JP2015106486A - Lithium air battery and positive electrode structure of lithium battery - Google Patents

Lithium air battery and positive electrode structure of lithium battery Download PDF

Info

Publication number
JP2015106486A
JP2015106486A JP2013247762A JP2013247762A JP2015106486A JP 2015106486 A JP2015106486 A JP 2015106486A JP 2013247762 A JP2013247762 A JP 2013247762A JP 2013247762 A JP2013247762 A JP 2013247762A JP 2015106486 A JP2015106486 A JP 2015106486A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
negative electrode
air battery
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013247762A
Other languages
Japanese (ja)
Inventor
カリール ラーマン
Khalilur Rahman
カリール ラーマン
泉 博章
Hiroaki Izumi
博章 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2013247762A priority Critical patent/JP2015106486A/en
Priority to DE102014222623.6A priority patent/DE102014222623A1/en
Priority to CN201410708917.7A priority patent/CN104681895B/en
Publication of JP2015106486A publication Critical patent/JP2015106486A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • H01M12/065Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode with plate-like electrodes or stacks of plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/138Primary casings; Jackets or wrappings adapted for specific cells, e.g. electrochemical cells operating at high temperature
    • H01M50/1385Hybrid cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • H01M2006/5094Aspects relating to capacity ratio of electrolyte/electrodes or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)
  • Inert Electrodes (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium air battery which has an improved oxidation reduction capability of a positive electrode in the lithium air battery and can prevent the generation of hydrogen.SOLUTION: A lithium air battery unit cell 10 comprises a positive electrode structure 3, a negative electrode complex 4, a positive electrode collector 5, a negative electrode collector 6 and an electrolyte 7. The positive electrode structure 3 is obtained by laminating at least two or more positive electrodes 8. It is electrically connected to the positive electrode collector 5 and functions as one air electrode. The negative electrode complex 4 includes the negative collector 6, a negative electrode layer 11, a buffer layer 12, a solid electrolyte layer 13 and an outer periphery sealing member 14. The positive electrode 8 has a superficial area larger than that of the negative electrode layer 11.

Description

本発明は、リチウム空気電池及びリチウム空気電池の正極構造体に関する。   The present invention relates to a lithium air battery and a positive electrode structure of a lithium air battery.

近年、主に電気自動車用途として、リチウムイオン電池よりもはるかに大きいエネルギー密度を有する空気電池に期待が寄せられている。空気電池は、空気中の酸素を正極活物質に使用する。このような空気電池として、負極活物質に金属リチウム、リチウムを主成分とする合金、又はリチウムを主成分とする化合物を使用するリチウム空気電池が知られている。このようなリチウム空気電池は、負極、電解質及び正極(空気極)から構成されてなり、前記電解質としては、水系電解質又は非水系電解質が用いられている。   In recent years, an air battery having an energy density much higher than that of a lithium ion battery has been expected mainly as an electric vehicle application. The air battery uses oxygen in the air as a positive electrode active material. As such an air battery, a lithium-air battery using a lithium metal, a lithium-based alloy, or a lithium-based compound as a negative electrode active material is known. Such a lithium-air battery is composed of a negative electrode, an electrolyte, and a positive electrode (air electrode), and an aqueous electrolyte or a non-aqueous electrolyte is used as the electrolyte.

これらのうち、水系電解質のリチウム空気電池は、一般的には、負極(例えば、金属リチウム)、緩衝層(例えば、有機電解質を染み込ませたセルロース)、固体電解質層(例えば、リチウムイオン伝導性ガラスセラミックス、又は、リチウムイオン電導性ガラスセラミックス、リチウムイオン導電性ガラスセラミックスとも表記する)、水系電解質(例えば、水酸化リチウム水溶液など)及び空気極としての正極(例えば、白金担持カーボンなどの触媒が付着されたカーボンクロス)から構成されている。このような水系電解質のリチウム空気電池は、前記非水系電解質のリチウム空気電池に比べて、空気中の水分の影響を受けず、電解質が安価であり、不燃性である等の長所がある。   Among these, the lithium-air battery of an aqueous electrolyte generally has a negative electrode (for example, metallic lithium), a buffer layer (for example, cellulose impregnated with an organic electrolyte), a solid electrolyte layer (for example, lithium ion conductive glass). Ceramics, or lithium ion conductive glass ceramics, also expressed as lithium ion conductive glass ceramics), aqueous electrolyte (for example, lithium hydroxide aqueous solution) and positive electrode as air electrode (for example, platinum-supported carbon catalyst etc.) Carbon cloth). Compared with the non-aqueous electrolyte lithium-air battery, such an aqueous electrolyte lithium-air battery is advantageous in that it is not affected by moisture in the air, the electrolyte is inexpensive, and is nonflammable.

ところで、特許文献1に、リチウム−水電池で、放電の際、正極にて下記式(1)の反応が生じて、水素が発生することが記載されている。特許文献1では、水を水素の高い貯蔵率を有する貯蔵物質として用い、自由自在に水素を供給すること、供給する水素を燃料電池の燃料として利用することが提案されている。   By the way, Patent Document 1 describes that in a lithium-water battery, a reaction represented by the following formula (1) occurs at the positive electrode during discharge to generate hydrogen. In Patent Document 1, it is proposed that water is used as a storage material having a high hydrogen storage rate, hydrogen is freely supplied, and the supplied hydrogen is used as fuel for the fuel cell.

Figure 2015106486
Figure 2015106486

特開2011−228162号公報JP 2011-228162 A

水系電解質のリチウム空気電池では、長時間の放電にて正極の酸化還元能力を維持できれば、下記式(2)の反応が生じて、正極から水素が発生することはない。しかし、発明者らは、水系電解質を用いたリチウム空気電池では、長時間の放電、特に高い電流密度(およそ4mA/cm以上)での長時間の放電を行った場合、正極の酸化還元能力が低下する場合があり、式(1)の反応が生じ、正極から水素が発生することを見出した。また、正極に水素が発生する場合、正極の放電電圧が低下し、放電時間が短くなるという問題を見出した。さらに、その結果、発生した水素が空気中に過度に存在することとなる。また、正極の酸化還元能力を向上させるために、単位面積あたりの触媒担持量増やした場合、触媒の比表面積の低下などを原因とする触媒活性の低下、触媒量に対する触媒活性の非効率化や費用が向上することなどが課題となっている。 In an aqueous electrolyte lithium-air battery, if the oxidation-reduction capability of the positive electrode can be maintained over a long discharge, the reaction of the following formula (2) occurs and hydrogen is not generated from the positive electrode. However, the inventors have shown that in a lithium-air battery using an aqueous electrolyte, the redox ability of the positive electrode is obtained when long-time discharge, particularly long-time discharge at a high current density (approximately 4 mA / cm 2 or more) is performed. It was found that the reaction of formula (1) occurs and hydrogen is generated from the positive electrode. Moreover, when hydrogen generate | occur | produced in the positive electrode, the discharge voltage of the positive electrode fell and the problem that discharge time became short was discovered. Furthermore, as a result, the generated hydrogen is excessively present in the air. In addition, in order to improve the redox capacity of the positive electrode, when the amount of catalyst supported per unit area is increased, the catalyst activity decreases due to a decrease in the specific surface area of the catalyst, the catalyst activity becomes inefficient with respect to the catalyst amount, Issues such as increased costs have become issues.

Figure 2015106486
Figure 2015106486

上記課題に鑑みて、本発明は、水素の発生を防止することにより長時間の放電における放電電圧の低下及び放電時間の短縮を防ぎ、空気中に水素が過度に存在することを防ぐリチウム空気電池を提供することを目的とする。   In view of the above problems, the present invention prevents lithium from being generated, thereby preventing a decrease in discharge voltage and a reduction in discharge time in a long-time discharge and preventing excessive hydrogen from being present in the air. The purpose is to provide.

前記目的を達成するために、本発明に係るリチウム空気電池は、負極と、固体電解質と、電解質と、正極と、を備えるリチウム空気電池であって、前記正極は、前記負極の表面積よりも大きい表面積を有することを特徴とする。   In order to achieve the above object, a lithium-air battery according to the present invention is a lithium-air battery including a negative electrode, a solid electrolyte, an electrolyte, and a positive electrode, and the positive electrode is larger than the surface area of the negative electrode. It has a surface area.

上記課題に照らして、リチウム空気電池の正極からの水素発生を防止することにより、長時間に亘る高電流密度の放電による電池特性(放電電圧及び放電時間)の低下を防ぐとともに、空気中に水素が過度に存在しなくなる。   In light of the above problems, by preventing the generation of hydrogen from the positive electrode of a lithium-air battery, it is possible to prevent a decrease in battery characteristics (discharge voltage and discharge time) due to high current density discharge over a long period of time, and hydrogen in the air. Is no longer present.

本発明の第一実施の形態に係るリチウム空気電池を示す概略的な斜視図である。1 is a schematic perspective view showing a lithium air battery according to a first embodiment of the present invention. 本発明の第一実施の形態に係るリチウム空気電池の内部構造を示す概略的な斜視図である。It is a schematic perspective view which shows the internal structure of the lithium air battery which concerns on 1st embodiment of this invention. 本発明の第一実施の形態に係るリチウム空気電池単セルの内部構造を示す概略的な断面図である。It is a schematic sectional drawing which shows the internal structure of the lithium air battery single cell which concerns on 1st embodiment of this invention. 本発明の第二実施の形態に係るリチウム空気電池の内部構造を示す概略的な斜視図である。It is a schematic perspective view which shows the internal structure of the lithium air battery which concerns on 2nd embodiment of this invention. 本発明の第二実施の形態に係るリチウム空気電池を示す回路図である。It is a circuit diagram which shows the lithium air battery which concerns on 2nd embodiment of this invention. 図6(a)は本発明の第二実施の形態に係るリチウム空気電池単セルの内部構造を示す概略的な断面図であり、図6(b)はリチウム空気電池単セルの負極複合体の内部構造を示す概略的な断面図である。FIG. 6A is a schematic cross-sectional view showing the internal structure of a lithium-air battery unit cell according to the second embodiment of the present invention, and FIG. It is a schematic sectional drawing which shows an internal structure. 実施例でのリチウム空気電池の放電電圧の推移を示すグラフである。It is a graph which shows transition of the discharge voltage of the lithium air battery in an Example. 実施例でのリチウム空気電池の放電電圧の推移を示すグラフである。It is a graph which shows transition of the discharge voltage of the lithium air battery in an Example.

本発明に係るリチウム空気電池及びリチウム空気電池1の正極構造体の第一実施の形態について図1〜図3を参照して説明する。   1st Embodiment of the positive electrode structure of the lithium air battery and lithium air battery 1 which concerns on this invention is described with reference to FIGS.

図1は、本発明の第一実施の形態に係るリチウム空気電池を示す概略的な斜視図である。   FIG. 1 is a schematic perspective view showing a lithium-air battery according to a first embodiment of the present invention.

図1に示すように、本実施形態に係るリチウム空気電池1は、外殻としてのケース2と、ケース2内から引き出されて露出する空気極集電体としての正極集電体6及び負極集電体5と、を備える。   As shown in FIG. 1, a lithium-air battery 1 according to this embodiment includes a case 2 as an outer shell, a positive electrode current collector 6 and a negative electrode current collector as an air electrode current collector that is drawn out of the case 2 and exposed. Electric body 5.

