JP2015109401A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
JP2015109401A
JP2015109401A JP2013261761A JP2013261761A JP2015109401A JP 2015109401 A JP2015109401 A JP 2015109401A JP 2013261761 A JP2013261761 A JP 2013261761A JP 2013261761 A JP2013261761 A JP 2013261761A JP 2015109401 A JP2015109401 A JP 2015109401A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
cleaning
water
reduced water
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013261761A
Other languages
Japanese (ja)
Other versions
JP6317580B2 (en
Inventor
山本 栄一
Eiichi Yamamoto
栄一 山本
毅 飯島
Takeshi Iijima
毅 飯島
充 金安
Mitsuru Kaneyasu
充 金安
勝 南澤
Masaru Minamizawa
勝 南澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MYTECH Inc
Original Assignee
MYTECH Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MYTECH Inc filed Critical MYTECH Inc
Priority to JP2013261761A priority Critical patent/JP6317580B2/en
Publication of JP2015109401A publication Critical patent/JP2015109401A/en
Application granted granted Critical
Publication of JP6317580B2 publication Critical patent/JP6317580B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for rinsing a semiconductor substrate by electrolytically reduced water.SOLUTION: There is provided a method for cleaning a semiconductor substrate to an extent such that the metal contamination is 1x10atoms/cm2 or less, and the number of particles of 0.1 μm or larger is 10 pieces/wafer or less by rinsing the semiconductor substrate with electrolytically reduced water (having a pH of 11 to 13 and an oxidation-reduction potential of -500 to -1000 mV) produced by a device that produces only electrolytically reduced water by electrolysis.

Description

本発明は、トランジスター、キャパシタ、メモリーカード、センサー、撮像素子、等として携帯電話、デジタルカメラ、ビデオカメラ、カーナビゲーション、パーソナルコンピュータ、ゲーム機、液晶テレビ、プリンター等に使用される半導体装置の製造方法に関する。  The present invention relates to a method for manufacturing a semiconductor device used in a mobile phone, digital camera, video camera, car navigation, personal computer, game machine, liquid crystal television, printer, etc. as a transistor, capacitor, memory card, sensor, imaging device, etc. About.

半導体装置の製造においては、基板となるシリコン表面や絶縁膜、金属膜等の成膜前後、ドライエッチングやウェットエッチング後、およびレジスト除去後には表面を清浄化させるために必ず洗浄が実施されている。たとえば、特公昭53−35436号公報(特許文献1)は、RCA洗浄と呼ばれる方法で、アンモニアに過酸化水素水および純水を混合した水溶液で半導体基板上のパーティクルを除去した後、塩酸に過酸化水素水と純水を混合した水溶液で金属汚染を除去する方法が開示されている。  In the manufacture of semiconductor devices, cleaning is always performed to clean the surface before and after film formation of the silicon surface, insulating film, metal film, etc., after dry etching or wet etching, and after resist removal. . For example, Japanese Patent Publication No. 53-35436 (Patent Document 1) discloses a method called RCA cleaning in which particles on a semiconductor substrate are removed with an aqueous solution in which hydrogen peroxide and pure water are mixed with ammonia, and then added to hydrochloric acid. A method of removing metal contamination with an aqueous solution in which hydrogen oxide water and pure water are mixed is disclosed.

また、特開平6−291099号公報(特許文献2)は、クエン酸を含む有機酸を純水に混合させ、パーティクルと金属汚染を除去する方法が開示されている。  Japanese Patent Laid-Open No. 6-291099 (Patent Document 2) discloses a method of removing particles and metal contamination by mixing an organic acid containing citric acid with pure water.

一方、特開2007−160496号公報(特許文献3)は、電気分解によりアノード側に生成されたオゾン水により有機物を含むパーティクルの除去を、また他の一方のカソード側から生成された水素水により金属汚染を除去する方法が開示されている。  On the other hand, Japanese Patent Application Laid-Open No. 2007-160496 (Patent Document 3) discloses removal of particles containing organic substances by ozone water generated on the anode side by electrolysis, and hydrogen water generated from the other cathode side. A method for removing metal contamination is disclosed.

現在の半導体基板の洗浄においては、上記に示す有機、無機の洗浄液を組み合わせて半導体基板上のパーティクル、有機物、金属汚染を除去している。  In current semiconductor substrate cleaning, the organic, inorganic cleaning liquids described above are combined to remove particles, organic matter, and metal contamination on the semiconductor substrate.

