N, and in the hexagonal brick 10 used in the second kiln, the vertical width Wf2 = P2-We and the maximum width Wc2 = P2 + We. .

なお、これらの計算は、前述した炉内側端(設置半径Ri)あるいは炉外側端(設置半径Ro)の何れかで行えばよい。
例えば、第1の窯炉で用いる六角レンガ10について炉内側端での計算を行う場合、設置半径Ri1から配列ピッチPi=2πRi1/Nを計算したうえで、図5において、上下面幅Wif=Pi−We、最大幅Wic=Pi+Weのように計算することができる。
または、第2の窯炉で用いる六角レンガ10について炉外側端での計算を行う場合、設置半径Ro2から配列ピッチPo=2πRo2/Nを計算したうえで、図5において、上下面幅Wof=Po−We、最大幅Woc=Po+Weのように計算することができる。
These calculations may be performed at either the furnace inner end (installation radius Ri) or the furnace outer end (installation radius Ro) described above.
For example, when calculating at the furnace inner end for the hexagonal brick 10 used in the first kiln, after calculating the arrangement pitch Pi = 2πRi1 / N from the installation radius Ri1, in FIG. 5, the vertical width Wif = Pi -We, the maximum width Wic = Pi + We can be calculated.
Alternatively, when calculating at the outer end of the hexagonal brick 10 used in the second kiln, after calculating the arrangement pitch Po = 2πRo2 / N from the installation radius Ro2, in FIG. 5, the upper and lower surface width Wof = Po. −We, maximum width Woc = Po + We can be calculated.

このように、本実施形態の成型金型20を用いる際には、成型金型20に応じた斜面部分の幅方向寸法Weを固定値として計算することで、六角レンガ10の各部寸法を確定することができる。   Thus, when using the molding die 20 of this embodiment, the dimensions of each part of the hexagonal brick 10 are determined by calculating the width direction dimension We of the slope portion corresponding to the molding die 20 as a fixed value. be able to.

〔第2実施形態〕
前述した第1実施形態では、六角レンガ10の炉外側端面15および炉内側端面16が上面11および下面12に対して直角に形成されていた。
これに対し、本実施形態では、図7に示すように、六角レンガ10の炉外側端面15および炉内側端面16が上面11および下面12に対して角度Bで傾斜している。
このように端面が傾斜した六角レンガ10を成型する場合、成型金型20の炉内側端面部材26および炉外側端面部材25を角度Bで傾斜させた専用の金型とすることができるが、本実施形態では前述した第1実施形態の成型金型20をそのまま利用して傾斜した端面を成型する。
[Second Embodiment]
In the first embodiment described above, the furnace outer end surface 15 and the furnace inner end surface 16 of the hexagonal brick 10 are formed at right angles to the upper surface 11 and the lower surface 12.
On the other hand, in this embodiment, as shown in FIG. 7, the furnace outer end surface 15 and the furnace inner end surface 16 of the hexagonal brick 10 are inclined at an angle B with respect to the upper surface 11 and the lower surface 12.
When the hexagonal brick 10 having the inclined end face is molded as described above, a dedicated mold in which the furnace inner end face member 26 and the furnace outer end face member 25 of the molding die 20 are inclined at an angle B can be used. In the embodiment, the inclined end face is molded by using the molding die 20 of the first embodiment as it is.

図8において、成型金型20は、前述した第1実施形態で説明したものと同じである。このため、各部には同じ符号を用い、重複する説明は省略する。
成型金型20の内部には、炉外側端面部材25および炉内側端面部材26に沿って、端部調整部材250,260が設置されている。
In FIG. 8, the molding die 20 is the same as that described in the first embodiment. For this reason, the same code | symbol is used for each part and the overlapping description is abbreviate | omitted.
Inside the molding die 20, end adjustment members 250 and 260 are installed along the furnace outer end face member 25 and the furnace inner end face member 26.

端部調整部材250,260は、炉外側端面部材25あるいは炉内側端面部材26の表面から間隔をおいて設置された隔壁251,261を有する。
隔壁251,261は、周囲を成型金型20の第1側面部材23、第2平面部材22、第1平面部材21(図8では図示省略)に固定されるとともに、第2側面部材24を閉じた際にその内面に密接するように形成されている。固定にあたって、隔壁251,261は、第2平面部材22および第1平面部材21に対して傾斜され、その角度は、成型する六角レンガ10の角度Bとされている。
The end adjustment members 250 and 260 include partition walls 251 and 261 that are spaced from the surface of the furnace outer end surface member 25 or the furnace inner end surface member 26.
The partition walls 251 and 261 are fixed to the first side member 23, the second plane member 22, and the first plane member 21 (not shown in FIG. 8) of the molding die 20 and the second side member 24 is closed. It is formed so as to be in close contact with its inner surface. In fixing, the partition walls 251 and 261 are inclined with respect to the second planar member 22 and the first planar member 21, and the angle is the angle B of the hexagonal brick 10 to be molded.

