JP2015107021A - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
JP2015107021A
JP2015107021A JP2013249209A JP2013249209A JP2015107021A JP 2015107021 A JP2015107021 A JP 2015107021A JP 2013249209 A JP2013249209 A JP 2013249209A JP 2013249209 A JP2013249209 A JP 2013249209A JP 2015107021 A JP2015107021 A JP 2015107021A
Authority
JP
Japan
Prior art keywords
phase
level inverter
inverter cell
cell
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013249209A
Other languages
Japanese (ja)
Other versions
JP6146284B2 (en
Inventor
岩堀 道雄
Michio Iwabori
道雄 岩堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2013249209A priority Critical patent/JP6146284B2/en
Publication of JP2015107021A publication Critical patent/JP2015107021A/en
Application granted granted Critical
Publication of JP6146284B2 publication Critical patent/JP6146284B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To solve the problem that for a multiple inverter, a plurality of single-phase two-level inverter cells are connected in series for each phase, but when this circuit is replaced with single-phase three-level inverter cells, the number of semiconductor elements increases and the device cost becomes expensive, although the number of control devices can be reduced.SOLUTION: To the output of a three-phase three-level inverter cell, for which two sets of a secondary windowing of an insulating transformer are inputted, is connected in series the output of a single-phase three-level inverter cell for which two sets of another secondary winding are inputted, the smoothing capacitor voltage values of the three-phase three-level inverter cell and single-phase three-level inverter cell are equalized, and the phase voltage amplitude of the three-phase three-level inverter cell is reduced to 1/2 of the phase voltage amplitude of the single-phase three-level inverter cell. Also, two forward converters of the three-phase three-level inverter cell are made to a first group, and each of three forward converters of the single-phase three-level inverter cell are made to be a second and a third group, then the converters are operated in phase within the group, and operated out of voltage phase between the groups.

Description

本発明は、三相交流電源を一次巻線に入力し、複数の二次巻線を持つ1台の変圧器を介して給電され、二つの二次巻線を入力とする三相3レベルインバータの出力交流に、他の二次巻線を入力とする複数台の単相3レベルインバータの交流出力を直列接続して三相交流を出力する電力変換装置に関する。   The present invention is a three-phase three-level inverter that inputs a three-phase AC power source to a primary winding, is fed through one transformer having a plurality of secondary windings, and has two secondary windings as inputs. The present invention relates to a power converter that outputs three-phase alternating current by connecting in series the alternating current outputs of a plurality of single-phase three-level inverters that have other secondary windings as inputs.

図7に特許文献1に示された単相3レベル電力変換回路を示す。三相交流入力Aからヒューズ20aを介して順変換器としてのダイオード整流器21aを接続し、この直流出力に平滑コンデンサ22aを接続したAC−DC変換回路と、三相交流入力Bからヒューズ20bを介して順変換器としてダイオード整流器21bを接続し、この直流出力に平滑コンデンサ22bを接続したAC−DC変換回路との直流出力を直列接続し、正極P、中間極M及び負極Nを出力とする直流電源を構成する。この直流電源を直流入力とした単相3レベルインバータ23aによってDC−AC変換され3レベルの交流出力が得られる構成である。単相3レベルインバータ23aは、スイッチング素子としてダイオードが逆並列接続されたIGBTを4個直列接続した回路が直流電源の正極Pと負極Nとの間に2回路接続され、さらに、IGBTの直列接続点と直流電源の中間極Mとの間にはダイオードが接続された構成である。図8の回路構成を単相3レベルインバータセルと呼ぶ。また三相3レベルインバータ回路の場合はダイオードが逆並列接続されたIGBTを4個直列接続した回路を3回路用いて構成し、このような回路構成を三相3レベルインバータセルと呼ぶ。   FIG. 7 shows a single-phase three-level power conversion circuit disclosed in Patent Document 1. An AC-DC conversion circuit in which a diode rectifier 21a as a forward converter is connected from a three-phase AC input A through a fuse 20a and a smoothing capacitor 22a is connected to this DC output, and a three-phase AC input B through a fuse 20b. Then, a diode rectifier 21b is connected as a forward converter, and a DC output with an AC-DC conversion circuit having a smoothing capacitor 22b connected to the DC output is connected in series, and a positive electrode P, an intermediate electrode M, and a negative electrode N are output. Configure the power supply. A DC-AC conversion is performed by a single-phase three-level inverter 23a using the DC power supply as a DC input, and a three-level AC output is obtained. In the single-phase three-level inverter 23a, a circuit in which four IGBTs having diodes connected in reverse parallel as switching elements are connected in series is connected in two circuits between the positive electrode P and the negative electrode N of the DC power supply, and further, the IGBTs are connected in series. A diode is connected between the point and the intermediate pole M of the DC power supply. The circuit configuration of FIG. 8 is called a single-phase three-level inverter cell. In the case of a three-phase three-level inverter circuit, a circuit in which four IGBTs having diodes connected in antiparallel are connected in series using three circuits, and such a circuit configuration is called a three-phase three-level inverter cell.

図8に、別の回路構成の単相3レベルインバータ23bを用いた回路例を示す。スイッチング素子としてダイオードが逆並列接続されたIGBTを2個直列接続した回路が直流電源の正極Pと負極Nとの間に2回路接続され、さらに、IGBTの直列接続点と直流電源の中間極Mとの間にはそれぞれ双方向の電流のスイッチング動作が可能な双方向スイッチ素子ACS1、ACS2が接続された構成である。この様な構成を単相3レベルインバータセルと称する。また三相3レベルインバータ回路の場合はダイオードが逆並列接続されたIGBTを2個直列接続した回路3回路と双方向スイッチ素子3個を用いて構成し、このような回路構成を三相3レベルインバータセルと呼ぶ。   FIG. 8 shows a circuit example using a single-phase three-level inverter 23b having another circuit configuration. A circuit in which two IGBTs having diodes connected in reverse parallel as switching elements are connected in series is connected between a positive electrode P and a negative electrode N of the DC power supply, and further, a series connection point of the IGBT and an intermediate pole M of the DC power supply. Are connected to bidirectional switch elements ACS1 and ACS2 capable of bidirectional current switching operation. Such a configuration is referred to as a single-phase three-level inverter cell. In the case of a three-phase three-level inverter circuit, the three-phase three-level inverter circuit is configured by using three circuits in which two IGBTs having diodes connected in reverse parallel are connected in series and three bidirectional switch elements. It is called an inverter cell.

図9に、上記単相3レベルインバータセルを6個(U1、U2、V1、V2、W1、W2)用いて、各セルの交流入力を変圧器12の二次巻線に接続した特許文献1に示された電力変換装置の回路図を示す。交流出力が直列接続された単相3レベルインバータセルU1とU2、V1とV2及びW1とW2の一方の端子は共通に接続され、他方の端子はそれぞれ電動機6に接続される。この例では、合計12台のダイオード整流器が用いられているが、例えば4台ずつ3つの群に分け、それらの入力に接続された変圧器二次巻線の電圧位相差を同一群内は同じとして、群ごとに電気角20度ずつ設け、18パルス整流回路相当の多重整流器とすることにより、交流電源に接続される変圧器一次巻線を流れる入力電流に含まれる低次高調波成分を低減することが、通常行われている。   FIG. 9 shows a patent document 1 in which six single-phase three-level inverter cells (U1, U2, V1, V2, W1, W2) are used and the AC input of each cell is connected to the secondary winding of the transformer 12. The circuit diagram of the power converter device shown by is shown. One terminal of single-phase three-level inverter cells U1 and U2, V1 and V2, and W1 and W2 with AC outputs connected in series is connected in common, and the other terminal is connected to the motor 6, respectively. In this example, a total of twelve diode rectifiers are used. For example, four units are divided into three groups, and the voltage phase difference of the transformer secondary windings connected to their inputs is the same within the same group. As a result, a multi-rectifier equivalent to an 18-pulse rectifier circuit is provided for each group, thereby reducing low-order harmonic components contained in the input current flowing through the transformer primary winding connected to the AC power supply. It is usually done.