特公昭53−35436号公報  Japanese Patent Publication No.53-35436 特開平6−291099号公報  Japanese Patent Laid-Open No. 6-291099 特開2007−160496号公報  Japanese Patent Laid-Open No. 2007-160496

従来のRCA洗浄液を用いる方法は、薬液から発生する有毒ガスの除外、洗浄した後の廃液処理に莫大な処理費用と設備が必要であり、且つ作業者への安全性、環境対策など多くの課題をもちながら使われてきた。  The conventional method using the RCA cleaning liquid requires enormous processing costs and equipment for the removal of toxic gas generated from the chemical solution, and the waste liquid processing after cleaning, as well as many problems such as safety for workers and environmental measures. Have been used.

本願発明は、これらの課題を克服し、作業者への安全性、環境負荷を軽減し地球規模での環境破壊を発生させない洗浄法を確立させる。  The present invention overcomes these problems and establishes a cleaning method that reduces safety and environmental burden on workers and does not cause environmental destruction on a global scale.

本発明の目的は、環境に配慮した洗浄方法を提案するものであり、世界中で生産される半導体デバイス、各種固体デバイスのあらゆる洗浄工程において適用できる。  The object of the present invention is to propose a cleaning method in consideration of the environment, and can be applied to any cleaning process of semiconductor devices and various solid-state devices produced all over the world.

請求項1の発明は、半導体基板表面を洗浄する場合において、電解還元水のみを生成する装置を用いて生成した電解還元水(以下ERW)により、下記一連の工程で行うことを特徴とする半導体装置の製造方法であって、
(1).半導体基板を枚葉式洗浄機の基板ホルダー上に乗せ、50〜1000min−1で回転させながら前記半導体基板の表面もしくは表面と裏面にpH11〜13且つ酸化還元電位(以下ORP)−500〜−1000mVのERWを吹きかけ、洗浄する工程と、
(2).前記半導体基板を50〜500min−1に回転させながら前記半導体基板の表面もしくは表面と裏面に純水を吹きかけERWを除去する工程と
(3).前記半導体基板を1000〜2000min−1に回転させながら前記半導体基板の表面もしくは表面と裏面にN2もしくは乾燥空気を吹き付け、前記半導体基板を乾燥させる工程により、半導体基板表面のパーティクルと金属汚染を除去する方法である。
The invention according to claim 1 is a semiconductor characterized in that in the case of cleaning the surface of a semiconductor substrate, electrolytic reduction water (hereinafter referred to as ERW) generated using an apparatus that generates only electrolytic reduction water is performed in the following series of steps. A device manufacturing method comprising:
(1). A semiconductor substrate is placed on a substrate holder of a single wafer cleaning machine, and is rotated at 50 to 1000 min −1, and has a pH of 11 to 13 and an oxidation-reduction potential (hereinafter referred to as ORP) −500 to −1000 mV on the surface of the semiconductor substrate Spraying ERW and washing,
(2). (3) removing the ERW by spraying pure water on the front surface or front and back surfaces of the semiconductor substrate while rotating the semiconductor substrate at 50 to 500 min−1; While the semiconductor substrate is rotated at 1000 to 2000 min-1, N2 or dry air is sprayed on the front surface or the front and back surfaces of the semiconductor substrate to dry the semiconductor substrate, thereby removing particles and metal contamination on the semiconductor substrate surface. Is the method.

請求項2の発明は、半導体基板表面を洗浄する場合において、電解還元水のみを生成する装置を用いて生成した電解還元水(以下ERW)により、下記一連の工程で行うことを特徴とする半導体装置の製造方法であって、
(1).半導体基板を浸漬式洗浄機の基板カセットに乗せ、前記半導体基板をpH11〜13且つORP−500〜−1000mVのERW内に浸漬させ洗浄する工程と、
(2).前記半導体基板を純水中に浸漬させERWを除去する工程と、
(3).前記半導体基板にN2もしくは乾燥空気を吹き付け、前記半導体基板を乾燥させる工程により、半導体基板表面のパーティクルと金属汚染を除去する方法である。
According to a second aspect of the present invention, when the surface of a semiconductor substrate is cleaned, the semiconductor is characterized by performing the following series of steps using electrolytic reduced water (hereinafter referred to as ERW) generated using an apparatus that generates only electrolytic reduced water. A device manufacturing method comprising:
(1). Placing the semiconductor substrate on a substrate cassette of an immersion cleaning machine, immersing and cleaning the semiconductor substrate in an ERW of pH 11 to 13 and ORP-500 to -1000 mV;
(2). Immersing the semiconductor substrate in pure water to remove ERW;
(3). In this method, particles and metal contamination on the surface of the semiconductor substrate are removed by a step of spraying N2 or dry air onto the semiconductor substrate to dry the semiconductor substrate.