ケース2は、気体を透過する一方で、液体に対して不透過な材料からなる。ケース2は、例えばポリエチレン又はビニリデンフルオライド単位及びテトラフルオロエチレン単位を有するフルオロポリマーからなることを特徴とするフッ素樹脂成形品やビニリデンフルオライド単位及びテトラフルオロエチレン単位を有するフルオロポリマーからなることを特徴とするフッ素樹脂の多孔質体であり、六面体、例えば直方体形状を有する中空体である。なお、ケース2は、気体にも液体にも不透過な材料の成形品であっても良い。この場合、ケース2の側壁に通気口が設けられる。前記通気口は、後述する電解質7を漏出させない位置に設けられ、ケース2の内外に空気を流通させる。   The case 2 is made of a material that is permeable to gas but impermeable to liquid. Case 2 is, for example, made of a fluoropolymer having a polyethylene or vinylidene fluoride unit and a tetrafluoroethylene unit, or a fluoropolymer having a vinylidene fluoride unit or a tetrafluoroethylene unit. A porous body of fluororesin, which is a hexahedron, for example, a hollow body having a rectangular parallelepiped shape. The case 2 may be a molded article made of a material that is impermeable to gas and liquid. In this case, a vent is provided on the side wall of the case 2. The vent is provided at a position where the electrolyte 7 described later does not leak out, and allows air to flow inside and outside the case 2.

ケース2の外側には正極集電体5及び負極集電体6のみが露出する。   Only the positive electrode current collector 5 and the negative electrode current collector 6 are exposed outside the case 2.

図2は、本発明の第一実施の形態に係るリチウム空気電池1の内部構造を示す概略的な断面図である。   FIG. 2 is a schematic cross-sectional view showing the internal structure of the lithium-air battery 1 according to the first embodiment of the present invention.

図2に示すように、本実施の形態に係るリチウム空気電池1は、その外殻をなすケース2と、正極構造体3と、負極複合体4と、正極集電体5と、負極集電体6と、電解質7とを、備える。   As shown in FIG. 2, the lithium-air battery 1 according to the present embodiment includes a case 2 that forms an outer shell, a positive electrode structure 3, a negative electrode composite 4, a positive electrode current collector 5, and a negative electrode current collector. A body 6 and an electrolyte 7 are provided.

正極構造体3及び負極複合体4は、それぞれ電気的に並列に接続される。なお、隣り合う正極構造体3及び負極複合体4は、実際には相互に接しているが、図2においては識別しやすいように離間させて示している。すなわち、正極構造体3と負極複合体4とこれらに内包される電解質7とで、1つの空気電池単セル10を形成する。   The positive electrode structure 3 and the negative electrode composite 4 are each electrically connected in parallel. The adjacent positive electrode structure 3 and negative electrode composite 4 are actually in contact with each other, but are separated from each other in FIG. 2 for easy identification. That is, a single air battery unit cell 10 is formed by the positive electrode structure 3, the negative electrode composite 4, and the electrolyte 7 included therein.

正極集電体5は、リチウム空気電池の動作範囲で安定して存在でき、所望とする導電性を有していれば良い。例えば、ステンレス、ニッケル、アルミニウム、金、白金等の金属材料、カーボンクロス、カーボン不織布等のカーボン材料を素材とする板状又は線状の導電体からなり、その一端側が正極構造体3の一部又は全部と電気的に接続される。   The positive electrode current collector 5 may be present stably in the operating range of the lithium-air battery and may have a desired conductivity. For example, a plate-like or linear conductor made of a metal material such as stainless steel, nickel, aluminum, gold, or platinum, or a carbon material such as carbon cloth or carbon nonwoven fabric, and one end side of which is a part of the positive electrode structure 3 Alternatively, all are electrically connected.

負極集電体6は、リチウム空気電池の動作範囲で安定して存在でき、所望とする導電性を有していれば良い。例えば、銅、ニッケル等を素材とする板状又は線状の導電体からなり、その一端側が負極複合体4の一部又は全部と電気的に接続される。   The negative electrode current collector 6 may be present stably in the operating range of the lithium-air battery and may have a desired conductivity. For example, it is made of a plate-like or linear conductor made of copper, nickel or the like, and one end thereof is electrically connected to a part or all of the negative electrode composite 4.

図3は、本発明の本実施の形態に係るリチウム空気電池単セル10の内部構造を示す模式的な断面図である。   FIG. 3 is a schematic cross-sectional view showing the internal structure of the lithium-air battery single cell 10 according to the present embodiment of the present invention.

図3に示すように、リチウム空気電池単セル10は、正極構造体3と、負極複合体4と、正極集電体5と、負極複合体6と、電解質7と、を備える。   As shown in FIG. 3, the lithium-air battery unit cell 10 includes a positive electrode structure 3, a negative electrode complex 4, a positive electrode current collector 5, a negative electrode complex 6, and an electrolyte 7.

正極構造体3は、少なくとも2以上の正極8を積層させてなり、正極集電体5と電気的に接続され、1つの空気極として機能する。より具体的には、正極構造体3は、例えば、少なくとも2以上の正極8を、カーボンファイバー、樹脂等により縫製させて形成される。その他、複数の正極8が固定されて形成される構造体であればよく、例えば、クリップ等で隣り合う正極8同士の外側から押圧して形成したり、メッシュで両側から押えて固定して形成したり、ホッチキス等で固定して正極構造体3を形成してもよい。   The positive electrode structure 3 is formed by laminating at least two positive electrodes 8 and is electrically connected to the positive electrode current collector 5 and functions as one air electrode. More specifically, the positive electrode structure 3 is formed by, for example, sewing at least two or more positive electrodes 8 with carbon fiber, resin, or the like. In addition, it may be a structure formed by fixing a plurality of positive electrodes 8, for example, formed by pressing from the outside of adjacent positive electrodes 8 with a clip or the like, or formed by pressing from both sides with a mesh and fixed. Alternatively, the positive electrode structure 3 may be formed by fixing with a stapler or the like.

正極8は、本体部8aと導電性材料を含有する空気極層8bとを備えて、正極集電体5と電気的に接続される。隣り合う正極8同士は、互いに離間していてもよいが、対向する面が接触するように連結されることが望ましい。この場合、隣り合う正極8同士の接触面積は、リチウム空気電池1及びリチウム空気電池単セル10の電池特性に大きく寄与する。また、正極8の形状は、積層可能であれば特に限定されないが、接触時に隣り合う正極8同士の接触面積が大きいほど良い。   The positive electrode 8 includes a main body portion 8 a and an air electrode layer 8 b containing a conductive material, and is electrically connected to the positive electrode current collector 5. Adjacent positive electrodes 8 may be separated from each other, but are desirably connected so that opposing surfaces are in contact with each other. In this case, the contact area between the adjacent positive electrodes 8 greatly contributes to the battery characteristics of the lithium air battery 1 and the lithium air battery single cell 10. Moreover, the shape of the positive electrode 8 is not particularly limited as long as it can be laminated, but the larger the contact area between the positive electrodes 8 adjacent to each other at the time of contact, the better.

空気極層8bは、炭素繊維等の導電体を素材とし、正極集電体5と電気的に接続される。空気極層8bは、電解質7を吸い上げて正極構造体3と負極複合体4との間に介在させる。空気極層8bとしては、多孔質構造、構成繊維が規則正しく配列されたメッシュ構造、ランダムに配列された不織布構造、三次元網目構造が挙げられる。例えば、カーボンペーパー、カーボンクロス、カーボン不織布、多孔質ニッケル、多孔質アルミニウム等が挙げられる。なお、カーボンクロスとはカーボンファイバーが規則性をもって編み込まれたシート状のものをいい、カーボン不織布とはカーボンファイバーを不規則に絡み合わせたシート形状のものをいう。もっとも、これに限らず、電解質7に対して耐腐食性を示す材料であれば、空気極層8bとして用いることができる。空気極層8bの材料としては、前述したように耐腐食性が高く、軽量でガス拡散性及び導電性が高いカーボンファイバーが好ましい。   The air electrode layer 8 b is made of a conductive material such as carbon fiber and is electrically connected to the positive electrode current collector 5. The air electrode layer 8 b sucks up the electrolyte 7 and interposes between the positive electrode structure 3 and the negative electrode composite 4. Examples of the air electrode layer 8b include a porous structure, a mesh structure in which constituent fibers are regularly arranged, a nonwoven fabric structure in which the fibers are randomly arranged, and a three-dimensional network structure. For example, carbon paper, carbon cloth, carbon nonwoven fabric, porous nickel, porous aluminum and the like can be mentioned. The carbon cloth refers to a sheet shape in which carbon fibers are knitted with regularity, and the carbon non-woven fabric refers to a sheet shape in which carbon fibers are irregularly entangled. However, the present invention is not limited to this, and any material that exhibits corrosion resistance to the electrolyte 7 can be used as the air electrode layer 8b. As a material for the air electrode layer 8b, as described above, carbon fiber having high corrosion resistance, light weight, high gas diffusibility and high conductivity is preferable.

空気極層8bには、必要に応じて導電材料、貴金属や酸化金属等の触媒又はこれらを結着させるバインダーを含んでもよい。前記導電材料としては、例えば、カーボンブラック、活性炭等の高比表面積カーボン材料が挙げられる。前記触媒としては、放電時には酸素還元反応、充電時には酸素酸化反応を促進させる触媒であれば良い。例えば、MnO、CeO、Co、NiO、V、Fe、ZnO、CuO、LiMnO、LiMnO3、LiMn、LiTi12、LiNiO、LiVO、LiFeO、LiFeO、LiCrO、LiCoO、LiCuO、LiZnO、LiMoO4、LiNbO、LiTaO、LiWO、LiZrO、La1.6Sr0.4NiO、LaNiO、La0.6Sr0.4FeO、La0.6Sr0.4Co0.2Fe0.8、La0.8Sr0.2MnO、Mn1.5Co1.5等の金属酸化物;Au、Pt、Ag等の貴金属;及びこれらの複合物等が挙げられる。前記触媒を含む空気極層8bを作製する方法は、特に限定されないが、例えば、白金などの触媒金属を担持したカーボンをバインダー及び有機溶媒と混合したものを、カーボンクロスなどに付着させることにより行うことができる。前記カーボンを混合するバインダーとしては、ポリフッ化ビニリデン(PVDF)、ナフィオン分散溶液(登録商標)、ポリテトラフルオロエチレン(PTFE)、スチレン−ブタジエンゴム(SBR)等又はリチウムイオン電池の電極に典型的に用いられる高分子材料を用いることができる。また前記カーボンを混合する有機溶媒としては、例えば、N−メチルピロリドン(NMP)、アセトニトリル、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMA)、ジメチルスルホキシド(DMSO)等を用いることができる。 The air electrode layer 8b may include a conductive material, a catalyst such as a noble metal or a metal oxide, or a binder for binding these, if necessary. Examples of the conductive material include high specific surface area carbon materials such as carbon black and activated carbon. The catalyst may be a catalyst that promotes an oxygen reduction reaction during discharging and an oxygen oxidation reaction during charging. For example, MnO 2, CeO 2, Co 3 O 4, NiO, V 2 O 5, Fe 2 O 3, ZnO, CuO, LiMnO 2, Li 2 MnO3, LiMn 2 O 4, Li 4 Ti 5 O 12, LiNiO 2 , LiVO 3 , Li 5 FeO 4 , LiFeO 2 , LiCrO 2 , LiCoO 2 , LiCuO 2 , LiZnO 2 , Li 2 MoO 4, LiNbO 3 , LiTaO 3 , Li 2 WO 4 , Li 2 ZrO 3 , La 1.6 Sr 0 .4 NiO 4 , La 2 NiO 4 , La 0.6 Sr 0.4 FeO 3 , La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 , La 0.8 Sr 0.2 MnO 3 And metal oxides such as Mn 1.5 Co 1.5 O 4 ; noble metals such as Au, Pt and Ag; and composites thereof. The method for producing the air electrode layer 8b containing the catalyst is not particularly limited. For example, the air electrode layer 8b is prepared by adhering a carbon carrying a catalytic metal such as platinum mixed with a binder and an organic solvent to a carbon cloth or the like. be able to. As the binder for mixing the carbon, a polyvinylidene fluoride (PVDF), a Nafion dispersion solution (registered trademark), a polytetrafluoroethylene (PTFE), a styrene-butadiene rubber (SBR) or the like is typically used as an electrode of a lithium ion battery. The polymer material used can be used. As the organic solvent for mixing the carbon, for example, N-methylpyrrolidone (NMP), acetonitrile, dimethylformamide (DMF), dimethylacetamide (DMA), dimethyl sulfoxide (DMSO) and the like can be used.