図9において、隔壁251,261と炉外側端面部材25あるいは炉内側端面部材26の表面との間には、それぞれバインダなし胚土252,262が充填される。
バインダなし胚土252,262は、六角レンガ10の成型に用いられる胚土と同じであるが、バインダを含まず、圧縮成型された後も容易に破壊して胚土として再利用できるものである。
本実施形態においては、これらの隔壁251,261とバインダなし胚土252,262とにより端部調整部材250,260が構成されている。
In FIG. 9, the binderless germ soils 252 and 262 are filled between the partition walls 251 and 261 and the surface of the furnace outer end surface member 25 or the furnace inner end surface member 26, respectively.
The binderless embryo soils 252 and 262 are the same as the embryo soil used for molding the hexagonal brick 10, but do not include a binder and can be easily destroyed and reused as embryo soil even after compression molding. .
In the present embodiment, the end adjustment members 250 and 260 are constituted by the partition walls 251 and 261 and the binderless embryo soil 252 and 262.

このような本実施形態においては、次のような成型手順により、炉内側および炉外側の端面が傾斜した六角レンガ10を成型する。
先ず、図8のように、成型金型20を設置するとともに、その内部に隔壁251,261を設置する。
次に、図9のように、バインダなし胚土252,262を充填し、端部調整部材250,260を設置する。
In such this embodiment, the hexagonal brick 10 in which the end surfaces of the furnace inner side and the furnace outer side are inclined is molded by the following molding procedure.
First, as shown in FIG. 8, the molding die 20 is installed, and the partition walls 251 and 261 are installed therein.
Next, as shown in FIG. 9, the binderless germ soils 252 and 262 are filled and the end adjustment members 250 and 260 are installed.

続いて、図10のように、成型金型20内に、バインダを含む成型用の胚土19を充填する。
さらに、第2側面部材24を下降させ、成型金型20を閉じるとともに、胚土19を圧縮し、六角レンガ10を成型する。
成型された六角レンガ10は、第1平面部材21および第2平面部材22により上面11および下面12が成型され、第1側面部材23および第2側面部材24により斜面部分を有する側面13,14が成型される。さらに、端部調整部材250,260により、角度Bで傾斜した炉外側端面15および炉内側端面16が形成される。
これにより、図7のような、炉内側および炉外側の端面が傾斜した六角レンガ10を成型することができる。
Subsequently, as shown in FIG. 10, a molding embryo 19 including a binder is filled in the molding die 20.
Further, the second side member 24 is lowered, the molding die 20 is closed, the embryo soil 19 is compressed, and the hexagonal brick 10 is molded.
In the molded hexagonal brick 10, the upper surface 11 and the lower surface 12 are molded by the first planar member 21 and the second planar member 22, and the side surfaces 13, 14 having slope portions are formed by the first side member 23 and the second side member 24. Molded. Further, the furnace outer end face 15 and the furnace inner end face 16 that are inclined at an angle B are formed by the end adjustment members 250 and 260.
Thereby, the hexagonal brick 10 with which the end surface of the furnace inner side and the furnace outer side inclined like FIG. 7 can be shape | molded.

〔第3実施形態〕
前述した第1実施形態では、成型金型20のうち、第1平面部材21、第2平面部材22、炉内側端面部材26、炉外側端面部材25および第1側面部材23を有底筒状に一体化し、第2側面部材24を別途有底筒状の内部へ導入していた。
これに対し、本実施形態では、図11に示すように、第1平面部材21、第2平面部材22、第1側面部材23および第2側面部材24が順次接続されて筒状に形成され、その筒状の一方の開口に炉内側端面部材26が固定されるとともに、炉内側端面部材26と対向する炉外側端面部材25が筒状の内部に導入される構成とされている。
[Third Embodiment]
In the first embodiment described above, in the molding die 20, the first planar member 21, the second planar member 22, the furnace inner end surface member 26, the furnace outer end surface member 25, and the first side member 23 are formed into a bottomed cylindrical shape. The second side member 24 was separately introduced into the bottomed cylindrical interior.
On the other hand, in this embodiment, as shown in FIG. 11, the 1st plane member 21, the 2nd plane member 22, the 1st side member 23, and the 2nd side member 24 are connected sequentially, and are formed in a cylinder shape, The furnace inner end face member 26 is fixed to the one cylindrical opening, and the furnace outer end face member 25 facing the furnace inner end face member 26 is introduced into the cylindrical interior.

