JP2015110543A - Benzoic acid production method - Google Patents

Benzoic acid production method Download PDF

Info

Publication number
JP2015110543A
JP2015110543A JP2014058342A JP2014058342A JP2015110543A JP 2015110543 A JP2015110543 A JP 2015110543A JP 2014058342 A JP2014058342 A JP 2014058342A JP 2014058342 A JP2014058342 A JP 2014058342A JP 2015110543 A JP2015110543 A JP 2015110543A
Authority
JP
Japan
Prior art keywords
benzoic acid
acid
group
compound
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014058342A
Other languages
Japanese (ja)
Inventor
佳宏 寺田
Yoshihiro Terada
佳宏 寺田
森本 正雄
Masao Morimoto
正雄 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Fine Chemicals Co Ltd
Original Assignee
Toray Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Fine Chemicals Co Ltd filed Critical Toray Fine Chemicals Co Ltd
Priority to JP2014058342A priority Critical patent/JP2015110543A/en
Publication of JP2015110543A publication Critical patent/JP2015110543A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide, for production of benzoic acid, which is an important compound in synthesizing an organic compound, a novel synthesis method and an industrially suitable production method using ingredients originating from non-fossil resources as main ingredients.SOLUTION: In the benzoic acid production method, an ingredient represented by the general formula (I) in the figure is subjected to liquid phase oxidation with a molecular oxygen-containing gas in the presence of a catalyst comprising a bromine compound and a transition metal compound. (In the formula, R represents a carboxy group, an alkoxycarbonyl group or an amide group.)

Description

本発明は安息香酸を製造する方法に関する。 The present invention relates to a method for producing benzoic acid.

安息香酸は、防腐剤、アニリン染料、医薬品、香料、樹脂塗料原料等で広く使用されている。安息香酸の製造法としては、(1)塩化ベンゾイルをサラシ粉の熱溶液で処理する方法、(2)トルエンを過硫酸マンガンあるいは二酸化マンガンを用いて直接酸化する方法、(3)フタル酸から脱炭酸反応によって製造する方法が一般的である。   Benzoic acid is widely used in antiseptics, aniline dyes, pharmaceuticals, fragrances, resin coating materials and the like. The production method of benzoic acid includes (1) a method of treating benzoyl chloride with a hot solution of salashi powder, (2) a method of directly oxidizing toluene with manganese persulfate or manganese dioxide, and (3) removal from phthalic acid. A method of producing by a carbonic acid reaction is common.

安息香酸は重要な有機化合物であり、効率よく合成するためにいくつもの試みがされている。特にフェニル乳酸の類似骨格を有する原料を使用した製造法として、例えば、下記一般式(II)で表される化合物を水素化ナトリウム存在下、空気酸化することで安息香酸を高収率で合成する方法が報告されている(非特許文献1を参照)。

Figure 2015110543
Benzoic acid is an important organic compound, and several attempts have been made to synthesize it efficiently. In particular, as a production method using a raw material having a similar skeleton of phenyllactic acid, for example, a compound represented by the following general formula (II) is synthesized in air in the presence of sodium hydride to synthesize benzoic acid in a high yield. A method has been reported (see Non-Patent Document 1).
Figure 2015110543

また、下記一般式(III)で表される化合物に、2−クロロアントラキノンを添加し、空気酸化することで高収率にて安息香酸を合成する方法も報告されている(非特許文献2を参照)。

Figure 2015110543
いずれの反応もα位にヒドロキシル基を有する化合物が原料であり、選択的にα位を酸化しやすいと考えられる。 In addition, a method of synthesizing benzoic acid in a high yield by adding 2-chloroanthraquinone to the compound represented by the following general formula (III) and oxidizing in air has been reported (Non-patent Document 2). reference).
Figure 2015110543
In any reaction, a compound having a hydroxyl group at the α-position is a raw material, and it is considered that the α-position is easily oxidized selectively.

また、ベンジル位(α位)がヒドロキシル基以外の例として、下記一般式(IV)で表される化合物から、Bi(III)マンデル酸を触媒にて高収率で安息香酸を合成する方法が報告されている(非特許文献3参照)。

Figure 2015110543
Further, as an example in which the benzyl position (α position) is other than the hydroxyl group, a method of synthesizing benzoic acid in a high yield from a compound represented by the following general formula (IV) using Bi (III) mandelic acid as a catalyst. It has been reported (see Non-Patent Document 3).
Figure 2015110543

この合成例もα位に置換基を有し、α位が選択的に酸化されやすいと考えられる。   This synthesis example also has a substituent at the α-position, and the α-position is considered to be easily oxidized selectively.

しかし、これらの方法はいずれも前記一般式(II),(III),(IV)で表される化合物、すなわち石油資源由来の化合物を原料としており、安息香酸を工業的に生産する過程において、大量の熱や二酸化炭素が排出され地球温暖化を招く一因とも考えられる。   However, all of these methods use compounds represented by the above general formulas (II), (III), and (IV), that is, compounds derived from petroleum resources as raw materials, and in the process of industrially producing benzoic acid, A large amount of heat and carbon dioxide are emitted, which may contribute to global warming.

一方、非化石資源を利用するという発想のもと、再生可能資源由来であるグルコースを微生物にて安息香酸に変換する方法が知られている(例えば特許文献1参照)。   On the other hand, based on the idea of using non-fossil resources, a method of converting glucose derived from renewable resources into benzoic acid by a microorganism is known (for example, see Patent Document 1).

しかし、微生物を用いた特許文献1に記載の方法を用いて工業的に安息香酸の大量合成を行うには、微生物の培養にあたって濃度を高くできないことおよび培養に長時間要する等の課題がある。   However, in order to industrially synthesize benzoic acid in large quantities using the method described in Patent Document 1 using microorganisms, there are problems such as the fact that the concentration cannot be increased and the culture takes a long time.

特開2011−83288号公報JP 2011-83288 A

Sunhae kang, 外4名、テトラへドロン レターズ(Tetrahedron Letters),2011,52,p.502−504Sunhae kang, 4 others, Tetrahedron Letters, 2011, 52, p. 502-504 Yoko Matsusaki, 外4名、シンレット(Synlett),2012,23,p.2059−2063Yoko Matsusaki, 4 others, Synlett, 2012, 23, p. 2059-2063 Veronique LE Boisselier, 外3名、テトラへドロン(Tetrahedron)、1995,51,p.4991−4996Veronique LE Boisselier, 3 others, Tetrahedron, 1995, 51, p. 4991-4996

石油価格の高騰や枯渇が懸念される近年、石油資源に依存しない有機化合物の製造方法の創出が強く望まれている。   In recent years, there has been a strong demand for the creation of an organic compound production method that does not depend on petroleum resources.