更に、特許文献1には、単相2レベルインバータセルとして、図10に示すような回路構成が示されている。1つの交流入力をヒューズ20を介して、順変換器としてのダイオード整流器21の交流入力に、ダイオード整流器21の直流出力P−N間に平滑コンデンサ22を、平滑コンデンサ22を単相2レベルインバータの直流入力に、それぞれ接続した構成で、単相2レベルインバータ24の出力が交流出力となる。単相2レベルインバータ24はダイオードを逆並列接続したIGBTを2個直列接続した回路を2回路コンデンサ22と並列接続した回路構成である。このような構成を単相2レベルインバータセルと称する。   Further, Patent Document 1 shows a circuit configuration as shown in FIG. 10 as a single-phase two-level inverter cell. One AC input is connected to the AC input of a diode rectifier 21 as a forward converter via a fuse 20, a smoothing capacitor 22 is connected between the DC outputs PN of the diode rectifier 21, and the smoothing capacitor 22 is a single-phase two-level inverter. The output of the single-phase two-level inverter 24 becomes an AC output with a configuration connected to the DC input. The single-phase two-level inverter 24 has a circuit configuration in which a circuit in which two IGBTs having anti-parallel diodes connected in series are connected in parallel with a two-circuit capacitor 22. Such a configuration is referred to as a single-phase two-level inverter cell.

図11に、特許文献1に示された、単相2レベルインバータセルを9個(U21〜U23、V21〜V23、W21〜W23)用いて、各セルの交流入力端子を変圧器の二次巻線に接続した電力変換装置の回路構成を示す。交流出力が直列接続された単相2レベルインバータセルU21〜U23、V21とV23及びW21とW23の一方の端子は共通に接続され、他方の端子はそれぞれ電動機6に接続される。この例でも、合計9台のダイオード整流器を、例えば3台ずつ3つの群に分け、それらの入力に接続された変圧器二次巻線の電圧位相差を群ごとに電気角20度ずつ設け、18パルス整流回路相当の多重整流器とすることによって、交流電源に接続される変圧器一次巻線を流れる入力電流に含まれる低次高調波成分を低減することが、通常行われている。   In FIG. 11, nine single-phase two-level inverter cells (U21 to U23, V21 to V23, W21 to W23) shown in Patent Document 1 are used, and the AC input terminal of each cell is the secondary winding of the transformer. The circuit structure of the power converter connected to the line is shown. One terminal of the single-phase two-level inverter cells U21 to U23, V21 and V23, and W21 and W23 to which the AC output is connected in series is connected in common, and the other terminal is connected to the electric motor 6. Also in this example, a total of 9 diode rectifiers are divided into 3 groups, for example, 3 units each, and the voltage phase difference of the transformer secondary windings connected to their inputs is provided by 20 electrical degrees for each group, It is a common practice to reduce the low-order harmonic components contained in the input current flowing through the transformer primary winding connected to the AC power supply by using a multiple rectifier equivalent to an 18-pulse rectifier circuit.

特開2006−254673号公報JP 2006-254673 A

上記の従来例において、図10に示された単相2レベルインバータセルの交流出力を図11に示すように各相毎に3個直列接続し、合計9台のセル用いて電力変換装置を構成する場合、使用するIGBTの数は下記となる。
4[個/セル]×9[セル]=36[個]
この際、各インバータを個別に制御する制御装置も単相2レベルインバータセルの数と同じ9台設ける必要がある。
一方、これと同じ電圧定格のIGBTを単相3レベルインバータセルに適用する時、図9に示すように単相3レベルインバータセルの交流出力を2個直列接続し、IGBTの電圧利用率を下げて、合計6台の単相3レベルインバータセルを用いて構成する必要がある。この時、使用するIGBTの数は下記となる。
8[個/セル]×6[セル]=48[個]
なお、インバータの制御装置は単相3レベルインバータセルの数と同じ6台ですむ。
このように、単相2レベルインバータセルの交流出力を各出力相毎に奇数個直列接続して構成した電力変換装置を、これと同じ電圧定格のIGBTを用いた単相3レベルインバータセルで同一出力電圧定格の電力変換装置を構成する場合には、インバータを個別に制御する制御装置の台数は少なくなるというメリットはあるものの、適用するIGBTの数が多くなり、その分だけ電力変換装置が高価になるという問題点がある。
従って、本発明の課題は、IGBTの使用数を増加させずに、制御装置の使用数を低減し、装置の低コスト化が可能な電力変換装置を提供することである。
In the above-described conventional example, the AC output of the single-phase two-level inverter cell shown in FIG. 10 is connected in series for each phase as shown in FIG. 11, and the power converter is configured using a total of nine cells. In this case, the number of IGBTs to be used is as follows.
4 [pieces / cell] × 9 [cells] = 36 [pieces]
At this time, it is necessary to provide nine control devices for controlling each inverter individually, which is the same as the number of single-phase two-level inverter cells.
On the other hand, when an IGBT with the same voltage rating is applied to a single-phase three-level inverter cell, two AC outputs of the single-phase three-level inverter cell are connected in series as shown in FIG. 9 to reduce the voltage utilization rate of the IGBT. Thus, a total of six single-phase three-level inverter cells must be used. At this time, the number of IGBTs to be used is as follows.
8 [pieces / cell] × 6 [cells] = 48 [pieces]
The number of inverter control devices is the same as the number of single-phase three-level inverter cells.
As described above, the power converter configured by connecting the AC outputs of the single-phase two-level inverter cell in series for each output phase is the same in the single-phase three-level inverter cell using the same voltage rating IGBT. When configuring an output voltage rated power conversion device, there is a merit that the number of control devices that individually control inverters is reduced, but the number of IGBTs to be applied increases, and the power conversion device is expensive accordingly. There is a problem of becoming.
Therefore, the subject of this invention is providing the power converter device which can reduce the number of use of a control apparatus, and can reduce the cost of an apparatus, without increasing the number of use of IGBT.

