JP2015108051A - Porous film production method and reinforcement polymer electrolyte - Google Patents

Porous film production method and reinforcement polymer electrolyte Download PDF

Info

Publication number
JP2015108051A
JP2015108051A JP2013250911A JP2013250911A JP2015108051A JP 2015108051 A JP2015108051 A JP 2015108051A JP 2013250911 A JP2013250911 A JP 2013250911A JP 2013250911 A JP2013250911 A JP 2013250911A JP 2015108051 A JP2015108051 A JP 2015108051A
Authority
JP
Japan
Prior art keywords
temperature
sheet member
stretching
porous membrane
start temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013250911A
Other languages
Japanese (ja)
Other versions
JP2015108051A5 (en
Inventor
敬祐 藤田
Keisuke Fujita
敬祐 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013250911A priority Critical patent/JP2015108051A/en
Publication of JP2015108051A publication Critical patent/JP2015108051A/en
Publication of JP2015108051A5 publication Critical patent/JP2015108051A5/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To suppress blockage of a pore in a drawing step of a porous film.SOLUTION: The porous film production method comprises a step for drawing a sheet member having synthetic resin in atmosphere in which temperature is less than melting start temperature of the sheet member.

Description

本発明は、多孔質膜の製造方法及び補強型電解質膜に関する。   The present invention relates to a method for producing a porous membrane and a reinforced electrolyte membrane.

合成樹脂に細孔が形成された多孔質膜は、例えば、燃料電池の電解質膜を補強する補強膜として用いられる。多孔質膜の製造方法として、特許文献1には、結晶性ポリプロピレン(A)とプロピレン−α−オレフィン共重合体(B)からなるポリオレフィン樹脂(C)を主成分とした樹脂組成物を多段延伸する方法が開示されている。この方法では、一段目の延伸温度はプロピレン−α−オレフィン共重合体(B)の融点未満の温度が用いられ、二段面の延伸温度は結晶性ポリプロピレン(A)の融点未満の温度が用いられる。このように、延伸温度を融点未満の温度とすることで、多孔質膜の空隙(細孔)の閉塞が抑制される。   A porous membrane having pores formed in a synthetic resin is used, for example, as a reinforcing membrane that reinforces an electrolyte membrane of a fuel cell. As a method for producing a porous membrane, Patent Document 1 discloses a multistage stretching of a resin composition mainly composed of a polyolefin resin (C) composed of crystalline polypropylene (A) and a propylene-α-olefin copolymer (B). A method is disclosed. In this method, a temperature lower than the melting point of the propylene-α-olefin copolymer (B) is used as the first stage stretching temperature, and a temperature lower than the melting point of the crystalline polypropylene (A) is used as the second stage stretching temperature. It is done. Thus, the blockage | closure of the space | gap (pore) of a porous membrane is suppressed by making extending | stretching temperature the temperature below melting | fusing point.

特開2008−150628号公報JP 2008-150628 A

多孔質膜の製造において、本願発明者らは、延伸温度が融点未満であっても、融解開始温度よりも高ければ、合成樹脂の融解が生じ、細孔の閉塞が起こる場合があることを見出した。このような多孔質膜によって燃料電池の電解質膜を補強すると、燃料電池において水素イオン(プロトン)の伝導が阻害される場合がある。そのため、延伸工程時における細孔の閉塞を抑制する技術が望まれていた。そのほか従来の多孔質膜の製造方法では、製造の簡易化、低コスト化等が望まれていた。   In the production of a porous membrane, the present inventors have found that even if the stretching temperature is lower than the melting point, the synthetic resin may melt and the pores may be blocked if the melting temperature is higher than the melting start temperature. It was. If the electrolyte membrane of the fuel cell is reinforced by such a porous membrane, the conduction of hydrogen ions (protons) may be inhibited in the fuel cell. Therefore, a technique for suppressing the clogging of the pores during the stretching process has been desired. In addition, in the conventional method for producing a porous membrane, it has been desired to simplify the production and reduce the cost.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms.

(1)本発明の一形態によれば、多孔質膜の製造方法が提供される。この製造方法は、合成樹脂を有するシート部材を、該シート部材の融解開始温度未満の雰囲気で延伸する工程、を備える。このような形態の多孔質膜の製造方法であれば、シート部材の融解開始温度未満の雰囲気で延伸が行われるので、シート部材の局所的な融解による細孔の閉塞を抑制することができる。 (1) According to one aspect of the present invention, a method for producing a porous membrane is provided. This manufacturing method includes a step of stretching a sheet member having a synthetic resin in an atmosphere lower than the melting start temperature of the sheet member. With the method for producing a porous membrane having such a form, stretching is performed in an atmosphere lower than the melting start temperature of the sheet member, so that blockage of pores due to local melting of the sheet member can be suppressed.