本発明の目的は、有機化合物の合成に当たり重要な化合物である安息香酸の製造にあたって新規な合成方法および主原料として非化石資源由来の原料を用いて、工業的に適した製造方法を提供することを課題とする。   An object of the present invention is to provide an industrially suitable production method using a novel synthetic method and a raw material derived from a non-fossil resource as a main raw material in the production of benzoic acid which is an important compound in the synthesis of an organic compound. Is an issue.

本発明者等は、前記課題を解決するために鋭意検討を重ねた結果、本発明を見出すに至った。   As a result of intensive studies in order to solve the above problems, the present inventors have found the present invention.

即ち、本発明は、下記一般式(I)で表される化合物を、遷移金属化合物および臭素化合物からなる触媒の存在下、分子状酸素含有ガスで酸化することにより安息香酸を製造する方法である。

Figure 2015110543
(式中Rはカルボキシ基、アルコキシカルボニル基またはアミド基を示す。) That is, the present invention is a method for producing benzoic acid by oxidizing a compound represented by the following general formula (I) with a molecular oxygen-containing gas in the presence of a catalyst comprising a transition metal compound and a bromine compound. .
Figure 2015110543
(In the formula, R represents a carboxy group, an alkoxycarbonyl group or an amide group.)

本発明の製造方法により、α位(ベンジル位)に置換基を有しない化合物であっても、β位(フェネチル位)にヒドロキシル基を有する化合物であれば、空気酸化によりα位を選択的に酸化でき、安息香酸を効率的な工業的に適した方法で製造することが可能である。   According to the production method of the present invention, even if the compound does not have a substituent at the α-position (benzyl position), the α-position can be selectively selected by air oxidation if the compound has a hydroxyl group at the β-position (phenethyl position). It can be oxidized and benzoic acid can be produced in an efficient industrially suitable manner.

本発明により、例えば糖源から発酵法により製造されたL−フェニルアラニンから公知の技術にてフェニル乳酸を合成するか、或いは発酵法によりフェニル乳酸を製造し、その後、フェニル乳酸を空気酸化することで安息香酸を製造できる。よって、非化石資源由来の原料を用いて、安息香酸を効率的な工業的に適した方法で製造することが可能である。   According to the present invention, for example, phenyl lactic acid is synthesized by a known technique from L-phenylalanine produced by fermentation from a sugar source, or phenyl lactic acid is produced by fermentation, and then the phenyl lactic acid is oxidized by air. Benzoic acid can be produced. Therefore, it is possible to manufacture benzoic acid by an efficient industrially suitable method using raw materials derived from non-fossil resources.

前記一般式(I)中のRとしてカルボキシ基が好ましい。また前記遷移金属化合物が、マンガン、タングステン、モリブデン、クロム、バナジウム、コバルト、セリウムから選ばれる少なくとも1種の遷移金属、またはその化合物であることが好ましい。さらに前記液相酸化を、0〜6MPaの反応圧力で行うことが好ましい。   A carboxy group is preferable as R in the general formula (I). The transition metal compound is preferably at least one transition metal selected from manganese, tungsten, molybdenum, chromium, vanadium, cobalt, and cerium, or a compound thereof. Further, the liquid phase oxidation is preferably performed at a reaction pressure of 0 to 6 MPa.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の製造方法は、下記一般式(I)で表される化合物を、出発原料にする。

Figure 2015110543
(式中、Rはカルボキシ基、アルコキシカルボニル基またはアミド基を示す。) In the production method of the present invention, a compound represented by the following general formula (I) is used as a starting material.
Figure 2015110543
(In the formula, R represents a carboxy group, an alkoxycarbonyl group or an amide group.)

前記一般式(I)において、Rはカルボキシ基、アルコキシカルボニル基またはアミド基であり、好ましくはカルボキシ基である。前記一般式(I)で表される化合物は、β位(フェネチル位)にヒドロキシル基を有するため、空気酸化によりα位を選択的に酸化でき、安息香酸を効率的に製造することができる。このため、Rがアルキル基、フェニル基でも、効率的に安息香酸を製造することが期待される。   In the general formula (I), R is a carboxy group, an alkoxycarbonyl group or an amide group, preferably a carboxy group. Since the compound represented by the general formula (I) has a hydroxyl group at the β-position (phenethyl position), the α-position can be selectively oxidized by air oxidation, and benzoic acid can be produced efficiently. For this reason, it is expected that benzoic acid is efficiently produced even when R is an alkyl group or a phenyl group.

Rがカルボキシ基である前記一般式(I)で表される化合物は、フェニル乳酸である。   The compound represented by the general formula (I) where R is a carboxy group is phenyllactic acid.

アルコキシカルボニル基は、一般式−CO−OR1(R1はアルキル基を表す。)で表され、例えばメトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、ブトキシカルボニル基等が例示される。アルコキシカルボニル基の炭素数としては、好ましくは2〜7、より好ましくは2〜4であるとよい。Rがアルコキシカルボニル基である前記一般式(I)で表される化合物として、3−フェニル乳酸メチル、3−フェニル乳酸エチル、3−フェニル乳酸プロピル、3−フェニル乳酸ブチル等が挙げられる。 The alkoxycarbonyl group is represented by a general formula —CO—OR 1 (R 1 represents an alkyl group), and examples thereof include a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, and a butoxycarbonyl group. The number of carbon atoms of the alkoxycarbonyl group is preferably 2 to 7, more preferably 2 to 4. Examples of the compound represented by the general formula (I) in which R is an alkoxycarbonyl group include 3-phenyl methyl lactate, 3-phenyl ethyl lactate, 3-phenyl propyl lactate, and 3-phenyl butyl lactate.

アミド基は、一般式−CO−NR23(R2,R3は互いに独立して水素、アルキル基を表す。)で表される。R2,R3は、好ましくは水素、炭素数1〜3のアルキル基であるとよい。アミド基Rとしては、例えばアミド基(−CONH2)、メチルアミド基、エチルアミド基、プロピルアミド基、ジメチルアミド基、メチルエチルアミド基、ジエチルアミド基等が例示される。Rがアミド基である前記一般式(I)で表される化合物として、例えば2‐ヒドロキシ−3−フェニルプロピオンアミド、N−メチル−2−ヒドロキシ−3−フェニルプロピオンアミド、N,N−ジメチル−2−ヒドロキシ−3−フェニルプロピオンアミド等が挙げられる。 The amide group is represented by the general formula —CO—NR 2 R 3 (R 2 and R 3 each independently represents hydrogen or an alkyl group). R 2 and R 3 are preferably hydrogen or an alkyl group having 1 to 3 carbon atoms. Examples of the amide group R include an amide group (—CONH 2 ), a methylamide group, an ethylamide group, a propylamide group, a dimethylamide group, a methylethylamide group, and a diethylamide group. Examples of the compound represented by the general formula (I) in which R is an amide group include 2-hydroxy-3-phenylpropionamide, N-methyl-2-hydroxy-3-phenylpropionamide, N, N-dimethyl- Examples include 2-hydroxy-3-phenylpropionamide.