負極複合体4は、負極集電体6と、負極層11と、緩衝層12(保護層)と、固体電解質層13と、外周封止部材14と、を備える。   The negative electrode composite 4 includes a negative electrode current collector 6, a negative electrode layer 11, a buffer layer 12 (protective layer), a solid electrolyte layer 13, and an outer peripheral sealing member 14.

負極層11は、負極集電体6の一部と電気的に接続され、例えば、負極集電体6の銅箔の一面又は両面に張り合わされる。負極層11は、高容量化の観点から金属リチウム製であることが望ましい。もっともこれに限らず、金属リチウムに代えて、負極層11がリチウムを主成分とする合金又はリチウムを主成分とする化合物であっても良い。前記リチウムを主成分とする合金としては、マグネシウム、カルシウム、アルミニウム、ケイ素、ゲルマニウム、スズ、鉛、アンチモン、ビスマス、銀、金、亜鉛等が挙げられる。また、前記リチウムを主成分とする化合物としては、例えばLi3−xMxN(M=Co、Cu、Ni)が挙げられる。なお、負極層11は、電池容量に応じてその厚さ及び面積が変更される。   The negative electrode layer 11 is electrically connected to a part of the negative electrode current collector 6, and is bonded to one surface or both surfaces of the copper foil of the negative electrode current collector 6, for example. The negative electrode layer 11 is desirably made of metallic lithium from the viewpoint of increasing the capacity. However, the present invention is not limited thereto, and instead of metallic lithium, the negative electrode layer 11 may be an alloy containing lithium as a main component or a compound containing lithium as a main component. Examples of the lithium-based alloy include magnesium, calcium, aluminum, silicon, germanium, tin, lead, antimony, bismuth, silver, gold, and zinc. Moreover, as a compound which has the said lithium as a main component, Li3-xMxN (M = Co, Cu, Ni) is mentioned, for example. The thickness and area of the negative electrode layer 11 are changed according to the battery capacity.

緩衝層12は、負極層11と固体電解質層13との間に形成されて、両者間のリチウムリチウムイオン伝導性を確保するとともに、負極層11と固体電解質層13との接触を防止する。例えば、固体電解質層13の材質が一般式Li1+x+yTi2−xAl3−ySi12(x=0.3、y=0.2)であらわされるLTAPである場合、負極層11と固体電解質層13とが接触すると、負極層11のリチウムによってLTAPが反応して劣化の可能性がある。しかし、緩衝層12を負極層11と固体電解質層13と間に挿入することにより、これらの接触が防がれるので、上記のような反応は抑制される。このことは、リチウム空気電池単セル10及びリチウム空気電池1の長寿命化に寄与する。 The buffer layer 12 is formed between the negative electrode layer 11 and the solid electrolyte layer 13 to ensure lithium lithium ion conductivity between the two and prevent contact between the negative electrode layer 11 and the solid electrolyte layer 13. For example, when the material of the solid electrolyte layer 13 is LTAP represented by the general formula Li 1 + x + y Ti 2-x Al x P 3-y Si y O 12 (x = 0.3, y = 0.2), the negative electrode layer When 11 and the solid electrolyte layer 13 come into contact with each other, there is a possibility that the LTAP reacts with the lithium of the negative electrode layer 11 and deteriorates. However, by inserting the buffer layer 12 between the negative electrode layer 11 and the solid electrolyte layer 13, these contacts are prevented, and thus the reaction as described above is suppressed. This contributes to extending the life of the lithium-air battery unit cell 10 and the lithium-air battery 1.

緩衝層12は、リチウムイオン伝導のポリマー電解質又は有機電解質である。緩衝層12のリチウムイオン伝導率(リチウムイオン導電率とも表記する。)は、10−5S/cm以上であることが望ましい。 The buffer layer 12 is a lithium ion conductive polymer electrolyte or organic electrolyte. The lithium ion conductivity (also referred to as lithium ion conductivity) of the buffer layer 12 is desirably 10 −5 S / cm or more.

緩衝層12は、リチウム塩をポリマーに分散させた固体電解質であってもよいし、リチウム塩を溶解した有機電解液をポリマーに膨潤させたゲル電解質であってもよい。固体電解質のホストとなるポリマーは、PEO(ポリエチレンオキシド)、PPO(ポリプロピレンオキシド)等である。ゲル電解質のホストとなるポリマーは、PEO(ポリエチレンオキシド)、PVDF(ポリフッ化ビリニデン)、PVDF−HFP(ポリフッ化ビリニデンとヘキサフロオロプロピレンとの共重合体)等である。リチウム塩は、LiPF、LiClO、LiBF、LiTFSI(Li(CFSON)、Li(CSON、LiBOB(ビスオキサラトホウ酸リチウム)等である。 The buffer layer 12 may be a solid electrolyte in which a lithium salt is dispersed in a polymer, or may be a gel electrolyte in which an organic electrolyte solution in which a lithium salt is dissolved is swollen in a polymer. Examples of the polymer serving as a host for the solid electrolyte include PEO (polyethylene oxide) and PPO (polypropylene oxide). Examples of the polymer serving as a host for the gel electrolyte include PEO (polyethylene oxide), PVDF (polyvinylidene fluoride), PVDF-HFP (copolymer of poly (vinylidene fluoride) and hexafluoropropylene). Examples of the lithium salt include LiPF 6 , LiClO 4 , LiBF 4 , LiTFSI (Li (CF 3 SO 2 ) 2 N), Li (C 2 F 4 SO 2 ) 2 N, LiBOB (lithium bisoxalatoborate), and the like.

前記ホストポリマーとしては、PEOが望ましい。この場合、PEOの分子量は10〜10であることが望ましく、PEOとリチウム塩とのモル比は、8:1〜30:1であることが特に望ましい。さらに、緩衝層12の強度及び電気化学的特性を向上させるため、セラミックスフィラー(例えば、チタン酸バリウム:BaTiOの粉末)をポリマーに分散させてもよい。この場合、前記セラミックフィラーの混合量は、残余の成分100重量部に対して1〜20重量部であることが望ましい。 PEO is desirable as the host polymer. In this case, the molecular weight of PEO is desirably 10 4 to 10 5 , and the molar ratio of PEO and lithium salt is particularly desirably 8: 1 to 30: 1. Furthermore, in order to improve the strength and electrochemical characteristics of the buffer layer 12, a ceramic filler (for example, barium titanate: BaTiO 3 powder) may be dispersed in the polymer. In this case, it is desirable that the mixing amount of the ceramic filler is 1 to 20 parts by weight with respect to 100 parts by weight of the remaining components.

緩衝層12は、多孔質のセパレータに有機電解質を染み込ませた材料を用いることもできる。この場合、前記セパレータとしては、紙(セルロース)又は化学繊維不織布、多孔質のポリプロピレン(PP)、多孔質のポリエチレン(PE)、多孔質のポリイミド(PI)等を用いることができる。また、前記染み込ませる有機電解質として、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、テトラヒドロフラン(THF)、ジメチルスルホキシド(DMSO)、γ−ブチロラクトン(GBL)、2−メチルテトラヒドロフラン(2−MeTHF)、ジメチルホルムアミド(DMH)等の有機溶媒に、LiPF、LiClO、LiBF、LiTFSI(LiN(CFSON)、Li(CSON、ビスオキサラトホウ酸リチウム(LiBOB)等のリチウム塩を溶解させたものを用いることができる。 The buffer layer 12 may be made of a material in which a porous separator is impregnated with an organic electrolyte. In this case, as the separator, paper (cellulose) or chemical fiber nonwoven fabric, porous polypropylene (PP), porous polyethylene (PE), porous polyimide (PI), or the like can be used. Further, as the organic electrolyte to be impregnated, propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), γ-butyrolactone (GBL) LiPF 6 , LiClO 4 , LiBF 4 , LiTFSI (LiN (CF 3 SO 2 ) 2 N), Li (C 2 F 4 ) in an organic solvent such as 2-methyltetrahydrofuran (2-MeTHF) and dimethylformamide (DMH). A solution in which a lithium salt such as SO 2 ) 2 N or lithium bisoxalatoborate (LiBOB) is dissolved can be used.

緩衝層12は、負極複合体4に必ずしも備えられていなくてもよく、任意の構成要素である。すなわち、負極複合体4において、負極層11は、緩衝層12を隔てずに固体電解質層13と直接に隣接するように配置されていてもよい。   The buffer layer 12 is not necessarily provided in the negative electrode composite 4 and is an optional component. That is, in the negative electrode composite 4, the negative electrode layer 11 may be disposed so as to be directly adjacent to the solid electrolyte layer 13 without separating the buffer layer 12.

固体電解質層13は、リチウムイオン伝導性を有して水透過性が低い材料からなり、負極層11及び緩衝層12よりも一回り大きい略平板形状又は膜状を有する。固体電解質層13は、負極複合体4の外殻の大部分を担って負極層11及び緩衝層12を水分から保護するとともに、リチウムイオン(Li)のみを選択的に通過させる。 The solid electrolyte layer 13 is made of a material having lithium ion conductivity and low water permeability, and has a substantially flat plate shape or a film shape that is slightly larger than the negative electrode layer 11 and the buffer layer 12. The solid electrolyte layer 13 bears most of the outer shell of the negative electrode composite 4 to protect the negative electrode layer 11 and the buffer layer 12 from moisture, and selectively allows only lithium ions (Li + ) to pass therethrough.