上述の課題を解決するために、第1の発明においては、三相交流電源と接続される一組の一次巻線とそれぞれが絶縁された(6N+2)(ここでNは正の整数)組の三相二次巻線とを有する絶縁変圧器と、それぞれが前記二次巻線の内の一組を入力とし交流を直流に変換する順変換器を2台とそれぞれの前記順変換器の出力に接続される平滑コンデンサと前記平滑コンデンサの直列回路を正極と負極と中間極とを備えた直流電源として入力し、この直流を三相交流に変換する三相3レベルインバータとからなる三相3レベルインバータセルと、それぞれが前記二次巻線の内の他の一組を入力とし交流を直流に変換する順変換器を2台とそれぞれの前記順変換器の出力に接続される平滑コンデンサと前記平滑コンデンサの直列回路を正極と負極と中間極とを備えた直流電源として入力し、この直流を単相交流に変換する単相3レベルインバータとからなる単相3レベルインバータセルを3N台と、を備え、前記三相3レベルインバータの交流出力の各相それぞれに前記単相3レベルインバータセルN台の交流出力を直列接続した電力変換装置に関する。前記三相3レベルインバータセルを構成する前記平滑コンデンサの直流電圧値と全ての前記単相3レベルインバータセルを構成する前記平滑コンデンサの直流電圧値を等しくするように順変換器を動作させ、交流出力が直列接続された前記単相3レベルインバータセルの交流出力電圧振幅を全て等しくするように制御すると共に、前記三相3レベルインバータセルの交流出力相電圧振幅は前記単相3レベルインバータセルの交流出力電圧振幅の1/2とするように、前記三相3レベルインバータセルを制御することを特徴とする。   In order to solve the above-mentioned problem, in the first invention, a set of primary windings connected to a three-phase AC power source and each insulated (6N + 2) (where N is a positive integer) Insulating transformers having three-phase secondary windings, two forward converters each converting one set of the secondary windings as input and converting alternating current to direct current, and outputs of the respective forward converters A three-phase three-phase inverter composed of a three-phase three-level inverter that inputs a smoothing capacitor connected to a DC power source having a positive electrode, a negative electrode, and an intermediate electrode and converts the direct current into a three-phase alternating current. Two level converter cells, each of which has another set of secondary windings as an input, and two forward converters for converting alternating current into direct current, and smoothing capacitors connected to the outputs of the respective forward converters; A series circuit of the smoothing capacitor is connected to a positive electrode and a negative electrode. 3N units of single-phase three-level inverter cells comprising a single-phase three-level inverter that is input as a DC power source having an intermediate pole and converts this DC into single-phase AC, The present invention relates to a power converter in which AC outputs of N single-phase three-level inverter cells are connected in series to each phase of AC output. The forward converter is operated so that the DC voltage value of the smoothing capacitor that constitutes the three-phase three-level inverter cell is equal to the DC voltage value of the smoothing capacitor that constitutes all the single-phase three-level inverter cells. The AC output voltage amplitudes of the single-phase three-level inverter cells whose outputs are connected in series are controlled to be equal, and the AC output phase voltage amplitude of the three-phase three-level inverter cell is the same as that of the single-phase three-level inverter cell. The three-phase three-level inverter cell is controlled so as to be ½ of the AC output voltage amplitude.

第2の発明においては、第1の発明における電力変換装置において、前記三相3レベルインバータセルを構成する2台の順変換器を1個の群とし、単相3レベルインバータセルを構成する合計6N台の順変換器を3台ずつ2N個の群とし、同一の群に属する順変換器の入力に接続される変圧器二次巻線の電圧位相を同一とし、異なる群の順変換器の入力に接続される変圧器二次巻線の電圧位相を全て異なるようにしたことを特徴とする。   According to a second invention, in the power conversion device according to the first invention, the two forward converters constituting the three-phase three-level inverter cell are grouped into one group, and the total constituting the single-phase three-level inverter cell 6N forward converters are grouped in groups of 2N, and the voltage phase of the transformer secondary winding connected to the input of the forward transformer belonging to the same group is the same, and the forward converters of different groups The voltage phases of the transformer secondary windings connected to the input are all different from each other.

第3の発明においては、第1又は第2の発明における、三相3レベルインバータセルを構成する順変換器と単相3レベルインバータセルを構成する順変換器の全ての交流入力を三相交流とし、合計(2N+1)群の変圧器二次巻線の電圧位相差を、電気角(60/(2N+1))度間隔で振り分けることを特徴とする。   In the third invention, all the AC inputs of the forward converter constituting the three-phase three-level inverter cell and the forward converter constituting the single-phase three-level inverter cell in the first or second invention are three-phase alternating current. And the voltage phase difference of the transformer secondary windings of the total (2N + 1) group is distributed at intervals of electrical angle (60 / (2N + 1)) degrees.

本発明では、変圧器の絶縁された二次巻線を2組入力する三相3レベルインバータセルの各相交流出力に、変圧器の絶縁された二次巻線を2組入力する単相3レベルインバータセルの交流出力をN台直列接続し、前記三相3レベルインバータセルを構成する前記平滑コンデンサの直流電圧値と全ての前記単相3レベルインバータを構成する前記平滑コンデンサの直流電圧値を等しくするように順変換器を動作させる。さらに、交流出力が直列接続された前記単相3レベルインバータセルの交流出力電圧振幅を全て等しくするように制御すると共に、前記三相3レベルインバータセルの交流出力相電圧の振幅は前記単相3レベルインバータセルの交流出力電圧の振幅の1/2とするように、前記三相3レベルインバータセルを制御する。この時前記三相3レベルインバータセルを構成する2台の順変換器を1個の群とし、単相3レベルインバータセルを構成する合計6N台の順変換器を3台ずつ2N個の群とし、同一の群に属する順変換器の入力に接続される変圧器二次巻線の電圧位相を同一とし、異なる群の順変換器の入力に接続される変圧器二次巻線の電圧位相を全て異なるようにする。
この結果、半導体スイッチ素子の使用数を増加させずに、制御装置の使用数を低減することが可能となり、電力変換装置の小型化、低コスト化が可能となる。
In the present invention, single-phase 3 in which two sets of insulated secondary windings of the transformer are input to each phase AC output of the three-phase three-level inverter cell that inputs two sets of insulated secondary windings of the transformer. The AC output of the level inverter cell is connected in series with N units, and the DC voltage value of the smoothing capacitor constituting the three-phase three-level inverter cell and the DC voltage value of the smoothing capacitor constituting all the single-phase three-level inverters are Operate the forward converter to be equal. Further, the AC output voltage amplitude of the single-phase three-level inverter cell in which AC outputs are connected in series is controlled to be all equal, and the amplitude of the AC output phase voltage of the three-phase three-level inverter cell is the single-phase 3 The three-phase three-level inverter cell is controlled so as to be ½ of the amplitude of the AC output voltage of the level inverter cell. At this time, two forward converters constituting the three-phase three-level inverter cell are grouped into one group, and a total of 6N forward converters constituting the single-phase three-level inverter cell are grouped into two groups of three. The voltage phase of the transformer secondary winding connected to the input of the forward converter belonging to the same group is the same, and the voltage phase of the transformer secondary winding connected to the input of the forward converter of a different group is Make everything different.
As a result, it is possible to reduce the number of use of the control device without increasing the number of use of the semiconductor switch elements, and it is possible to reduce the size and cost of the power conversion device.

本発明の第1の実施例を示す回路図である。1 is a circuit diagram showing a first embodiment of the present invention. 本発明の第2の実施例を示す回路図である。It is a circuit diagram which shows the 2nd Example of this invention. 本発明の第3の実施例を示す回路図である。It is a circuit diagram which shows the 3rd Example of this invention. 図1において、全ての順変換器入力が三相の場合の群分けと電圧位相差の例を示す。FIG. 1 shows an example of grouping and voltage phase difference when all forward converter inputs are three-phase. 図2において、全ての順変換器入力が三相の場合の群分けと電圧位相差の例を示す。FIG. 2 shows an example of grouping and voltage phase difference when all forward converter inputs are three-phase. 図3において、全ての順変換器入力が三相の場合の群分けと電圧位相差の例を示す。FIG. 3 shows an example of grouping and voltage phase difference when all forward converter inputs are three-phase. 単相3レベルインバータセルの回路図例Aである。FIG. 3 is a circuit diagram example A of a single-phase three-level inverter cell. 単相3レベルインバータセルの回路図例Bである。FIG. 4B is a circuit diagram example B of a single-phase three-level inverter cell. 3レベルインバータセルを2個直列接続した電力変換装置の回路図例である。It is an example of a circuit diagram of a power converter which connected two 3 level inverter cells in series. 2レベルインバータセルの回路図例である。It is an example of a circuit diagram of a 2 level inverter cell. 2レベルインバータセルを3個直列接続した電力変換装置の回路図例である。It is an example of a circuit diagram of a power converter which connected three 2 level inverter cells in series.