アルキル基としては、好ましくは炭素数1〜6、より好ましくは炭素数1〜4のアルキル基がよく、直鎖状、分岐鎖状のいずれでもよい。アルキル基として、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec−ブチル基、tert−ブチル基等を例示することができる。Rがアルキル基である前記一般式(I)で表される化合物として、例えば1−フェニル−2−プロパノール、1−フェニル−2−ブタノール、1−フェニル−2−ヘプタノール、1−フェニル−2−ヘキサノール、などが例示される。   The alkyl group is preferably an alkyl group having 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, and may be linear or branched. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a sec-butyl group, and a tert-butyl group. Examples of the compound represented by the general formula (I) in which R is an alkyl group include 1-phenyl-2-propanol, 1-phenyl-2-butanol, 1-phenyl-2-heptanol, and 1-phenyl-2- Examples include hexanol.

またRがフェニル基である前記一般式(I)で表される化合物は、1,2−ジフェニルエタノールである。   Moreover, the compound represented by the said general formula (I) whose R is a phenyl group is 1, 2- diphenylethanol.

前記一般式(I)で表される化合物のなかでも、フェニル乳酸を出発原料とすることが好ましい。フェニル乳酸は、一般的に非化石資源由来の糖源から発酵法で製造されるL−フェニルアラニンを原料に公知の技術で製造することができる。   Among the compounds represented by the general formula (I), it is preferable to use phenyllactic acid as a starting material. Phenyllactic acid can be produced by a known technique using L-phenylalanine, which is generally produced by fermentation from a sugar source derived from a non-fossil resource.

本発明の製造方法において、反応に使用する溶媒としては、蟻酸、酢酸、プロピオン酸、酪酸などの有機酸類、四塩化炭素、ジクロロメタン、クロロホルム、1,2−ジクロロエタン、クロロベンゼンなどの含ハロゲン溶媒、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、sec−ブタノール、tert−ブタノールなどのアルコール類、ベンゼン、トルエン、エチルベンゼン、o−キシレン、m−キシレン、p−キシレンなどの芳香族炭化水素類、アセトニトリルなどのニトリル類、テトラヒドロフラン、シクロペンチルメチルエーテル、ジエチルエーテルなどのエーテル類、アセトン、アセチルアセトン、エチルメチルケトン、3−ヘプタノン、4−ヘプタノン、2−ペンタノン、3−ペンタノンなどのケトン類、N,N’−ジメチルホルムアミド、ジメチルスルホキシド、ヘキサメチルホスホトリアミド、水が挙げられ、好ましくは、蟻酸、酢酸、プロピオン酸、酪酸などの有機酸類、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、sec−ブタノール、tert−ブタノールなどのアルコール類、テトラヒドロフラン、シクロペンチルメチルエーテル、ジエチルエーテルなどのエーテル類、水が挙げられ、より好ましくは酢酸である。   In the production method of the present invention, the solvent used for the reaction includes organic acids such as formic acid, acetic acid, propionic acid and butyric acid, halogen-containing solvents such as carbon tetrachloride, dichloromethane, chloroform, 1,2-dichloroethane and chlorobenzene, methanol Alcohols such as ethanol, propanol, isopropanol, butanol, isobutanol, sec-butanol, tert-butanol, aromatic hydrocarbons such as benzene, toluene, ethylbenzene, o-xylene, m-xylene, p-xylene, acetonitrile Nitriles such as tetrahydrofuran, cyclopentyl methyl ether, diethyl ether, and other ethers, acetone, acetylacetone, ethyl methyl ketone, 3-heptanone, 4-heptanone, 2-pentanone, 3-pen Non-ketones such as N, N′-dimethylformamide, dimethyl sulfoxide, hexamethylphosphotriamide, and water, preferably organic acids such as formic acid, acetic acid, propionic acid, butyric acid, methanol, ethanol, propanol, Examples include alcohols such as isopropanol, butanol, isobutanol, sec-butanol and tert-butanol, ethers such as tetrahydrofuran, cyclopentylmethyl ether and diethyl ether, and water, and more preferred is acetic acid.

本発明の製造方法は、上述した出発原料を遷移金属化合物および臭素化合物からなる触媒の存在下、分子状酸素含有ガスで液相酸化することにより安息香酸を製造することを特徴とする。   The production method of the present invention is characterized in that benzoic acid is produced by subjecting the above-mentioned starting material to liquid phase oxidation with a molecular oxygen-containing gas in the presence of a catalyst comprising a transition metal compound and a bromine compound.

遷移金属化合物の使用量は遷移金属換算で、使用する溶媒に対して0.5wt%以下が好ましい。これを超える量を用いることは、生成物から遷移金属化合物を分離する手間やコストの面での負担が増加する。   The amount of the transition metal compound used is preferably 0.5 wt% or less with respect to the solvent used, in terms of transition metal. Use of an amount exceeding this increases the labor and cost of separating the transition metal compound from the product.

遷移金属化合物として用いられる遷移金属は5〜10族より選ばれる金属を用いるのが好ましく、触媒活性を高めるために複数種を併用してもよい。好ましくはマンガン、タングステン、モリブデン、クロム、バナジウム、コバルト、セリウムから選ばれる少なくとも一種が用いられる。より好ましくはコバルトである。遷移金属化合物としては、上述した遷移金属および/またはこれら遷移金属の化合物を使用することができる。遷移金属化合物としては酢酸マンガン、酢酸コバルトが好ましい。   As the transition metal used as the transition metal compound, a metal selected from Group 5 to 10 is preferably used, and a plurality of types may be used in combination in order to increase the catalytic activity. Preferably, at least one selected from manganese, tungsten, molybdenum, chromium, vanadium, cobalt, and cerium is used. More preferably, it is cobalt. As the transition metal compound, the above-described transition metals and / or compounds of these transition metals can be used. As the transition metal compound, manganese acetate and cobalt acetate are preferable.

臭素化合物としては、臭化水素、臭化水素酸、アルカリ金属臭化物、臭化アンモニウムなどの無機臭素化合物およびテトラブロムエタン、ブロム酢酸、臭化ベンジルなどの有機臭素化合物が使用可能である。臭素化合物としては、臭化水素、臭化水素酸がより好ましい。   As the bromine compound, inorganic bromine compounds such as hydrogen bromide, hydrobromic acid, alkali metal bromide, and ammonium bromide, and organic bromine compounds such as tetrabromoethane, bromoacetic acid, and benzyl bromide can be used. As the bromine compound, hydrogen bromide and hydrobromic acid are more preferable.