シリコン面をシリカを用いた研磨材で研磨したウェーハを本発明の洗浄方法で洗浄することで0.2ミクロン以上のパーティクルを100個以下に、また重金属汚染を1x1010atoms/cm2以下にすることができる(表1〜表4参照)。A wafer whose silicon surface is polished with an abrasive using silica is cleaned by the cleaning method of the present invention so that particles of 0.2 μm or more are reduced to 100 particles or less, and heavy metal contamination is reduced to 1 × 10 10 atoms / cm 2 or less. (See Tables 1 to 4).

本発明の洗浄水を製造するための原理図である。It is a principle figure for manufacturing washing water of the present invention. 本発明の洗浄方法を示す構成図である。It is a block diagram which shows the washing | cleaning method of this invention. 本発明の請求項1の方法で洗浄した後のシリコン基板表面の面性状を示すものである。The surface property of the silicon substrate surface after washing | cleaning by the method of Claim 1 of this invention is shown.

表1Table 1

本発明の請求項1の方法で洗浄した後のシリコン基板表面のパーティクル数を示すものである。The number of particles on the surface of the silicon substrate after being cleaned by the method of claim 1 of the present invention is shown.

表2Table 2

本発明の請求項1の方法で洗浄した後の重金属の量を示すものである。It shows the amount of heavy metal after washing by the method of claim 1 of the present invention.

表3Table 3

本発明の請求項2の方法で洗浄した後のシリコン基板表面のパーティクル数を示すものである。The number of particles on the surface of the silicon substrate after being cleaned by the method of claim 2 of the present invention is shown.

表4Table 4

本発明の請求項2の方法で洗浄した後の重金属の量を示すものである。It shows the amount of heavy metal after washing by the method of claim 2 of the present invention.

以下、本発明の実施方法を詳細に説明する。  Hereafter, the implementation method of this invention is demonstrated in detail.

実施例1
8インチ径のシリコン基板表面をpH11.6のアルカリ水溶液中に分散した30nmの粒径のシリカスラリー(GRANZOX−1302、フジミインコーポレーテッド製)を純水で10倍に希釈したものを用いて、不織布パッド(SUBA#400,ニッタ・ハース製)でシリコンを2μmの深さまで研磨した後、下記条件にて洗浄を行った。研磨機は岡本工作機械製作所製SPP800Sを用いた。
Example 1
Using a 10-fold diluted non-woven fabric of silica slurry (GRANZOX-1302, manufactured by Fujimi Incorporated) having a particle diameter of 30 nm in which an 8-inch diameter silicon substrate surface is dispersed in an alkaline aqueous solution of pH 11.6 After polishing the silicon to a depth of 2 μm with a pad (SUBA # 400, manufactured by Nitta Haas), cleaning was performed under the following conditions. As the polishing machine, SPP800S manufactured by Okamoto Machine Tool Works was used.

(1).pH12.6、酸化還元電位(ORP)−813mVのERWを1L/minの流量でシリコン基板のほぼ中央に放出し、シリコン基板回転数500min−1にて60秒洗浄し、
(2).DIWを2L/minの流量でシリコン基板のほぼ中央に放出し、シリコン基板回転数100min−1にて60秒リンスし、
(3).シリコン基板の回転数を1500min−1で60秒間乾燥させ完了させた。
(1). ERW of pH 12.6, oxidation-reduction potential (ORP) -813 mV is discharged at approximately the center of the silicon substrate at a flow rate of 1 L / min, and cleaned for 60 seconds at a silicon substrate rotation speed of 500 min-1,
(2). DIW is discharged to the center of the silicon substrate at a flow rate of 2 L / min, and rinsed for 60 seconds at a silicon substrate rotation speed of 100 min-1,
(3). The silicon substrate was dried at 1500 min-1 for 60 seconds to complete.