本実施形態において、第1平面部材21、第2平面部材22、第1側面部材23および第2側面部材24は、前述した第1実施形態と同様に構成されたものである。
一方、炉外側端面部材25および炉内側端面部材26は、前述した第1実施形態とは異なる形状とされている。
前述した第1実施形態では、炉外側端面部材25および炉内側端面部材26がそれぞれ板状に形成され、その表面に第1平面部材21、第2平面部材22、第1側面部材23および第2側面部材24の端縁が突き当てられて固定されていた。
これに対し、本実施形態の炉外側端面部材25および炉内側端面部材26は、それぞれ六角形状に形成され、第1平面部材21、第2平面部材22、第1側面部材23および第2側面部材24で形成される筒状の内側の六角形の空洞内に挿入可能である。
In this embodiment, the 1st plane member 21, the 2nd plane member 22, the 1st side member 23, and the 2nd side member 24 are comprised similarly to 1st Embodiment mentioned above.
On the other hand, the furnace outer end face member 25 and the furnace inner end face member 26 have different shapes from those of the first embodiment described above.
In the first embodiment described above, the furnace outer end surface member 25 and the furnace inner end surface member 26 are each formed in a plate shape, and the first planar member 21, the second planar member 22, the first side member 23 and the second planar member are formed on the surfaces thereof. The edge of the side member 24 was abutted and fixed.
On the other hand, the furnace outer end face member 25 and the furnace inner end face member 26 of the present embodiment are each formed in a hexagonal shape, and the first flat member 21, the second flat member 22, the first side member 23, and the second side member. 24 can be inserted into a cylindrical inner hexagonal cavity.

このうち炉内側端面部材26は、第1平面部材21、第2平面部材22、第1側面部材23および第2側面部材24で形成される筒状の炉内側となる開口端に固定され、全周をこの筒状に固定されている。
一方、炉外側端面部材25は、第1平面部材21、第2平面部材22、第1側面部材23および第2側面部材24で形成される筒状の内部の所定位置で、全周をこの筒状に固定される。この所定位置は、炉内側端面部材26の内面から、成型される六角レンガ10の長さL(炉内側端面16から炉外側端面15までの距離)だけ隔てた位置とされる。
Among these, the furnace inner end face member 26 is fixed to an opening end that is a cylindrical furnace inner side formed by the first flat member 21, the second flat member 22, the first side face member 23, and the second side face member 24. The circumference is fixed in this cylindrical shape.
On the other hand, the furnace outer end surface member 25 has a cylindrical inner predetermined position formed by the first planar member 21, the second planar member 22, the first side member 23, and the second side member 24, and the entire circumference of the furnace outer end surface member 25. Fixed in shape. The predetermined position is a position separated from the inner surface of the furnace inner end face member 26 by the length L of the hexagonal brick 10 to be molded (distance from the furnace inner end face 16 to the furnace outer end face 15).

このような本実施形態においては、第1平面部材21、第2平面部材22、第1側面部材23、第2側面部材24および炉内側端面部材26が有底筒状の構造を形成し、その内部に胚土を充填して炉外側端面部材25で圧縮することで、内部に六角レンガ10を成型することができる。
成型にあたっては、第1平面部材21および第2平面部材22の距離を、六角レンガ10の上面11から下面12までの設計上の高さHで固定しておく。また、第1側面部材23および第2側面部材24の距離は、六角レンガ10の上面11および下面12の炉内側端の上下面幅Wif、最大幅Wic、あるいは炉外側端の上下面幅Wof、最大幅Wocが設計上の寸法となるように固定しておく。
In this embodiment, the first planar member 21, the second planar member 22, the first side member 23, the second side member 24, and the furnace inner end surface member 26 form a bottomed cylindrical structure, The hexagonal brick 10 can be molded inside by filling the inside with embryo soil and compressing with the furnace outer end face member 25.
In molding, the distance between the first planar member 21 and the second planar member 22 is fixed at a design height H from the upper surface 11 to the lower surface 12 of the hexagonal brick 10. Further, the distance between the first side surface member 23 and the second side surface member 24 is the upper and lower surface width Wif of the furnace inner end of the upper surface 11 and the lower surface 12 of the hexagonal brick 10, the maximum width Wic, or the upper and lower surface width Wof of the furnace outer end. It is fixed so that the maximum width Woc becomes a design dimension.

このような設定の後、内部に胚土を充填し、炉外側端面部材25を炉内側端面部材26に向けて移動させ、互いの距離が、六角レンガ10の設計上の長さLとなる位置で停止させることで、内部の胚土が圧縮され、所期の六角レンガ10を成型することができる。
このような本実施形態によれば、同じ成型金型20で寸法が異なる複数の六角レンガ10を成型できるとともに、第1平面部材21、第2平面部材22、第1側面部材23、第2側面部材24、炉内側端面部材26および炉外側端面部材25を共用化することができる。
After such a setting, the inside is filled with germ soil, the furnace outer end face member 25 is moved toward the furnace inner end face member 26, and the mutual distance becomes the design length L of the hexagonal brick 10. The inner germ soil is compressed and the intended hexagonal brick 10 can be molded.
According to this embodiment, a plurality of hexagonal bricks 10 having different dimensions can be molded with the same molding die 20, and the first planar member 21, the second planar member 22, the first side member 23, and the second side surface. The member 24, the furnace inner end face member 26 and the furnace outer end face member 25 can be shared.