(2)上記形態の多孔質膜の製造方法において、前記シート部材は、前記合成樹脂として、ポリオレフィン系樹脂、セルロース系樹脂、フッ素系樹脂、ポリエーテルスルホン、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、芳香族ポリアミド樹脂のうち少なくともいずれかを含有してもよい。この中でも特に、フッ素系樹脂を含有するシート部材であれば、化学的安定性が高い多孔質膜を得ることができる。 (2) In the method for producing a porous membrane according to the above aspect, the sheet member includes, as the synthetic resin, a polyolefin resin, a cellulose resin, a fluorine resin, a polyethersulfone, a polycarbonate, a polyamide, a polyimide, a polyamideimide, an aroma. You may contain at least any one among group polyamide resin. Among these, in particular, a porous member having a high chemical stability can be obtained if the sheet member contains a fluororesin.

(3)上記形態の多孔質膜の製造方法において、前記融解開始温度は、前記シート部材の示査走査熱量測定に基づいて求められてもよい。このような形態の多孔質膜の製造方法であれば、シート部材の融解開始温度を適切に求めることができる。 (3) In the method for manufacturing a porous membrane of the above aspect, the melting start temperature may be obtained based on an inspection scanning calorimetry of the sheet member. If it is the manufacturing method of the porous membrane of such a form, the melting start temperature of a sheet | seat member can be calculated | required appropriately.

(4)上記形態の多孔質膜の製造方法において、前記融解開始温度未満の雰囲気での延伸後、更に、前記シート部材を延伸する二次延伸工程を有してもよい。多段階の延伸を行う場合、最初に行われる延伸では、シート部材中の合成樹脂の密度が高いため、延伸中における合成樹脂の融解により細孔が閉塞しやすい。しかし、このような形態の多孔質膜の製造方法であれば、多段階の延伸を行う場合であっても、少なくとも最初の延伸において融解開始温度よりも低温の温度雰囲気で延伸が行われるので、合成樹脂の融解による細孔の閉塞を抑制することができる。 (4) In the manufacturing method of the porous membrane of the said form, you may have the secondary extending process which extends | stretches the said sheet | seat member further after extending | stretching in the atmosphere below the said melting start temperature. In the case of performing multi-stage stretching, since the density of the synthetic resin in the sheet member is high in the first stretching, the pores are likely to be blocked by melting of the synthetic resin during stretching. However, if it is a manufacturing method of a porous membrane of such a form, even when performing multi-stage stretching, since stretching is performed in a temperature atmosphere lower than the melting start temperature at least in the first stretching, Occlusion of pores due to melting of the synthetic resin can be suppressed.

(5)本発明の他の形態によれば、上記形態(1)から(4)までのいずれかの方法により製造された多孔質膜を備える補強型電解質膜が提供される。このような補強型電解質膜であれば、電解質膜を、細孔の閉塞が抑制された多孔質膜で補強することができる。そのため、強度及び発電性能が向上した燃料電池を得ることができる。 (5) According to another aspect of the present invention, there is provided a reinforced electrolyte membrane comprising a porous membrane produced by any one of the above aspects (1) to (4). With such a reinforced electrolyte membrane, the electrolyte membrane can be reinforced with a porous membrane in which pore blocking is suppressed. Therefore, a fuel cell having improved strength and power generation performance can be obtained.

本発明は、上述した製造方法以外の種々の形態で実現することも可能である。例えば、多孔質膜や、補強型電解質膜の製造方法、多孔質膜や補強型電解質膜を備える燃料電池等の形態で実現することができる。   The present invention can also be realized in various forms other than the manufacturing method described above. For example, it can be realized in the form of a porous membrane, a method for producing a reinforced electrolyte membrane, a fuel cell including a porous membrane or a reinforced electrolyte membrane, and the like.

補強型電解質膜を示す図である。It is a figure which shows a reinforced type electrolyte membrane. 補強型電解質膜の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of a reinforced type electrolyte membrane. 多孔質膜の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of a porous membrane. サンプル1〜3の一次延伸温度について示す図である。It is a figure shown about the primary extending | stretching temperature of samples 1-3. シート部材の融解開始温度の算出方法について示すフローチャートである。It is a flowchart shown about the calculation method of the melting start temperature of a sheet | seat member. シート部材のDSC測定結果を示す図である。It is a figure which shows the DSC measurement result of a sheet | seat member.

A.実施形態:
A−1.補強型電解質膜の構成:
図1は、本発明の一実施形態としての補強型電解質膜10を示す図である。補強型電解質膜10は、電解質膜20と、電解質膜20の両面に配置された多孔質膜30、40と、が一体化した膜であり、例えば燃料電池に用いられる。電解質膜20の電解質の一部は、多孔質膜30、40の細孔に含浸している。
A. Embodiment:
A-1. Configuration of reinforced electrolyte membrane:
FIG. 1 is a view showing a reinforced electrolyte membrane 10 as one embodiment of the present invention. The reinforced electrolyte membrane 10 is a membrane in which the electrolyte membrane 20 and the porous membranes 30 and 40 disposed on both surfaces of the electrolyte membrane 20 are integrated, and is used, for example, in a fuel cell. Part of the electrolyte of the electrolyte membrane 20 is impregnated in the pores of the porous membranes 30 and 40.