遷移金属化合物と、臭素化合物との重量比は、1:0.1〜1:100であることが好ましい。さらに好ましくは1:0.1〜1:30である。より好ましくは1:0.1〜1:20である。   The weight ratio of the transition metal compound to the bromine compound is preferably 1: 0.1 to 1: 100. More preferably, it is 1: 0.1 to 1:30. More preferably, it is 1: 0.1 to 1:20.

本発明による酸化反応は液相酸化反応が好ましく、反応は好ましくは80〜250℃、より好ましくは90〜200℃、さらに好ましくは150〜200℃の間で行われる。反応温度が高すぎると副反応が起こり、低すぎると反応速度が遅くなり好ましくない。   The oxidation reaction according to the present invention is preferably a liquid phase oxidation reaction, and the reaction is preferably performed at 80 to 250 ° C, more preferably 90 to 200 ° C, and further preferably 150 to 200 ° C. If the reaction temperature is too high, side reactions occur, and if it is too low, the reaction rate is undesirably low.

本発明では、酸化剤として分子状酸素含有ガスを用いる。分子状酸素含有ガスとしては純酸素や工業排ガスも使用可能であるが、工業的には通常の空気または空気と工業排ガスの混合ガスが適している。   In the present invention, a molecular oxygen-containing gas is used as the oxidizing agent. Although pure oxygen or industrial exhaust gas can be used as the molecular oxygen-containing gas, industrially, normal air or a mixed gas of air and industrial exhaust gas is suitable.

液相酸化反応の反応圧力は、ゲージ圧で、常圧(0MPa)〜6MPaの間の範囲、好ましくは0〜3MPa、より好ましくは0〜2MPaの範囲にすることができる。このとき、反応器からの排ガス中の酸素濃度が、爆発限界濃度以下になるように、反応圧力を操作するのが好ましい。   The reaction pressure of the liquid phase oxidation reaction is a gauge pressure and can be in a range between normal pressure (0 MPa) and 6 MPa, preferably 0 to 3 MPa, more preferably 0 to 2 MPa. At this time, it is preferable to control the reaction pressure so that the oxygen concentration in the exhaust gas from the reactor is below the explosion limit concentration.

本発明の製造方法は常圧(0MPa)でも反応が可能であり、特殊な加圧反応装置を必要とせず工業的に容易であるという特徴を有している。   The production method of the present invention is characterized in that the reaction is possible even at normal pressure (0 MPa), and it is industrially easy without requiring a special pressure reactor.

以下実施例により本発明を説明するが、本発明はこれらの実施例により限定されるものではない。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

実施例中、安息香酸の収率は以下に示す高速液体クロマトグラフィー(HPLC)を用いた方法で測定し定量した。   In the examples, the yield of benzoic acid was measured and quantified by the following method using high performance liquid chromatography (HPLC).

高速液体クロマトグラフィー(HPLC)の分析条件
カラム:Inertsil ODS−3(ジーエルサイエンス株式会社製)
移動相 : A液 アセトニトリル100%(高速液体クロマトグラフィー用メタノール)
B液 りん酸水溶液 (pH2.3)
グラジエント:0〜5分 B液/A液=10/90
5〜30分 B液/A液=10/90→90/10
30〜31分 B液/A液=90/10
35分 B液/A液=10/90
流速 :1.0ml
カラム温度:40℃
検出器 :UV(210nm)
保持時間: 17.8分(安息香酸)
15.8分(フェニル乳酸)
20.2分(フェニルピルビン酸)
4.7分 (フェニルアラニン)
20.3分 (桂皮酸)
Analytical condition column for high performance liquid chromatography (HPLC): Inertsil ODS-3 (manufactured by GL Sciences Inc.)
Mobile phase: Liquid A 100% acetonitrile (methanol for high performance liquid chromatography)
Liquid B Phosphoric acid aqueous solution (pH 2.3)
Gradient: 0 to 5 minutes B solution / A solution = 10/90
5-30 minutes B solution / A solution = 10/90 → 90/10
30-31 minutes B solution / A solution = 90/10
35 minutes Liquid B / Liquid A = 10/90
Flow rate: 1.0ml
Column temperature: 40 ° C
Detector: UV (210 nm)
Retention time: 17.8 minutes (benzoic acid)
15.8 minutes (phenyl lactic acid)
20.2 minutes (phenylpyruvic acid)
4.7 minutes (phenylalanine)
20.3 minutes (cinnamic acid)

実施例1
温度計、コンデンサー、攪拌機および空気循環ポンプからフローメーターを経由させて空気導入ラインを備え付けた200mL四つ口フラスコに、S−(−)−3−フェニル乳酸1.5g(9.0mmol)、酢酸120g、酢酸コバルト(II)四水和物0.61g、酢酸マンガン(II)四水和物0.031g、臭化水素酸(47〜49重量%)0.84gを加え、空気を200〜300mL/分の流量で液中にバブリングを開始した。
Example 1
To a 200 mL four-necked flask equipped with an air introduction line from a thermometer, a condenser, a stirrer and an air circulation pump via a flow meter, 1.5 g (9.0 mmol) of S-(−)-3-phenyllactic acid, acetic acid 120 g, 0.61 g of cobalt (II) acetate tetrahydrate, 0.031 g of manganese (II) acetate tetrahydrate, 0.84 g of hydrobromic acid (47 to 49% by weight) were added, and the air was added to 200 to 300 mL. Bubbling was started in the liquid at a flow rate of / min.

その後、90〜95℃に昇温して6時間攪拌し、青色の均一溶液として反応液を得た。   Then, it heated up at 90-95 degreeC and stirred for 6 hours, and obtained the reaction liquid as a blue uniform solution.

反応液をHPLCにて定量分析したところ、収率58%で安息香酸の生成を確認した。   When the reaction solution was quantitatively analyzed by HPLC, the production of benzoic acid was confirmed at a yield of 58%.

安息香酸の同定は、HPLC、GCおよびGC−MSによって行った。   Benzoic acid was identified by HPLC, GC and GC-MS.

実施例2
温度計、コンデンサー、攪拌機および空気循環ポンプからフローメーターを経由させて空気導入ラインを備え付けた200mL四つ口フラスコに、S−(−)−3−フェニル乳酸1.5g(9.0mmol)、酢酸120g、酢酸コバルト(II)四水和物0.61g、酢酸マンガン(II)四水和物0.031g、臭化水素酸(47〜49重量%)0.84gを加え、空気を200〜300mL/分の流量で液中にバブリングを開始した。
Example 2
To a 200 mL four-necked flask equipped with an air introduction line from a thermometer, a condenser, a stirrer and an air circulation pump via a flow meter, 1.5 g (9.0 mmol) of S-(−)-3-phenyllactic acid, acetic acid 120 g, 0.61 g of cobalt (II) acetate tetrahydrate, 0.031 g of manganese (II) acetate tetrahydrate, 0.84 g of hydrobromic acid (47 to 49% by weight) were added, and the air was added to 200 to 300 mL. Bubbling was started in the liquid at a flow rate of / min.