〔変形例〕
なお、本発明は前述した実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形等は本発明に含まれるものである。
成型金型20の可動部分について、第1実施形態および第2実施形態では第2側面部材24を可動とし、他の部分を有底筒状に一体化しており、第3実施形態では炉外側端面部材25を可動とし、他の部分を有底筒状に一体化していた。
[Modification]
It should be noted that the present invention is not limited to the above-described embodiment, and modifications and the like within a scope that can achieve the object of the present invention are included in the present invention.
Regarding the movable part of the molding die 20, the second side member 24 is movable in the first and second embodiments, and the other part is integrated into a bottomed cylindrical shape. In the third embodiment, the furnace outer end face The member 25 was movable, and the other parts were integrated into a bottomed cylindrical shape.

これに対し、他の部材、例えば第1側面部材23、第1平面部材21、第2平面部材22あるいは炉内側端面部材26を可動としてもよい。ただし、第1平面部材21または第2平面部材22を可動とする場合、第1側面部材23および第2側面部材24のV字溝内に胚土を確実に充填するための配慮が必要である。さらに、炉内側端面部材26を可動とする場合、テーパ角度αにもよるが奥側の寸法が拡大することになるため、周囲のシール等に配慮が必要である。
さらに、成型金型20の可動部分は、1部材に限らず、例えば、対向する第1側面部材23および第2側面部材24の2部材をともに可動とし、第1平面部材21、第2平面部材22、炉内側端面部材26および炉外側端面部材25を両端が開口する筒状に一体化するようにしてもよい。
On the other hand, other members, for example, the first side member 23, the first planar member 21, the second planar member 22, or the furnace inner end surface member 26 may be movable. However, when the first planar member 21 or the second planar member 22 is movable, consideration must be given to reliably fill the V-grooves of the first side member 23 and the second side member 24 with germ soil. . Further, when the furnace inner end face member 26 is movable, the back side dimension is enlarged although it depends on the taper angle α. Therefore, it is necessary to consider the surrounding seal and the like.
Furthermore, the movable part of the molding die 20 is not limited to one member. For example, both the first side member 23 and the second side member 24 facing each other are movable, and the first planar member 21 and the second planar member are movable. 22, the furnace inner end face member 26 and the furnace outer end face member 25 may be integrated into a cylindrical shape having both ends open.

六角レンガ10の上向き斜面131,141および下向き斜面132,142のなす角度Aは適宜設定すればよく、上向き斜面131,141の傾斜角と下向き斜面132,142の傾斜角を異なる設定としてもよい。この場合、六角レンガ10の積み上げにあたっては、同じ角度のものを向かい合わせるようにする必要があるが、上下に隣接する階層毎に六角レンガ10を反転させることで対応が可能である。   The angle A formed by the upward slopes 131 and 141 and the downward slopes 132 and 142 of the hexagonal brick 10 may be set as appropriate, and the inclination angle of the upward slopes 131 and 141 may be different from the inclination angle of the downward slopes 132 and 142. In this case, when the hexagonal bricks 10 are stacked, the hexagonal bricks 10 need to face each other at the same angle, but can be dealt with by reversing the hexagonal bricks 10 for each layer adjacent vertically.

第2実施形態では、六角レンガ10の炉内側端面16および炉外側端面15に傾斜を設けたが、それぞれ同じ角度Bであることは必須ではなく、異なる傾斜角度としてもよい。あるいは、何れかは傾斜せず、端部調整部材250,260の何れかを省略してもよい。
このほか、各部の細部形状および材質等は、実施にあたって適宜選択すればよい。
In 2nd Embodiment, although the inclination was provided in the furnace inner side end surface 16 and the furnace outer side end surface 15 of the hexagonal brick 10, it is not essential that each is the same angle B, and it is good also as a different inclination angle. Alternatively, either one of the end adjustment members 250 and 260 may be omitted without being inclined.
In addition, the detailed shape, material, and the like of each part may be appropriately selected for implementation.

本発明は六角レンガ用金型、六角レンガ成型方法および六角レンガ設計方法に関し、窯炉や取鍋などの耐火物ライニングとして利用できる。   The present invention relates to a hexagonal brick mold, a hexagonal brick molding method, and a hexagonal brick design method, and can be used as a refractory lining for a kiln or a ladle.

