JP2015104906A - Tire vulcanizing machine and tire production method using the same - Google Patents

Tire vulcanizing machine and tire production method using the same Download PDF

Info

Publication number
JP2015104906A
JP2015104906A JP2013249433A JP2013249433A JP2015104906A JP 2015104906 A JP2015104906 A JP 2015104906A JP 2013249433 A JP2013249433 A JP 2013249433A JP 2013249433 A JP2013249433 A JP 2013249433A JP 2015104906 A JP2015104906 A JP 2015104906A
Authority
JP
Japan
Prior art keywords
tire
core
support shaft
rigid core
core support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013249433A
Other languages
Japanese (ja)
Other versions
JP6196543B2 (en
Inventor
吉田 豊
Yutaka Yoshida
豊 吉田
弘光 羽生
Hiromitsu Hanyu
弘光 羽生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2013249433A priority Critical patent/JP6196543B2/en
Publication of JP2015104906A publication Critical patent/JP2015104906A/en
Application granted granted Critical
Publication of JP6196543B2 publication Critical patent/JP6196543B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Tyre Moulding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tire vulcanizing machine in which the phase angle of rigidity core having raw tire with respect to vulcanizing mold can be adjusted prior to the introduction into vulcanizing mold, and to provide a tire production method using the same.SOLUTION: The tire vulcanizing machine central mechanism includes: a core support shaft part 15 that supports a rigidity core 2 having raw tire; a core support shaft guide part 16 that can vertically move this core support shaft part 15 and that rotatably extrapolation-holds this core support shaft part 15 around the shaft core; and a relative angle adjustment means that adjusts the phase angle of rigidity core 2 having raw tire with respect to vulcanizing mold 3 prior to the introduction into vulcanizing mold 3 by rotating the core support shaft part 15 together with the rigidity core 2 having raw tire around the shaft core and by stopping at a predetermined rotation position.

Description

本発明は、剛性中子のタイヤ成形面に形成された生タイヤを、剛性中子ごと加硫金型内に投入して加硫を行うタイヤ加硫機、及びそれを用いたタイヤ製造方法に関する。   The present invention relates to a tire vulcanizer that performs vulcanization by putting a raw tire formed on a tire molding surface of a rigid core into a vulcanization mold together with the rigid core, and a tire manufacturing method using the same. .

空気入りタイヤの形成精度を高めるため、タイヤ内面形状に相当する外形形状を有する中空トロイド状の剛性中子を用いたタイヤ形成方法(以下「中子工法」という場合がある。)が提案されている。この中子工法では、剛性中子の外表面上でタイヤ構成部材を順次貼り付けることで生タイヤが形成されるとともに、該生タイヤを剛性中子ごと加硫金型内に投入して加硫成形が行われる。   In order to improve the formation accuracy of a pneumatic tire, a tire forming method using a hollow toroid-shaped rigid core having an outer shape corresponding to the tire inner surface shape (hereinafter, sometimes referred to as a “core method”) has been proposed. Yes. In this core method, a tire is formed by sequentially sticking tire components on the outer surface of a rigid core, and the raw tire is put together with the rigid core into a vulcanization mold for vulcanization. Molding is performed.

そして下記の特許文献1には、前記工法に適用される剛性中子が提案されている。この提案の剛性中子は、中子本体をなす複数の中子セグメントの内部に、熱流体が充填される気密なチャンバー室を具え、これにより加硫時、剛性中子を内側加熱することが可能になっている。前記チャンバー室への熱流体の給排気は、剛性中子の下面に設けられた給排口部と、加硫金型の一部をなす下金型(例えばビードリング)の上面に設けられた接続口部とが、剛性中子の加硫金型への投入により接続されることで行われる。   And the following patent document 1 proposes a rigid core that is applied to the construction method. This proposed rigid core has an airtight chamber chamber filled with a thermal fluid inside a plurality of core segments forming the core body, thereby enabling the internal heating of the rigid core during vulcanization. It is possible. The supply and exhaust of the thermal fluid to the chamber chamber was provided on the upper surface of a lower mold (for example, a bead ring) that forms part of the vulcanization mold and a supply / exhaust port provided on the lower surface of the rigid core. The connection port portion is connected by connecting the rigid core into the vulcanization mold.

しかしながらこの場合、加硫金型内への投入に先駆け、加硫機の中心機構によって支持される生タイヤ付きの剛性中子を、その軸芯回りで回転させて加硫金型に対する位相角度を調整し、給排口部の位置を接続口部の位置に一致させることが必要であり、中心機構には、そのための新規な構造が必要となる。   However, in this case, prior to the introduction into the vulcanizing mold, the rigid core with the green tire supported by the central mechanism of the vulcanizer is rotated around its axis to adjust the phase angle with respect to the vulcanizing mold. It is necessary to adjust the position of the supply / exhaust port portion to coincide with the position of the connection port portion, and the central mechanism requires a new structure.

