JP2015110844A5 - - Google Patents

Download PDF

Info

Publication number
JP2015110844A5
JP2015110844A5 JP2015040979A JP2015040979A JP2015110844A5 JP 2015110844 A5 JP2015110844 A5 JP 2015110844A5 JP 2015040979 A JP2015040979 A JP 2015040979A JP 2015040979 A JP2015040979 A JP 2015040979A JP 2015110844 A5 JP2015110844 A5 JP 2015110844A5
Authority
JP
Japan
Prior art keywords
mass
less
rare earth
thermal spray
earth element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015040979A
Other languages
Japanese (ja)
Other versions
JP6281507B2 (en
JP2015110844A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2015040979A priority Critical patent/JP6281507B2/en
Priority claimed from JP2015040979A external-priority patent/JP6281507B2/en
Publication of JP2015110844A publication Critical patent/JP2015110844A/en
Publication of JP2015110844A5 publication Critical patent/JP2015110844A5/ja
Application granted granted Critical
Publication of JP6281507B2 publication Critical patent/JP6281507B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明者らは、上記の課題を解決するために、本発明の希土類元素オキシフッ化物粉末溶射材料として、希土類元素オキシフッ化物粒子の外形のアスペクト比が2以下、粒度分布がD 50 =28〜50μm、D 10 =18〜30μm、D 90 =48〜80μmで、嵩密度が0.8g/cm3以上2g/cm3以下、炭素を0.5質量%以下、酸素を3質量%以上15質量%以下含有する溶射材料をプラズマ溶射すること、これにより炭素含有量が0.1質量%以下、酸素含有量が3質量%以上15質量%以下の溶射皮膜を基材に形成することが有効であることを知見し、本発明をなすに至った。 In order to solve the above-mentioned problems, the present inventors have used the rare earth element oxyfluoride powder sprayed material of the present invention as the rare earth element oxyfluoride particles having an external aspect ratio of 2 or less and a particle size distribution of D 50 = 28 to 50 μm. D 10 = 18-30 μm, D 90 = 48-80 μm , bulk density of 0.8 g / cm 3 or more and 2 g / cm 3 or less, carbon of 0.5 mass% or less, oxygen of 3 mass% or more and 15 mass%. It is effective to plasma spray a thermal spray material contained below, thereby forming a thermal spray coating having a carbon content of 0.1% by mass or less and an oxygen content of 3% by mass to 15% by mass on a substrate. This has been found and the present invention has been made.

従って、本発明は、下記の溶射材料及び溶射部材を提供する。
〔1〕
希土類元素オキシフッ化物粒子の外形のアスペクト比が2以下、粒度分布がD 50 =28〜50μm、D 10 =18〜30μm、D 90 =48〜80μmで、嵩密度が0.8g/cm3以上2g/cm3以下、炭素を0.5質量%以下、酸素を3質量%以上15質量%以下含有することを特徴とする希土類元素オキシフッ化物粉末溶射材料。
〔2〕
希土類元素がY及びLaからLuまでの3A族元素から選ばれる1種又は2種以上である〔1〕に記載の溶射材料。
〔3〕
希土類元素がY、Gd及びErから選ばれる〔2〕に記載の溶射材料。
〔4〕
基材に、〔1〕〜〔3〕のいずれかに記載の溶射材料をプラズマ溶射することにより、炭素含有量が0.1質量%以下、酸素含有量が3質量%以上15質量%以下の溶射皮膜を形成してなることを特徴とする希土類元素オキシフッ化物溶射部材。
Accordingly, the present invention provides the following thermal spray material and thermal spray member.
[1]
The external aspect ratio of the rare earth element oxyfluoride particles is 2 or less, the particle size distribution is D 50 = 28 to 50 μm, D 10 = 18 to 30 μm, D 90 = 48 to 80 μm, and the bulk density is 0.8 g / cm 3 or more to 2 g. / Cm 3 or less, carbon containing 0.5% by mass or less and oxygen containing 3% by mass or more and 15% by mass or less.
[2]
The thermal spray material according to [1], wherein the rare earth element is one or more selected from Y and a group 3A element from La to Lu.
[3]
The thermal spray material according to [2], wherein the rare earth element is selected from Y, Gd, and Er.
[4]
By plasma spraying the thermal spray material according to any one of [1] to [3] on a base material, the carbon content is 0.1 mass% or less and the oxygen content is 3 mass% or more and 15 mass% or less. A rare earth element oxyfluoride sprayed member characterized by forming a sprayed coating.