1…成型装置
2…ベース
3…コラム
4…シリンダ
5…ロッド
10…六角レンガ
11…上面
12…下面
13,14…側面
15…炉外側端面
16…炉内側端面
19…胚土
130,140…山形形状
131,141…上向き斜面
132,142…下向き斜面
20…成型金型
21…第1平面部材
22…第2平面部材
23…第1側面部材
24…第2側面部材
25…炉外側端面部材
26…炉内側端面部材
230,240…V字溝
231,232,241,242…斜面
250,260…端部調整部材
251,261…隔壁
252,262…胚土
A…上向き斜面および下向き斜面の傾斜角度
B…炉内側端面および炉外側端面の傾斜角度
L…長さ
N…分割数
α…テーパ角度
Pn,P1,P2…ピッチ
R,R1,R2,Ri1,Ro2…設置半径
Ri…炉内側設置半径
Ro…炉外側設置半径
Wn…幅寸法
Wnc…最大幅
Wnf…上下面幅
We…上向き斜面および下向き斜面の幅方向寸法
Wic…炉内側の最大幅
Wif…炉内側の上下面幅
Woc…炉外側の最大幅
Wof…炉外側の上下面幅
DESCRIPTION OF SYMBOLS 1 ... Molding apparatus 2 ... Base 3 ... Column 4 ... Cylinder 5 ... Rod 10 ... Hexagon brick 11 ... Upper surface 12 ... Lower surface 13,14 ... Side surface 15 ... Furnace outer side end surface 16 ... Furnace inner side end surface 19 ... Germ soil 130,140 ... Yamagata Shape 131, 141 ... Upward slope 132, 142 ... Downward slope 20 ... Mold 21 ... First planar member 22 ... Second planar member 23 ... First side member 24 ... Second side member 25 ... Furnace outer end member 26 ... Furnace inner end face members 230, 240 ... V-shaped grooves 231, 232, 241, 242 ... slopes 250, 260 ... end adjustment members 251, 261 ... partition walls 252, 262 ... embryo soil A ... slope angle B of upward and downward slopes ... Inclination angle L of furnace inner end face and furnace outer end face ... Length N ... Division number α ... Taper angle Pn, P1, P2 ... Pitch R, R1, R2, Ri1, Ro2 ... Installation radius Ri ... Installation inside the furnace Radius Ro ... Radio outside installation radius Wn ... Width dimension Wnc ... Maximum width Wnf ... Vertical surface width We ... Upward and downward slope width direction dimension Wic ... Inner furnace maximum width Wif ... Inner furnace upper and lower surface width Woc ... Outside of furnace Maximum width Wof… Upper and lower widths on the outside of the furnace

Claims (8)