又、中子工法によって形成されるタイヤのユニフォーミティには、剛性中子上で各種のタイヤ構成部材を順次貼り付けて生タイヤを形成する際に生じる生タイヤ形成要因、剛性中子のタイヤ成形面の形状などに起因する中子要因、加硫金型の金型面の形状などに起因する金型要因などがある。そして前記ユニフォーミティを改善させるためには、各要因による影響を互いに打ち消し合わせて、総合的な影響を減じることが好ましい。この場合、加硫金型に対する生タイヤ付きの剛性中子の位相角度を最適に調整することが必要であり、中心機構には、そのための新規な構造が必要となる。   In addition, the tire uniformity formed by the core construction method is the raw tire formation factor that occurs when forming raw tires by sequentially sticking various tire components on the rigid core, and molding of rigid core tires. There are core factors due to the shape of the surface, mold factors due to the shape of the mold surface of the vulcanization mold, and the like. And in order to improve the said uniformity, it is preferable to cancel the influence by each factor mutually and to reduce a comprehensive influence. In this case, it is necessary to optimally adjust the phase angle of the rigid core with the green tire relative to the vulcanization mold, and the central mechanism requires a new structure for that purpose.

特開2013−6367号公報JP 2013-6367 A

そこで発明は、加硫金型内への投入に先駆けて、加硫金型に対する生タイヤ付きの剛性中子の位相角度を調整することができ、例えば、内側加熱が可能な剛性中子において、中子側の給排口部と金型側の接続口部との投入時の自動接続を可能にしたり、又ユニフォーミティの悪化要因を互いに打ち消し合わせてユニフォーミティの向上を図りうるタイヤ加硫機、及びそれを用いたタイヤ製造方法を提供することを課題としている。   Therefore, the invention can adjust the phase angle of the rigid core with the green tire relative to the vulcanization mold prior to the introduction into the vulcanization mold, for example, in the rigid core capable of inner heating, A tire vulcanizer that enables automatic connection at the time of insertion between the core side supply / discharge port and the mold side connection port, or cancels out the deterioration factors of the uniformity to improve the uniformity. It is an object to provide a tire manufacturing method using the same.

本願第1発明は、外表面にタイヤ成形面を有する剛性中子の前記タイヤ成形面に形成された生タイヤを、前記剛性中子ごと加硫金型内に投入する中心機構を有するタイヤ加硫機であって、
前記中心機構は、
生タイヤ付きの剛性中子を同心に支持でき、かつ上下に移動することにより、上昇位置にて生タイヤ付きの剛性中子を受け取りかつ下降位置にて受け取った生タイヤ付きの剛性中子を前記加硫金型内に投入しうる中子支持軸部と、
前記中子支持軸部を、上下に移動可能かつ軸芯回りで回転可能に外挿保持する中子支持軸案内部と、
前記投入に先駆け、受け取った生タイヤ付きの剛性中子とともに前記中子支持軸部を軸芯回りで回転させかつ所定の回転位置で停止させることにより、加硫金型に対する生タイヤ付きの剛性中子の位相角度を調整する相対角度調整手段とを具えることを特徴としている。
The first invention of the present application is a tire vulcanization having a central mechanism for feeding a raw tire formed on the tire molding surface of a rigid core having a tire molding surface on the outer surface into the vulcanization mold together with the rigid core. Machine,
The central mechanism is
The rigid core with the green tire can be supported concentrically and moved up and down to receive the rigid core with the green tire at the raised position and the rigid core with the green tire received at the lowered position. A core support shaft that can be put into the vulcanization mold;
A core support shaft guide portion that extrapolates and holds the core support shaft portion so as to be movable up and down and rotatable around an axis;
Prior to the introduction, by rotating the core support shaft portion around the axis and stopping at a predetermined rotational position together with the received rigid core with the raw tire, the rigidity with the raw tire with respect to the vulcanization mold is reduced. Relative angle adjusting means for adjusting the phase angle of the child is provided.

本発明に係る前記タイヤ加硫機では、前記剛性中子は、熱流体が充填される内側加熱用のチャンバ室を内部に有し、かつ下面に前記チャンバ室に熱流体を給排気する給排口部を具えるとともに、
前記加硫金型は、上面に前記給排口部に接続可能な接続口部を設けた下金型を具え、
かつ前記所定の回転位置は、前記給排口部が接続口部と一致する位置であることが好ましい。
In the tire vulcanizer according to the present invention, the rigid core has an inner heating chamber chamber filled with a thermal fluid inside, and a supply / discharge unit for supplying and exhausting the thermal fluid to the chamber chamber on a lower surface. While having a mouth,
The vulcanization mold includes a lower mold provided with a connection port portion connectable to the supply / discharge port portion on an upper surface,
And it is preferable that the said predetermined rotation position is a position where the said supply / discharge port part corresponds with a connection port part.

本発明に係る前記タイヤ加硫機では、前記相対角度調整手段は、前記中子支持軸部を回転駆動する駆動手段と、中子支持軸部の回転量を検知する回転量検知手段と、所定の回転位置にて中子支持軸部を固定する固定手段とを具えることが好ましい。   In the tire vulcanizer according to the present invention, the relative angle adjustment means includes a drive means for rotationally driving the core support shaft portion, a rotation amount detection means for detecting the rotation amount of the core support shaft portion, and a predetermined amount. It is preferable to provide fixing means for fixing the core support shaft at the rotational position.