本発明の要点は、下記(1)〜(3)である。
(1)変圧器の絶縁された二次巻線を2組入力する三相3レベルインバータセルの各相交流出力に、変圧器の絶縁された二次巻線を2組入力する単相3レベルインバータセルの交流出力をN台直列接続し、前記三相3レベルインバータセルを構成する前記平滑コンデンサの直流電圧値と全ての前記単相3レベルインバータを構成する前記平滑コンデンサの直流電圧値を等しくするように順変換器を動作させる。
(2)交流出力が直列接続された前記単相3レベルインバータセルの交流出力電圧振幅を全て等しくするように制御すると共に、前記三相3レベルインバータセルの交流出力相電圧の振幅は前記単相3レベルインバータセルの交流出力電圧の振幅の1/2とするように、前記三相3レベルインバータセルを制御する。
(3)前記三相3レベルインバータセルを構成する2台の順変換器を1個の群とし、単相3レベルインバータセルを構成する合計6N台の順変換器を3台ずつ2N個の群とし、同一の群に属する順変換器の入力に接続される変圧器二次巻線の電圧位相を同一とし、異なる群の順変換器の入力に接続される変圧器二次巻線の電圧位相を全て異なるようにする。
The main points of the present invention are the following (1) to (3).
(1) Single-phase three-level input that inputs two sets of insulated secondary windings to each phase AC output of a three-phase three-level inverter cell that inputs two sets of insulated secondary windings of the transformer The AC outputs of the inverter cells are connected in series with N units, and the DC voltage value of the smoothing capacitor constituting the three-phase three-level inverter cell is equal to the DC voltage value of the smoothing capacitor constituting all the single-phase three-level inverters. The forward converter is operated as follows.
(2) The AC output voltage amplitude of the single-phase three-level inverter cell having AC outputs connected in series is controlled to be all equal, and the amplitude of the AC output phase voltage of the three-phase three-level inverter cell is the single-phase The three-phase three-level inverter cell is controlled so as to be ½ of the amplitude of the AC output voltage of the three-level inverter cell.
(3) Two forward converters constituting the three-phase three-level inverter cell are grouped into one group, and a total of 6N forward converters constituting the single-phase three-level inverter cell are grouped into two groups of 2N. The voltage phase of the transformer secondary winding connected to the input of the forward converter belonging to the same group is the same, and the voltage phase of the transformer secondary winding connected to the input of the forward converter of a different group To make them all different.

図1に、本発明の第1の実施例を示す。交流電源に接続される1組の3相一次巻線と8組の3相二次巻線を備えた変圧器2aを介して、三相3レベルインバータセル3の交流出力の各相をそれぞれ単相3レベルインバータセル(4u、4v、4w)へ接続し、負荷としての電動機6に給電する場合の回路構成である。三相3レベルインバータセル3は、図8で説明した従来例と同様に、順変換器としてダイオード整流器を2台用い、その出力に平滑コンデンサを接続し、これを直列接続して、正極Pと中間極Mと負極Nとを備えた直流電源を作り、この直流電源を入力とした三相3レベルインバータ回路で構成される。また、三相3レベルインバータ回路の交流出力各相に接続される単相3レベルインバータセル(4u、4v、4w)は、それぞれ図7又は図8で説明した従来例と同様に、順変換器としてダイオード整流器を2台用い、その出力に平滑コンデンサを接続し、これを直列接続して、正極Pと中間極Mと負極Nとを備えた直流電源を作り、この直流電源を入力とした単相3レベルインバータ回路で構成される。   FIG. 1 shows a first embodiment of the present invention. Each phase of the AC output of the three-phase three-level inverter cell 3 is individually set via a transformer 2a having one set of three-phase primary windings and eight sets of three-phase secondary windings connected to an AC power source. This is a circuit configuration in the case of connecting to the phase 3 level inverter cell (4u, 4v, 4w) and supplying power to the electric motor 6 as a load. The three-phase three-level inverter cell 3 uses two diode rectifiers as forward converters as in the conventional example described in FIG. A DC power source having an intermediate pole M and a negative electrode N is made, and is constituted by a three-phase three-level inverter circuit using this DC power source as an input. Further, the single-phase three-level inverter cell (4u, 4v, 4w) connected to each phase of the AC output of the three-phase three-level inverter circuit is a forward converter as in the conventional example described in FIG. 7 or FIG. Using two diode rectifiers, connecting a smoothing capacitor to the output of the two diode rectifiers, connecting them in series to create a DC power source having a positive electrode P, an intermediate electrode M, and a negative electrode N. It consists of a phase 3 level inverter circuit.

ここで、三相3レベルインバータセル3には交流出力電圧を所望の指令値通りに制御するために、個別制御装置3aが、またそれぞれの単相3レベルインバータセル(4u、4v、4w)には交流出力電圧を所望の指令値通りに制御するために、個別制御装置4aが、それぞれ設けられる。なお、本実施例では順変換器としてダイオード整流器を用いたが、自己消弧デバイスを用いた自励式の整流器などを用いてもよい。この例では、順変換器としては、全てダイオード整流器を用いており、変圧器二次巻線の電圧を同じにすることで、全セルの平滑コンデンサの電圧を同じになるように動作させている。また、各セルに設けられた個別制御装置3a及び4aへは、全体を制御する主制御装置5から、インバータ出力電圧指令が与えられる。この電圧指令は、各単相3レベルインバータセル(4u、4v、4w)に対しては、出力周波数及び出力電圧振幅が同じで、電圧位相が電気角で120度ずれた信号である。また、三相3レベルインバータの各出力の相電圧指令としては、出力が接続された単相3レベルインバータセルへ与えた電圧指令と出力周波数及び電圧位相が同じで、出力電圧振幅を1/2とした信号が主制御装置5から与えられる。   Here, in order to control the AC output voltage according to a desired command value in the three-phase three-level inverter cell 3, the individual control device 3a is also connected to each single-phase three-level inverter cell (4u, 4v, 4w). In order to control the AC output voltage according to a desired command value, an individual control device 4a is provided. In this embodiment, a diode rectifier is used as a forward converter, but a self-excited rectifier using a self-extinguishing device may be used. In this example, all diode rectifiers are used as forward converters, and the voltages of the smoothing capacitors of all cells are made to be the same by making the voltage of the transformer secondary winding the same. . Further, an inverter output voltage command is given to the individual control devices 3a and 4a provided in each cell from the main control device 5 that controls the whole. This voltage command is a signal having the same output frequency and output voltage amplitude and a voltage phase shifted by 120 degrees in electrical angle for each single-phase three-level inverter cell (4u, 4v, 4w). The phase voltage command for each output of the three-phase three-level inverter is the same as the voltage command given to the single-phase three-level inverter cell to which the output is connected, the output frequency and the voltage phase are the same, and the output voltage amplitude is ½ The following signal is given from the main controller 5.