この洗浄を行った後のパーティクル数は、表1の#1〜3に示す様に、0.2ミクロン以上で10〜19個であり、実用上十分である。  As shown in # 1 to # 3 of Table 1, the number of particles after this cleaning is 10 to 19 particles of 0.2 microns or more, which is practically sufficient.

また、この時の重金属の量を、全反射蛍光X線分析法で計測した結果、表2の#1〜3に示す様に、1x1010atoms/cm2以下であり、良好であった。In addition, as a result of measuring the amount of heavy metal by total reflection X-ray fluorescence analysis at this time, as shown in # 1 to # 3 of Table 2, it was 1 × 10 10 atoms / cm 2 or less, which was favorable.

シリコンの表面粗さは、0.27〜0.34nm(Ra)であり、本洗浄によってシリコン表面の面性状を劣化させていないことが分かる。  The surface roughness of silicon is 0.27 to 0.34 nm (Ra), and it can be seen that the surface properties of the silicon surface are not deteriorated by this cleaning.

また、8インチ径のシリコン基板表面をpH11.6のアルカリ水溶液中に分散した30nmの粒径のシリカスラリー(GLANZOX−1302、フジミインコーポレーテッド製)を純水で10倍に希釈したものを用いて、不織布パッド(SUBA#400,ニッタ・ハース製)でシリコンを2μmの深さまで研磨した後、さらに、pH10.6のアルカリ溶液中に分散した12nmのシリカスラリー(GLANZOX3105,フジミインコーポレーテッド製)を純水で30倍に希釈したものを用いて、スウェードパッド(RN−H,ニッタ・ハース製)で仕上げ研磨した後、下記条件で洗浄を行った。研磨機は岡本工作機械製作所SPP800Sを用いた。  Also, a silica slurry having a particle diameter of 30 nm (GLANZOX-1302, manufactured by Fujimi Incorporated) in which an 8-inch silicon substrate surface is dispersed in an alkaline aqueous solution having a pH of 11.6 is diluted 10 times with pure water. After polishing silicon to a depth of 2 μm with a non-woven pad (SUBA # 400, manufactured by Nitta Haas), 12 nm silica slurry (GLANZOX3105, manufactured by Fujimi Incorporated) dispersed in an alkaline solution at pH 10.6 is further purified. After being polished with a suede pad (RN-H, manufactured by Nitta Haas) using a solution diluted 30 times with water, cleaning was performed under the following conditions. The polishing machine used was Okamoto Machine Tool Works SPP800S.

(1).pH12.6、酸化還元電位(ORP)−798mVのERWを1L/minの流量でシリコン基板のほぼ中央に放出し、シリコン基板回転数500min−1にて60秒洗浄し、
(2).DIWを2L/minの流量でシリコン基板のほぼ中央に放出し、シリコン基板回数100min−1にて60秒リンスし、
(3).シリコン基板の回転数を1500min−1で60秒間乾燥させ完了させた。
(1). Release ERW of pH 12.6, oxidation-reduction potential (ORP) -798 mV to the center of the silicon substrate at a flow rate of 1 L / min, and clean for 60 seconds at a silicon substrate rotation speed of 500 min-1,
(2). DIW is discharged to the center of the silicon substrate at a flow rate of 2 L / min, rinsed for 60 seconds at a silicon substrate count of 100 min-1,
(3). The silicon substrate was dried at 1500 min-1 for 60 seconds to complete.

この洗浄を行った後のパーティクル数は、表1の#4〜5に示す様に、0.2ミクロン以上で2〜3個であり、仕上げ研磨後の洗浄でさらにパーティクルを低減できることが分かる。  As shown in # 4 to # 5 of Table 1, the number of particles after this cleaning is 2 to 3 at 0.2 microns or more, and it can be seen that the number of particles can be further reduced by the cleaning after finish polishing.

また、この時の重金属の量を、全反射蛍光X線分析法で計測した結果、表2の#4〜5に示す様に、1x1010atoms/cm2以下であり、重金属量に関しては仕上げ研磨の有無に差異はなかった。Moreover, as a result of measuring the amount of heavy metal at this time by total reflection X-ray fluorescence analysis, as shown in # 4 to # 5 in Table 2, it is 1 × 10 10 atoms / cm 2 or less. There was no difference in the presence or absence.