本発明に係る前記タイヤ加硫機では、前記固定手段は、前記中子支持軸部と一体回転できかつ外周にV溝状の係止溝又は該係止溝に係合しうるV字状の係止突起の一方からなる第1の係合部を有する回転板と、前記係止溝又は係止突起の他方からなる第2の係合部を第1の係合部に向かって半径方向に進退自在に有するストッパとを具えることが好ましい。   In the tire vulcanizer according to the present invention, the fixing means can be integrally rotated with the core support shaft portion and has a V-shaped locking groove on the outer periphery or can be engaged with the locking groove. A rotary plate having a first engagement portion made of one of the locking projections and a second engagement portion made of the other of the locking groove or the locking projection in the radial direction toward the first engagement portion It is preferable to provide a stopper that can be freely advanced and retracted.

本願第2発明は、第1発明のタイヤ加硫機を用いて生タイヤを加硫する加硫工程を有するタイヤ製造方法であって、
生タイヤ付きの剛性中子の加硫金型内への投入に先駆け、前記中子支持軸部を、前記受け取った生タイヤ付きの剛性中子とともに軸芯回りで回転させかつ所定の回転位置で停止させることにより、加硫金型に対する生タイヤ付きの剛性中子の位相角度を調整する相対角度調整工程を具えることを特徴としている。
The second invention of the present application is a tire manufacturing method including a vulcanization step of vulcanizing a raw tire using the tire vulcanizer of the first invention,
Prior to the insertion of the rigid core with the green tire into the vulcanization mold, the core support shaft portion is rotated around the shaft core together with the received rigid core with the green tire and at a predetermined rotational position. It is characterized by comprising a relative angle adjustment step of adjusting the phase angle of the rigid core with the green tire relative to the vulcanization mold by stopping.

本発明に係る前記タイヤ製造方法では、前記剛性中子は、熱流体が充填される内側加熱用のチャンバ室を内部に有し、かつ下面に前記チャンバ室に熱流体を給排気する給排口部を具え、
前記加硫金型は、上面に前記給排口部に接続可能な接続口部を設けた下金型を具え、
かつ前記所定の回転位置は、前記給排口部が接続口部と一致する位置であり、
しかも前記給排口部と接続口部との形成数nは複数かつ同数であり、それぞれ同一円周線上に等間隔を隔てて形成されることにより、給排口部が接続口部と一致する回転位置がn個存在するとともに、
前記相対角度調整工程では、前記n個の回転位置のうち、加硫後のタイヤのユニフォーミティにとって最適となる回転位置にて生タイヤ付きの剛性中子を停止させることを特徴とする請求項5記載のタイヤ製造方法。
In the tire manufacturing method according to the present invention, the rigid core has an inside heating chamber chamber filled with a thermal fluid inside, and a supply / exhaust port for supplying and exhausting the thermal fluid to the chamber chamber on a lower surface. Has a part,
The vulcanization mold includes a lower mold provided with a connection port portion connectable to the supply / discharge port portion on an upper surface,
And the predetermined rotation position is a position where the supply / exhaust port portion coincides with the connection port portion,
Moreover, the number n of the supply / exhaust port portions and the connection port portions are the same and the same, and the supply / discharge port portions coincide with the connection port portions by being formed at equal intervals on the same circumferential line. While there are n rotational positions,
6. The rigid core with a raw tire is stopped at the rotation position that is optimal for the uniformity of the vulcanized tire among the n rotation positions in the relative angle adjustment step. The tire manufacturing method as described.

本発明のタイヤ加硫機の中心機構は、生タイヤ付きの剛性中子を同心に支持しうる中子支持軸部を、上下に移動可能かつ軸芯回りで回転可能に外挿保持する中子支持軸案内部と、前記中子支持軸部を、生タイヤ付きの剛性中子ごと軸芯回りで回転させかつ所定の回転位置で停止させうる相対角度調整手段とを具える。従って、生タイヤ付きの剛性中子の加硫金型内への投入に先駆け、加硫金型に対する生タイヤ付きの剛性中子の位相角度を調整することができる。   The central mechanism of the tire vulcanizer according to the present invention is a core that extrapolates and holds a core support shaft portion that can support a rigid core with a green tire concentrically and is movable up and down and rotatable around an axis. A support shaft guide portion and a relative angle adjusting means capable of rotating the core support shaft portion around a shaft core together with a rigid core with a green tire and stopping at a predetermined rotational position. Accordingly, prior to the introduction of the rigid core with the green tire into the vulcanization mold, the phase angle of the rigid core with the green tire relative to the vulcanization mold can be adjusted.

そのため、例えば、内側加熱が可能な剛性中子において、中子側の給排口部と金型側の接続口部とを位置合わせでき、投入時の自動接続を可能にしうる。又、位相角度の調整により、例えばタイヤのユニフォーミティの悪化要因となる中子要因や金型要因などの影響を、互いに打ち消し合わせて総合的な影響を減じることができ、ユニフォーミティを向上させることが可能となる。   Therefore, for example, in a rigid core capable of inner heating, the core-side supply / discharge port portion and the mold-side connection port portion can be aligned, and automatic connection at the time of charging can be enabled. In addition, by adjusting the phase angle, for example, the influence of core factors and mold factors that cause deterioration of tire uniformity can be canceled out to reduce the overall effect, thereby improving uniformity. Is possible.