溶射材料の平均粒子径は10〜100μm、好ましくは15〜60μmである。これは、溶射材料の粒子の大きさが小さすぎると、フレーム中で蒸発してしまうなど、溶射歩留まりが低下するおそれがあり、粒子が大きすぎるとフレーム中で完全に溶融せず、溶射膜の品質が低下するおそれがあるからである。また、造粒後の粉末である溶射材料粉末が内部まで充填していることは、粉末を取り扱う上で割れたりせずに安定していること、空隙部が存在するとその空隙部に好ましくないガス成分を含有し易いのでそれを避けることができること等の理由から、必要なことである。この点で、溶射材料の嵩密度は0.8〜2g/cm3であり、好ましくは1.2〜1.8g/cm3である。
なお、平均粒子径はレーザー光回折法による粒度分布測定装置によって求めることができ、質量平均値D50(即ち、累積質量が50%となるときの粒子径又はメジアン径)として測定することができる。また、粒度分布は、後述する実施例1〜3のとおり、D 50 =28〜50μm、D 10 =18〜30μm、D 90 =48〜80μmとすることができる。
The average particle size of the thermal spray material is 10 to 100 μm, preferably 15 to 60 μm. This is because if the particle size of the sprayed material is too small, it may evaporate in the flame, such as evaporation, and if the particle size is too large, the sprayed material will not melt completely in the frame. This is because the quality may be lowered. In addition, the thermal spray material powder, which is the powder after granulation, is filled to the inside, is stable without cracking when handling the powder, and if there is a void, undesired gas in the void This is necessary for reasons such as being easy to contain components and avoiding them. In this respect, the thermal spray material has a bulk density of 0.8 to 2 g / cm 3 , preferably 1.2 to 1.8 g / cm 3 .
The average particle diameter can be determined by a particle size distribution measuring apparatus using a laser beam diffraction method, and can be measured as a mass average value D 50 (that is, a particle diameter or a median diameter when the cumulative mass is 50%). . Further, particle size distribution, as in Example 1-3 to be described later, can be D 50 = 28~50μm, D 10 = 18~30μm, and D 90 = 48~80μm to.

Claims (4)

希土類元素オキシフッ化物粒子の外形のアスペクト比が2以下、粒度分布がD 50 =28〜50μm、D 10 =18〜30μm、D 90 =48〜80μmで、嵩密度が0.8g/cm3以上2g/cm3以下、炭素を0.5質量%以下、酸素を3質量%以上15質量%以下含有することを特徴とする希土類元素オキシフッ化物粉末溶射材料。 The external aspect ratio of the rare earth element oxyfluoride particles is 2 or less, the particle size distribution is D 50 = 28 to 50 μm, D 10 = 18 to 30 μm, D 90 = 48 to 80 μm, and the bulk density is 0.8 g / cm 3 to 2 g. / Cm 3 or less, carbon containing 0.5% by mass or less and oxygen containing 3% by mass or more and 15% by mass or less. 希土類元素がY及びLaからLuまでの3A族元素から選ばれる1種又は2種以上である請求項1に記載の溶射材料。   The thermal spray material according to claim 1, wherein the rare earth element is one or more selected from Y and a Group 3A element from La to Lu. 希土類元素がY、Gd及びErから選ばれる請求項2に記載の溶射材料。   The thermal spray material according to claim 2, wherein the rare earth element is selected from Y, Gd, and Er. 基材に、請求項1〜3のいずれか1項に記載の溶射材料をプラズマ溶射することにより、炭素含有量が0.1質量%以下、酸素含有量が3質量%以上15質量%以下の溶射皮膜を形成してなるとを特徴とする希土類元素オキシフッ化物溶射部材。   By plasma spraying the thermal spray material according to any one of claims 1 to 3 on a substrate, the carbon content is 0.1 mass% or less, and the oxygen content is 3 mass% or more and 15 mass% or less. A rare earth element oxyfluoride sprayed member characterized by forming a sprayed coating.
JP2015040979A 2015-03-03 2015-03-03 Rare earth element oxyfluoride powder sprayed material and method for producing rare earth element oxyfluoride sprayed member Active JP6281507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015040979A JP6281507B2 (en) 2015-03-03 2015-03-03 Rare earth element oxyfluoride powder sprayed material and method for producing rare earth element oxyfluoride sprayed member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015040979A JP6281507B2 (en) 2015-03-03 2015-03-03 Rare earth element oxyfluoride powder sprayed material and method for producing rare earth element oxyfluoride sprayed member