互いに平行に配置された等脚台形状の上面および下面と、前記上面の両側に接続された一対の上向き斜面および前記下面の両側に接続された一対の下向き斜面と、前記上面、前記下面、一対の前記上向き斜面および一対の前記下向き斜面にそれぞれ接続された六角形状の炉内側端面および炉外側端面とを有する六角錐台形状の六角レンガを成型するための六角レンガ用金型であって、
前記上面および前記下面を成型するための互いに平行配置された第1平面部材および第2平面部材と、前記上向き斜面および前記下向き斜面を成型するためのV字溝を有する第1側面部材および第2側面部材と、前記六角形状の炉内側端面および炉外側端面を成型するための炉内側端面部材および炉外側端面部材とを有することを特徴とする六角レンガ用金型。
An upper surface and a lower surface of isosceles trapezoids arranged in parallel to each other, a pair of upward slopes connected to both sides of the upper surface, a pair of downward slopes connected to both sides of the lower surface, the upper surface, the lower surface, and a pair A hexagonal brick mold for molding a hexagonal frustum-shaped hexagonal brick having a hexagonal furnace inner end face and a furnace outer end face respectively connected to the upward slope and the pair of downward slopes,
First and second plane members arranged in parallel to each other for molding the upper surface and the lower surface, and first and second side members having V-shaped grooves for molding the upward slope and the downward slope. A hexagonal brick mold comprising: a side member; a furnace inner end surface member and a furnace outer end surface member for molding the hexagonal furnace inner end surface and the furnace outer end surface.
請求項1に記載された六角レンガ用金型において、
前記第1平面部材、前記第2平面部材、前記炉内側端面部材および前記炉外側端面部材が順次接続されて筒状に形成され、その筒状の一方の開口に前記第1側面部材が固定されるとともに、前記筒状の内部には前記第2側面部材が前記第1側面部材に向けて近接可能かつ離隔可能に配置されたことを特徴とする六角レンガ用金型。
In the hexagonal brick mold according to claim 1,
The first planar member, the second planar member, the furnace inner end surface member, and the furnace outer end surface member are sequentially connected to form a cylindrical shape, and the first side surface member is fixed to one of the cylindrical openings. In addition, the hexagonal brick mold is characterized in that the second side member is disposed in the cylindrical shape so as to be close to and separated from the first side member.
請求項1に記載された六角レンガ用金型において、
前記第1平面部材、前記第2平面部材、前記第1側面部材および前記第2側面部材が順次接続されて筒状に形成され、その筒状の一方の開口に前記炉内側端面部材が固定されるとともに、前記筒状の内部には前記炉外側端面部材が前記炉内側端面部材に向けて近接可能かつ離隔可能に配置されたことを特徴とする六角レンガ用金型。
In the hexagonal brick mold according to claim 1,
The first planar member, the second planar member, the first side member, and the second side member are sequentially connected to form a cylindrical shape, and the furnace inner end surface member is fixed to one of the cylindrical openings. In addition, the hexagonal brick mold is characterized in that the furnace outer end face member is disposed in the cylindrical shape so as to be close and separable toward the furnace inner end face member.
請求項1から請求項3の何れかに記載された六角レンガ用金型において、
前記炉内側端面部材および前記炉外側端面部材の少なくとも何れかに沿って端部調整部材が設置されていることを特徴とする六角レンガ用金型。
In the hexagonal brick mold according to any one of claims 1 to 3,
A hexagonal brick mold, wherein an end adjustment member is installed along at least one of the furnace inner end face member and the furnace outer end face member.
互いに平行に配置された等脚台形状の上面および下面と、前記上面の両側に接続された一対の上向き斜面および前記下面の両側に接続された一対の下向き斜面と、前記上面、前記下面、一対の前記上向き斜面および一対の前記下向き斜面にそれぞれ接続された六角形状の炉内側端面および炉外側端面とを有する六角錐台形状の六角レンガを成型するための六角レンガ成型方法であって、
前記上面および前記下面を成型するための互いに平行配置された第1平面部材および第2平面部材と、前記上向き斜面および前記下向き斜面を成型するためのV字溝を有する第1側面部材および第2側面部材と、前記六角形状の炉内側端面および炉外側端面を成型するための炉内側端面部材および炉外側端面部材とを用い、
前記六角レンガの前記上面から前記下面までの設計上の高さH、前記上面および前記下面の炉内側端または炉外側の幅寸法Wn、前記上面および前記下面の炉内側から炉外側までの長さLとして、
前記第1平面部材および前記第2平面部材の距離を前記高さHで固定し、前記炉内側端面部材および前記炉外側端面部材の距離を前記長さLで固定し、前記第1側面部材を、前記第1平面部材、前記第2平面部材、前記炉内側端面部材および前記炉外側端面部材に固定して有底筒状に形成しておき、
これらの内側に胚土を充填し、前記第2側面部材を前記第1側面部材に向けて距離が前記幅寸法Wnとなるまで近接させ、前記第1平面部材、前記第2平面部材、前記第1側面部材、前記第2側面部材、前記炉内側端面部材および前記炉外側端面部材で囲われた空間内で前記胚土を圧縮成型することを特徴とする六角レンガ成型方法。
An upper surface and a lower surface of isosceles trapezoids arranged in parallel to each other, a pair of upward slopes connected to both sides of the upper surface, a pair of downward slopes connected to both sides of the lower surface, the upper surface, the lower surface, and a pair A hexagonal brick molding method for molding a hexagonal frustum-shaped hexagonal brick having a hexagonal furnace inner end face and a furnace outer end face connected to the upward slope and the pair of downward slopes, respectively,
First and second plane members arranged in parallel to each other for molding the upper surface and the lower surface, and first and second side members having V-shaped grooves for molding the upward slope and the downward slope. Using a side member, a furnace inner end face member and a furnace outer end face member for molding the hexagonal furnace inner end face and the furnace outer end face,
Design height H of the hexagonal brick from the upper surface to the lower surface, the width Wn of the upper surface and the lower surface on the furnace inner side or the furnace outer side, the length of the upper surface and the lower surface from the furnace inner side to the furnace outer side L
The distance between the first planar member and the second planar member is fixed at the height H, the distance between the furnace inner end surface member and the furnace outer end surface member is fixed at the length L, and the first side member is fixed. , Fixed to the first planar member, the second planar member, the furnace inner end surface member and the furnace outer end surface member, and formed into a bottomed cylindrical shape,