第1発明のタイヤ加硫機の中心機構を示す軸心方向の断面図である。It is sectional drawing of the axial direction which shows the center mechanism of the tire vulcanizer of 1st invention. 中心機構を概念的に示す斜視図である。It is a perspective view which shows a center mechanism notionally. (A)、(B)は回転位置をストッパとともに示す平面図である。(A), (B) is a top view which shows a rotation position with a stopper. (A)、(B)は、自動脱着コネクタ対を示す断面図である。(A), (B) is sectional drawing which shows an automatic attachment / detachment connector pair. 剛性中子を示す分解斜視図である。It is a disassembled perspective view which shows a rigid core. 剛性中子の底面図である。It is a bottom view of a rigid core.

以下、本発明の実施の形態について、詳細に説明する。
図1に示すように、本実施形態のタイヤ加硫機1は、剛性中子2のタイヤ成形面Sに形成された生タイヤTを、剛性中子2ごと加硫金型3内に投入する中心機構4を含んで構成される。
Hereinafter, embodiments of the present invention will be described in detail.
As shown in FIG. 1, the tire vulcanizer 1 of the present embodiment puts the raw tire T formed on the tire molding surface S of the rigid core 2 into the vulcanization mold 3 together with the rigid core 2. The center mechanism 4 is included.

本例では、前記剛性中子2は、熱流体による内側加熱が可能であって、その下面には、剛性中子2のチャンバー室H内に熱流体を給排気する給排口部5が設けられる。   In this example, the rigid core 2 can be heated inside by a thermal fluid, and a supply / discharge port portion 5 for supplying and exhausting the thermal fluid into the chamber chamber H of the rigid core 2 is provided on the lower surface thereof. It is done.

具体的には、本例の剛性中子2は、図5に示すように、外表面にタイヤ成形面Sを有する中空トロイド状の中子本体60と、この中子本体60の中心孔60Hに内挿される円筒状のコア61と、前記中子本体60の軸心方向両側に配される一対の側壁体62L、62Uとを具える。   Specifically, as shown in FIG. 5, the rigid core 2 of the present example includes a hollow toroid-shaped core body 60 having a tire molding surface S on the outer surface, and a central hole 60 </ b> H of the core body 60. It includes a cylindrical core 61 to be inserted, and a pair of side wall bodies 62L and 62U arranged on both sides in the axial direction of the core body 60.

前記中子本体60は、タイヤ周方向に分割された複数(n個)の中子セグメント63からなる。この中子セグメント63は、周方向両端面が半径方向内方に向かって周方向巾が減じる向きに傾斜する第1の中子セグメント63A、及び周方向両端面が半径方向内方に向かって周方向巾が増加する向きに傾斜しかつ前記第1の中子セグメント63Aとは交互に配される第2の中子セグメント63Bとから構成される。   The core body 60 is composed of a plurality (n) of core segments 63 divided in the tire circumferential direction. The core segment 63 includes a first core segment 63A that is inclined in such a direction that both circumferential end surfaces thereof are radially inward and the circumferential width is reduced, and both circumferential end surfaces are circumferentially directed radially inward. The first core segments 63A are inclined in the direction in which the direction width increases and are alternately arranged with the first core segments 63A.

図6に示すように、中子セグメント63は、タイヤ成形面Sを構成する半径方向外側の外セグメント部64oと、その半径方向内側にボルト等を介して一体連結されるブロック状の内セグメント部64iとを具える。前記外セグメント部64o内には、熱流体が充填される内側加熱用のチャンバー室Hが凹設されるとともに、このチャンバー室Hの開口は、前記内セグメント部64iにより封止される。又内セグメント部64iの軸心方向下面には、チャンバー室Hに通じる給排口部5が設けられる。中子本体60には、中子セグメント63の形成数と同数のn個(本例では、n=8の場合が図示される。)の給排口部5が形成されており、各給排口部5は、同一円周線上に等間隔を隔てて形成される。なお本例では、給排口部5が、吸気用の給気口部5iと排気用の排気口部5oとからなる場合が例示される。なお符号68は案内フィンであって、チャンバー室H内で熱流体を給気側から排気側に案内する。   As shown in FIG. 6, the core segment 63 includes a radially outer outer segment portion 64o constituting the tire molding surface S, and a block-shaped inner segment portion integrally connected to the radially inner side via bolts or the like. 64i. An inner heating chamber chamber H filled with a thermal fluid is recessed in the outer segment portion 64o, and the opening of the chamber chamber H is sealed by the inner segment portion 64i. A supply / exhaust port portion 5 communicating with the chamber chamber H is provided on the lower surface in the axial direction of the inner segment portion 64i. The core body 60 is formed with the same number n of core segments 63 as the number of core segments 63 (in this example, n = 8 is illustrated), and the supply / discharge ports 5 are formed. The mouth portions 5 are formed at equal intervals on the same circumferential line. In addition, in this example, the case where the supply / exhaust port part 5 consists of the intake port part 5i for intake, and the exhaust port part 5o for exhaust_gas | exhaustion is illustrated. Reference numeral 68 denotes guide fins that guide the heat fluid from the supply side to the exhaust side in the chamber chamber H.