固体電解質層13として、耐水性及びリチウムイオン伝導性を有するガラスセラミックスを用いることができる。望ましくは、固体電解質層13は、NASICON(Na Superionic Conductor:ナトリウム超イオン導電体)型のリチウムイオン伝導体とすることができる。さらに望ましくは、固体電解質層13は、一般式Li3M2(PO(MはZr、Ti、Ge等の4価のカチオン)であらわされるリチウムイオン伝導体の4価のカチオンMの一部をIn、Al等の3価のカチオンM’で置換することによりリチウムイオン伝導性を向上した一般式Li1+x2−xM’(POであらわされるリチウムイオン伝導体とすることができる。また固体電解質層13は、一般式LiM(PO(MはZr、Ti、Ge等の4価のカチオン)であらわされるリチウムイオン伝導体の4価のカチオンMの一部をTa等の5価のカチオンM”で置換することによりリチウムイオン伝導性を向上した一般式Li1−x2−xM”(POであらわされるリチウムイオン伝導体とすることができる。これらのリチウムイオン伝導体のPをSiで置換することも望ましく、固体電解質層13はLTAPであることが特に望ましい。この場合、リチウムイオン伝導性、不燃性、耐水性及び長期安定性に優れ、負極層11及び緩衝層12が水分から確実に保護される。 As the solid electrolyte layer 13, glass ceramics having water resistance and lithium ion conductivity can be used. Desirably, the solid electrolyte layer 13 may be a NASICON (Na Superconducting Conductor) type lithium ion conductor. More preferably, the solid electrolyte layer 13 includes a part of the tetravalent cation M of the lithium ion conductor represented by the general formula Li3M2 (PO 4 ) 3 (M is a tetravalent cation such as Zr, Ti, Ge). Lithium ion conductor represented by the general formula Li 1 + x M 2−x M ′ x (PO 4 ) 3 in which lithium ion conductivity is improved by substitution with a trivalent cation M ′ such as In or Al. it can. In addition, the solid electrolyte layer 13 is a part of the tetravalent cation M of the lithium ion conductor represented by the general formula LiM 2 (PO 4 ) 3 (M is a tetravalent cation such as Zr, Ti, Ge). it can be pentavalent "formula Li 1-x M 2-x M with improved lithium ion conductivity by replacing" x (PO 4) cation M lithium ion conductor represented by 3. It is also desirable to replace P in these lithium ion conductors with Si, and it is particularly desirable that the solid electrolyte layer 13 be LTAP. In this case, the lithium ion conductivity, nonflammability, water resistance and long-term stability are excellent, and the negative electrode layer 11 and the buffer layer 12 are reliably protected from moisture.

外周封止部材14は、負極集電体4の一部、負極層11、緩衝層12及び固体電解質層13の一部を封入し、固体電解質層13の正極構造体3側の一面を除いた領域を閉ざす。外周封止部材14としては、例えば、アルミラミネートフィルムが挙げられる。外周封止部材14は、エポキシ樹脂系接着剤、シリコーン系接着剤、スチレン−ブタジエンゴム系接着剤等を硬化させて形成されてもよい。外周封止部材14は、電解質7と緩衝層12との両方に晒されるため、耐有機電解質性と耐アルカリ性とを有することが好ましい。   The outer peripheral sealing member 14 encloses a part of the negative electrode current collector 4, the negative electrode layer 11, the buffer layer 12, and a part of the solid electrolyte layer 13, and excludes one surface of the solid electrolyte layer 13 on the positive electrode structure 3 side. Close the area. Examples of the outer peripheral sealing member 14 include an aluminum laminate film. The outer peripheral sealing member 14 may be formed by curing an epoxy resin adhesive, a silicone adhesive, a styrene-butadiene rubber adhesive, or the like. Since the outer peripheral sealing member 14 is exposed to both the electrolyte 7 and the buffer layer 12, it is preferable to have organic electrolyte resistance and alkali resistance.

電解質7は、ケース2内に充填され、少なくとも正極構造体3及び負極複合体4に接し、正極構造体3と負極複合体4との間でリチウムイオンの伝導を担う。電解質7は、図3のようにケース2の底部分に存在し、空気極層8bや電解質7を保持する材料等により吸い上げられることにより正極構造体3と負極複合体4との間に電解質7を保持する材料等とともに介在することが好ましい。この場合、ケース2の全体に電解質7が存在する場合と比較して、負極複合体4の短絡を防ぐことができる。   The electrolyte 7 is filled in the case 2, is in contact with at least the positive electrode structure 3 and the negative electrode complex 4, and is responsible for lithium ion conduction between the positive electrode structure 3 and the negative electrode complex 4. The electrolyte 7 exists at the bottom portion of the case 2 as shown in FIG. 3 and is sucked up by the air electrode layer 8 b, the material holding the electrolyte 7, etc., so that the electrolyte 7 is interposed between the positive electrode structure 3 and the negative electrode composite 4. It is preferable to intervene with the material etc. which hold | maintain. In this case, compared with the case where the electrolyte 7 exists in the whole case 2, the short circuit of the negative electrode composite 4 can be prevented.

電解質7としては、水にリチウム塩を溶解させた水系電解質等が挙げられる。前記水系電解質であった場合、水に溶解させるリチウム塩としては、LiCl(塩化リチウム)、LiOH(水酸化リチウム)、LiNO(硝酸リチウム)、CHCOLi等が挙げられる。 Examples of the electrolyte 7 include an aqueous electrolyte in which a lithium salt is dissolved in water. In the case of the aqueous electrolyte, examples of the lithium salt dissolved in water include LiCl (lithium chloride), LiOH (lithium hydroxide), LiNO 3 (lithium nitrate), CH 3 CO 2 Li, and the like.

本実施の形態のリチウム空気電池1及びリチウム空気電池1の正極構造体3によれば、
リチウム空気電池1は、負極複合体(負極)4と、固体電解質13と、電解質7と、正極(正極構造体)3と、を備え、正極構造体3の電池反応に寄与する表面積が従来の正極1枚の正極構造と比較して大きい。これにより、高い電流密度で長時間放電した場合に正極構造体3での酸化還元反応が低下することが防止される。すなわち、長時間に亘る高電流密度の放電により、正極構造体3付近で水素が発生することを防ぐ。その結果、水素の発生を防止し、放電特性の低下(放電電圧の低下及び放電時間の短縮)及び発生した水素が空気中に過度に存在することを防ぐことができる。
According to the lithium air battery 1 and the positive electrode structure 3 of the lithium air battery 1 of the present embodiment,
The lithium-air battery 1 includes a negative electrode composite (negative electrode) 4, a solid electrolyte 13, an electrolyte 7, and a positive electrode (positive electrode structure) 3. The surface area that contributes to the battery reaction of the positive electrode structure 3 is conventional. Larger than a positive electrode structure with one positive electrode. Thereby, it is prevented that the oxidation-reduction reaction in the positive electrode structure 3 is lowered when discharged for a long time at a high current density. That is, hydrogen is prevented from being generated in the vicinity of the positive electrode structure 3 due to a high current density discharge for a long time. As a result, generation of hydrogen can be prevented, discharge characteristics (decrease in discharge voltage and shortening of discharge time), and generation of excessive hydrogen in the air can be prevented.

また、正極構造体3は、少なくとも1以上の正極8を積層してなり、1つの空気極として機能する。これにより、電池反応に寄与する空気極の表面積を大きくできるとともに、正極8の積層枚数や各々の面積等を調整することにより、積層方向又は積層方向に対する垂直方向のそのサイズを変えることができる。正極構造体3のサイズは、積層された複数の正極8の表面積に起因する表面積が、1枚の正極8の表面積より大きければ好ましい。この場合、正極8における面積が大きい面の投影面積を小さくすることができるので、無駄な構造を少なくして、電池反応に寄与する正極構造体3の全表面積を正電極として活用できる。これにより、正極構造体3、負極複合体4及び電解質7からなるリチウム空気電池単セル10及びリチウム空気電池1の構造を最適化してコンパクトにし、そのサイズを縮小できる。   The positive electrode structure 3 is formed by laminating at least one positive electrode 8 and functions as one air electrode. Thereby, the surface area of the air electrode contributing to the battery reaction can be increased, and the size in the stacking direction or the direction perpendicular to the stacking direction can be changed by adjusting the number of stacked positive electrodes 8 and the area of each. The size of the positive electrode structure 3 is preferably such that the surface area due to the surface area of the plurality of stacked positive electrodes 8 is larger than the surface area of one positive electrode 8. In this case, since the projected area of the surface having a large area in the positive electrode 8 can be reduced, the useless structure can be reduced and the entire surface area of the positive electrode structure 3 contributing to the battery reaction can be utilized as the positive electrode. Thereby, the structure of the lithium air battery single cell 10 and the lithium air battery 1 which consist of the positive electrode structure 3, the negative electrode composite body 4, and the electrolyte 7 can be optimized, made compact, and the size can be reduced.

さらに、正極構造体3の投影面積を負極複合体4の面積が大きい面の投影面積と略同等とすることにより、リチウム空気電池単セル10のサイズを負極複合体4の投影面積に合わせることにより、例えば、複数のリチウム空気電池10を積層させてスタック構造にした場合、よりコンパクトな構造を有するリチウム空気電池1及びリチウム空気電池1の正極構造体3が得られる。したがって、リチウム空気電池単セル10及びリチウム空気電池1の構造をより最適化することにより、そのサイズを縮小できる。   Further, by making the projected area of the positive electrode structure 3 substantially equal to the projected area of the surface of the negative electrode composite 4 having a large area, the size of the lithium-air battery single cell 10 is adjusted to the projected area of the negative electrode composite 4. For example, when a plurality of lithium air batteries 10 are stacked to form a stack structure, the lithium air battery 1 and the positive electrode structure 3 of the lithium air battery 1 having a more compact structure are obtained. Therefore, the size can be reduced by optimizing the structure of the lithium-air battery single cell 10 and the lithium-air battery 1.

さらにまた、本実施の形態に係るリチウム空気電池1及び正極構造体3は、ケース2内に電解質7として水系電解質を蓄える場合には、放電の進行に伴って電解質7が揮発しても、随時、正極構造体3に電解質7が補給される。これにより、長期の放電に亘って電解質7の補充を必用とせず、電解質7の補充忘れにより電池性能が低下するといった可能性を排除できる。   Furthermore, when the lithium-air battery 1 and the positive electrode structure 3 according to the present embodiment store a water-based electrolyte as the electrolyte 7 in the case 2, even if the electrolyte 7 volatilizes as the discharge proceeds, the lithium-air battery 1 and the positive electrode structure 3 can be used at any time. The electrolyte 7 is supplied to the positive electrode structure 3. Thereby, replenishment of the electrolyte 7 is not required over long-term discharge, and it is possible to eliminate the possibility that the battery performance deteriorates due to forgetting to replenish the electrolyte 7.

さらにまた、本実施形態に係るリチウム空気電池1及び正極構造体3によれば、従来の空気電池と比較して、エネルギー密度及び入出力密度を増加させても、コンパクトな構造を可能として空気電池の大型化を抑制する。   Furthermore, according to the lithium air battery 1 and the positive electrode structure 3 according to the present embodiment, a compact structure can be realized even when the energy density and the input / output density are increased as compared with the conventional air battery. Suppressing the increase in size.

本発明に係るリチウム空気電池1A及びリチウム空気電池1Aの正極構造体3の第二実施の形態について図4〜図6(b)を参照して説明する。   A second embodiment of the lithium-air battery 1A and the positive electrode structure 3 of the lithium-air battery 1A according to the present invention will be described with reference to FIGS. 4 to 6B.