上述のように構成した場合の三相3レベルインバータと単相3レベルインバータの出力関係を説明する。直流入力電圧をEdとすると、単相3レベルインバータの最大出力電圧(1パルス運転時)は、(2√2/π)Edである。一方、三相3レベルインバータの最大出力相電圧(1パルス運転時)は、直流入力電圧が同じEdの場合、下記となる。
(√6/π)Ed/√3=(√2/π)Ed
上述のように、三相3レベルインバータの最大出力相電圧は単相3レベルインバータの最大出力電圧の1/2である。このことから、三相3レベルインバータでは、常に相電圧の振幅として、単相3レベルインバータの出力電圧の振幅の1/2に電圧制御することで、三相3レベルインバータの直流入力電力は単相3レベルインバータの直流入力電力の3/2倍となる。三相3レベルインバータセル3の各相出力端子に、単相3レベルインバータセルの出力を直列接続することから、直列接続した単相3レベルインバータセルには同じ電流が流れる。しかも、三相3レベルインバータセルの出力電圧を単相3レベルインバータセルが接続された相の単相3レベルインバータセルの出力周波数、電圧位相を同一とし、三相3レベルインバータセルの出力相電圧の振幅を単相3レベルインバータセルの出力電圧の振幅の1/2とする。この結果、三相3レベルインバータセルの交流出力一相分の有効電力は、各単相3レベルインバータセルの交流出力有効電力の1/2になる。
The output relationship between the three-phase three-level inverter and the single-phase three-level inverter when configured as described above will be described. Assuming that the DC input voltage is Ed, the maximum output voltage of the single-phase three-level inverter (during one pulse operation) is (2√2 / π) Ed. On the other hand, the maximum output phase voltage (during one pulse operation) of the three-phase three-level inverter is as follows when the DC input voltage is the same Ed.
(√6 / π) Ed / √3 = (√2 / π) Ed
As described above, the maximum output phase voltage of the three-phase three-level inverter is ½ of the maximum output voltage of the single-phase three-level inverter. For this reason, in the three-phase three-level inverter, the DC input power of the three-phase three-level inverter can be reduced by always controlling the voltage of the phase voltage to 1/2 of the amplitude of the output voltage of the single-phase three-level inverter. 3/2 times the DC input power of the phase 3 level inverter. Since the output of the single-phase three-level inverter cell is connected in series to each phase output terminal of the three-phase three-level inverter cell 3, the same current flows through the single-phase three-level inverter cell connected in series. Moreover, the output voltage of the three-phase three-level inverter cell is the same as the output frequency and voltage phase of the single-phase three-level inverter cell of the phase to which the single-phase three-level inverter cell is connected. Is ½ of the amplitude of the output voltage of the single-phase three-level inverter cell. As a result, the active power for one phase of the AC output of the three-phase three-level inverter cell is ½ of the AC output effective power of each single-phase three-level inverter cell.

このため、三相3レベルインバータセルの出力三相分の有効電力は、単相3レベルインバータの出力有効電力の3/2(出力相有効電力の3倍)になる。すなわち、順変換器やインバータの損失を無視すると、三相3レベルインバータセルの順変換器の入力電力も、単相3レベルインバータセルの順変換器の入力電力の3/2倍になる。このため、変圧器の二次巻線電圧を全て同じ電圧振幅とすると、三相3レベルインバータセルの順変換器が接続される変圧器二次巻線を流れる電流も、単相3レベルインバータセルの順変換器が接続される変圧器二次巻線を流れる電流の3/2倍になる。   For this reason, the active power corresponding to the output three phases of the three-phase three-level inverter cell is 3/2 (three times the output phase effective power) of the output effective power of the single-phase three-level inverter. That is, ignoring the loss of the forward converter and the inverter, the input power of the forward converter of the three-phase three-level inverter cell is also 3/2 times the input power of the forward converter of the single-phase three-level inverter cell. For this reason, if all the secondary winding voltages of the transformer have the same voltage amplitude, the current flowing through the transformer secondary winding to which the forward converter of the three-phase three-level inverter cell is connected is also a single-phase three-level inverter cell. 3/2 times the current flowing in the secondary winding of the transformer to which the forward converter is connected.

このことから、三相3レベルインバータセルを構成する2台の順変換器を1つの群とし、単相3レベルインバータセルを構成する順変換器の中のいずれか3台の順変換器を別の群とした時、両群の変圧器二次巻線の合計のアンペアターンは同じになる。このような群に分け、変圧器二次巻線の電圧に群ごとに特定の角度だけ位相差を設けることにより、変圧器一次巻線を流れる電流の特定の次数の高調波成分を低減することが可能になる。
図1に示す構成の場合、IGBTの使用数は、12[個/三相セル]×1[セル]+8[個/単相セル]×3[セル]=36[個]となり、図11に示した単相2レベルインバータセルを9台用いた場合と同数となる。また、インバータを個別に制御する制御装置は4台となり、図11に示した単相2レベルインバータセルを9台用いる場合や、図9に示した単相3レベルインバータセルを6台用いる場合に比べて少なくなり、低コスト化が図れる。
Therefore, two forward converters constituting the three-phase three-level inverter cell are grouped into one group, and any three forward converters among the forward converters constituting the single-phase three-level inverter cell are separated. , The total ampere turns of the transformer secondary windings of both groups are the same. Dividing into such groups and reducing the harmonic components of a specific order of the current flowing through the transformer primary winding by providing a phase difference by a specific angle for each group in the voltage of the transformer secondary winding. Is possible.
In the case of the configuration shown in FIG. 1, the number of IGBTs used is 12 [pieces / three-phase cells] × 1 [cells] +8 [pieces / single-phase cell] × 3 [cells] = 36 [pieces]. The number is the same as when nine of the single-phase two-level inverter cells shown are used. In addition, there are four control devices that individually control the inverters. When nine single-phase two-level inverter cells shown in FIG. 11 are used, or when six single-phase three-level inverter cells shown in FIG. 9 are used. Compared to this, the cost can be reduced.

図4に、図1の回路構成において、交流電源、変圧器の一次巻線、全ての二次巻線が三相であり、セル内の全ての順変換器が三相ダイオード整流器の場合に、群分けをNo.1〜No.3の3つの群に分け、各群の電圧位相を20度ずつずらした例を示す。No.1が単相3レベルインバータセル(4u、4v、4w)の中の各1台の順変換器で構成した群、No.2が三相3レベルインバータセル3の2台の順変換器で構成した群、No.3が単相3レベルインバータセル(4u、4v、4w)の中の残りの各1台の順変換器で構成した群、である。このように構成することにより、変圧器2aの三相一次巻線を流れる電流の低次高調波成分を低減することが可能である。   4, in the circuit configuration of FIG. 1, when the AC power supply, the primary winding of the transformer, all the secondary windings are three-phase, and all the forward converters in the cell are three-phase diode rectifiers, The grouping is No. 1-No. 3 shows an example in which the voltage phase of each group is shifted by 20 degrees. No. 1 is a group composed of one forward converter in each of single-phase three-level inverter cells (4u, 4v, 4w), No. 1; No. 2 is a group composed of two forward converters of the three-phase three-level inverter cell 3; Reference numeral 3 denotes a group composed of the remaining one forward converter in each of the single-phase three-level inverter cells (4u, 4v, 4w). With this configuration, it is possible to reduce the low-order harmonic component of the current flowing through the three-phase primary winding of the transformer 2a.

図2に、本発明の第2の実施例を示す。これは、交流電源から変圧器2bを介して、三相3レベルインバータセル3の1台と単相3レベルインバータセル6台(4u1、4u2、4v1、4v2、4w1、4w2)へ給電している場合である。なお、図1は単相3レベルインバータセルの直列数がN=1の場合であったが、図2は、単相3レベルインバータセルの直列数Nが2の場合の実施例である。   FIG. 2 shows a second embodiment of the present invention. This power is supplied from an AC power source to one of the three-phase three-level inverter cells 3 and six single-phase three-level inverter cells (4u1, 4u2, 4v1, 4v2, 4w1, 4w2) via the transformer 2b. Is the case. FIG. 1 shows the case where the number of series of single-phase three-level inverter cells is N = 1, but FIG. 2 shows an embodiment where the number of series of single-phase three-level inverter cells N is two.

三相3レベルインバータセル3の各相交流出力端子に、単相3レベルインバータセル2台の交流出力を直列接続することから、直列接続したインバータセルには同じ電流が流れる。ここで、三相3レベルインバータセルの交流出力電圧を単相3レベルインバータセルが接続された相の単相3レベルインバータセルの交流出力周波数、電圧位相と同一とし、三相3レベルインバータセルの交流出力相電圧の振幅を単相3レベルインバータセルの出力電圧の振幅の1/2とする。三相3レベルインバータセルの出力一相分の有効電力は、各単相3レベルインバータの出力電力の1/2になる。   Since the AC outputs of two single-phase three-level inverter cells are connected in series to each phase AC output terminal of the three-phase three-level inverter cell 3, the same current flows through the inverter cells connected in series. Here, the AC output voltage of the three-phase three-level inverter cell is the same as the AC output frequency and voltage phase of the single-phase three-level inverter cell of the phase to which the single-phase three-level inverter cell is connected. The amplitude of the AC output phase voltage is set to ½ of the amplitude of the output voltage of the single-phase three-level inverter cell. The effective power for one phase of the output of the three-phase three-level inverter cell is ½ of the output power of each single-phase three-level inverter.