A−2.補強型電解質膜の製造方法:
図2は補強型電解質膜10の製造方法を示すフローチャートである。補強型電解質膜10の製造では、まず、多孔質膜30、40が用意される(ステップS100)。本実施形態における多孔質膜30、40は、フッ素系の合成樹脂であるポリテトラフルオロエチレン(PTFE)を延伸して多孔質化したものである。フッ素系樹脂は、合成樹脂の中でも化学的安定性が高い。多孔質膜30、40の製造方法の詳細については後述する。
A-2. Manufacturing method of reinforced electrolyte membrane:
FIG. 2 is a flowchart showing a method for manufacturing the reinforced electrolyte membrane 10. In the manufacture of the reinforced electrolyte membrane 10, first, the porous membranes 30 and 40 are prepared (step S100). The porous films 30 and 40 in the present embodiment are made by stretching polytetrafluoroethylene (PTFE), which is a fluorine-based synthetic resin, to make it porous. Fluorocarbon resins have high chemical stability among synthetic resins. Details of the manufacturing method of the porous membranes 30 and 40 will be described later.

次に、電解質膜20が用意される(ステップS110)。電解質膜20は、側鎖末端基が−SO2Fである合成樹脂を成形機で押し出すことによって作製される。 Next, the electrolyte membrane 20 is prepared (step S110). The electrolyte membrane 20 is produced by extruding a synthetic resin whose side chain end group is —SO 2 F with a molding machine.

次に、多孔質膜30、40と電解質膜20とを貼り合わせる(ステップS120)。ステップS120では、電解質膜20の両面にそれぞれ多孔質膜30、40が重ねて配置された後、230℃に加熱され、0.5MPaで押圧される。こうすることにより、電解質膜20の電解質の一部が多孔質膜30、40の細孔に含浸し、電解質膜20と多孔質膜30、40とが一体化する。   Next, the porous membranes 30 and 40 and the electrolyte membrane 20 are bonded together (step S120). In step S120, the porous membranes 30 and 40 are respectively placed on both surfaces of the electrolyte membrane 20, and then heated to 230 ° C. and pressed at 0.5 MPa. By doing so, a part of the electrolyte of the electrolyte membrane 20 is impregnated into the pores of the porous membranes 30 and 40, and the electrolyte membrane 20 and the porous membranes 30 and 40 are integrated.

次に、一体化した電解質膜20と多孔質膜30、40とが、1(mol/L)の水酸化ナトリウム水溶液中において、−SO2FからSO3Naへ加水分解される(ステップS130)。加水分解により、一体化した電解質膜20と多孔質膜30、40とにイオン伝導性が付与される。 Next, the integrated electrolyte membrane 20 and porous membranes 30 and 40 are hydrolyzed from —SO 2 F to SO 3 Na in a 1 (mol / L) aqueous sodium hydroxide solution (step S 130). . Ionic conductivity is imparted to the integrated electrolyte membrane 20 and porous membranes 30 and 40 by hydrolysis.

その後、加水分解された電解質膜20と多孔質膜30、40とが、1(mol/L)の硝酸水溶液により酸処理される(ステップS140)。ステップS140により、電解質膜20と多孔質膜30、40との側鎖末端基が、−SO3Naから−SO3Hの酸型に置換される。 Thereafter, the hydrolyzed electrolyte membrane 20 and the porous membranes 30 and 40 are acid-treated with a 1 (mol / L) nitric acid aqueous solution (step S140). By step S140, the side chain end groups of the electrolyte membrane 20 and the porous membranes 30 and 40 are replaced with —SO 3 Na acid type from —SO 3 Na.

次に、酸処理された電解質膜20と多孔質膜30、40とがイオン交換水により洗浄され、乾燥される(ステップS150)。以上のようにして多孔質膜30、40で補強された補強型電解質膜10が製造される。なお、ここに示した具体例は、補強型電解質膜の製造方法の一例であり、補強型電解質膜は、キャスト製膜などでも作成可能である。   Next, the acid-treated electrolyte membrane 20 and the porous membranes 30 and 40 are washed with ion-exchanged water and dried (step S150). As described above, the reinforced electrolyte membrane 10 reinforced with the porous membranes 30 and 40 is manufactured. In addition, the specific example shown here is an example of the manufacturing method of a reinforced type electrolyte membrane, and a reinforced type electrolytic membrane can be produced also by cast film forming etc.

A−3.多孔質膜の製造方法:
図3は多孔質膜30、40の製造方法を示すフローチャートである。多孔質膜30、40の製造に際して、シート部材が用意される(ステップS10)。シート部材は、例えば、次のように作製することができる。まず、PTFEのファインパウダーに、液状の潤滑剤であるナフサを均一に分散させたペースト状の混合物を作製し、作製された混合物を予備成形する。この予備成形された混合物をペースト押出しすることで、ビードを作製し、ビードを一対の金属製圧延ロール間に通すことで、長尺のシート部材が作製される。作製されたシート部材は、高異方性を示す。
A-3. Production method of porous membrane:
FIG. 3 is a flowchart showing a method for manufacturing the porous membranes 30 and 40. When manufacturing the porous films 30 and 40, a sheet member is prepared (step S10). A sheet | seat member can be produced as follows, for example. First, a paste-like mixture in which naphtha as a liquid lubricant is uniformly dispersed in PTFE fine powder is prepared, and the prepared mixture is preformed. A bead is produced by paste extrusion of the preformed mixture, and a long sheet member is produced by passing the bead between a pair of metal rolling rolls. The produced sheet member exhibits high anisotropy.