前記図5に示すように、前記コア61は円筒状をなし、中子本体60の前記中心孔60Hに内挿されることにより、各中子セグメント63の半径方向内側への移動を阻止する。コア61の軸心方向の一端には、側壁体62Lが固着されるとともに、他端には、側壁体62Uが例えば螺着等により着脱可能に連結される。前記コア61の外周面には、軸心方向に連続してのびる蟻溝又は蟻ほぞの一方からなる第1の蟻継ぎ部65が形成される。又各中子セグメント63の内周面(本例では内セグメント部64iの内周面)には軸心方向にのびかつ前記第1の蟻継ぎ部65に係合する蟻溝又は蟻ほぞの他方からなる第2の蟻継ぎ部66が形成される。これにより、コア61と中子セグメント63とは軸心方向にのみ移動可能に連結されるとともに、この移動は、両側の側壁体62L、62Uにより阻止される。又各側壁体62L、62Uの軸心方向の外端面には、中心軸部67が突出している。この中心軸部67は、例えば搬送装置などによって剛性中子2を把持して移動させるための把持部、及び移動した剛性中子2を例えば生タイヤ形成機、加硫機1、冷却機などに装着するための把持部として機能する。   As shown in FIG. 5, the core 61 has a cylindrical shape and is inserted into the central hole 60 </ b> H of the core body 60 to prevent the core segments 63 from moving inward in the radial direction. A side wall 62L is fixed to one end in the axial direction of the core 61, and a side wall 62U is detachably connected to the other end by, for example, screwing or the like. Formed on the outer peripheral surface of the core 61 is a first dovetail joint 65 made of one of an ant groove or an ant tenon extending continuously in the axial direction. In addition, the other of the dovetail grooves or dovetails extending in the axial direction on the inner peripheral surface of each core segment 63 (in this example, the inner peripheral surface of the inner segment portion 64i) and engaging with the first dovetail joint portion 65. A second dovetail portion 66 made of is formed. As a result, the core 61 and the core segment 63 are connected so as to be movable only in the axial direction, and this movement is blocked by the side wall bodies 62L and 62U on both sides. A central shaft portion 67 projects from the outer end surface of each side wall body 62L, 62U in the axial direction. The central shaft portion 67 is, for example, a gripping portion for gripping and moving the rigid core 2 by a conveying device, and the moved rigid core 2 to, for example, a raw tire forming machine, a vulcanizer 1, and a cooler. Functions as a gripping part for mounting.

次に、タイヤ加硫機1は、加硫金型3を支持する加硫機本体6と、この加硫機本体6に取り付きかつ生タイヤ付きの剛性中子2を加硫金型3内に投入する中心機構4とを具える。   Next, the tire vulcanizer 1 includes a vulcanizer body 6 that supports the vulcanization mold 3 and a rigid core 2 that is attached to the vulcanizer body 6 and that has a green tire in the vulcanization mold 3. And a central mechanism 4 to be charged.

前記図1に示すように、前記加硫金型3は、従来と同様、生タイヤTの下のサイド面を受ける下金型8と、上のサイド面部を受ける上金型(図示しない。)と、トレッド面を受けるトレッドモールド(図示しない。)とを含んで構成される。そして下金型8の上面、本例では下ビードリング8Aの上面には、前記給排口部5に接続可能な接続口部10が形成される。この接続口部10の形成数は、前記給排口部5の形成数と同数(n個)であって、同一円周線上に等間隔を隔てて形成される。なお前記接続口部10には、下金型8を通る熱流体流路11a及び中心機構4を通る熱流体流路11bを介して、周知の熱流体給排装置(図示しない。)が導通される。   As shown in FIG. 1, the vulcanizing mold 3 includes a lower mold 8 that receives the lower side surface of the green tire T and an upper mold (not shown) that receives the upper side surface portion as in the conventional case. And a tread mold (not shown) for receiving the tread surface. A connection port portion 10 that can be connected to the supply / discharge port portion 5 is formed on the upper surface of the lower mold 8, in this example, the upper surface of the lower bead ring 8A. The number of connection ports 10 formed is the same number (n) as that of the supply / discharge ports 5 and is formed at equal intervals on the same circumferential line. A well-known thermal fluid supply / discharge device (not shown) is electrically connected to the connection port 10 via a thermal fluid flow path 11 a passing through the lower mold 8 and a thermal fluid flow path 11 b passing through the central mechanism 4. The

前記加硫機本体6としては、従来と同様の構造が好適に採用できる。本例では、前記図1に示すように、加硫機本体6が、下金型8を支持する下部プレート13、及び前記上金型とトレッドモールドとを支持する昇降可能な上部プレート(図示しない)を含む場合が示される。なお下部プレート13及び上部プレートには、下金型8及び上金型を加熱するプラテン板等も含まれる。又前記下部プレート13には、上下に貫通しかつ中心機構4が配される中心孔13Hが形成される。   As the vulcanizer body 6, the same structure as the conventional one can be suitably employed. In this example, as shown in FIG. 1, the vulcanizer body 6 includes a lower plate 13 that supports the lower mold 8, and an upper plate that can be raised and lowered to support the upper mold and the tread mold (not shown). ) Is shown. The lower plate 13 and the upper plate include a lower mold 8 and a platen plate for heating the upper mold. The lower plate 13 is formed with a central hole 13H that penetrates in the vertical direction and in which the central mechanism 4 is disposed.