このため、三相3レベルインバータセルの出力三相分の有効電力は、単相3レベルインバータセルの出力有効電力の3/2(出力相有効電力の3倍)になる。すなわち、順変換器やインバータの損失を無視すると、三相3レベルインバータセルの順変換器の入力電力も、単相3レベルインバータセルの順変換器の入力電力の3/2倍になる。このため、変圧器の二次巻線電圧を全て同じ電圧振幅とすると、三相3レベルインバータセルの順変換器が接続される変圧器二次巻線を流れる電流も、単相3レベルインバータセルの順変換器が接続される変圧器二次巻線を流れる電流の3/2倍になる。   For this reason, the active power for the three-phase output of the three-phase three-level inverter cell is 3/2 (three times the effective output power) of the single-phase three-level inverter cell. That is, ignoring the loss of the forward converter and the inverter, the input power of the forward converter of the three-phase three-level inverter cell is also 3/2 times the input power of the forward converter of the single-phase three-level inverter cell. For this reason, if all the secondary winding voltages of the transformer have the same voltage amplitude, the current flowing through the transformer secondary winding to which the forward converter of the three-phase three-level inverter cell is connected is also a single-phase three-level inverter cell. 3/2 times the current flowing in the secondary winding of the transformer to which the forward converter is connected.

このことから、三相3レベルインバータセルの2台の順変換器を1つの群とし、単相3レベルインバータセルを構成する順変換器の中のいずれか3台の順変換器を別の群とした時、両群の変圧器二次巻線の合計のアンペアターンは同じになる。このような群に分け、変圧器二次巻線の電圧に群ごとに特定の角度だけ位相差を設けることにより、変圧器一次巻線を流れる電流の特定の次数の高調波成分を低減することが可能になる。   Therefore, two forward converters of three-phase three-level inverter cells are grouped into one group, and any three forward converters of the forward converters constituting the single-phase three-level inverter cell are grouped into another group. The total ampere turns of the transformer secondary windings of both groups will be the same. Dividing into such groups and reducing the harmonic components of a specific order of the current flowing through the transformer primary winding by providing a phase difference by a specific angle for each group in the voltage of the transformer secondary winding. Is possible.

図5に、図2の実施例を5つの群(No.1〜No.5)に分けた時の群の分け方と位相差の付け方の例を示す。交流電源と変圧器2bの一次巻線及び全ての二次巻線は三相であり、セル内の全ての順変換器が三相ダイオード整流器の場合に、5つの群に分け、電圧位相を12度ずつずらした例である。群No.1が単相3レベルインバータセル(4u1、4v1、4w1)の中の各1台の順変換器で構成した群、群No.2が三相3レベルインバータセル3の中の2台の順変換器で構成した群、群No.3が単相3レベルインバータセル(4u2、4v2、4w2)の中の各1台の順変換器で構成した群、群No.4が単相3レベルインバータセル(4u1、4v1、4w1)の中の残りの各1台の順変換器で構成した群、群No.5が単相3レベルインバータセル(4u2、4v2、4w2)の中の残りの各1台の順変換器で構成した群とした実施例である。このようにすることにより、30パルス整流相当の多重整流器とすることができ、変圧器の一次巻線を流れる電流の低次高調波成分を低減することが可能である。   FIG. 5 shows an example of how to divide groups and assign phase differences when the embodiment of FIG. 2 is divided into five groups (No. 1 to No. 5). When the AC power supply and the primary winding and all secondary windings of the transformer 2b are three-phase, and all the forward converters in the cell are three-phase diode rectifiers, the voltage phase is divided into 12 groups. This is an example shifted by degrees. Group No. 1 is a group constituted by one forward converter in each of single-phase three-level inverter cells (4u1, 4v1, 4w1), group No. 2 is a group composed of two forward converters in the three-phase three-level inverter cell 3; 3 is a group composed of one forward converter in each of single-phase three-level inverter cells (4u2, 4v2, 4w2), group No. 4 is a group consisting of the remaining one forward converter in the single-phase three-level inverter cell (4u1, 4v1, 4w1), group No. Reference numeral 5 denotes an embodiment in which a group consisting of the remaining one forward converter in the single-phase three-level inverter cell (4u2, 4v2, 4w2) is formed. By doing in this way, it can be set as the multiple rectifier equivalent to 30 pulse rectification, and it is possible to reduce the low order harmonic component of the electric current which flows through the primary winding of a transformer.

図3に、本発明の第3の実施例を示す。これは、交流電源から変圧器2nを介して、三相3レベルインバータセル3が1台と単相3レベルインバータセル3N台(4u1〜4uN、4v1〜4vN、4w1〜4wN)に給電している場合である。
動作原理は、実施例1、2と同じである。三相3レベルインバータセル3の各相出力端子に、単相3レベルインバータセルN台の交流出力を直列接続することから、直列接続したインバータセルには同じ電流が流れる。ここで、三相3レベルインバータセルの出力電圧を単相3レベルインバータセルが接続された相の単相3レベルインバータセルの出力周波数、電圧位相と同一とし、三相3レベルインバータセルの出力相電圧の振幅を単相3レベルインバータセルの出力電圧の振幅の1/2とする。
FIG. 3 shows a third embodiment of the present invention. This is because one three-phase three-level inverter cell 3 and four single-phase three-level inverter cells 3N (4u1 to 4uN, 4v1 to 4vN, 4w1 to 4wN) are fed from an AC power supply via a transformer 2n. Is the case.
The operation principle is the same as in the first and second embodiments. Since the AC outputs of N single-phase three-level inverter cells are connected in series to each phase output terminal of the three-phase three-level inverter cell 3, the same current flows through the inverter cells connected in series. Here, the output voltage of the three-phase three-level inverter cell is the same as the output frequency and voltage phase of the single-phase three-level inverter cell of the phase to which the single-phase three-level inverter cell is connected. The amplitude of the voltage is ½ of the amplitude of the output voltage of the single-phase three-level inverter cell.

三相3レベルインバータセルの2台の順変換器を1つの群とし、単相3レベルインバータセルのいずれか3台の順変換器を別の群とした時、両群の変圧器二次巻線の合計のアンペアターンは同じになる。このような群に分け、変圧器二次巻線の電圧に群ごとに特定の角度だけ位相差を設けることにより、変圧器一次巻線を流れる電流の特定の次数の高調波成分を低減することが可能になる。   When two forward converters of three-phase three-level inverter cells are combined into one group and any three forward converters of single-phase three-level inverter cells are combined into another group, the transformer secondary winding of both groups The total ampere turn of the line is the same. Dividing into such groups and reducing the harmonic components of a specific order of the current flowing through the transformer primary winding by providing a phase difference by a specific angle for each group in the voltage of the transformer secondary winding. Is possible.