次に、シート部材が一次延伸される(ステップS30)。ステップS30では、シート部材は、シート部材の延伸が可能な温度雰囲気(例えば室温以上の温度雰囲気)かつ予め算出された融解開始温度Tms未満の温度雰囲気で、長尺方向に一軸に延伸(縦延伸)される。本実施形態における、シート部材の融解開始温度Tmsは273℃であり、一次延伸温度は250℃である。融解開始温度Tmsの算出方法については後述する。   Next, the sheet member is primarily stretched (step S30). In step S30, the sheet member is stretched uniaxially in the longitudinal direction (longitudinal stretching) in a temperature atmosphere in which the sheet member can be stretched (for example, a temperature atmosphere of room temperature or higher) and a temperature atmosphere lower than a previously calculated melting start temperature Tms. ) In this embodiment, the melting start temperature Tms of the sheet member is 273 ° C., and the primary stretching temperature is 250 ° C. A method for calculating the melting start temperature Tms will be described later.

次に、一次延伸されたシート部材が、二次延伸される(ステップS50)。二次延伸では、シート部材が長尺方向と垂直な方向に延伸(横延伸)される。本実施形態では、二次延伸は、シート部材の融解開始温度Tms未満の温度雰囲気で行われる。以上のようにして、多孔質膜30、40が製造される。   Next, the first stretched sheet member is secondarily stretched (step S50). In secondary stretching, the sheet member is stretched (laterally stretched) in a direction perpendicular to the longitudinal direction. In the present embodiment, the secondary stretching is performed in a temperature atmosphere lower than the melting start temperature Tms of the sheet member. As described above, the porous membranes 30 and 40 are manufactured.

このようにして製造された多孔質膜30、40を備える補強型電解質膜10の両面に、それぞれ、白金や白金合金などの触媒を担持したカーボン粒子などの導電性粒子と、電解質樹脂とを含む触媒層を形成し、触媒層の両面にそれぞれガス拡散層を形成する。更に、ガス拡散層の両面にセパレータを設け、ガス拡散層とセパレータとの間にガス流路を形成することで、燃料電池を製造することができる。   The both sides of the reinforced electrolyte membrane 10 including the porous membranes 30 and 40 thus manufactured include conductive particles such as carbon particles carrying a catalyst such as platinum or a platinum alloy, and an electrolyte resin. A catalyst layer is formed, and gas diffusion layers are formed on both sides of the catalyst layer. Furthermore, a fuel cell can be manufactured by providing a separator on both surfaces of the gas diffusion layer and forming a gas flow path between the gas diffusion layer and the separator.

B.実験結果:
B−1.細孔の観察:
以下では、図3のステップS30において、融解開始温度Tms未満の温度雰囲気でシート部材を延伸することとした根拠について、いくつかの実験結果に基づいて説明する。実験には、まず、上述のステップS10(図3)で作製したポリテトラフルオロエチレンからなるシート部材を用意し、ステップS30(図3)における一次延伸温度を異ならせたサンプル1〜3を作製した。
B. Experimental result:
B-1. Observation of pores:
Hereinafter, the grounds for extending the sheet member in a temperature atmosphere lower than the melting start temperature Tms in step S30 of FIG. 3 will be described based on some experimental results. In the experiment, first, a sheet member made of polytetrafluoroethylene prepared in Step S10 (FIG. 3) described above was prepared, and Samples 1 to 3 having different primary stretching temperatures in Step S30 (FIG. 3) were prepared. .

図4は、サンプル1〜3の一次延伸温度について示す図である。サンプル1〜3の融解開始温度Tmsは273℃である。サンプル1の一次延伸温度は250℃であり、サンプル2の一次延伸温度は200℃であり、サンプル3の一次延伸温度は330℃である。サンプル1、2の一次延伸温度は融解開始温度Tmsよりも低い。サンプル3の一次延伸温度は融解開始温度Tms以上であって融点Tmより低い。なお、二次延伸温度は、サンプル1〜3ともに融解開始温度Tms未満の雰囲気とした。   FIG. 4 is a diagram showing the primary stretching temperatures of Samples 1 to 3. The melting start temperature Tms of Samples 1 to 3 is 273 ° C. The primary stretching temperature of sample 1 is 250 ° C., the primary stretching temperature of sample 2 is 200 ° C., and the primary stretching temperature of sample 3 is 330 ° C. The primary stretching temperature of Samples 1 and 2 is lower than the melting start temperature Tms. The primary stretching temperature of sample 3 is equal to or higher than the melting start temperature Tms and lower than the melting point Tm. Note that the secondary stretching temperature was an atmosphere having a melting start temperature of less than Tms for all of Samples 1 to 3.