前記中心機構4は、生タイヤ付きの剛性中子2を同心に支持しうる中子支持軸部15と、この中子支持軸部15を上下に移動可能かつ軸芯回りで回転可能に外挿保持する中子支持軸案内部16と、中子支持軸部15を軸芯回りで回転かつ停止させて加硫金型3に対する生タイヤ付きの剛性中子2の位相角度を調整する相対角度調整手段17とを具える。   The center mechanism 4 includes a core support shaft portion 15 that can concentrically support the rigid core 2 with a green tire, and the core support shaft portion 15 can be moved up and down and rotated about an axis. Relative angle adjustment for adjusting the phase angle of the rigid core 2 with the raw tire relative to the vulcanization mold 3 by rotating and stopping the core support shaft guide portion 16 to be held and the core support shaft portion 15 around the axis. Means 17.

前記中子支持軸部15は、前記中心孔13Hを通って上下にのびる直軸状の基体15Aの上部に、前記中心軸部67を保持するチャック部15Bを具える。チャック部15Bは、本例では所謂ボールロック機構14を有し、例えば作動空気による遠隔操作により、前記中心軸部67を着脱自在にかつ同心に保持しうる。なお中子支持軸部15と剛性中子2とを位相のズレなく一体回転させるために、チャック部15Bの上端には、先細テーパ状の係止ピン12a又はこの係止ピン12aに係合しうる係止孔12bの一方(本例では係止ピン12a)が形成され、又前記中心軸部67の下端には、他方(本例では係止孔12b)が形成される。   The core support shaft portion 15 includes a chuck portion 15B that holds the center shaft portion 67 on an upper portion of a straight shaft-like base body 15A that extends vertically through the center hole 13H. The chuck portion 15B has a so-called ball lock mechanism 14 in this example, and can detachably and concentrically hold the central shaft portion 67 by, for example, remote operation with working air. In addition, in order to rotate the core support shaft portion 15 and the rigid core 2 integrally without a phase shift, the upper end of the chuck portion 15B is engaged with the tapered tapered locking pin 12a or the locking pin 12a. One locking hole 12b (in this example, the locking pin 12a) is formed, and the other lower end (locking hole 12b in this example) is formed at the lower end of the central shaft portion 67.

前記中子支持軸部15は、加硫機本体6に取り付く昇降手段18によって上下に移動する。本例の昇降手段18は、前記下部プレート13下面に固定される下向きの一対のシリンダ18Aを具え、そのロッド下端に取り付く昇降板18B上に、前記中子支持軸部15が立設される。そして中子支持軸部15の上下の移動により、中子支持軸部15は、上昇位置にて、生タイヤ付きの剛性中子2を搬送装置(図示しない)などから受け取るとともに、下降位置にて、受け取った生タイヤ付きの剛性中子2を加硫金型3内に投入する。   The core support shaft portion 15 is moved up and down by lifting means 18 attached to the vulcanizer body 6. The lifting / lowering means 18 of this example includes a pair of downward-facing cylinders 18A fixed to the lower surface of the lower plate 13, and the core support shaft portion 15 is erected on a lifting / lowering plate 18B attached to the lower end of the rod. As the core support shaft 15 moves up and down, the core support shaft 15 receives the rigid core 2 with the green tire from a transport device (not shown) or the like at the raised position, and at the lowered position. Then, the received rigid core 2 with the green tire is put into the vulcanizing mold 3.

前記中子支持軸案内部16は、半径方向内側の内筒部16Aと、外側の外筒部16Bとを具える。外筒部16Bは、前記中心孔13Hに固定される円筒状をなし、その内部には、前記熱流体流路11bが形成される。内筒部16Aは、前記外筒部16Bに固定される円筒状をなし、その内周面には、前記中子支持軸部15を上下に摺動移動可能かつ軸芯廻りで回転可能に保持する軸受け部材16A1が配される。   The core support shaft guide portion 16 includes an inner cylinder portion 16A on the radially inner side and an outer cylinder portion 16B on the outer side. The outer cylinder portion 16B has a cylindrical shape fixed to the center hole 13H, and the thermal fluid channel 11b is formed in the outer cylinder portion 16B. The inner cylinder part 16A has a cylindrical shape fixed to the outer cylinder part 16B, and the core support shaft part 15 is slidably movable up and down on its inner peripheral surface and is rotatable around the axis. A bearing member 16A1 is disposed.

前記相対角度調整手段17は、前記昇降板18Bに支持され、中子支持軸部15と一体に上下に移動しうる。又相対角度調整手段17は、生タイヤ付きの剛性中子2の加硫金型3内への投入に先駆け、中子支持軸部15を、生タイヤ付きの剛性中子2とともに軸芯回りで回転させ、かつ所定の回転位置Pで停止させる。これにより、加硫金型3に対する生タイヤ付きの剛性中子2の位相角度を調整する。   The relative angle adjusting means 17 is supported by the elevating plate 18B and can move up and down integrally with the core support shaft portion 15. Further, the relative angle adjusting means 17 is arranged so that the core support shaft portion 15 is moved around the shaft core together with the rigid core 2 with the green tire before the rigid core 2 with the green tire is put into the vulcanizing mold 3. Rotate and stop at a predetermined rotational position P. Thereby, the phase angle of the rigid core 2 with the green tire with respect to the vulcanization mold 3 is adjusted.