図6に、図3に示す実施例を(2N+1)個の群(No.1〜No.(2N+1))に分けた時の群の分け方と位相差の付け方の例を示す。
三相3レベルインバータセルを構成する順変換器と単相3レベルインバータセルを構成する順変換器の全ての入力、すなわち全ての変圧器二次巻線を三相交流とし、インバータセル内の全ての順変換器が三相ダイオード整流器の場合に、(2N+1)個の群に分け、電圧位相を(60/(2N+1))度ずつずらした例である。このようにすることにより、(6×(2N+1))パルス整流相当の多重整流器とすることができ、変圧器の一次巻線を流れる電流の低次高調波成分を低減することが可能である。
6 shows an example of how to divide a group and add a phase difference when the embodiment shown in FIG. 3 is divided into (2N + 1) groups (No. 1 to No. (2N + 1)).
All inputs of the forward converter constituting the three-phase three-level inverter cell and the forward converter constituting the single-phase three-level inverter cell, that is, all transformer secondary windings are set to three-phase alternating current, When the forward converter is a three-phase diode rectifier, it is divided into (2N + 1) groups and the voltage phase is shifted by (60 / (2N + 1)) degrees. By doing in this way, it can be set as the multiple rectifier equivalent to a (6 * (2N + 1)) pulse rectification, and it is possible to reduce the low order harmonic component of the electric current which flows through the primary winding of a transformer.

例えば、三相3レベルインバータセルの交流出力各相に、それぞれ1台の単相3レベルインバータセルを接続する実施例1の場合、三相3レベルインバータセルの2つの順変換器で1つの群を、単相3レベルインバータセルを構成する合計6台の順変換器の中から3台ずつ2つの群を構成し、合計3つの群を設けることができる。この3つの群ごとに、変圧器二次巻線の電圧に電気角20度(=60度/3群)の位相差を設けると、従来技術で述べた単相2レベルインバータセルを9台用いて構成した図11の場合と同等の18パルス整流相当まで入力電流の低次高調波成分を低減できる。   For example, in the case of Example 1 in which one single-phase three-level inverter cell is connected to each AC output phase of a three-phase three-level inverter cell, one group is composed of two forward converters of the three-phase three-level inverter cell. Can constitute two groups of three out of a total of six forward converters constituting a single-phase three-level inverter cell, and a total of three groups can be provided. When the phase difference of electrical angle 20 degrees (= 60 degrees / 3 groups) is provided for the voltage of the transformer secondary winding for each of these three groups, nine single-phase two-level inverter cells described in the prior art are used. The lower harmonic component of the input current can be reduced to the equivalent of 18 pulse rectification equivalent to the case of FIG.

これと同様に、三相3レベルインバータセルの交流出力各相に、それぞれ2台の単相3レベルインバータセルを接続する実施例2の場合、三相3レベルインバータセルの2つの順変換器で1つの群を、単相3レベルインバータセルを構成する合計12台の順変換器の中から3台ずつ4つの群を構成し、合計5つの群を設けることができる。この5つの群ごとに、変圧器二次巻線の電圧に電気角12度(=60度/5群)の位相差を設けると、30パルス整流相当の多重整流器とすることができ、変圧器の一次巻線を流れる電流の低次高調波成分を低減することが可能である。
尚、上記実施例には順変換器の入力が三相交流入力の場合を中心に説明したが、順変換器の交流入力は三相に限らず、互いに絶縁された単相交流入力で、上述の位相差を設けられる交流電源の場合も同様に実現可能である。
また、実施例では、3レベルインバータ回路としては、図7で説明した回路構成を用いた例で説明したが、図8で説明した回路構成を用いた場合も同様に実現できる。
Similarly, in the case of Example 2 in which two single-phase three-level inverter cells are connected to each AC output phase of the three-phase three-level inverter cell, two forward converters of the three-phase three-level inverter cell are used. One group can be composed of four groups of three out of a total of twelve forward converters constituting a single-phase three-level inverter cell, and a total of five groups can be provided. By providing a phase difference of 12 electrical degrees (= 60 degrees / 5 groups) to the voltage of the transformer secondary winding for each of these five groups, a multiple rectifier equivalent to 30 pulse rectification can be obtained. It is possible to reduce the low-order harmonic component of the current flowing through the primary winding.
In the above embodiment, the description has been made centering on the case where the input of the forward converter is a three-phase AC input. However, the AC input of the forward converter is not limited to three phases, but is a single-phase AC input insulated from each other. This can also be realized in the case of an AC power source that can provide a phase difference of.
In the embodiment, the three-level inverter circuit is described as an example using the circuit configuration described with reference to FIG. 7, but the same can be realized when the circuit configuration described with reference to FIG. 8 is used.

本発明は、三相3レベルインバータセルの各相交流出力に単相3レベルインバータセルの交流出力を直列接続する多重インバータの構成技術であり、高圧電動機駆動装置、系統連系用電力変換装置などへの適用が可能である。   The present invention is a configuration technology of a multiple inverter in which an AC output of a single-phase three-level inverter cell is connected in series to each phase AC output of a three-phase three-level inverter cell, such as a high-voltage motor drive device, a grid interconnection power conversion device, etc. Application to is possible.

2a、2b、2c、2n、12・・・変圧器
3a、4a・・・個別制御装置 5・・・主制御装置
20、20a、20b・・・ヒューズ 21、21a、21b・・・整流器
22、22a、22b・・・平滑コンデンサ
23a、23b・・・単相3レベルインバータ回路
24・・・単相2レベルインバータ回路
ACS1,ACS2・・・双方向スイッチ
U21〜U23、V21〜V23、W21〜W23・・・単相2レベルインバータセル
U1、U2、V1、V2、W1、W2・・・単相3レベルインバータセル
2a, 2b, 2c, 2n, 12 ... transformers 3a, 4a ... individual control devices 5 ... main control devices 20, 20a, 20b ... fuses 21, 21a, 21b ... rectifier 22, 22a, 22b ... smoothing capacitors 23a, 23b ... single phase three level inverter circuit 24 ... single phase two level inverter circuit ACS1, ACS2 ... bidirectional switches U21-U23, V21-V23, W21-W23 ... Single-phase two-level inverter cells U1, U2, V1, V2, W1, W2 ... Single-phase three-level inverter cells

Claims (3)