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012183302A Division JP5939084B2 (en) 2012-08-22 2012-08-22 Method for producing rare earth element oxyfluoride powder sprayed material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017136266A Division JP6620793B2 (en) 2017-07-12 2017-07-12 Rare earth element oxyfluoride powder sprayed material and method for producing rare earth element oxyfluoride sprayed member

Publications (3)

Publication Number Publication Date
JP2015110844A JP2015110844A (en) 2015-06-18
JP2015110844A5 true JP2015110844A5 (en) 2015-10-08
JP6281507B2 JP6281507B2 (en) 2018-02-21

Family

ID=53525861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015040979A Active JP6281507B2 (en) 2015-03-03 2015-03-03 Rare earth element oxyfluoride powder sprayed material and method for producing rare earth element oxyfluoride sprayed member

Country Status (1)

Country Link
JP (1) JP6281507B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11572617B2 (en) 2016-05-03 2023-02-07 Applied Materials, Inc. Protective metal oxy-fluoride coatings
JP6926096B2 (en) * 2016-09-16 2021-08-25 株式会社フジミインコーポレーテッド Material for thermal spraying
TWI733897B (en) * 2016-09-16 2021-07-21 日商福吉米股份有限公司 Materials for spraying
US10443125B2 (en) 2017-05-10 2019-10-15 Applied Materials, Inc. Flourination process to create sacrificial oxy-flouride layer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3523216B2 (en) * 2001-04-06 2004-04-26 信越化学工業株式会社 Rare earth-containing compound particles for thermal spraying, thermal spraying member sprayed with the same
JP3523222B2 (en) * 2000-07-31 2004-04-26 信越化学工業株式会社 Thermal spray material and method of manufacturing the same
JP4044348B2 (en) * 2001-03-08 2008-02-06 信越化学工業株式会社 Spherical particles for thermal spraying and thermal spraying member
JP4273292B2 (en) * 2001-04-06 2009-06-03 信越化学工業株式会社 Thermal spray particles and thermal spray member using the particles
JP4128906B2 (en) * 2003-05-15 2008-07-30 三井金属鉱業株式会社 Cerium-based abrasive and method for producing cerium-based abrasive
EP1524334A1 (en) * 2003-10-17 2005-04-20 Siemens Aktiengesellschaft Protective coating for protecting a structural member against corrosion and oxidation at high temperatures and structural member
JP5861612B2 (en) * 2011-11-10 2016-02-16 信越化学工業株式会社 Rare earth element fluoride powder sprayed material and rare earth element fluoride sprayed member
JP5396672B2 (en) * 2012-06-27 2014-01-22 日本イットリウム株式会社 Thermal spray material and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2015110844A5 (en)
JP2022023164A (en) Metal powder atomization manufacturing processes
Tavares et al. Dual plasma synthesis and characterization of a stable copper–ethylene glycol nanofluid
JP2016535169A5 (en)
MX2019003824A (en) Spherical microparticles.
RU2008130171A (en) MASKING POWDER TASTE
Tuntarawongsa et al. Menthol, borneol, camphor and WS-3 eutectic mixture
JP2017106010A5 (en)
TW201611922A (en) Process for producing a component
JP2016501175A (en) Granular fertilizer with improved dust control
NO773109L (en) METHOD OF MANUFACTURING A HEAT TRANSFER DEVICE
RU2018144108A (en) NICOTINE-CONTAINING PARTICLES
JP2012514450A5 (en)
Poostforooshan et al. Aerosol process for the in situ coating of nanoparticles with a polymer shell
Mursalat et al. Spherical boron powders prepared by mechanical milling in immiscible liquids
JP2017061738A (en) Thermal spray material
CN109715844A (en) Spraying plating material
JP2013193919A (en) Inorganic powder for aerosol deposition method, and method of manufacturing inorganic film using the same
Nagayama et al. Moisture proofing of spray dried particles comprising ammonium nitrate/potassium nitrate/polymer
KR102414657B1 (en) A non-flammable wrapper
JP2017515880A5 (en)
WO2015042334A3 (en) Compositions and methods for aerosol particle coating process using volatile non-flammable solvents
Laux et al. Modification of arc emitted W particles in a model scrape-off layer plasma
JP6044133B2 (en) Glass manufacturing method
JP5361784B2 (en) Method for protecting metallic calcium and protected metallic calcium