このようにして作製したサンプル1〜3の細孔を、3D−SEM(three Dimensional Scanning Electron Microscope、三次元走査電子顕微鏡)を用いて観察したところ、融解開始温度Tms未満の温度雰囲気で一次延伸を行ったサンプル1では、細孔の閉塞が観察されなかった。サンプル1よりもさらに低い温度雰囲気で一次延伸を行ったサンプル2でも、サンプル1と同様に細孔の閉塞が観察されなかった。しかし、融解開始温度Tms以上、かつ、融点Tmよりも低い温度雰囲気で一次延伸を行ったサンプル3では、局所的な細孔の閉塞が観察された。なお、細孔が閉塞するとは、多孔質膜の細孔が、ガスや水の流れが滞留し得るような形状に閉塞することをいう。   The pores of Samples 1 to 3 thus produced were observed using a 3D-SEM (three Dimensional Scanning Electron Microscope), and primary stretching was performed in a temperature atmosphere below the melting start temperature Tms. In sample 1 performed, no blockage of pores was observed. In Sample 2 that was subjected to primary stretching in a lower temperature atmosphere than Sample 1, as in Sample 1, no pore clogging was observed. However, in the sample 3 subjected to primary stretching in an atmosphere having a temperature higher than the melting start temperature Tms and lower than the melting point Tm, local pore blockage was observed. It should be noted that the pores being blocked means that the pores of the porous membrane are blocked in such a shape that the flow of gas or water can stay.

以上の細孔のSEM観察結果より、融解開始温度Tms未満の温度雰囲気で延伸を行った多孔質膜(サンプル1、2)においては、融点Tm未満、融解開始温度Tms以上の温度雰囲気で延伸を行った多孔質膜(サンプル3)と比べて、細孔の閉塞が抑制されることが示された。融解開始温度Tms以上であれば、シート部材の局所的な融解が開始する。そのため、シート部材の融点Tm未満であっても、融解開始温度Tms以上で一次延伸を行ったサンプル3では、合成樹脂の融解が開始し、局所的な細孔の閉塞が観察されたと考えられる。   From the SEM observation results of the above pores, in the porous membranes (Samples 1 and 2) that were stretched in a temperature atmosphere lower than the melting start temperature Tms, the stretching was performed in a temperature atmosphere lower than the melting point Tm and higher than the melting start temperature Tms. It was shown that pore blockage was suppressed compared to the porous membrane performed (Sample 3). If the melting start temperature Tms or higher, local melting of the sheet member starts. Therefore, even if the melting point is lower than the melting point Tm of the sheet member, it is considered that in the sample 3 subjected to the primary stretching at the melting start temperature Tms or more, melting of the synthetic resin started and local pore blockage was observed.

B−2.燃料電池セルの発電試験:
次に、サンプル1〜3をそれぞれ用いた補強型電解質膜を用いて、セル温度83℃、電流密度1.2(A/cm2)にて発電試験を行った。その結果、融解開始温度Tms未満の温度雰囲気で一次延伸を行ったサンプル1を用いた発電試験では、セル抵抗は11(mΩ)であった。サンプル1よりもさらに低い温度で一次延伸を行ったサンプル2を用いた発電試験においても同様に、セル抵抗は11(mΩ)であった。しかし、融解開始温度Tms以上、かつ、融点Tmよりも低い温度で一次延伸を行ったサンプル3を用いた発電試験では、セル抵抗は19(mΩ)であった。サンプル3を用いた発電試験におけるセル抵抗は、サンプル1、2を用いた発電試験におけるセル抵抗に比べて約1.7倍高かった。
B-2. Fuel cell test:
Next, a power generation test was performed at a cell temperature of 83 ° C. and a current density of 1.2 (A / cm 2 ) using the reinforced electrolyte membranes using Samples 1 to 3, respectively. As a result, the cell resistance was 11 (mΩ) in the power generation test using Sample 1 that was subjected to primary stretching in a temperature atmosphere lower than the melting start temperature Tms. Similarly, in the power generation test using Sample 2 that was subjected to primary stretching at a lower temperature than Sample 1, the cell resistance was 11 (mΩ). However, the cell resistance was 19 (mΩ) in the power generation test using Sample 3 in which the primary stretching was performed at a temperature equal to or higher than the melting start temperature Tms and lower than the melting point Tm. The cell resistance in the power generation test using Sample 3 was about 1.7 times higher than the cell resistance in the power generation test using Samples 1 and 2.

以上の発電試験の結果から、融解開始温度Tms未満の温度雰囲気で延伸を行った多孔質膜(サンプル1)を用いた補強型電解質膜においては、融点Tm未満、融解開始温度Tms以上の温度雰囲気で延伸を行った多孔質膜(サンプル1、2)を用いた補強型電解質膜と比べて、燃料電池セルに用いられた場合にセル抵抗が低く、プロトンの伝導性が高いことが示された。これは、サンプル1、2はサンプル3のように細孔が閉塞しておらず、プロトン(H+)の伝導が阻害されなかったためだと考えられる。 From the results of the power generation test described above, in the reinforced electrolyte membrane using the porous membrane (sample 1) that was stretched in a temperature atmosphere below the melting start temperature Tms, the temperature atmosphere is below the melting point Tm and above the melting start temperature Tms. Compared to the reinforced electrolyte membranes using the porous membranes (samples 1 and 2) that were stretched in step 1, the cell resistance was low and the proton conductivity was high when used in fuel cells. . This is presumably because Samples 1 and 2 were not clogged with pores like Sample 3 and proton (H + ) conduction was not inhibited.