その後、90〜95℃に昇温して6時間攪拌し、青色の均一溶液として反応液を得た。反応液をHPLCにて定量分析したところ、安息香酸の収率は57%で実施例1と同等であった。   Then, it heated up at 90-95 degreeC and stirred for 6 hours, and obtained the reaction liquid as a blue uniform solution. When the reaction solution was quantitatively analyzed by HPLC, the yield of benzoic acid was 57%, which was the same as in Example 1.

さらに、酢酸コバルト(II)四水和物0.61g、酢酸マンガン(II)四水和物 0.031g、臭化水素酸(47〜49重量%)0.84gを追添し、さらに90〜95℃にて7時間攪拌を行ったが、安息香酸の収率は58%であった。   Further, 0.61 g of cobalt (II) acetate tetrahydrate, 0.031 g of manganese acetate (II) tetrahydrate, and 0.84 g of hydrobromic acid (47 to 49% by weight) were added, and 90 to The mixture was stirred at 95 ° C. for 7 hours, and the yield of benzoic acid was 58%.

実施例3
温度計、コンデンサー、攪拌機および空気循環ポンプからフローメーターを経由させて空気導入ラインを備え付けた200mL四つ口フラスコに、S−(−)−3−フェニル乳酸1.5g(9.0mmol)、酢酸120g、酢酸コバルト(II)四水和物0.61g、酢酸マンガン(II)四水和物0.031g、臭化水素酸(47〜49重量%)0.84gを加え、空気を200〜300mL/分の流量で液中にバブリングを開始した。
Example 3
To a 200 mL four-necked flask equipped with an air introduction line from a thermometer, a condenser, a stirrer and an air circulation pump via a flow meter, 1.5 g (9.0 mmol) of S-(−)-3-phenyllactic acid, acetic acid 120 g, 0.61 g of cobalt (II) acetate tetrahydrate, 0.031 g of manganese (II) acetate tetrahydrate, 0.84 g of hydrobromic acid (47 to 49% by weight) were added, and the air was added to 200 to 300 mL. Bubbling was started in the liquid at a flow rate of / min.

その後、85〜90℃に昇温して6時間攪拌し、青色の均一溶液として反応液を得た。   Then, it heated up at 85-90 degreeC and stirred for 6 hours, and obtained the reaction liquid as a blue uniform solution.

反応液をHPLCにて定量分析したところ、安息香酸の収率は58%で実施例1と同じで、反応温度を5℃下げても収率は変わらなかった。   When the reaction solution was quantitatively analyzed by HPLC, the yield of benzoic acid was 58%, the same as in Example 1. Even when the reaction temperature was lowered by 5 ° C., the yield did not change.

実施例4
温度計、コンデンサー、攪拌機および空気循環ポンプからフローメーターを経由させて空気導入ラインを備え付けた200mL四つ口フラスコに、S−(−)−3−フェニル乳酸1.5g(9.0mmol)、酢酸120g、酢酸コバルト(II)四水和物1.22g、酢酸マンガン(II)四水和物0.068g、臭化水素酸(47〜49重量%)1.68gを加え、空気を200〜300mL/分の流量で液中にバブリングを開始した。
Example 4
To a 200 mL four-necked flask equipped with an air introduction line from a thermometer, a condenser, a stirrer and an air circulation pump via a flow meter, 1.5 g (9.0 mmol) of S-(−)-3-phenyllactic acid, acetic acid 120 g, cobalt acetate (II) tetrahydrate 1.22 g, manganese acetate (II) tetrahydrate 0.068 g, hydrobromic acid (47 to 49% by weight) 1.68 g are added, and the air is 200 to 300 mL. Bubbling was started in the liquid at a flow rate of / min.

その後、85〜90℃に昇温して5時間攪拌し、青色の均一溶液として反応液を得た。   Then, it heated up at 85-90 degreeC, and stirred for 5 hours, and the reaction liquid was obtained as a blue uniform solution.

反応液をHPLCにて定量分析したところ、安息香酸の収率は63%であった。   When the reaction solution was quantitatively analyzed by HPLC, the yield of benzoic acid was 63%.

さらに85〜90℃にて2時間攪拌したが、安息香酸の収率は63%と変わらなかった。   Furthermore, although it stirred at 85-90 degreeC for 2 hours, the yield of benzoic acid did not change with 63%.

実施例5
温度計、コンデンサー、攪拌機、滴下ロートおよび空気循環ポンプからフローメーターを経由させて空気導入ラインを備え付けた200mL四つ口フラスコに、酢酸100g、酢酸コバルト(II)四水和物1.22g、酢酸マンガン(II)四水和物0.068g、臭化水素酸(47〜49重量%)1.68gを加え、空気を200〜300mL/分の流量で液中にバブリングを開始し、90〜95℃に昇温した。
Example 5
A 200 mL four-necked flask equipped with an air introduction line from a thermometer, a condenser, a stirrer, a dropping funnel and an air circulation pump through a flow meter was charged with 100 g of acetic acid, 1.22 g of cobalt (II) acetate tetrahydrate, acetic acid. Manganese (II) tetrahydrate 0.068 g, hydrobromic acid (47-49 wt%) 1.68 g were added, and bubbling was started in the liquid at a flow rate of 200-300 mL / min. The temperature was raised to ° C.

その後、S−(−)−3−フェニル乳酸1.5g(9.0mmol)を酢酸20gに溶解した溶液を1.5時間かけて90〜95℃を維持しながら滴下した。   Thereafter, a solution obtained by dissolving 1.5 g (9.0 mmol) of S-(−)-3-phenyllactic acid in 20 g of acetic acid was added dropwise while maintaining 90 to 95 ° C. over 1.5 hours.

滴下終了後、90〜95℃にて5時間攪拌し、青色の均一溶液として反応液を得た。   After completion of dropping, the mixture was stirred at 90 to 95 ° C. for 5 hours to obtain a reaction solution as a blue uniform solution.

反応液をHPLCにて定量分析したところ、安息香酸の収率は61%であった。   When the reaction solution was quantitatively analyzed by HPLC, the yield of benzoic acid was 61%.