具体的には、前記相対角度調整手段17は、中子支持軸部15を回転駆動する駆動手段20と、中子支持軸部15の回転量を検知する回転量検知手段21と、所定の回転位置Pにて中子支持軸部15を固定する固定手段22とを具える。   Specifically, the relative angle adjusting means 17 includes a drive means 20 that rotationally drives the core support shaft portion 15, a rotation amount detection means 21 that detects the rotation amount of the core support shaft portion 15, and a predetermined rotation. And fixing means 22 for fixing the core support shaft 15 at the position P.

図2に示すように、前記駆動手段20は、昇降板18Bに取り付くモータ20Aと、その出力を中子支持軸部15に伝達する伝達手段20Bとを含む。本例の伝達手段20Bは、前記中子支持軸部15の下端部に一体回転可能かつ同心に固定される第1の歯車20B1と、該第1の歯車20B1に噛合しかつ前記モータ20Aの出力軸に連係する第2の歯車20B2とを含んで構成される。   As shown in FIG. 2, the driving means 20 includes a motor 20 </ b> A that is attached to the elevating plate 18 </ b> B and a transmission means 20 </ b> B that transmits the output to the core support shaft portion 15. The transmission means 20B of the present example includes a first gear 20B1 that is integrally rotatable with and concentrically fixed to the lower end portion of the core support shaft portion 15, and meshes with the first gear 20B1 and is output from the motor 20A. And a second gear 20B2 linked to the shaft.

前記回転量検知手段21は、昇降板18Bに取り付くエンコーダ21Aと、中子支持軸部15の回転量を前記エンコーダ21Aに伝達する伝達手段21Bとを含む。本例の伝達手段21Bは、前記中子支持軸部15の下端部に一体回転可能かつ同心に固定される第1の鎖車21B1と、前記エンコーダ21Aの入力軸に連係する第2の鎖車21B2とを含み、前記第1、第2の鎖車21B1、21B2は無端連紐を介して接続されている。そして、前記回転量検知手段21によって検出する中子支持軸部15の回転量に基づいて前記モータ20Aが制御され、所定の回転位置Pで中子支持軸部15が停止される。   The rotation amount detection means 21 includes an encoder 21A attached to the lifting plate 18B, and a transmission means 21B that transmits the rotation amount of the core support shaft portion 15 to the encoder 21A. The transmission means 21B of the present example includes a first chain wheel 21B1 that is integrally rotatable and concentrically fixed to the lower end portion of the core support shaft portion 15, and a second chain wheel that is linked to the input shaft of the encoder 21A. 21B2, and the first and second chain wheels 21B1 and 21B2 are connected via an endless string. Then, the motor 20A is controlled based on the rotation amount of the core support shaft portion 15 detected by the rotation amount detection means 21, and the core support shaft portion 15 is stopped at a predetermined rotation position P.

前記固定手段22は、回転板22Aとストッパ22Bとを具える。前記回転板22Aは、中子支持軸部15の下端部に、一体回転可能かつ同心に固定される。回転板22Aの外周には、V溝状の係止溝23A又は該係止溝23Aに係合しうるV字状の係止突起23Bの一方(本例では係止溝23A)からなる第1の係合部24が1以上配される。本例では、給排口部5及び接続口部10の形成数と同数のn個の第1の係合部24が、周方向に等間隔を隔てて形成される。   The fixing means 22 includes a rotating plate 22A and a stopper 22B. The rotating plate 22 </ b> A can be integrally rotated and fixed concentrically to the lower end portion of the core support shaft portion 15. On the outer periphery of the rotating plate 22A, there is a first formed of one of V-shaped locking grooves 23A or one of V-shaped locking projections 23B that can be engaged with the locking grooves 23A (in this example, the locking grooves 23A). One or more engaging portions 24 are arranged. In this example, n first engaging portions 24 having the same number as that of the supply / discharge port portions 5 and the connection port portions 10 are formed at equal intervals in the circumferential direction.

前記ストッパ22Bは、前記係止溝23A又は係止突起23Bの他方(本例では係止突起23B)からなる第2の係合部25と、この第2の係合部25を前記第1の係合部24に向かって半径方向に進退移動させるシリンダなどの進退具26とを具える。   The stopper 22B includes a second engagement portion 25 formed of the other of the locking groove 23A or the locking projection 23B (in this example, the locking projection 23B), and the second engagement portion 25 as the first engagement portion 25. An advancing / retracting tool 26 such as a cylinder that moves forward / backward in the radial direction toward the engaging portion 24 is provided.

従って、図3(A)に示すように、第1の係合部24が、第2の係合部25と半径方向内外で向き合う回転位置では、第2の係合部25の前進により、第1の係合部24と第2の係合部25とが互いに係合し、回転板22A(即ち、中子支持軸部15)を固定できる。従って、第1の係合部24と第2の係合部25とが半径方向内外で向き合う回転位置が、前記所定の回転位置Pを意味する。又、この所定の回転位置Pにおいて、前記給排口部5と接続口部10とが一致するように、ストッパ22Bの取り付け位置、回転板22Aの取り付け角度などが適宜設定される。本例では、n個の回転位置Pが360/n度の角度ピッチで存在する。即ち、360/n度の角度ピッチで、回転板22Aを固定できる   Therefore, as shown in FIG. 3 (A), the first engagement portion 24 is moved forwardly by the second engagement portion 25 at the rotational position where the first engagement portion 24 faces the second engagement portion 25 in the radial direction. The first engaging portion 24 and the second engaging portion 25 are engaged with each other, and the rotary plate 22A (that is, the core support shaft portion 15) can be fixed. Therefore, the rotation position where the first engagement portion 24 and the second engagement portion 25 face each other in the radial direction means the predetermined rotation position P. In addition, at the predetermined rotation position P, the attachment position of the stopper 22B, the attachment angle of the rotary plate 22A, etc. are appropriately set so that the supply / discharge port portion 5 and the connection port portion 10 coincide with each other. In this example, n rotational positions P exist at an angular pitch of 360 / n degrees. That is, the rotating plate 22A can be fixed at an angular pitch of 360 / n degrees.