実施例2
8インチ径のシリコン基板表面をpH11.6のアルカリ水溶液中に分散した30nmの粒径のシリカスラリー(GRANZOX−1302、フジミインコーポレーテッド製)を純水で10倍に希釈したものを用いて、不織布パッド(SUBA#400,ニッタ・ハース製)でシリコンを2μmの深さまで研磨した後、下記条件にて洗浄を行った。研磨機は岡本工作機械製作所製SPP800Sを用いた。
Example 2
Using a 10-fold diluted non-woven fabric of silica slurry (GRANZOX-1302, manufactured by Fujimi Incorporated) having a particle diameter of 30 nm in which an 8-inch diameter silicon substrate surface is dispersed in an alkaline aqueous solution of pH 11.6 After polishing the silicon to a depth of 2 μm with a pad (SUBA # 400, manufactured by Nitta Haas), cleaning was performed under the following conditions. As the polishing machine, SPP800S manufactured by Okamoto Machine Tool Works was used.

(1).pH12.6、酸化還元電位(ORP)−810mVのERW槽に浸漬し120秒洗浄し、
(2).オーバフローしているDIW槽に移動して120秒リンスし、
(3).乾燥チャンバーに移動しN2ブロー雰囲気で60秒間乾燥させ完了させた。
(1). Immerse in an ERW bath at pH 12.6, redox potential (ORP) -810 mV and wash for 120 seconds,
(2). Move to overflowing DIW tank and rinse for 120 seconds,
(3). It moved to the drying chamber and it was completed by drying for 60 seconds by N2 blow atmosphere.

この洗浄を行った後のパーティクル数は、表3の#1〜5に示す様に、0.2ミクロン以上で30〜86個であり、実施例1よりやや多いが、実用上十分である。  The number of particles after this cleaning is 30 to 86 with 0.2 micron or more as shown in # 1 to 5 of Table 3, which is slightly more than Example 1, but is practically sufficient.

また、この時の重金属の量を、全反射蛍光X線分析法で計測した結果、表4の#1〜5に示す様に、1x1010atoms/cm2以下であり、良好であった。In addition, as a result of measuring the amount of heavy metal by total reflection X-ray fluorescence analysis at this time, as shown in # 1 to 5 of Table 4, it was 1 × 10 10 atoms / cm 2 or less, which was favorable.

以上、説明したように、ERWのみでの洗浄で実用上十分な性能を実現でき且つ、有害なガスは発生せず、廃液はそのまま排水しても害はないため、廃水処理や排ガス処理費用が不要となり大幅なコストダウンが見込めるだけでなく、従来使用していたPVAブラシなどの消耗部材も不要となるためランニングコストの低減とともに、洗浄機の構成を簡易化できイニシャルコストも低減できる。  As described above, cleaning with ERW alone can achieve practically sufficient performance, no harmful gas is generated, and waste liquid can be drained as it is without harm. Not only can the cost be expected to be drastically reduced, but also consumables such as PVA brushes that have been used in the past are not required, so that the running cost is reduced and the configuration of the washing machine can be simplified, and the initial cost can be reduced.

環境負荷の少ない洗浄方法により半導体デバイスや固体デバイスの洗浄に寄与できる。  It can contribute to the cleaning of semiconductor devices and solid-state devices by cleaning methods with less environmental impact.

1 陽イオン交換膜
2 カソード電極
3 アノード電極
4 電解質溶液
5 電解還元水(ERW)
6 超純水
7 Siウェーハ
8 洗浄チャンバー
9 ウェーハ保持ピン
10 スピンテーブル
DESCRIPTION OF SYMBOLS 1 Cation exchange membrane 2 Cathode electrode 3 Anode electrode 4 Electrolyte solution 5 Electrolytic reduction water (ERW)
6 Ultrapure water 7 Si wafer 8 Cleaning chamber 9 Wafer holding pin 10 Spin table

Claims (3)