実施例6
還流冷却器と回転羽攪拌器を備えた1Lのチタン製オートクレーブにS−(−)−3−フェニル乳酸10g(60mmol)、酢酸300g、酢酸コバルト(II)四水和物1.5g、酢酸マンガン(II)四水和物0.085g、臭化水素酸(47〜49重量%)2.1gを加え、反応圧力1.5MPa、反応温度95〜100℃の条件で、空気を吹き込み75分間接触させた。この間、オートクレーブからの排ガスが、その酸素濃度が11%以下、排ガス流量が0.5〜2.0L/分になるように空気の吹き込み量を調節した。冷却後、反応液をHPLCにて定量分析したところ、安息香酸の収率は61%であった。
Example 6
In a 1 L titanium autoclave equipped with a reflux condenser and a rotating blade stirrer, 10 g (60 mmol) of S-(-)-3-phenyllactic acid, 300 g of acetic acid, 1.5 g of cobalt acetate (II) tetrahydrate, manganese acetate (II) 0.085 g of tetrahydrate and 2.1 g of hydrobromic acid (47 to 49% by weight) were added, and air was blown in under a reaction pressure of 1.5 MPa and a reaction temperature of 95 to 100 ° C. for 75 minutes. I let you. During this time, the amount of air blown was adjusted so that the exhaust gas from the autoclave had an oxygen concentration of 11% or less and an exhaust gas flow rate of 0.5 to 2.0 L / min. After cooling, when the reaction solution was quantitatively analyzed by HPLC, the yield of benzoic acid was 61%.

実施例7
還流冷却器と回転羽攪拌器を備えた1Lのチタン製オートクレーブにS−(−)−3−フェニル乳酸10g(60mmol)、酢酸300g、酢酸コバルト(II)四水和物1.5g、酢酸マンガン(II)四水和物0.085g、臭化水素酸(47〜49重量%)2.1gを加え、反応圧力1.5MPa、反応温度110〜120℃の条件で、空気を吹き込み70分間接触させた。この間、オートクレーブからの排ガスが、その酸素濃度が11%以下、排ガス流量が0.5〜2.0L/分になるように空気の吹き込み量を調節した。冷却後、反応液をHPLCにて定量分析したところ、安息香酸の収率は61%であった。
Example 7
In a 1 L titanium autoclave equipped with a reflux condenser and a rotating blade stirrer, 10 g (60 mmol) of S-(-)-3-phenyllactic acid, 300 g of acetic acid, 1.5 g of cobalt acetate (II) tetrahydrate, manganese acetate (II) 0.085 g of tetrahydrate and 2.1 g of hydrobromic acid (47 to 49% by weight) were added, and air was blown in for 70 minutes under conditions of a reaction pressure of 1.5 MPa and a reaction temperature of 110 to 120 ° C. I let you. During this time, the amount of air blown was adjusted so that the exhaust gas from the autoclave had an oxygen concentration of 11% or less and an exhaust gas flow rate of 0.5 to 2.0 L / min. After cooling, when the reaction solution was quantitatively analyzed by HPLC, the yield of benzoic acid was 61%.

実施例8
還流冷却器と回転羽攪拌器を備えた1Lのチタン製オートクレーブにS−(−)−3−フェニル乳酸10g(60mmol)、酢酸300g、酢酸コバルト(II)四水和物1.5g、酢酸マンガン(II)四水和物0.085g、臭化水素酸(47〜49重量%)2.1gを加え、反応圧力1.5MPa、反応温度165〜175℃の条件で、空気を吹き込み70分間接触させた。この間、オートクレーブからの排ガスが、その酸素濃度が11%以下、排ガス流量が0.5〜2.0L/分になるように空気の吹き込み量を調節した。冷却後、反応液をHPLCにて定量分析したところ、安息香酸の収率は74%であった。
Example 8
In a 1 L titanium autoclave equipped with a reflux condenser and a rotating blade stirrer, 10 g (60 mmol) of S-(-)-3-phenyllactic acid, 300 g of acetic acid, 1.5 g of cobalt acetate (II) tetrahydrate, manganese acetate (II) 0.085 g of tetrahydrate and 2.1 g of hydrobromic acid (47 to 49% by weight) were added, and air was blown in for 70 minutes under conditions of a reaction pressure of 1.5 MPa and a reaction temperature of 165 to 175 ° C. I let you. During this time, the amount of air blown was adjusted so that the exhaust gas from the autoclave had an oxygen concentration of 11% or less and an exhaust gas flow rate of 0.5 to 2.0 L / min. After cooling, when the reaction solution was quantitatively analyzed by HPLC, the yield of benzoic acid was 74%.

実施例9
還流冷却器と回転羽攪拌器を備えた1Lのチタン製オートクレーブにS−(−)−3−フェニル乳酸10g(60mmol)、酢酸300g、酢酸コバルト(II)四水和物1.5g、酢酸マンガン(II)四水和物0.085g、臭化水素酸(47〜49重量%)2.1gを加え、反応圧力1.5MPa、反応温度185〜195℃の条件で、空気を吹き込み3時間接触させた。この間、オートクレーブからの排ガスが、その酸素濃度が11%以下、排ガス流量が0.5〜2.0L/分になるように空気の吹き込み量を調節した。冷却後、反応液をHPLCにて定量分析したところ、安息香酸の収率は78%であった。
Example 9
In a 1 L titanium autoclave equipped with a reflux condenser and a rotating blade stirrer, 10 g (60 mmol) of S-(-)-3-phenyllactic acid, 300 g of acetic acid, 1.5 g of cobalt acetate (II) tetrahydrate, manganese acetate (II) 0.085 g of tetrahydrate and 2.1 g of hydrobromic acid (47 to 49% by weight) were added, and air was blown in for 3 hours under conditions of a reaction pressure of 1.5 MPa and a reaction temperature of 185 to 195 ° C. I let you. During this time, the amount of air blown was adjusted so that the exhaust gas from the autoclave had an oxygen concentration of 11% or less and an exhaust gas flow rate of 0.5 to 2.0 L / min. After cooling, the reaction solution was quantitatively analyzed by HPLC. The yield of benzoic acid was 78%.

実施例10
還流冷却器と回転羽攪拌器を備えた1Lのチタン製オートクレーブにS−(−)−3−フェニル乳酸10g(60mmol)、酢酸300g、酢酸コバルト(II)四水和物1.5g、酢酸マンガン(II)四水和物0.085g、臭化水素酸(47〜49重量%)2.1gを加え、反応圧力1.5MPa、反応温度195〜200℃の条件で、空気を吹き込み7時間接触させた。この間、オートクレーブからの排ガスが、その酸素濃度が11%以下、排ガス流量が0.5〜2.0L/分になるように空気の吹き込み量を調節した。冷却後、反応液をHPLCにて定量分析したところ、安息香酸の収率は80%であった。
Example 10
In a 1 L titanium autoclave equipped with a reflux condenser and a rotating blade stirrer, 10 g (60 mmol) of S-(-)-3-phenyllactic acid, 300 g of acetic acid, 1.5 g of cobalt acetate (II) tetrahydrate, manganese acetate (II) 0.085 g of tetrahydrate and 2.1 g of hydrobromic acid (47 to 49% by weight) were added, and air was blown in under a reaction pressure of 1.5 MPa and a reaction temperature of 195 to 200 ° C. for 7 hours. I let you. During this time, the amount of air blown was adjusted so that the exhaust gas from the autoclave had an oxygen concentration of 11% or less and an exhaust gas flow rate of 0.5 to 2.0 L / min. After cooling, the reaction solution was quantitatively analyzed by HPLC. As a result, the yield of benzoic acid was 80%.