図4は、本発明の第二実施の形態に係るリチウム空気電池1Aの内部構造を示す模式的な斜視図である。図5は、本発明の第二実施の形態に係るリチウム空気電池1Aを示す回路図である。また、図6(a)は本発明の第二実施の形態に係るリチウム空気電池単セルの内部構造を示す概略的な断面図であり、図6(b)はリチウム空気電池単セルの負極複合体の内部構造を示す概略的な断面図である。なお、リチウム空気電池1Aにおいてリチウム空気電池1と同じ構成には同一の符号を付し、重複する説明は省略する。   FIG. 4 is a schematic perspective view showing the internal structure of the lithium-air battery 1A according to the second embodiment of the present invention. FIG. 5 is a circuit diagram showing a lithium-air battery 1A according to the second embodiment of the present invention. FIG. 6A is a schematic cross-sectional view showing the internal structure of the lithium-air battery unit cell according to the second embodiment of the present invention, and FIG. 6B is a negative electrode composite of the lithium-air battery unit cell. It is a schematic sectional drawing which shows the internal structure of a body. In addition, the same code | symbol is attached | subjected to the same structure as the lithium air battery 1 in the lithium air battery 1A, and the overlapping description is abbreviate | omitted.

図4に示すように、リチウム空気電池1Aは、ケース2と、複数の正極構造体3と、複数の負極複合体4Aと、複数の空気極集電体としての正極集電体5と、複数の負極集電体6と、電解質7と、を備える。   As shown in FIG. 4, a lithium-air battery 1A includes a case 2, a plurality of positive electrode structures 3, a plurality of negative electrode composites 4A, a plurality of positive electrode current collectors 5 as a plurality of air electrode current collectors, Negative electrode current collector 6 and electrolyte 7.

図5〜図6(b)に示すように、複数の正極構造体3及び負極複合体4Aは、それらが交互に並設される。これらのうち、1つの正極構造体3とこれに対応する1つの負極複合体4Aとは、1つの空気電池単セル10Aである。すなわち、リチウム空気電池1Aは、1対の正極構造体3と負極複合体4Aとで構成される空気電池単セル10Aを交互に並設した構成を備える。   As shown in FIGS. 5-6 (b), the some positive electrode structure 3 and the negative electrode composite 4A are arranged in parallel by turns. Among these, one positive electrode structure 3 and one negative electrode complex 4A corresponding to this are one air battery single cell 10A. That is, the lithium-air battery 1A includes a configuration in which air battery single cells 10A configured by a pair of positive electrode structures 3 and negative electrode composites 4A are alternately arranged in parallel.

複数の正極集電体5の各々は、線状又は略板状形状を有し、複数の正極構造体3の各々と対応して電気的に接続される。同様に、複数の負極集電体6の各々も、線状又は略板状形状を有し、複数の負極複合体4Aの各々と対応して電気的に接続される。また、ケース2の外側には、少なくとも1つ以上の正極集電体5及び負極集電体6のみが露出する。   Each of the plurality of positive electrode current collectors 5 has a linear or substantially plate shape, and is electrically connected to each of the plurality of positive electrode structures 3. Similarly, each of the plurality of negative electrode current collectors 6 has a linear shape or a substantially plate shape, and is electrically connected to each of the plurality of negative electrode composite bodies 4A. Also, at least one or more of the positive electrode current collector 5 and the negative electrode current collector 6 are exposed outside the case 2.

負極複合体4Aは、略板形状を有し、負極集電体6と、負極集電体6の一部を共有して電気的に接続された2つの負極層11と、2つの固体電解質層13と、外周封止部材14Aと、ガスケット20と、を備える。なお、負極複合体4Aは、第一実施の形態と同様に、リチウムイオン伝導性を有して負極層11と固体電解質層13とを隔てる緩衝層12を備えることができる。   The negative electrode composite 4A has a substantially plate shape, the negative electrode current collector 6, two negative electrode layers 11 that share a part of the negative electrode current collector 6 and are electrically connected, and two solid electrolyte layers. 13, an outer peripheral sealing member 14 </ b> A, and a gasket 20. The negative electrode composite 4A can include a buffer layer 12 having lithium ion conductivity and separating the negative electrode layer 11 and the solid electrolyte layer 13 as in the first embodiment.

外周封止部材14Aは、複数の固体電解質層13の各々が対応する正極構造体3側の面を除いた領域を閉ざし、この領域内に負極集電体4Aの一部、負極層11及び固体電解質層13の一部を封入する。外周封止部材14Aとしては、典型的に、アルミラミネートフィルムが挙げられる。また外周封止部材14Aは、エポキシ樹脂系接着剤、シリコーン系接着剤、オレフィン系接着剤、スチレン−ブタジエンゴム系接着剤等を硬化させて形成されてもよい。外周封止部材14Aは、電解質7と緩衝層12との両方に晒されるため、耐有機電解質性と耐アルカリ性とを有することが好ましい。   14 A of outer periphery sealing members close the area | region except the surface at the side of the positive electrode structure 3 to which each of the some solid electrolyte layer 13 respond | corresponds, a part of negative electrode collector 4A, the negative electrode layer 11, and solid A part of the electrolyte layer 13 is encapsulated. As the outer peripheral sealing member 14A, an aluminum laminate film is typically mentioned. The outer peripheral sealing member 14A may be formed by curing an epoxy resin adhesive, a silicone adhesive, an olefin adhesive, a styrene-butadiene rubber adhesive, or the like. Since the outer peripheral sealing member 14 </ b> A is exposed to both the electrolyte 7 and the buffer layer 12, it is preferable to have organic electrolyte resistance and alkali resistance.

ガスケット20は、負極層11の外周を取り囲むように2つの固体電解質層13の間に配置され、2つの負極層11はガスケット20の枠内に配置される。ガスケット20は、固体電解質層13の各々の内面に任意の方法により固定されてよいが、ガスケット20自体の吸着性及び/又は粘着性により固定されることが好ましい。ガスケット20は、負極層11の外周に接していてもよく、負極層11の外周から離れていてもよい。ガスケット20は、負極集電体6を介して2つのガスケットからなり、2つの固体電解質層13の各々の内面上に配置された後に重ね合わされる。この場合、2つのガスケットは、図示しない重ね合わせ面を有し、ガスケット自体の吸着性及び/又は粘着性により、互いに密着している。これにより、ガスケット20内の空間は密閉される。負極集電体6は、前記重ね合わせ面を通して負極複合体4Aの外部に導出される。あるいは、ガスケット20は、1つの部材として構成されていてもよく、かかる場合は、負極集電体6を貫通させるための図示しない貫通孔がガスケット20に設けられている。   The gasket 20 is disposed between the two solid electrolyte layers 13 so as to surround the outer periphery of the negative electrode layer 11, and the two negative electrode layers 11 are disposed in the frame of the gasket 20. The gasket 20 may be fixed to the inner surface of each of the solid electrolyte layers 13 by an arbitrary method, but is preferably fixed by the adsorptivity and / or adhesiveness of the gasket 20 itself. The gasket 20 may be in contact with the outer periphery of the negative electrode layer 11 or may be separated from the outer periphery of the negative electrode layer 11. The gasket 20 is composed of two gaskets with the negative electrode current collector 6 interposed therebetween, and is superposed after being disposed on the inner surfaces of the two solid electrolyte layers 13. In this case, the two gaskets have an unillustrated overlapping surface and are in close contact with each other due to the adsorptivity and / or adhesiveness of the gasket itself. Thereby, the space in the gasket 20 is sealed. The negative electrode current collector 6 is led out of the negative electrode composite 4A through the overlapping surface. Alternatively, the gasket 20 may be configured as a single member. In such a case, a through hole (not shown) for allowing the negative electrode current collector 6 to penetrate is provided in the gasket 20.

ガスケット20の材料としては、有機電解質に耐性があるゴム又はエラストマーであれば特に限定されないが、エチレン−プロピレン−ジエンの共重合からなるゴム若しくはエラストマー又はフッ素系のゴム又はエラストマーが好適である。エチレン−プロピレン−ジエンの共重合からなるゴムとしては、例えば、EPM、EPDM、EPT等が挙げられる。フッ素系のゴム又はエラストマーとしては、例えば、フッ化ビニリデン系(FKM)、テトラフルオロエチレン-プロピレン系(FEPM)、テトラフルオロエチレン-パープルオロビニルエーテル系(FFKM)等が挙げられる。ゴム又はエラストマーの物性は軟らかい硬度であることが好ましく、ガスケット材料の硬度はショアA50〜70付近であることが好ましい。なお、ガスケット材料が著しく柔らかい場合、加工性が悪い等の問題がある場合がある。この場合、ガスケット20が柔らかい硬度、ゴム弾性及びそれらの両性質を有することにより、負極複合体4A内部の構成部材の均一な高さ調整が可能となる。すなわち、固体電解質層13の一方又は両方を、直接又は間接的に押圧することで、緩衝層12と固体電解質層13との接触面の全体的な密着性を向上させることができる。これにより、緩衝層12を介した負極層11と固体電解質層13との接触性を高めることができる。また、ゴム又はエラストマーは、成形前の原料が液状のタイプで、吸着性及び/又は粘着性が高いものが好ましい。   The material of the gasket 20 is not particularly limited as long as it is a rubber or an elastomer resistant to an organic electrolyte, but a rubber or an elastomer made of a copolymer of ethylene-propylene-diene or a fluorine-based rubber or an elastomer is preferable. Examples of the rubber formed by copolymerization of ethylene-propylene-diene include EPM, EPDM, EPT and the like. Examples of the fluorine-based rubber or elastomer include vinylidene fluoride (FKM), tetrafluoroethylene-propylene (FEPM), and tetrafluoroethylene-purple fluorovinyl ether (FFKM). The physical properties of the rubber or elastomer are preferably soft, and the hardness of the gasket material is preferably around Shore A 50-70. If the gasket material is extremely soft, there may be problems such as poor workability. In this case, since the gasket 20 has soft hardness, rubber elasticity, and both of these properties, the uniform height adjustment of the constituent members inside the negative electrode composite 4A is possible. That is, the overall adhesion of the contact surface between the buffer layer 12 and the solid electrolyte layer 13 can be improved by pressing one or both of the solid electrolyte layers 13 directly or indirectly. Thereby, the contact property of the negative electrode layer 11 and the solid electrolyte layer 13 through the buffer layer 12 can be improved. In addition, the rubber or elastomer is preferably a material in which the raw material before molding is liquid and has high adsorptivity and / or adhesiveness.

ガスケット20は、好ましくは四角形の窓枠状の形状である。ガスケット20のサイズは、その枠内に負極層11を配置可能な内寸を有し、固体電解質層13とほぼ同じ大きさの外寸である。ガスケット20の厚さは、2つの固体電解質層13間に積層される構成部材の厚さの合計と同程度の厚さであってよい。   The gasket 20 preferably has a rectangular window frame shape. The size of the gasket 20 has an internal dimension in which the negative electrode layer 11 can be disposed within the frame, and is an external dimension that is approximately the same size as the solid electrolyte layer 13. The thickness of the gasket 20 may be approximately the same as the total thickness of the constituent members laminated between the two solid electrolyte layers 13.