The inside of these is filled with germ soil, and the second side surface member is brought close to the first side surface member until the distance reaches the width dimension Wn, and the first planar member, the second planar member, the first A hexagonal brick molding method, wherein the embryo soil is compression molded in a space surrounded by one side member, the second side member, the furnace inner end surface member, and the furnace outer end surface member.
互いに平行に配置された等脚台形状の上面および下面と、前記上面の両側に接続された一対の上向き斜面および前記下面の両側に接続された一対の下向き斜面と、前記上面、前記下面、一対の前記上向き斜面および一対の前記下向き斜面にそれぞれ接続された六角形状の炉内側端面および炉外側端面とを有する六角錐台形状の六角レンガを成型するための六角レンガ成型方法であって、
前記上面および前記下面を成型するための互いに平行配置された第1平面部材および第2平面部材と、前記上向き斜面および前記下向き斜面を成型するためのV字溝を有する第1側面部材および第2側面部材と、前記六角形状の炉内側端面および炉外側端面を成型するための炉内側端面部材および炉外側端面部材とを用い、
前記六角レンガの前記上面から前記下面までの設計上の高さH、前記上面および前記下面の炉内側端または炉外側の幅寸法Wn、前記上面および前記下面の炉内側から炉外側までの長さLとして、
前記第1平面部材および前記第2平面部材の距離を前記高さHで固定し、前記第1側面部材および前記第2側面部材の距離を前記幅寸法Wnで固定し、前記炉内側端面部材を、前記第1平面部材、前記第2平面部材、前記第1側面部材および前記第2側面部材に固定して有底筒状に形成しておき、
これらの内側に胚土を充填し、前記炉外側端面部材を前記炉内側端面部材に向けて距離が前記長さLとなるまで近接させ、前記第1平面部材、前記第2平面部材、前記第1側面部材、前記第2側面部材、前記炉内側端面部材および前記炉外側端面部材で囲われた空間内で前記胚土を圧縮成型することを特徴とする六角レンガ成型方法。
An upper surface and a lower surface of isosceles trapezoids arranged in parallel to each other, a pair of upward slopes connected to both sides of the upper surface, a pair of downward slopes connected to both sides of the lower surface, the upper surface, the lower surface, and a pair A hexagonal brick molding method for molding a hexagonal frustum-shaped hexagonal brick having a hexagonal furnace inner end face and a furnace outer end face connected to the upward slope and the pair of downward slopes, respectively,
First and second plane members arranged in parallel to each other for molding the upper surface and the lower surface, and first and second side members having V-shaped grooves for molding the upward slope and the downward slope. Using a side member, a furnace inner end face member and a furnace outer end face member for molding the hexagonal furnace inner end face and the furnace outer end face,
Design height H of the hexagonal brick from the upper surface to the lower surface, the width Wn of the upper surface and the lower surface on the furnace inner side or the furnace outer side, the length of the upper surface and the lower surface from the furnace inner side to the furnace outer side L
The distance between the first planar member and the second planar member is fixed at the height H, the distance between the first side member and the second side member is fixed at the width dimension Wn, and the furnace inner end surface member is fixed. The first flat member, the second flat member, the first side member and the second side member are fixed to the bottomed cylindrical shape,
The inside of these is filled with germ soil, the furnace outer end face member is brought close to the furnace inner end face member until the distance reaches the length L, and the first planar member, the second planar member, the first A hexagonal brick molding method, wherein the embryo soil is compression molded in a space surrounded by one side member, the second side member, the furnace inner end surface member, and the furnace outer end surface member.
請求項5または請求項6に記載された六角レンガ成型方法において、
前記胚土を充填する前に、前記炉内側端面部材および前記炉外側端面部材の少なくとも何れかに沿って端部調整部材を設置しておくことを特徴とする六角レンガ成型方法。
In the hexagonal brick molding method according to claim 5 or 6,
A hexagonal brick molding method, wherein an end adjustment member is installed along at least one of the furnace inner end face member and the furnace outer end face member before filling the germ soil.
互いに平行に配置された等脚台形状の上面および下面と、前記上面の両側に接続された一対の上向き斜面および前記下面の両側に接続された一対の下向き斜面と、前記上面、前記下面、一対の前記上向き斜面および一対の前記下向き斜面にそれぞれ接続された六角形状の炉内側端面および炉外側端面とを有する六角錐台形状の六角レンガを成型するための六角レンガ設計方法であって、
設置対象の窯炉における前記炉内側端面または前記炉外側端面の設置半径R、分割数N、前記上向き斜面および前記下向き斜面の幅方向寸法Weとして、
先ず、設置半径Rを分割数Nで除算して炉内側端または炉外側端のピッチPn=R/Nを計算し、
次に、前記ピッチPnから前記幅方向寸法Weを減算して前記上面および前記下面の炉内側端または炉外側端の上下面幅Wnfを計算し、前記ピッチPnに前記幅方向寸法Weを加算して炉内側端または炉外側端での最大幅Wncを計算することを特徴とする本発明の六角レンガ設計方法。
An upper surface and a lower surface of isosceles trapezoids arranged in parallel to each other, a pair of upward slopes connected to both sides of the upper surface, a pair of downward slopes connected to both sides of the lower surface, the upper surface, the lower surface, and a pair A hexagonal brick design method for forming a hexagonal frustum-shaped hexagonal brick having a hexagonal furnace inner end face and a furnace outer end face connected to the upward slope and the pair of downward slopes, respectively,
As the installation radius R of the furnace inner end face or the furnace outer end face in the furnace to be installed, the division number N, the width direction dimension We of the upward slope and the downward slope,
First, the pitch Pn = R / N of the furnace inner end or the furnace outer end is calculated by dividing the installation radius R by the division number N,
Next, the width direction dimension We is subtracted from the pitch Pn to calculate the upper and lower surface width Wnf of the furnace inner end or the furnace outer end of the upper surface and the lower surface, and the width direction dimension We is added to the pitch Pn. And calculating the maximum width Wnc at the furnace inner end or the furnace outer end.
JP2013253320A 2013-12-06 2013-12-06 Hexagonal brick mold and hexagonal brick molding method Active JP6340780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013253320A JP6340780B2 (en) 2013-12-06 2013-12-06 Hexagonal brick mold and hexagonal brick molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013253320A JP6340780B2 (en) 2013-12-06 2013-12-06 Hexagonal brick mold and hexagonal brick molding method