実施例11
還流冷却器と回転羽攪拌器を備えた1Lのチタン製オートクレーブにS−(−)−3−フェニル乳酸10g(60mmol)、酢酸300g、酢酸コバルト(II)四水和物0.76g、酢酸マンガン(II)四水和物0.045g、臭化水素酸(47〜49重量%)1.1gを加え、反応圧力1.5MPa、反応温度195〜200℃の条件で、空気を吹き込み6時間接触させた。この間、オートクレーブからの排ガスが、その酸素濃度が11%以下、排ガス流量が0.5〜2.0L/分になるように空気の吹き込み量を調節した。冷却後、反応液をHPLCにて定量分析したところ、安息香酸の収率は77%であった。
Example 11
In a 1 L titanium autoclave equipped with a reflux condenser and a rotating blade stirrer, 10 g (60 mmol) of S-(−)-3-phenyllactic acid, 300 g of acetic acid, 0.76 g of cobalt (II) acetate tetrahydrate, manganese acetate (II) 0.045 g of tetrahydrate and 1.1 g of hydrobromic acid (47 to 49% by weight) were added, and air was blown in for 6 hours under conditions of a reaction pressure of 1.5 MPa and a reaction temperature of 195 to 200 ° C. I let you. During this time, the amount of air blown was adjusted so that the exhaust gas from the autoclave had an oxygen concentration of 11% or less and an exhaust gas flow rate of 0.5 to 2.0 L / min. After cooling, the reaction mixture was quantitatively analyzed by HPLC. The yield of benzoic acid was 77%.

比較例1
温度計、コンデンサー、攪拌機および窒素バルーンを備え付けた100mL四つ口フラスコに、S−(−)−3−フェニル乳酸0.5(3.0mmol)、酢酸40g、酢酸コバルト(II)四水和物0.21g、酢酸マンガン(II)四水和物0.10g、臭化水素酸(47〜49重量%)0.28gを加えた。
Comparative Example 1
In a 100 mL four-necked flask equipped with a thermometer, condenser, stirrer, and nitrogen balloon, S-(−)-3-phenyllactic acid 0.5 (3.0 mmol), acetic acid 40 g, cobalt acetate (II) tetrahydrate 0.21 g, 0.10 g of manganese (II) acetate tetrahydrate, and 0.28 g of hydrobromic acid (47-49 wt%) were added.

その後、90〜100℃に昇温して3時間攪拌し、反応液を得た。   Then, it heated up at 90-100 degreeC and stirred for 3 hours, and obtained the reaction liquid.

反応液をHPLCにて定量分析したところ、安息香酸の生成は1%未満であった。   When the reaction solution was quantitatively analyzed by HPLC, the production of benzoic acid was less than 1%.

比較例2
温度計、コンデンサー、攪拌機および空気循環ポンプからフローメーターを経由させて空気導入ラインを備え付けた200mL四つ口フラスコに、桂皮酸1.5g(10.1mmol)、酢酸120g、酢酸コバルト(II)四水和物0.61g、酢酸マンガン(II)四水和物0.32g、臭化水素酸(47〜49重量%)0.84gを加え、空気を200〜300mL/分の流量でバブリングを開始した。
Comparative Example 2
To a 200 mL four-necked flask equipped with an air introduction line from a thermometer, a condenser, a stirrer and an air circulation pump via a flow meter, 1.5 g (10.1 mmol) cinnamic acid, 120 g acetic acid, four cobalt acetate (II) Add 0.61 g of hydrate, 0.32 g of manganese (II) acetate tetrahydrate, and 0.84 g of hydrobromic acid (47-49 wt%), and start bubbling with air at a flow rate of 200-300 mL / min. did.

その後、90〜95℃に昇温して6時間攪拌し、反応液を得た。   Then, it heated up at 90-95 degreeC and stirred for 6 hours, and the reaction liquid was obtained.

反応液をHPLCにて定量分析したが、安息香酸の生成は見られず原料回収であった。   The reaction solution was quantitatively analyzed by HPLC, but no benzoic acid was produced and the raw material was recovered.

比較例3
温度計、コンデンサー、攪拌機および空気循環ポンプからフローメーターを経由させて空気導入ラインを備え付けた200mL四つ口フラスコに、L−フェニルアラニン1.5g(9.1mmol)、酢酸120g、酢酸コバルト(II)四水和物0.61g、酢酸マンガン(II)四水和物0.31g、臭化水素酸(47〜49重量%)0.84gを加え、空気を200〜300mL/分の流量でバブリングを開始した。
Comparative Example 3
L-phenylalanine 1.5 g (9.1 mmol), acetic acid 120 g, cobalt acetate (II) were added to a 200 mL four-necked flask equipped with an air introduction line from a thermometer, condenser, stirrer and air circulation pump via a flow meter. Add 0.61 g of tetrahydrate, 0.31 g of manganese (II) acetate tetrahydrate, and 0.84 g of hydrobromic acid (47 to 49% by weight), and bubbling air at a flow rate of 200 to 300 mL / min. Started.

その後、95〜100℃に昇温して3時間攪拌し、反応液を得た。   Then, it heated up at 95-100 degreeC and stirred for 3 hours, and obtained the reaction liquid.

反応液をHPLCにて定量分析したが、安息香酸の生成は見られなかった。   The reaction solution was quantitatively analyzed by HPLC, but production of benzoic acid was not observed.

比較例4
温度計、コンデンサー、攪拌機および空気循環ポンプからフローメーターを経由させて空気導入ラインを備え付けた200mL四つ口フラスコに、フェニルピルビン酸1.5g(9.1mmol)、酢酸120g、酢酸コバルト(II)四水和物0.61g、酢酸マンガン(II)四水和物0.31g、臭化水素酸(47〜49重量%)0.84gを加え、空気を200〜300mL/分の流量でバブリングを開始した。
Comparative Example 4
To a 200 mL four-necked flask equipped with an air introduction line from a thermometer, a condenser, a stirrer and an air circulation pump via a flow meter, 1.5 g (9.1 mmol) of phenylpyruvic acid, 120 g of acetic acid, cobalt (II) acetate Add 0.61 g of tetrahydrate, 0.31 g of manganese (II) acetate tetrahydrate, and 0.84 g of hydrobromic acid (47 to 49% by weight), and bubbling air at a flow rate of 200 to 300 mL / min. Started.