半導体基板表面を洗浄する場合において、電解還元水のみを生成する装置を用いて生成した電解還元水により、下記一連の工程で行うことを特徴とする半導体装置の製造方法。
(1).半導体基板を枚葉式洗浄機の基板ホルダー上に乗せ、50〜1000min−1で回転させながら前記半導体基板の表面もしくは表面と裏面にpH11〜13且つ酸化還元電位(以下ORP)−500〜−1000mVの電解還元水を吹きかけ、洗浄する工程。
(2).前記洗浄工程後に、前記半導体基板を50〜500min−1に回転させながら前記半導体基板の表面もしくは表面と裏面に純水を吹きかけ電解還元水を除去する工程。
(3).前記電解還元水を除去する工程後に、前記半導体基板を1000〜2000min−1に回転させながら前記半導体基板の表面もしくは表面と裏面にN2もしくは乾燥空気を吹き付け、前記半導体基板を乾燥させる工程。
A method of manufacturing a semiconductor device, wherein the semiconductor substrate surface is cleaned by electrolytic reduced water generated using an apparatus that generates only electrolytic reduced water in the following series of steps.
(1). A semiconductor substrate is placed on a substrate holder of a single wafer cleaning machine, and is rotated at 50 to 1000 min −1, and has a pH of 11 to 13 and an oxidation-reduction potential (hereinafter referred to as ORP) −500 to −1000 mV on the surface of the semiconductor substrate The process of spraying and reducing the electrolytically reduced water.
(2). A step of removing electrolytic reduction water by spraying pure water on the front surface or front and back surfaces of the semiconductor substrate while rotating the semiconductor substrate at 50 to 500 min −1 after the cleaning step;
(3). After the step of removing the electrolytically reduced water, a step of drying the semiconductor substrate by blowing N2 or dry air to the front surface or the front and back surfaces of the semiconductor substrate while rotating the semiconductor substrate at 1000 to 2000 min-1.
半導体基板表面を洗浄する場合において、電解還元水のみを生成する装置を用いて生成した電解還元水により、下記一連の工程で行うことを特徴とする半導体装置の製造方法。
(1).半導体基板を浸漬式洗浄機の基板カセットに乗せ、前記半導体基板をpH11〜13且つORP−500〜−1000mVの電解還元水槽内に浸漬させ洗浄する工程。
(2).前記浸漬させ洗浄する工程後に、前記半導体基板を純水中に浸漬させ電解還元水を除去する工程。
(3).前記電解還元水を除去する工程後に、前記半導体基板にN2もしくは乾燥空気を吹き付け、前記半導体基板を乾燥させる工程。
A method of manufacturing a semiconductor device, wherein the semiconductor substrate surface is cleaned by electrolytic reduced water generated using an apparatus that generates only electrolytic reduced water in the following series of steps.
(1). A step of placing a semiconductor substrate on a substrate cassette of an immersion type cleaning machine, and immersing the semiconductor substrate in an electrolytic reduction water tank having a pH of 11 to 13 and an ORP of 500 to -1000 mV for cleaning.
(2). A step of immersing the semiconductor substrate in pure water and removing electrolytic reduction water after the step of immersing and cleaning.
(3). After the step of removing the electrolytically reduced water, a step of spraying N2 or dry air on the semiconductor substrate to dry the semiconductor substrate.
請求項2に記載の半導体基板を乾燥させる工程においてマランゴニ―法で行う事を特徴とする半導体装置の製造方法。  3. A method of manufacturing a semiconductor device, wherein the step of drying the semiconductor substrate according to claim 2 is performed by a Marangoni method.
JP2013261761A 2013-12-03 2013-12-03 Manufacturing method of semiconductor device Active JP6317580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013261761A JP6317580B2 (en) 2013-12-03 2013-12-03 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013261761A JP6317580B2 (en) 2013-12-03 2013-12-03 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2015109401A true JP2015109401A (en) 2015-06-11
JP6317580B2 JP6317580B2 (en) 2018-04-25