三相交流電源と接続される一組の一次巻線とそれぞれが絶縁された(6N+2)(ここでNは正の整数)組の三相二次巻線とを有する絶縁変圧器と、それぞれが前記二次巻線の内の一組を入力とし交流を直流に変換する順変換器を2台とそれぞれの前記順変換器の出力に接続される平滑コンデンサと前記平滑コンデンサの直列回路を正極と負極と中間極とを備えた直流電源として入力しこの直流を三相交流に変換する三相3レベルインバータとからなる三相3レベルインバータセルと、それぞれが前記二次巻線の内の他の一組を入力とし交流を直流に変換する順変換器を2台とそれぞれの前記順変換器の出力に接続される平滑コンデンサと前記平滑コンデンサの直列回路を正極と負極と中間極とを備えた直流電源として入力しこの直流を単相交流に変換する単相3レベルインバータとからなる単相3レベルインバータセルを3N台と、を備え、前記三相3レベルインバータセルの交流出力の各相それぞれに前記単相3レベルインバータセルN台の交流出力を直列接続した電力変換装置において、
前記三相3レベルインバータセルを構成する前記平滑コンデンサの直流電圧値と全ての前記単相3レベルインバータセルを構成する前記平滑コンデンサの直流電圧値を等しくするように順変換器を動作させ、交流出力が直列接続された前記単相3レベルインバータセルの交流出力電圧振幅を全て等しくするように制御すると共に、前記三相3レベルインバータセルの交流出力相電圧振幅は前記単相3レベルインバータセルの交流出力電圧振幅の1/2とするように、前記三相3レベルインバータセルを制御することを特徴とした電力変換装置。
An isolation transformer having a set of primary windings connected to a three-phase AC power source and a (6N + 2) set of three-phase secondary windings, each of which is insulated (where N is a positive integer), Two sets of forward converters that take one set of the secondary windings as input and convert alternating current into direct current, a smoothing capacitor connected to the output of each of the forward converters, and a series circuit of the smoothing capacitors as a positive electrode A three-phase three-level inverter cell composed of a three-phase three-level inverter that inputs as a DC power source having a negative electrode and an intermediate electrode and converts this direct current into a three-phase alternating current, and each of the other secondary windings Two forward converters for converting alternating current into direct current with one set as input, and a smoothing capacitor connected to the output of each forward converter, a series circuit of the smoothing capacitors, provided with a positive electrode, a negative electrode, and an intermediate electrode Input as a DC power supply and this DC is single phase 3N single-phase three-level inverter cells each comprising a single-phase three-level inverter for converting into a current, and N single-phase three-level inverter cells for each phase of the AC output of the three-phase three-level inverter cell In the power conversion device in which the AC outputs are connected in series,
The forward converter is operated so that the DC voltage value of the smoothing capacitor that constitutes the three-phase three-level inverter cell is equal to the DC voltage value of the smoothing capacitor that constitutes all the single-phase three-level inverter cells. The AC output voltage amplitudes of the single-phase three-level inverter cells whose outputs are connected in series are controlled to be equal, and the AC output phase voltage amplitude of the three-phase three-level inverter cell is the same as that of the single-phase three-level inverter cell. The power conversion device, wherein the three-phase three-level inverter cell is controlled so as to be ½ of an AC output voltage amplitude.
請求項1に記載の電力変換装置において、前記三相3レベルインバータセルを構成する2台の順変換器を1個の群とし、単相3レベルインバータセルを構成する合計6N台の順変換器を3台ずつ2N個の群とし、同一の群に属する順変換器の入力に接続される変圧器二次巻線の電圧位相を同一とし、異なる群の順変換器の入力に接続される変圧器二次巻線の電圧位相を全て異なるようにしたことを特徴とする電力変換装置。   2. The power converter according to claim 1, wherein two forward converters constituting the three-phase three-level inverter cell are grouped, and a total of 6N forward converters constituting a single-phase three-level inverter cell. The transformer is connected to the input of the forward converter belonging to the same group with the same voltage phase of the secondary winding connected to the input of the forward converter belonging to the same group. A power conversion device characterized in that the voltage phases of the secondary windings are all different. 請求項1又は2に記載の電力変換装置において、三相3レベルインバータセルを構成する順変換器と単相3レベルインバータセルを構成する順変換器の全ての入力を三相交流とし、合計(2N+1)群の変圧器二次巻線の電圧位相差を、電気角(60/(2N+1))度間隔で振り分けることを特徴とする電力変換装置。   The power converter according to claim 1 or 2, wherein all inputs of the forward converter constituting the three-phase three-level inverter cell and the forward converter constituting the single-phase three-level inverter cell are three-phase alternating current, and the total ( 2N + 1) A power converter characterized by distributing the voltage phase difference of the secondary windings of the transformer at an electrical angle (60 / (2N + 1)) degree interval.
JP2013249209A 2013-12-02 2013-12-02 Power converter Active JP6146284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013249209A JP6146284B2 (en) 2013-12-02 2013-12-02 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013249209A JP6146284B2 (en) 2013-12-02 2013-12-02 Power converter

Publications (2)

Publication Number Publication Date
JP2015107021A true JP2015107021A (en) 2015-06-08
JP6146284B2 JP6146284B2 (en) 2017-06-14

Family

ID=53436854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013249209A Active JP6146284B2 (en) 2013-12-02 2013-12-02 Power converter

Country Status (1)

Country Link
JP (1) JP6146284B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6370522B1 (en) * 2018-01-30 2018-08-08 三菱電機株式会社 Series multiple inverter
WO2018235257A1 (en) * 2017-06-23 2018-12-27 東芝三菱電機産業システム株式会社 Power conversion device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1141931A (en) * 1997-07-14 1999-02-12 Toshiba Corp Power converter
JPH11122943A (en) * 1997-10-09 1999-04-30 Toshiba Corp Multiple inverter device and control method therefor
JP2000166251A (en) * 1998-12-01 2000-06-16 Fuji Electric Co Ltd Power conversion device
JP2000270562A (en) * 1999-03-15 2000-09-29 Yaskawa Electric Corp Multilevel power converter
JP2006254673A (en) * 2005-03-14 2006-09-21 Meidensha Corp High-voltage inverter device
JP2012244750A (en) * 2011-05-19 2012-12-10 Hitachi Ltd Semiconductor unit and power conversion apparatus
JP2013074789A (en) * 2011-09-28 2013-04-22 Ls Industrial Systems Co Ltd Phase shift transformer in multi-level high voltage inverter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1141931A (en) * 1997-07-14 1999-02-12 Toshiba Corp Power converter
JPH11122943A (en) * 1997-10-09 1999-04-30 Toshiba Corp Multiple inverter device and control method therefor
JP2000166251A (en) * 1998-12-01 2000-06-16 Fuji Electric Co Ltd Power conversion device
JP2000270562A (en) * 1999-03-15 2000-09-29 Yaskawa Electric Corp Multilevel power converter
JP2006254673A (en) * 2005-03-14 2006-09-21 Meidensha Corp High-voltage inverter device
JP2012244750A (en) * 2011-05-19 2012-12-10 Hitachi Ltd Semiconductor unit and power conversion apparatus
JP2013074789A (en) * 2011-09-28 2013-04-22 Ls Industrial Systems Co Ltd Phase shift transformer in multi-level high voltage inverter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235257A1 (en) * 2017-06-23 2018-12-27 東芝三菱電機産業システム株式会社 Power conversion device
JPWO2018235257A1 (en) * 2017-06-23 2019-11-07 東芝三菱電機産業システム株式会社 Power converter
JP6370522B1 (en) * 2018-01-30 2018-08-08 三菱電機株式会社 Series multiple inverter
WO2019150443A1 (en) * 2018-01-30 2019-08-08 三菱電機株式会社 Serial multiplex inverter

Also Published As

Publication number Publication date
JP6146284B2 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
EP3657661B1 (en) Conversion circuit, control method, and power supply device
US9083230B2 (en) Multilevel voltage source converters and systems
Wang et al. A four-level hybrid-clamped converter with natural capacitor voltage balancing ability
US10218285B2 (en) Medium voltage hybrid multilevel converter and method for controlling a medium voltage hybrid multilevel converter
Li et al. New technologies of modular multilevel converter for VSC-HVDC application
US9812949B2 (en) Poly-phase inverter with independent phase control
US20150003134A1 (en) Modular multilevel converter using asymmetry
JP3544838B2 (en) Multiple inverter device and control method thereof
US20170077746A1 (en) Systems and methods for operating uninterruptible power supplies
JP2012257451A (en) Photovoltaic power conversion apparatus
US9774187B2 (en) Coupling-in and coupling-out of power in a branch of a DC voltage network node comprising a longitudinal voltage source
US9350266B2 (en) Power supply circuit for gate driving circuit of a power converter
Xing et al. Series-connected current source inverters with less switches
KR20210004589A (en) Multi-level converter
KR20190126718A (en) Power converting apparatus having scott transformer
JP6146284B2 (en) Power converter
JP6093683B2 (en) AC motor drive device
JPWO2019156192A1 (en) Power converter, power generation system, motor drive system and power interconnection system
Hasan et al. A novel three phase cascaded multilevel inverter topology
WO2015090627A1 (en) Power unit and multi-phase electric drive using the same
Chai et al. A low switching frequency voltage balancing strategy of modular multilevel converter
EP4135186A1 (en) Bi-directional medium voltage to low voltage converter topology
JP5752580B2 (en) Power converter
CA3224097A1 (en) Cell based multilevel converter with multiple operating modes and associated control method
Umashankar et al. Design and Control of DC–AC Inverters

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151005

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20151005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170501

R150 Certificate of patent or registration of utility model

Ref document number: 6146284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250