その後、95〜100℃に昇温して6時間攪拌し、青色の均一溶液として反応液を得た。   Then, it heated up at 95-100 degreeC and stirred for 6 hours, and obtained the reaction liquid as a blue uniform solution.

反応液をHPLCにて定量分析したところ、収率10%で安息香酸の生成を確認した。   When the reaction solution was quantitatively analyzed by HPLC, it was confirmed that benzoic acid was produced at a yield of 10%.

Claims (5)

下記一般式(I)で示される化合物を、遷移金属化合物および臭素化合物からなる触媒の存在下、分子状酸素含有ガスで液相酸化することを特徴とする安息香酸の製造方法。
Figure 2015110543
(式中、Rはカルボキシ基、アルコキシカルボニル基またはアミド基を示す。)
A method for producing benzoic acid, comprising subjecting a compound represented by the following general formula (I) to liquid phase oxidation with a molecular oxygen-containing gas in the presence of a catalyst comprising a transition metal compound and a bromine compound.
Figure 2015110543
(In the formula, R represents a carboxy group, an alkoxycarbonyl group or an amide group.)
前記Rがカルボキシ基であることを特徴とする請求項1記載の安息香酸の製造方法。   The method for producing benzoic acid according to claim 1, wherein R is a carboxy group. 前記遷移金属化合物が、マンガン、タングステン、モリブデン、クロム、バナジウム、コバルト、セリウムから選ばれる少なくとも1種の遷移金属、またはその化合物であることを特徴とする請求項1または2記載の安息香酸の製造方法。   The benzoic acid production according to claim 1 or 2, wherein the transition metal compound is at least one transition metal selected from manganese, tungsten, molybdenum, chromium, vanadium, cobalt, and cerium, or a compound thereof. Method. 前記液相酸化を、0〜6MPaの反応圧力で行うことを特徴とする請求項1,2または3記載の安息香酸の製造方法。   The method for producing benzoic acid according to claim 1, 2 or 3, wherein the liquid phase oxidation is performed at a reaction pressure of 0 to 6 MPa. 前記原料として、発酵法で得たL−フェニルアラニンから化学合成により得たフェニル乳酸または発酵法により得たフェニル乳酸を使用することを特徴とする請求項2記載の製造方法。   3. The production method according to claim 2, wherein phenyl lactic acid obtained by chemical synthesis from L-phenylalanine obtained by fermentation or phenyl lactic acid obtained by fermentation is used as the raw material.
JP2014058342A 2013-10-31 2014-03-20 Benzoic acid production method Pending JP2015110543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014058342A JP2015110543A (en) 2013-10-31 2014-03-20 Benzoic acid production method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013226702 2013-10-31
JP2013226702 2013-10-31
JP2014058342A JP2015110543A (en) 2013-10-31 2014-03-20 Benzoic acid production method

Publications (1)

Publication Number Publication Date
JP2015110543A true JP2015110543A (en) 2015-06-18

Family

ID=53525754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014058342A Pending JP2015110543A (en) 2013-10-31 2014-03-20 Benzoic acid production method

Country Status (1)

Country Link
JP (1) JP2015110543A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110455953A (en) * 2019-08-22 2019-11-15 重庆科技学院 A method of quickly detecting phenyllactic acid, benzoic acid and sorbic acid simultaneously

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110455953A (en) * 2019-08-22 2019-11-15 重庆科技学院 A method of quickly detecting phenyllactic acid, benzoic acid and sorbic acid simultaneously

Similar Documents

Publication Publication Date Title
Hayashi et al. Diphenylprolinol silyl ether as a catalyst in an enantioselective, catalytic, tandem Michael/Henry reaction for the control of four stereocenters
Xu et al. Knoevenagel condensation catalyzed by novel Nmm-based ionic liquids in water
Penhoat et al. Direct asymmetric aldol reaction co-catalyzed by l-proline and group 12 elements Lewis acids in the presence of water
JP2008094829A (en) Process for producing organic acid or its derivative with use of mc-type homogeneous catalyst and o2/co2 mixed gas
Lu et al. Metal free: A novel and efficient aerobic oxidation of toluene derivatives catalyzed by N′, N ″, N‴,-trihydroxyisocyanuric acid and dimethylglyoxime in PEG-1000-based dicationic acidic ionic liquid
Pei et al. Chiral Brønsted acid-catalyzed regio-and enantioselective arylation of α, β-unsaturated trifluoromethyl ketones
Wu et al. Highly efficient organocatalyzed direct asymmetric aldol reactions of hydroxyacetone and aldehydes
CN112920066A (en) Alpha-substituted-alpha-amino acid ester compound and preparation method thereof
Zhang et al. Efficient metal‐free aerobic oxidation of aromatic hydrocarbons utilizing aryl‐tetrahalogenated N‐hydroxyphthalimides and 1, 4‐diamino‐2, 3‐dichloroanthraquinone
Li et al. One-step highly selective oxidation of p-xylene to 4-hydroxymethylbenzoic acid over Cu-MOF catalysts under mild conditions
Chen et al. Enantioselective synthesis of chiral phosphonylated 2, 3-dihydrofurans by copper catalyzed asymmetric formal [3+ 2] cycloaddition of propargylic esters with β-keto phosphonates
Li et al. Highly stereoselective anti-aldol reactions catalyzed by simple chiral diamines and their unique application in configuration switch of aldol products
CN113372204B (en) Method for preparing aromatic aldehyde
WO2015146294A1 (en) Transesterification reaction by means of iron catalyst
JP2015110543A (en) Benzoic acid production method
CN109195937A (en) Acetic acid and hydrogen are generated in water-bearing media by ethyl alcohol and acetaldehyde by organic/inorganic catalyst
JP2008534577A (en) Method for producing p-toluic acid by liquid phase oxidation of p-xylene in water
JP6028606B2 (en) Method for producing amine compound
CN107459451A (en) The preparation method of 3 hydroxy methyl propionates
CN109574814A (en) A kind of method that toluene liquid phase catalytic oxidation prepares benzaldehyde and benzyl alcohol
TW200823177A (en) Process for preparing an organic acid or its derivatives using a homogeneous MC-type catalyst and an O2/CO2 mixture
CN108117472A (en) It is a kind of that the method containing benzene ring compound is prepared by pinacol
CN109836311B (en) Method for controlling lignin model molecule fracture by amine at room temperature
JP2015168632A (en) Method of producing benzoic acid
US20230202959A1 (en) Process for the oxidation of primary alcohols to carboxylic acids