C.効果:
以上、多孔質膜の製造方法及び実験結果について説明したように、多孔質膜は、シート部材の融解開始Tms温度未満の雰囲気で延伸されることによって製造されるので、シート部材の局所的な融解による細孔の閉塞を抑制することができる。また、シート部材に含まれる合成樹脂の密度が比較的高く、細孔の閉塞が生じやすい一次延伸において、シート部材の融解開始温度未満で延伸が行われるので、細孔の閉塞をより確実に抑制することができる。更に、多孔質膜はフッ素系樹脂を含有するので、化学的に安定した多孔質膜を製造することができる。また、このような多孔質膜を用いた補強型電解質膜を燃料電池に用いれば、燃料電池においてプロトン(H+)の伝導阻害を軽減でき、燃料電池の性能を向上させることができる。
C. effect:
As described above, the porous film is manufactured by stretching in an atmosphere below the melting start Tms temperature of the sheet member, as described for the method for producing the porous film and the experimental results. It is possible to suppress clogging of the pores due to. In addition, in the primary stretching where the density of the synthetic resin contained in the sheet member is relatively high and pore clogging is likely to occur, stretching is performed below the melting start temperature of the sheet member. can do. Furthermore, since the porous film contains a fluororesin, a chemically stable porous film can be produced. In addition, if such a reinforced electrolyte membrane using a porous membrane is used in a fuel cell, proton (H + ) conduction inhibition in the fuel cell can be reduced, and the performance of the fuel cell can be improved.

D.シート部材の融解開始温度の算出方法:
以下では、シート部材の融解開始温度Tmsの算出方法について説明する。
図5は、シート部材の融解開始温度Tmsの算出方法について示すフローチャートである。図6は、シート部材のDSC測定結果を示す図である。以降、図5及び図6を用いて融解開始温度Tmsの算出方法について説明する。シート部材の融解開始温度Tmsを算出するには、まず、シート部材のDSC(Differential scanning calorimetry、示差走査熱量測定)プロファイルが取得される(ステップS12)。
D. Calculation method of melting start temperature of sheet member:
Below, the calculation method of the melting start temperature Tms of a sheet | seat member is demonstrated.
FIG. 5 is a flowchart showing a method for calculating the melting start temperature Tms of the sheet member. FIG. 6 is a diagram illustrating a DSC measurement result of the sheet member. Hereinafter, a method for calculating the melting start temperature Tms will be described with reference to FIGS. 5 and 6. In order to calculate the melting start temperature Tms of the sheet member, first, a DSC (Differential scanning calorimetry) profile of the sheet member is acquired (step S12).

図6(a)はシート部材のDSC測定結果を示す図である。図6(a)には、縦軸に熱流W、横軸に温度Tをとった、シート部材のDSCプロファイルが示されている。DSCプロファイルは、TA instruments製のDSC Q100を用い、上述のステップS10(図3)で作製されたシート部材約5mgを空気雰囲気下、25℃から400℃まで10℃/分で昇温することにより取得した。図6(a)に示す吸熱ピークは、シート部材の融点Tmである。   FIG. 6A shows a DSC measurement result of the sheet member. FIG. 6A shows a DSC profile of the sheet member with the heat flow W on the vertical axis and the temperature T on the horizontal axis. The DSC profile is obtained by using DSC Q100 manufactured by TA instruments and raising the temperature of about 5 mg of the sheet member produced in the above-described step S10 (FIG. 3) from 25 ° C. to 400 ° C. at 10 ° C./min. I got it. The endothermic peak shown in FIG. 6A is the melting point Tm of the sheet member.

次に、図6(a)における各温度において、熱流Wの変化量(dw/dt、ΔW)が求められる(図5、ステップS14)。ステップS14では、図6(a)の挿図に示すように、温度Tが1℃変化した場合の熱流Wの変化量ΔWが求められる。なお、変化量ΔWは、以下の式(1)により求めることができる。   Next, the change amount (dw / dt, ΔW) of the heat flow W is obtained at each temperature in FIG. 6A (FIG. 5, step S14). In step S14, as shown in the inset of FIG. 6A, a change amount ΔW of the heat flow W when the temperature T changes by 1 ° C. is obtained. Note that the change amount ΔW can be obtained by the following equation (1).

ΔW=(T+1℃におけるW)−(T℃におけるW) ・・・式(1)
W:熱流、T:温度
ΔW = (W at T + 1 ° C.) − (W at T ° C.) Expression (1)
W: heat flow, T: temperature

図6(b)は、各温度Tにおける熱流の変化量を示す図である。   FIG. 6B is a diagram showing the amount of change in heat flow at each temperature T.

次に、融点Tm以上、かつ、熱流の変化量ΔWが0となる温度T0が求められる(図5、ステップS16)。図6(a)には、図6(b)から求められた、熱流の変化量ΔWが0となる温度T0が示されている。 Next, a temperature T 0 that is equal to or higher than the melting point Tm and at which the heat flow variation ΔW is 0 is obtained (FIG. 5, step S16). FIG. 6A shows the temperature T 0 at which the heat flow change ΔW obtained from FIG. 6B becomes zero .