Publications (2)

Publication Number Publication Date
JP2015111018A true JP2015111018A (en) 2015-06-18
JP6340780B2 JP6340780B2 (en) 2018-06-13

Family

ID=53525964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013253320A Active JP6340780B2 (en) 2013-12-06 2013-12-06 Hexagonal brick mold and hexagonal brick molding method

Country Status (1)

Country Link
JP (1) JP6340780B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015148402A (en) * 2014-02-07 2015-08-20 新日鐵住金株式会社 Furnace and furnace building method
WO2018119531A1 (en) * 2016-12-30 2018-07-05 Fernando Bienzobas Saffie Press for compacting and shaping angular parts or products
CN109278163A (en) * 2018-12-12 2019-01-29 怀化智信能源科技有限公司 A kind of concrete mold changing shape according to prefabricated block specifications
CN110274478A (en) * 2019-06-10 2019-09-24 王成 A kind of refractory brick

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949150U (en) * 1972-08-10 1974-04-30
JPH01147013A (en) * 1987-11-30 1989-06-08 Kurosaki Refract Co Ltd Metal refining vessel
JP2007320131A (en) * 2006-05-31 2007-12-13 Hatano Tile:Kk Accessory tile molding device
JP2012112577A (en) * 2010-11-24 2012-06-14 Nippon Steel Corp Kiln furnace, refractory construction method, and refractory block
JP2012228853A (en) * 2011-04-27 2012-11-22 Nippon Steel Corp Mold for hexagonal cross-sectional refractory brick, method for molding hexagonal cross-sectional refractory brick, and method for manufacturing container for molten metal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949150U (en) * 1972-08-10 1974-04-30
JPH01147013A (en) * 1987-11-30 1989-06-08 Kurosaki Refract Co Ltd Metal refining vessel
JP2007320131A (en) * 2006-05-31 2007-12-13 Hatano Tile:Kk Accessory tile molding device
JP2012112577A (en) * 2010-11-24 2012-06-14 Nippon Steel Corp Kiln furnace, refractory construction method, and refractory block
JP2012228853A (en) * 2011-04-27 2012-11-22 Nippon Steel Corp Mold for hexagonal cross-sectional refractory brick, method for molding hexagonal cross-sectional refractory brick, and method for manufacturing container for molten metal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015148402A (en) * 2014-02-07 2015-08-20 新日鐵住金株式会社 Furnace and furnace building method
WO2018119531A1 (en) * 2016-12-30 2018-07-05 Fernando Bienzobas Saffie Press for compacting and shaping angular parts or products
CN109278163A (en) * 2018-12-12 2019-01-29 怀化智信能源科技有限公司 A kind of concrete mold changing shape according to prefabricated block specifications
CN110274478A (en) * 2019-06-10 2019-09-24 王成 A kind of refractory brick

Also Published As

Publication number Publication date
JP6340780B2 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
JP6340780B2 (en) Hexagonal brick mold and hexagonal brick molding method
US8171983B2 (en) Casting die for continuous casting of blooms, slabs, and billets
US2781006A (en) Refractory wall and roof making
RU2681711C2 (en) Method and device for producing brick blanks for masonry bricks, in particular sand-lime bricks, having adjustable mould walls
WO2022062746A1 (en) Concentric-ring single-sided dovetail groove ceramic tile back mold core and manufactured ceramic tile
JP2012106455A (en) Method of manufacturing tire mold
US20170225419A1 (en) Textured die having blocks for manufacturing a textured mould for moulding and vulcanizing tires
US20160067769A1 (en) Casting of engine parts
CN114799176B (en) Die for pressureless sintering diamond reamer of intermediate frequency furnace
KR101480874B1 (en) Aluminum access floor panel for high load equipment
CN212146902U (en) Prefabricated part mould group
JP6221797B2 (en) Kiln furnace and furnace construction method
TWI680270B (en) Brick lining stacking method
JP6079313B2 (en) Square block manufacturing method and rectangular block manufacturing system
CN201104110Y (en) Rotary kiln inner lining fire-proof material raising brick with novel structure
CN110438275B (en) Blast furnace hearth pouring method and mold
CN204079800U (en) A kind of founding high-temperature material insulation can being easy to replacing thermal insulation layer
CN212248330U (en) Coke oven bottom large-volume high-strength castable layered block construction structure and mold
CN211941352U (en) Prefabricated mould device of fused magnesia stove magnesium bell
CN201964773U (en) Combined inner lining of rotary kiln
CN100570258C (en) Rotary kiln inside lining refractory materials injecting brick
CA3008702C (en) Refractory anchor for a furnace refractory tile
CN205325935U (en) Produce mould of hollow building block
CN203976840U (en) A kind of masonry construction that improves the spherical life of bottom
JP6151539B2 (en) Ironing guide member and ironing die having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180430

R151 Written notification of patent or utility model registration

Ref document number: 6340780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350