本実施の形態のリチウム空気電池1A及びリチウム空気電池1Aの正極構造体3によれば、第一実施の形態と同様の効果を得るとともに、2つの正極構造体3が電池反応に寄与する負極複合体4Aの電池反応に寄与する面積を2倍に増加する位置に配置されるので、入出力密度が向上される。また、リチウム空気電池1Aの部品点数を減らすことができ、リチウム空気電池1A及びリチウム空気電池単セル10Aの構造をよりコンパクトにし、それらの重量を低減できる。   According to the lithium air battery 1A and the positive electrode structure 3 of the lithium air battery 1A of the present embodiment, the negative electrode composite in which the same effects as those of the first embodiment are obtained and the two positive electrode structures 3 contribute to the battery reaction. Since the area contributing to the battery reaction of the body 4A is doubled, the input / output density is improved. Moreover, the number of parts of the lithium air battery 1A can be reduced, the structure of the lithium air battery 1A and the lithium air battery single cell 10A can be made more compact, and the weight thereof can be reduced.

また、本実施の形態のリチウム空気電池1A及びその正極構造体3によれば、リチウム空気電池単セルごとに水溶液系電解質を内包する従来のリチウム空気電池と比較して、複数のリチウム空気電池単セル10Aを並列に接続して1つのケース2内に収容する。これにより、リチウム空気電池1Aは、リチウム空気電池単セル10Aごとの仕切り(従来のリチウム空気電池の外装に相当する)を配置する必要がなく、複数の空気電池単セル10Aで電解質7を共有することにより、リチウム空気電池1Aの全体としての電解質7の貯留量を最適化して重量や体積を低減できる。   In addition, according to the lithium air battery 1A and the positive electrode structure 3 of the present embodiment, a plurality of lithium air battery units are compared with a conventional lithium air battery in which an aqueous electrolyte is included in each lithium air battery unit cell. The cells 10A are connected in parallel and accommodated in one case 2. Thereby, the lithium air battery 1A does not need to arrange | position the partition (equivalent to the exterior of the conventional lithium air battery) for every lithium air battery single cell 10A, and the electrolyte 7 is shared by several air battery single cell 10A. Thereby, the storage amount of the electrolyte 7 as the whole lithium air battery 1A can be optimized, and a weight and a volume can be reduced.

以下、実施例によって本発明を具体的に説明するが、本発明に係るリチウム空気電池及びリチウム電池の正極構造体は下記実施例によって制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, the positive electrode structure of the lithium air battery and lithium battery which concerns on this invention is not restrict | limited by the following Example.

[試験例1]
(正極の作製)
正極を、以下の手順で作製した。
(1)正極の酸素還元の触媒として白金担持カーボン(Pt:45.8%)を80mgと、バインダー(結着剤)としてポリフッ化ビニリデン(PVDF)を20mgとを計り取り、N−メチルピロリドン(NMP)を3.0ml添加して混合溶媒を調製した。
(2)混合溶媒を攪拌機(シンキ−製AR−100)で15分、超音波で60分攪拌及び分散を行い、塗工機(松尾産業製K202コントロールコーター)を用いて、カーボンクロス上に塗布し、その後、ホットプレート上に置いて110℃で1時間加熱乾燥させて、白金担持量およそ0.25mg/cm2の正極を作製した。
(3)(2)の正極において、白金が担持されたカーボンクロスのサイズ(面積)を、負極複合体の金属リチウムのサイズ(2.0cm)を基準として、両面の総面積を2.0cm、3.0cm、3.2cm及び4.0cmと振り分けることにより、正極のサンプル1、2、3及び4を作製した。
(4)(1)の白金担持カーボン(Pt:45.8%)の量を160mgとして、白金担持量がおよそ0.45mg/cmの正極を作製した。
(5)(4)において白金が担持されたカーボンクロスのサイズ(面積)を、負極複合体の金属リチウムのサイズ(2.0cm)を基準にして2.0cmとしたサンプル5を作製した。
[Test Example 1]
(Preparation of positive electrode)
A positive electrode was produced by the following procedure.
(1) Weigh 80 mg of platinum-supported carbon (Pt: 45.8%) as a catalyst for oxygen reduction of the positive electrode and 20 mg of polyvinylidene fluoride (PVDF) as a binder (binder), and measure N-methylpyrrolidone ( A mixed solvent was prepared by adding 3.0 ml of NMP).
(2) The mixed solvent was stirred and dispersed for 15 minutes with a stirrer (AR-100 manufactured by Shinki Co., Ltd.) and 60 minutes with ultrasonic waves, and coated on carbon cloth using a coating machine (K202 control coater manufactured by Matsuo Sangyo Co., Ltd.). Then, it was placed on a hot plate and dried by heating at 110 ° C. for 1 hour to produce a positive electrode having a platinum loading of approximately 0.25 mg / cm 2.
(3) In the positive electrode of (2), the size (area) of the carbon cloth carrying platinum is set to 2.0 cm with the total area of both surfaces based on the size of metal lithium (2.0 cm 2 ) of the negative electrode composite. 2, 3.0 cm 2, by distributing a 3.2 cm 2 and 4.0 cm 2, to prepare a sample 1, 2, 3 and 4 of the positive electrode.
(4) A positive electrode having a platinum carrying amount of about 0.45 mg / cm 2 was prepared by setting the amount of platinum carrying carbon (Pt: 45.8%) of (1) to 160 mg.
(5) carbon cloth sized platinum supported in (4) (area) to prepare a sample 5 was 2.0 cm 2 with respect to the size of the metallic lithium of the negative electrode mixture member (2.0 cm 2) .

(負極複合体の作製)
負極複合体を、表1に示される仕様、サイズ等の構成部材を用いて、次の手順で作製した。
(1)固体電解質の一面に窓材用のアルミラミネート包材をSBR系合成ゴム系接着剤で接着した。固体電解質のもう一方の面に、緩衝層としてのセルロースセパレータを配置し、有機電解質(EC:EMC=1:1、1MのLiPF6)70.0mlをセルロースセパレータの上に滴下して染み込ませた。
(2)銅箔に貼り付けられた金属リチウムをセルロースセパレータ上に配置した。
(3)これらの部材を、外周封止部材としてのアルミラミネート包材の間に入れて梱包するため、外側用と窓材用のアルミラミネート包材の四辺の端部を重ね合わせた状態で熱溶着して密閉した。
(Preparation of negative electrode composite)
A negative electrode composite was produced in the following procedure using constituent members such as specifications and sizes shown in Table 1.
(1) An aluminum laminate packaging material for a window material was bonded to one surface of a solid electrolyte with an SBR synthetic rubber adhesive. A cellulose separator as a buffer layer was placed on the other surface of the solid electrolyte, and 70.0 ml of an organic electrolyte (EC: EMC = 1: 1, 1M LiPF6) was dropped onto the cellulose separator and soaked.
(2) The metallic lithium affixed to the copper foil was placed on the cellulose separator.
(3) Since these members are packed between aluminum laminate packaging materials as outer peripheral sealing members, heat is applied with the ends of the four sides of the aluminum laminate packaging material for the outside and the window being overlapped. Welded and sealed.

(水系電解質の調製)
4.24gのLiClを精製水500mlに溶解させて、2M(mol/L)のLiCl水溶液を調製した。水系電解質を保持するため、水系電解質を500μl程度セルロースシート上に滴下し、正極構造体と負極複合体との間に配置した。
(Preparation of aqueous electrolyte)
4.24 g of LiCl was dissolved in 500 ml of purified water to prepare a 2M (mol / L) LiCl aqueous solution. In order to hold the aqueous electrolyte, about 500 μl of the aqueous electrolyte was dropped onto the cellulose sheet and placed between the positive electrode structure and the negative electrode composite.

Figure 2015106486
Figure 2015106486

[試験例2]
(正極構造体の作製)
2枚の正極を積層させてなる正極構造体を、以下の手順で作製した。
(1)正極の酸素還元の触媒として白金担持カーボン(Pt:45.8%)を80mgと、バインダー(結着剤)としてポリフッ化ビニリデン(PVDF)を20mgとを計り取り、N−メチルピロリドン(NMP)を3.0ml添加して混合溶媒を調製した。
(2)混合溶媒を攪拌機(シンキ−製AR−100)で15分、超音波で60分攪拌及び分散を行い、塗工機(松尾産業製K202コントロールコーター)を用いてカーボンクロス上に塗布し、その後、ホットプレート上に置いて110℃で1時間加熱乾燥させて、白金担持量0.25mg/cmの正極を作製した。
(3)(2)で作製した正極を2枚重ねて糸を用いて縫製することにより、正極構造体を作製した。
(4)(2)においてカーボンクロスのサイズ(面積)を、負極複合体の金属リチウムの面積(2.0cm)を基準にして、片面の面積が1.0cmの正極を2枚積層させて総面積2.0cmのサンプル6と、片面の面積が2.0cmの正極を2枚積層させた総面積4.0cmのサンプル7を作製した。
[Test Example 2]
(Preparation of positive electrode structure)
A positive electrode structure formed by laminating two positive electrodes was produced by the following procedure.
(1) Weigh 80 mg of platinum-supported carbon (Pt: 45.8%) as a catalyst for oxygen reduction of the positive electrode and 20 mg of polyvinylidene fluoride (PVDF) as a binder (binder), and measure N-methylpyrrolidone ( A mixed solvent was prepared by adding 3.0 ml of NMP).
(2) The mixed solvent was stirred and dispersed for 15 minutes with an agitator (AR-100 manufactured by Shinki Co., Ltd.) and 60 minutes with ultrasonic waves, and applied onto a carbon cloth using a coating machine (K202 control coater manufactured by Matsuo Sangyo Co., Ltd.). Then, it was placed on a hot plate and heated and dried at 110 ° C. for 1 hour to produce a positive electrode having a platinum loading of 0.25 mg / cm 2 .
(3) A positive electrode structure was prepared by stacking two positive electrodes prepared in (2) and sewing them using a thread.
(4) In (2), the size (area) of the carbon cloth is based on the area (2.0 cm 2 ) of metallic lithium of the negative electrode composite, and two positive electrodes having an area of 1.0 cm 2 on one side are laminated. a sample 6 of a total area 2.0 cm 2 Te, one side of the area to prepare a sample 7 of a total area 4.0 cm 2 formed by laminating two sheets of positive electrode of 2.0 cm 2.

(負極複合体の作製)
試験例1と同様の手順で作製した。
(Preparation of negative electrode composite)
The same procedure as in Test Example 1 was used.

(水系電解質の調製)
試験例1と同様の手順で作製した。
(Preparation of aqueous electrolyte)
The same procedure as in Test Example 1 was used.