温度T0が求められると、図6(a)のDSCプロファイル上で、温度T0から横軸と平行に、低温側へ直線Nが引かれる(図5、ステップS18)。そして、この直線Nと、DSCプロファイルとの交点が融解開始温度Tmsとして算出される(図5、ステップS20)。以上のようにすれば、シート部材の融解開始温度Tmsを適切に求めることができる。 When the temperature T 0 is obtained, a straight line N is drawn from the temperature T 0 to the low temperature side in parallel with the horizontal axis on the DSC profile in FIG. 6A (step S18 in FIG. 5). Then, the intersection of this straight line N and the DSC profile is calculated as the melting start temperature Tms (FIG. 5, step S20). In this way, the melting start temperature Tms of the sheet member can be obtained appropriately.

E.変形例:
上述の実施形態では、融解開始温度Tmsは、DSC測定により求められる。これに対し融解開始温度Tmsは、合成樹脂の吸熱ピークを測定可能な他の測定方法により求めてもよい。
E. Variation:
In the above embodiment, the melting start temperature Tms is obtained by DSC measurement. On the other hand, the melting start temperature Tms may be obtained by another measuring method capable of measuring the endothermic peak of the synthetic resin.

上述の実施形態では、合成樹脂として、フッ素系樹脂であるポリテトラフルオロエチレンを用いて多孔質膜を製造している。これに対し、合成樹脂として、ポリオレフィン系樹脂、セルロース系樹脂、フッ素系樹脂、ポリエーテルスルホン、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、芳香族ポリアミド樹脂のうち少なくともいずれかを用いて多孔質膜を製造してもよい。また、ポリオレフィン系樹脂として、例えばポリエチレン、ポリプロピレン等を用いてもよく、セルロース系樹脂として、例えば酢酸セルロース、アセチルセルロース、セルロースアセテート等を用いてもよい。フッ素系樹脂として、例えば、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、PFA、FEP、ETFE等を用いてもよく、芳香族ポリアミド樹脂として、例えばアラミド等を用いてもよい。   In the above-described embodiment, the porous film is manufactured using polytetrafluoroethylene, which is a fluororesin, as the synthetic resin. On the other hand, as a synthetic resin, a porous film is manufactured using at least one of polyolefin resin, cellulose resin, fluorine resin, polyethersulfone, polycarbonate, polyamide, polyimide, polyamideimide, and aromatic polyamide resin. May be. Further, as the polyolefin resin, for example, polyethylene, polypropylene or the like may be used, and as the cellulose resin, for example, cellulose acetate, acetyl cellulose, cellulose acetate or the like may be used. For example, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, PFA, FEP, ETFE or the like may be used as the fluorine-based resin, and for example, aramid or the like may be used as the aromatic polyamide resin.

本発明は、上述の実施形態や変形例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、変形例中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。   The present invention is not limited to the above-described embodiments and modifications, and can be realized with various configurations without departing from the spirit thereof. For example, the technical features in the embodiments and the modifications corresponding to the technical features in each embodiment described in the summary section of the invention are to solve some or all of the above-described problems, or In order to achieve part or all of the effects, replacement or combination can be performed as appropriate. Further, if the technical feature is not described as essential in the present specification, it can be deleted as appropriate.

10…補強型電解質膜
20…電解質膜
30、40…多孔質膜
DESCRIPTION OF SYMBOLS 10 ... Reinforcement type electrolyte membrane 20 ... Electrolyte membrane 30, 40 ... Porous membrane

Claims (5)

多孔質膜の製造方法であって、
合成樹脂を有するシート部材を、該シート部材の融解開始温度未満の雰囲気で延伸する工程、
を備える多孔質膜の製造方法。
A method for producing a porous membrane, comprising:
Stretching a sheet member having a synthetic resin in an atmosphere lower than the melting start temperature of the sheet member;
A method for producing a porous membrane.
請求項1に記載の多孔質膜の製造方法であって、
前記シート部材は、前記合成樹脂として、ポリオレフィン系樹脂、セルロース系樹脂、フッ素系樹脂、ポリエーテルスルホン、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、芳香族ポリアミド樹脂のうち少なくともいずれかを含有する、多孔質膜の製造方法。
It is a manufacturing method of the porous membrane according to claim 1,
The sheet member contains at least one of a polyolefin resin, a cellulose resin, a fluorine resin, a polyether sulfone, a polycarbonate, a polyamide, a polyimide, a polyamideimide, and an aromatic polyamide resin as the synthetic resin. A method for producing a membrane.
請求項1または請求項2に記載の多孔質膜の製造方法であって、
前記融解開始温度は、前記シート部材の示査走査熱量測定に基づいて求められる、多孔質膜の製造方法。
It is a manufacturing method of the porous membrane according to claim 1 or 2,
The said melting start temperature is a manufacturing method of the porous membrane calculated | required based on the scanning scanning calorimetry of the said sheet | seat member.
請求項1から請求項3までのいずれか一項に記載の多孔質膜の製造方法であって、
前記融解開始温度未満の雰囲気での延伸後、更に、前記シート部材を延伸する二次延伸工程を有する、多孔質膜の製造方法。
It is a manufacturing method of the porous membrane according to any one of claims 1 to 3,
A method for producing a porous membrane, further comprising a secondary stretching step of stretching the sheet member after stretching in an atmosphere below the melting start temperature.
請求項1から請求項4までのいずれか一項に記載の多孔質膜の製造方法により製造された多孔質膜を備える補強型電解質膜。   A reinforced electrolyte membrane comprising a porous membrane produced by the method for producing a porous membrane according to any one of claims 1 to 4.
JP2013250911A 2013-12-04 2013-12-04 Porous film production method and reinforcement polymer electrolyte Pending JP2015108051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013250911A JP2015108051A (en) 2013-12-04 2013-12-04 Porous film production method and reinforcement polymer electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013250911A JP2015108051A (en) 2013-12-04 2013-12-04 Porous film production method and reinforcement polymer electrolyte