Family

ID=53439542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013261761A Active JP6317580B2 (en) 2013-12-03 2013-12-03 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP6317580B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6141482B1 (en) * 2016-03-28 2017-06-07 日揮触媒化成株式会社 Nanobubble-containing inorganic oxide fine particle dispersion, abrasive containing the same, and production method thereof
CN108807143A (en) * 2017-04-26 2018-11-13 格芯公司 The method of clean semiconductor device
JP2018536991A (en) * 2015-12-11 2018-12-13 ジルトロニック アクチエンゲゼルシャフトSiltronic AG Single crystal semiconductor wafer and method for manufacturing semiconductor wafer
US11505717B2 (en) 2017-06-01 2022-11-22 Jgc Catalysts And Chemicals Ltd. Nanobubble-containing inorganic oxide fine particle and abrasive containing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306881A (en) * 1999-03-26 2000-11-02 Applied Materials Inc Substrate cleaning/drying system
JP2002146574A (en) * 2000-09-06 2002-05-22 Samsung Electronics Co Ltd Wet process in manufacturing semiconductor element using anodic water containing oxidative material and/or cathodic water containing reducing material and anodic water and/or cathodic water used in this process
JP2006140409A (en) * 2004-11-15 2006-06-01 Sharp Corp Stain film removing method
JP2011210933A (en) * 2010-03-30 2011-10-20 Dainippon Screen Mfg Co Ltd Substrate processing method and substrate processing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306881A (en) * 1999-03-26 2000-11-02 Applied Materials Inc Substrate cleaning/drying system
JP2002146574A (en) * 2000-09-06 2002-05-22 Samsung Electronics Co Ltd Wet process in manufacturing semiconductor element using anodic water containing oxidative material and/or cathodic water containing reducing material and anodic water and/or cathodic water used in this process
JP2006140409A (en) * 2004-11-15 2006-06-01 Sharp Corp Stain film removing method
JP2011210933A (en) * 2010-03-30 2011-10-20 Dainippon Screen Mfg Co Ltd Substrate processing method and substrate processing apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018536991A (en) * 2015-12-11 2018-12-13 ジルトロニック アクチエンゲゼルシャフトSiltronic AG Single crystal semiconductor wafer and method for manufacturing semiconductor wafer
JP6141482B1 (en) * 2016-03-28 2017-06-07 日揮触媒化成株式会社 Nanobubble-containing inorganic oxide fine particle dispersion, abrasive containing the same, and production method thereof
JP2017179016A (en) * 2016-03-28 2017-10-05 日揮触媒化成株式会社 Nanobubble-containing inorganic oxide fine particle dispersion, abrasive comprising the same and method for producing the same
CN108807143A (en) * 2017-04-26 2018-11-13 格芯公司 The method of clean semiconductor device
DE102018200665B4 (en) 2017-04-26 2022-10-20 Globalfoundries U.S. Inc. Method of cleaning a semiconductor device
CN108807143B (en) * 2017-04-26 2023-06-30 格芯(美国)集成电路科技有限公司 Method for cleaning semiconductor device
US11505717B2 (en) 2017-06-01 2022-11-22 Jgc Catalysts And Chemicals Ltd. Nanobubble-containing inorganic oxide fine particle and abrasive containing same

Also Published As

Publication number Publication date
JP6317580B2 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
KR100974034B1 (en) Cleaning composition and method of cleaning therewith
TWI409862B (en) Cleaning method and solution for cleaning a wafer in a single wafer process
TWI585198B (en) Cleaning liquid for semiconductor device and method of cleaning substrate for semiconductor devices
JPH08187475A (en) Method of removing metal in scrubber
TWI757441B (en) Cleaning liquid composition
TW200300975A (en) Cleaning method, method for fabricating semiconductor device and cleaning solution
TW201336985A (en) Cleaning liquid composition for electronic device
JP2006278392A (en) Substrate cleaning method and substrate cleaning device
JP6317580B2 (en) Manufacturing method of semiconductor device
TW201235464A (en) Cleansing liquid and cleansing method
JP2005194294A (en) Cleaning liquid and method for producing semiconductor device
JP4367587B2 (en) Cleaning method
JP4475538B2 (en) Aqueous cleaning composition for semiconductor copper processing
KR101572639B1 (en) Post-cmp washiing liquid composition
US20120172273A1 (en) Wafer washing water and wafer washing method
US20070240734A1 (en) Method of cleaning post-cmp wafer
JP2009027133A (en) Semiconductor process and wet processing apparatus
TAN et al. Effect of surfactant on removal of particle contamination on Si wafers in ULSI
JP2021174912A (en) Cleaning method for semiconductor wafer
KR20100080162A (en) Chemical mechanical polishing device and chemical mechanical polishing method
JP4357456B2 (en) Semiconductor substrate cleaning method
JP2005074413A (en) Cleaning method for substrate for electronic industry
Hazarika et al. Post-Chemical Mechanical Planarization Cleaning Technology
KR20140091327A (en) Method for cleaning wafer
KR100906043B1 (en) Method for cleaning a semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161125

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20161125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180330

R150 Certificate of patent or registration of utility model

Ref document number: 6317580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250