(放電試験)
ビーカーセル内に満たした水系電解質に、負極複合体及び正極(正極構造体)を入れて、放電を行った。正極及び正極構造体としてサンプル1〜7の何れかの正極又は正極構造体を用い、放電を行った。サンプル1〜7毎に、電流密度を4mA/cm(約0.1Cの放電レート)で放電した際の放電電圧を測定し、水素の発生の有無を確認した。ここで、1Cとは、公称容量を有するセルを定電流放電して、ちょうど1時間で放電終了となる電流値を意味する。
(Discharge test)
The aqueous electrolyte filled in the beaker cell was charged with the negative electrode composite and the positive electrode (positive electrode structure) and discharged. Discharge was performed using the positive electrode or the positive electrode structure of any of Samples 1 to 7 as the positive electrode and the positive electrode structure. For each sample 1-7, the discharge voltage when discharging at a current density of 4 mA / cm 2 (about 0.1 C discharge rate) was measured to confirm the presence or absence of hydrogen generation. Here, 1C means a current value at which discharge of a cell having a nominal capacity is constant-current discharged and the discharge is completed in exactly one hour.

表2は、試験例1のサンプル1〜5に対して行った放電試験の結果を示している。正極の負極に対する面積比が低いサンプル1及びサンプル2では、長時間の放電により水素が発生した。一方、正極の負極に対する面積比が高いサンプル3及びサンプル4では、長時間の放電による水素の発生は確認されなかった。また、正極の白金触媒量がサンプル4と略同量ではあるが、正極の負極に対する面積比が低いサンプル5では、水素の発生が確認されなかった。   Table 2 shows the results of the discharge test performed on Samples 1 to 5 of Test Example 1. In Sample 1 and Sample 2 in which the area ratio of the positive electrode to the negative electrode was low, hydrogen was generated by long-time discharge. On the other hand, in Sample 3 and Sample 4 in which the area ratio of the positive electrode to the negative electrode was high, generation of hydrogen due to long-time discharge was not confirmed. In addition, generation of hydrogen was not confirmed in Sample 5 in which the amount of the platinum catalyst of the positive electrode was substantially the same as that of Sample 4, but the area ratio of the positive electrode to the negative electrode was low.

図7に、水素が発生したサンプル2と水素の発生が認められなかったサンプル3との放電電圧の推移を示す。サンプル2の放電曲線15では、8.1時間の放電後に水素が発生し、放電電圧の著しい低下が見られた。一方、サンプル3の放電曲線16では、長時間の放電において放電電圧は認められなかった。これらの結果より、正極の面積が大きくなることにより正極の酸素還元能力が向上し、放電電圧が著しく低下することなく長時間の放電を可能とすることがわかった。   FIG. 7 shows the transition of the discharge voltage between Sample 2 in which hydrogen was generated and Sample 3 in which no hydrogen was generated. In the discharge curve 15 of Sample 2, hydrogen was generated after 8.1 hours of discharge, and the discharge voltage was significantly reduced. On the other hand, in the discharge curve 16 of sample 3, no discharge voltage was observed in the long-time discharge. From these results, it was found that the oxygen reduction ability of the positive electrode was improved by increasing the area of the positive electrode, and it was possible to discharge for a long time without significantly reducing the discharge voltage.

Figure 2015106486
Figure 2015106486

表3に試験例2のサンプル6及び7に対して行った放電試験の結果を示す。正極構造体の負極に対する面積比が低いサンプル6では、長時間の放電により水素が発生した。一方、正極構造体の負極に対する面積比が高いサンプル7では、長時間の放電において水素の発生は確認されなかった。   Table 3 shows the results of the discharge test performed on Samples 6 and 7 of Test Example 2. In Sample 6 having a low area ratio of the positive electrode structure to the negative electrode, hydrogen was generated by long-time discharge. On the other hand, in Sample 7 having a high area ratio of the positive electrode structure to the negative electrode, generation of hydrogen was not confirmed in a long-time discharge.

図8に、水素が発生したサンプル6と、水素の発生が認められなかったサンプル7との放電電圧の推移を示す。サンプル6の放電曲線17では、3.3hの放電後に水素が発生し、放電電圧の著しい低下が見られた。一方、サンプル7の放電曲線18では、放電電圧の著しい低下は見られなかった。これらの結果より、正極を積層させた正極構造体の面積が大きくなることにより、正極構造体の酸素還元能力が向上し、放電電圧を著しく低下させることなく長時間の放電を可能とすることがわかった。   FIG. 8 shows changes in discharge voltage between sample 6 in which hydrogen was generated and sample 7 in which no hydrogen was generated. In the discharge curve 17 of Sample 6, hydrogen was generated after 3.3 hours of discharge, and the discharge voltage was significantly reduced. On the other hand, in the discharge curve 18 of Sample 7, no significant decrease in the discharge voltage was observed. From these results, the area of the positive electrode structure in which the positive electrodes are stacked is increased, so that the oxygen reduction ability of the positive electrode structure is improved, and it is possible to perform long-time discharge without significantly reducing the discharge voltage. all right.

Figure 2015106486
Figure 2015106486

なお、前述した実施の形態では、電解質7として水溶液系の電解質を用いる例を説明したが、本発明はこれに限定されない。正極に水素が発生するリチウム空気電池であれば、電解質7が水系電解質以外のリチウム空気電池1、1A及びリチウム空気電池の正極構造体3に利用することができる。   In the above-described embodiment, an example in which an aqueous electrolyte is used as the electrolyte 7 has been described. However, the present invention is not limited to this. If it is a lithium air battery in which hydrogen is generated at the positive electrode, the electrolyte 7 can be used for the lithium air batteries 1 and 1A other than the aqueous electrolyte and the positive electrode structure 3 of the lithium air battery.

本発明に係るリチウム空気電池及びリチウム空気電池の正極構造体によれば、リチウム空気電池の正極からの水素発生を防止し、電池性能の低下を防ぐとともに、空気中に水素が過度に存在することを防ぐリチウム空気電池及びリチウム空気電池の正極構造体が提供される。   According to the lithium-air battery and the positive electrode structure of the lithium-air battery according to the present invention, hydrogen generation from the positive electrode of the lithium-air battery is prevented, battery performance is prevented from being lowered, and hydrogen is excessively present in the air. A lithium-air battery and a positive electrode structure for a lithium-air battery are provided.

1、1A リチウム空気電池
2 ケース
3 正極構造体
4、4A 負極複合体
5 正極集電体
6 負極集電体
7 電解質
8 正極
8a 本体部
8b 空気極層
10、10A 空気電池単セル
11 負極層
12 緩衝層(保護層)
13 固体電解質層
14、14A 外周封止部材
15、16、17、18 放電曲線
20 ガスケット
DESCRIPTION OF SYMBOLS 1, 1A Lithium air battery 2 Case 3 Positive electrode structure 4, 4A Negative electrode composite 5 Positive electrode current collector 6 Negative electrode current collector 7 Electrolyte 8 Positive electrode 8a Body part 8b Air electrode layer 10, 10A Air battery single cell 11 Negative electrode layer 12 Buffer layer (protective layer)
13 Solid electrolyte layer 14, 14A Outer peripheral sealing member 15, 16, 17, 18 Discharge curve 20 Gasket

Claims (14)

負極と、固体電解質と、電解質と、正極と、を備えるリチウム空気電池であって、
前記正極は、前記負極の表面積よりも大きい表面積を有することを特徴とするリチウム空気電池。
A lithium-air battery comprising a negative electrode, a solid electrolyte, an electrolyte, and a positive electrode,
The lithium air battery, wherein the positive electrode has a surface area larger than a surface area of the negative electrode.
前記正極は、少なくとも2以上の前記正極を積層してなる正極構造体であることを特徴とする請求項1に記載のリチウム空気電池。   The lithium air battery according to claim 1, wherein the positive electrode is a positive electrode structure formed by laminating at least two or more positive electrodes. 前記正極構造体は、前記負極のうち面積が大きい面の投影面積と略同等の投影面積を有することを特徴とする請求項2のリチウム空気電池。   The lithium-air battery according to claim 2, wherein the positive electrode structure has a projected area substantially equal to a projected area of a surface of the negative electrode having a large area. 前記正極構造体は、
導電性材料を含有して前記正極の少なくとも一面を担う空気極層と、
前記空気極層に電気的に接続される板状又は線状の正極集電体と、
をさらに備え、
前記負極は、
板状または線状の負極集電体と、
金属リチウム、リチウムを主成分とする合金又はリチウムを主成分とする化合物からなり、前記負極集電体の一部と電気接続される板形状の負極層と、
前記負極層と前記電解質との間でリチウムイオンの伝導を担う固体電解質と、
リチウムイオン伝導性を有するガラスセラミックス材料からなり、前記負極層と前記固体電解質層との間を仕切る板形状の緩衝層と、前記負極集電体の残部をその外側に露出させつつ、前記負極層、前記緩衝層及び前記固体電解質を内包して閉ざす接合部と、
を備えてなる負極複合体と、
をさらに備えることを特徴とする請求項2または3のリチウム空気電池。
The positive electrode structure is
An air electrode layer containing a conductive material and serving at least one surface of the positive electrode;
A plate-like or linear positive electrode current collector electrically connected to the air electrode layer;
Further comprising
The negative electrode is
A plate-like or linear negative electrode current collector;
A plate-like negative electrode layer made of metal lithium, an alloy containing lithium as a main component or a compound containing lithium as a main component, and electrically connected to a part of the negative electrode current collector;
A solid electrolyte that conducts lithium ions between the negative electrode layer and the electrolyte;
The negative electrode layer made of a glass ceramic material having lithium ion conductivity, while exposing the plate-shaped buffer layer partitioning between the negative electrode layer and the solid electrolyte layer, and the remainder of the negative electrode current collector to the outside , A joint portion that encloses and closes the buffer layer and the solid electrolyte;
A negative electrode composite comprising:
The lithium air battery according to claim 2, further comprising:
前記正極構造体と前記負極複合体とが電気的に並列に接続されることを特徴とする請求項4のリチウム空気電池。   The lithium-air battery according to claim 4, wherein the positive electrode structure and the negative electrode composite are electrically connected in parallel. 少なくとも2以上の前記正極構造体と少なくとも1以上の前記負極複合体とが、電気的に交互に並列に接続されることを特徴とする請求項4または5のリチウム空気電池。   6. The lithium air battery according to claim 4, wherein at least two or more of the positive electrode structures and at least one or more of the negative electrode composites are electrically alternately connected in parallel. 前記正極集電体は、ステンレス、ニッケル、アルミニウム、金、白金又はカーボン材料を素材としてなることを特徴とする請求項4〜6のいずれかのリチウム空気電池。   The lithium-air battery according to any one of claims 4 to 6, wherein the positive electrode current collector is made of stainless steel, nickel, aluminum, gold, platinum, or a carbon material. 前記空気極層は、多孔質構造、構成繊維が規則正しく配列されたメッシュ構造、ランダムに配列された不織布構造又は三次元網目構造であることを特徴とする請求項4〜7のいずれかのリチウム空気電池。   The lithium air according to any one of claims 4 to 7, wherein the air electrode layer has a porous structure, a mesh structure in which constituent fibers are regularly arranged, a nonwoven fabric structure in which the fibers are randomly arranged, or a three-dimensional network structure. battery. 前記負極集電体は、銅又はニッケルを素材とする請求項4〜8のいずれかのリチウム空気電池。   The lithium air battery according to claim 4, wherein the negative electrode current collector is made of copper or nickel. 前記正極構造体と前記負極複合体とを収容するケースをさらに備え、
前記電解質が、前記ケース内に蓄えられて少なくとも前記正極構造体に接して前記正極構造体と前記負極複合体との間でリチウムイオンの伝導を担うことを特徴とする請求項4〜9のいずれかのリチウム空気電池。
A case for accommodating the positive electrode structure and the negative electrode composite;
10. The electrolyte according to claim 4, wherein the electrolyte is stored in the case and is in contact with at least the positive electrode structure and conducts lithium ions between the positive electrode structure and the negative electrode composite. Lithium air battery.
前記ケースは、ポリエチレン、ビニリデンフルオライド単位及びテトラフルオロエチレン単位を有するフルオロポリマーからなるフッ素樹脂成形品又はビニリデンフルオライド単位及びテトラフルオロエチレン単位を有するフルオロポリマーからなるフッ素樹脂の多孔質体である請求項4〜10のいずれかのリチウム空気電池。   The case is a fluororesin molded article made of a fluoropolymer having polyethylene, a vinylidene fluoride unit and a tetrafluoroethylene unit, or a fluororesin porous body made of a fluoropolymer having a vinylidene fluoride unit and a tetrafluoroethylene unit. The lithium air battery according to any one of Items 4 to 10. 前記ケースの外側には前記正極集電体及び前記負極集電体のみが露出していることを特徴とする請求項1〜11のいずれかのリチウム空気電池。   12. The lithium air battery according to claim 1, wherein only the positive electrode current collector and the negative electrode current collector are exposed outside the case. 前記電解質は、水溶液系の電解液であることを特徴とする請求項1〜12のいずれかのリチウム空気電池。   The lithium-air battery according to claim 1, wherein the electrolyte is an aqueous electrolyte. ステンレス、ニッケル、アルミニウム、金、白金又はカーボン材料を素材としてなる線状又は板状の正極集電体と、触媒が担持された、多孔質構造、構成繊維が規則正しく配列されたメッシュ構造、ランダムに配列された不織布構造又は三次元網目構造の空気極層と、を有する正極と、を備えるリチウム空気電池の正極構造体であって、
前記正極は、導電性材料を含有して前記正極集電体と電気的に接続し、前記空気極層は前記正極の少なくとも一面を担い、
前記正極構造体は、少なくとも2以上の前記正極を積層してなり、
前記正極の積層枚数、大きさ又は積層方向を変えることにより、その投影面積を変化させることを特徴とするリチウム空気電池の正極構造体。
A linear or plate-like positive electrode current collector made of stainless steel, nickel, aluminum, gold, platinum or carbon material, a catalyst-supported porous structure, a mesh structure in which constituent fibers are regularly arranged, and randomly A positive electrode structure having a non-woven fabric structure or an air electrode layer having a three-dimensional network structure, and a positive electrode structure of a lithium-air battery,
The positive electrode contains a conductive material and is electrically connected to the positive electrode current collector; the air electrode layer bears at least one surface of the positive electrode;
The positive electrode structure is formed by stacking at least two positive electrodes.
A positive electrode structure for a lithium-air battery, wherein the projected area is changed by changing the number, size, or stacking direction of the positive electrodes.
JP2013247762A 2013-11-29 2013-11-29 Lithium air battery and positive electrode structure of lithium battery Pending JP2015106486A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013247762A JP2015106486A (en) 2013-11-29 2013-11-29 Lithium air battery and positive electrode structure of lithium battery
DE102014222623.6A DE102014222623A1 (en) 2013-11-29 2014-11-05 LITHIUM AIR BATTERY AND CATHODIC STRUCTURE OF THE LITHIUM BATTERY
CN201410708917.7A CN104681895B (en) 2013-11-29 2014-11-28 Lithium Air Battery And Positive Electrode Structural Body Of Lithium Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013247762A JP2015106486A (en) 2013-11-29 2013-11-29 Lithium air battery and positive electrode structure of lithium battery