Publications (2)

Publication Number Publication Date
JP2015108051A true JP2015108051A (en) 2015-06-11
JP2015108051A5 JP2015108051A5 (en) 2016-03-31

Family

ID=53438657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013250911A Pending JP2015108051A (en) 2013-12-04 2013-12-04 Porous film production method and reinforcement polymer electrolyte

Country Status (1)

Country Link
JP (1) JP2015108051A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820659A (en) * 1994-07-08 1996-01-23 Daicel Chem Ind Ltd Microporous membrane, its production and separator for non-aqueous electrolyte solution cell
JP2005162824A (en) * 2003-12-01 2005-06-23 Toyota Motor Corp Method and equipment for manufacturing porous film
JP2005171171A (en) * 2003-12-15 2005-06-30 Toyota Motor Corp Method for producing porous thin film
JP2006224305A (en) * 2005-02-15 2006-08-31 Toyota Motor Corp Manufacturing method of stretched porous film and fuel cell
JP2008041534A (en) * 2006-08-09 2008-02-21 Toyota Motor Corp Reinforcement type electrolyte membrane for fuel cells and its manufacturing method, fuel cell membrane electrode assembly and solid polymer electrolyte fuel cell with the same
JP2009016075A (en) * 2007-07-02 2009-01-22 Toyota Motor Corp Manufacturing method of composite electrolyte membrane, and membrane electrode assembly equipped with the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820659A (en) * 1994-07-08 1996-01-23 Daicel Chem Ind Ltd Microporous membrane, its production and separator for non-aqueous electrolyte solution cell
JP2005162824A (en) * 2003-12-01 2005-06-23 Toyota Motor Corp Method and equipment for manufacturing porous film
JP2005171171A (en) * 2003-12-15 2005-06-30 Toyota Motor Corp Method for producing porous thin film
JP2006224305A (en) * 2005-02-15 2006-08-31 Toyota Motor Corp Manufacturing method of stretched porous film and fuel cell
JP2008041534A (en) * 2006-08-09 2008-02-21 Toyota Motor Corp Reinforcement type electrolyte membrane for fuel cells and its manufacturing method, fuel cell membrane electrode assembly and solid polymer electrolyte fuel cell with the same
JP2009016075A (en) * 2007-07-02 2009-01-22 Toyota Motor Corp Manufacturing method of composite electrolyte membrane, and membrane electrode assembly equipped with the same

Similar Documents

Publication Publication Date Title
CA2932016C (en) Polymer electrolyte membrane
JP6189920B2 (en) Fuel cell separator and method for manufacturing the same
KR102432328B1 (en) Polyolefin microporous membrane, manufacturing method thereof, and battery separator
KR102112645B1 (en) Polymer electrolyte film
JP7098931B2 (en) Polyolefin microporous membrane, lithium ion secondary battery and polyolefin microporous membrane manufacturing method
WO2015080290A1 (en) Porous body, polymer electrolyte membrane, filter material for filter, and filter unit
EP2784861B1 (en) Diaphragm for redox flow batteries
WO2007123267A1 (en) Porous material for electrolyte membrane for fuel cell, method for producing the same, electrolyte membrane for solid polymer fuel cell, membrane-electrode assembly (mea), and fuel cell
WO2018182006A1 (en) Diaphragm, electrolytic bath, and method for producing hydrogen
JP2015120786A (en) Microporous film and separator using the same
JP2015076201A (en) Method of producing polymer electrolyte membrane and production apparatus of polymer electrolyte membrane
WO2017150470A1 (en) Resin porous membrane and production method therefor
JP2015108051A (en) Porous film production method and reinforcement polymer electrolyte
JP2017050163A (en) Reinforced electrolyte membrane for fuel cell
JP2014110232A (en) Fluorine-based polymer electrolyte film
JP2006160902A (en) Polyelectrolyte membrane and its manufacturing method
JP5076422B2 (en) Method for producing porous membrane for fuel cell electrolyte membrane
JP2019192624A (en) Manufacturing method of electrolyte membrane for fuel cell and electrolyte membrane manufactured thereby
JP2019525387A (en) Ion exchange membrane and method for producing the same, membrane electrode assembly, and redox flow battery
CN115579498A (en) Composite membrane and preparation method thereof
JP5910570B2 (en) Fuel cell electrolyte membrane and method for producing fuel cell electrolyte membrane
JP2010061947A (en) Compound electrolyte membrane for fuel cell, and method for manufacturing the same
JP2005108537A (en) Manufacturing method of electrolyte membrane for solid polymer type fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170509