Publications (1)

Publication Number Publication Date
JP2015106486A true JP2015106486A (en) 2015-06-08

Family

ID=53058637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013247762A Pending JP2015106486A (en) 2013-11-29 2013-11-29 Lithium air battery and positive electrode structure of lithium battery

Country Status (3)

Country Link
JP (1) JP2015106486A (en)
CN (1) CN104681895B (en)
DE (1) DE102014222623A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017503322A (en) * 2014-01-02 2017-01-26 フィナジー リミテッド Hybrid metal-air system and method
JP2017027735A (en) * 2015-07-21 2017-02-02 スズキ株式会社 Negative electrode composite of metal air battery and metal air battery
US10153530B2 (en) 2015-10-13 2018-12-11 Samsung Electronics Co., Ltd. Metal-air battery
US11024886B2 (en) 2016-02-24 2021-06-01 Lg Chem, Ltd. Electrode assembly having plurality of lithium metal sheets or lithium alloy sheets for lithium secondary battery, and lithium secondary battery and battery module including same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105655632A (en) * 2016-03-17 2016-06-08 湖北知本信息科技有限公司 Method for preparing lithium-air battery and prepared lithium-air battery
JP7016409B2 (en) * 2018-04-18 2022-02-04 シャープ株式会社 How to manufacture metal-air batteries and metal-air batteries
KR20200089472A (en) * 2019-01-17 2020-07-27 주식회사 엘지화학 Lithium metal battery including the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05258781A (en) * 1992-03-16 1993-10-08 Hitachi Ltd Lithium/air cell
CN1728446A (en) * 2004-02-20 2006-02-01 朗尼·G·约翰逊 Lithium oxygen cell and its mfg. method
JP2010192313A (en) * 2009-02-19 2010-09-02 Mie Univ Lithium air battery
JP2010257839A (en) * 2009-04-27 2010-11-11 Toyota Motor Corp Positive electrode for air battery, and air battery
JP2011096586A (en) * 2009-10-30 2011-05-12 Ohara Inc Lithium air battery
JP2011146339A (en) * 2010-01-18 2011-07-28 Sumitomo Chemical Co Ltd Air battery, air battery stack
CN102723539A (en) * 2012-05-04 2012-10-10 赵军辉 Lithium-oxygen battery capable of improving battery energy density and method for manufacturing lithium-oxygen battery
WO2013007887A1 (en) * 2011-06-24 2013-01-17 Commissariat à l'Energie Atomique et aux Energies Alternatives High capacity gaseous diffusion electrode
JP2013051169A (en) * 2011-08-31 2013-03-14 Semiconductor Energy Lab Co Ltd Power storage device and method of manufacturing power storage device
CN103066344A (en) * 2013-01-28 2013-04-24 哈尔滨工业大学 Spirally wound lithium-air solid state battery with replaceable electrodes

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228162A (en) 2010-04-21 2011-11-10 National Institute Of Advanced Industrial & Technology Combination of hydrogen production by lithium-water battery and fuel cell
JP5459248B2 (en) * 2011-03-25 2014-04-02 株式会社デンソー Air battery
KR20120119228A (en) * 2011-04-20 2012-10-31 삼성전기주식회사 Metal air battery and method for preparing the same
JP5891949B2 (en) 2012-05-25 2016-03-23 ソニー株式会社 Information processing apparatus, connection device, communication device, information processing method, and program

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05258781A (en) * 1992-03-16 1993-10-08 Hitachi Ltd Lithium/air cell
CN1728446A (en) * 2004-02-20 2006-02-01 朗尼·G·约翰逊 Lithium oxygen cell and its mfg. method
JP2010192313A (en) * 2009-02-19 2010-09-02 Mie Univ Lithium air battery
JP2010257839A (en) * 2009-04-27 2010-11-11 Toyota Motor Corp Positive electrode for air battery, and air battery
JP2011096586A (en) * 2009-10-30 2011-05-12 Ohara Inc Lithium air battery
JP2011146339A (en) * 2010-01-18 2011-07-28 Sumitomo Chemical Co Ltd Air battery, air battery stack
US20120321968A1 (en) * 2010-01-18 2012-12-20 Sumitomo Chemical Company, Limited Air battery and air battery stack
WO2013007887A1 (en) * 2011-06-24 2013-01-17 Commissariat à l'Energie Atomique et aux Energies Alternatives High capacity gaseous diffusion electrode
JP2013051169A (en) * 2011-08-31 2013-03-14 Semiconductor Energy Lab Co Ltd Power storage device and method of manufacturing power storage device
CN102723539A (en) * 2012-05-04 2012-10-10 赵军辉 Lithium-oxygen battery capable of improving battery energy density and method for manufacturing lithium-oxygen battery
CN103066344A (en) * 2013-01-28 2013-04-24 哈尔滨工业大学 Spirally wound lithium-air solid state battery with replaceable electrodes

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017503322A (en) * 2014-01-02 2017-01-26 フィナジー リミテッド Hybrid metal-air system and method
US9768479B2 (en) 2014-01-02 2017-09-19 Phinergy Ltd. Hybrid metal air system and method
JP2017027735A (en) * 2015-07-21 2017-02-02 スズキ株式会社 Negative electrode composite of metal air battery and metal air battery
US10153530B2 (en) 2015-10-13 2018-12-11 Samsung Electronics Co., Ltd. Metal-air battery
US11024886B2 (en) 2016-02-24 2021-06-01 Lg Chem, Ltd. Electrode assembly having plurality of lithium metal sheets or lithium alloy sheets for lithium secondary battery, and lithium secondary battery and battery module including same

Also Published As

Publication number Publication date
CN104681895A (en) 2015-06-03
CN104681895B (en) 2017-04-12
DE102014222623A1 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
JP6493057B2 (en) Metal-air battery negative electrode composite and metal-air battery
JP2015106486A (en) Lithium air battery and positive electrode structure of lithium battery
JP5633630B2 (en) Non-aqueous electrolyte air battery
CN105742573A (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2013037999A (en) Metal-air battery
KR102082483B1 (en) Battery Cell Including Reference Electrode for Measuring Relative Electrode Potential
KR102103378B1 (en) Battery Cell Comprising Electrode Lead Having Gas Adsorbent
JP6288511B2 (en) Negative electrode composite of lithium air battery and lithium air battery
KR102088214B1 (en) Device for Manufacturing Battery Cell Having One-Stop Folding Member
KR20160134534A (en) Non-aqueous electrolyte secondary battery
JP2014123459A (en) Lithium air battery, and negative-electrode complex of lithium air battery
WO2020059803A1 (en) Secondary battery
KR101141058B1 (en) Secondary Battery with Improved Thermal Stability
JP6260870B2 (en) Metal air battery
KR20190107648A (en) Battery Cell Comprising Electrode Assembly Including Gelation Electrolyte Component in Pores of Separator
JP6379715B2 (en) Lithium air battery and negative electrode composite of lithium air battery
KR20180011630A (en) Bus Bar Assembly with Improved Safety and Heat Dissipation Characteristic and Battery Pack Comprising the Same
JP6102442B2 (en) Lithium ion secondary battery
KR20130005886A (en) Battery case of high durability and secondary battery including the same
JP6361963B2 (en) Negative electrode composite of lithium air battery, lithium air battery, and lithium air battery module
JP2016046039A (en) Metal air battery and electrolytic medium for metal air battery positive electrode side
KR20160099970A (en) Electrode Assembly Comprising Single Anode Sheet
JP5636901B2 (en) Negative electrode for secondary battery and air secondary battery
JP2019212571A (en) Secondary battery
JP6361476B2 (en) Lithium air battery and negative electrode composite of lithium air battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170901