本例では、係止溝23A及び係止突起23BがV字状をなすため、ズレを有することなく正確な回転位置にて回転板22Aを固定できる。特に、停止時において回転板22Aの位置が多少ずれている場合にも、前記固定手段22により、位置修正しながら正確な回転位置で回転板22Aを固定することができる。又前記固定手段22では、第1の係合部24と第2の係合部25とが嵌り合っていることを検知するセンサを設けることが好ましい。このような検知は、例えば第2の係合部25の前進時の位置や移動量などの検出により行いうる。なお固定手段22は、前記回転量検知手段21によって検出する中子支持軸部15の回転量に基づいて制御される。   In this example, since the locking groove 23A and the locking projection 23B are V-shaped, the rotating plate 22A can be fixed at an accurate rotational position without being displaced. In particular, even when the position of the rotating plate 22A is slightly deviated at the time of stopping, the fixing means 22 can fix the rotating plate 22A at an accurate rotational position while correcting the position. The fixing means 22 is preferably provided with a sensor for detecting that the first engaging portion 24 and the second engaging portion 25 are fitted. Such detection can be performed, for example, by detecting the position or amount of movement of the second engagement portion 25 when moving forward. The fixing means 22 is controlled based on the rotation amount of the core support shaft portion 15 detected by the rotation amount detection means 21.

タイヤ加硫機1では、搬送装置により搬送される生タイヤ付きの剛性中子2を、中子支持軸部15によって受け取る際、剛性中子側の係止孔12bと中子支持軸部側の係止ピン12aとを係合させる必要がある。そのため本例では、図3(B)に示すように、中子支持軸部15を、係止孔12bと係止ピン12aとの位置が一致する回転位置Qにて停止させるためのストッパ27を設けている。ストッパ27はストッパ22Bと略同構成をなす。このようなストッパ27をさらに設けることにより、剛性中子側の係止孔12bの位置に合わせて中子支持軸部15の回転位置Qを自在に設定することができるというメリットが生まれる。なお剛性中子側の係止孔12bの位置を調整可能に構成する場合には、ストッパ27を排除し、回転位置Pにて係止孔12bと係止ピン12aとが一致するように設定することもできる。   In the tire vulcanizer 1, when the rigid core 2 with the green tire conveyed by the conveying device is received by the core support shaft portion 15, the rigid core side locking hole 12b and the core support shaft portion side are received. It is necessary to engage the locking pin 12a. Therefore, in this example, as shown in FIG. 3B, a stopper 27 for stopping the core support shaft portion 15 at the rotation position Q where the positions of the locking holes 12b and the locking pins 12a coincide with each other. Provided. The stopper 27 has substantially the same configuration as the stopper 22B. Providing such a stopper 27 has the advantage that the rotational position Q of the core support shaft portion 15 can be freely set in accordance with the position of the locking hole 12b on the rigid core side. When the position of the locking hole 12b on the rigid core side can be adjusted, the stopper 27 is eliminated and the locking hole 12b and the locking pin 12a are set to coincide with each other at the rotational position P. You can also.

このように中心機構4が、前記中子支持軸部15、中子支持軸案内部16、相対角度調整手段17を具えるため、加硫金型3への投入に先駆け、加硫金型3に対する生タイヤ付きの剛性中子2の位相角度を調整することができる。本例では、投入に先駆けて給排口部5と接続口部10とを位置合わせでき、投入時の自動接続を可能にしている。   Thus, since the center mechanism 4 includes the core support shaft portion 15, the core support shaft guide portion 16, and the relative angle adjusting means 17, the vulcanization die 3 prior to the introduction into the vulcanization die 3 is provided. The phase angle of the rigid core 2 with the green tire can be adjusted. In this example, the supply / exhaust port portion 5 and the connection port portion 10 can be aligned prior to the input, and automatic connection at the time of input is possible.

なお前記給排口部5と接続口部10とは、互いに自動脱着可能な自動脱着コネクタ41、42の対から形成される。図4にその一例を示すように、一方のコネクタ41は、中心孔43を有する基筒部44と、前記中心孔43に設ける弁座43aを開閉しうる弁軸45と、この弁軸45を弁座43aに向かって付勢するバネ片46とを具える。本例の基筒部44は、被取付け物(例えば中子セグメント63、下金型8)に取り付く胴部44aの前方に、小径な接続筒部44bを設けた段付き筒状をなし、前記胴部44aには、被取付け物との間をシールするシールリング47が配される。前記中心孔43は、その前端部に、前方に向かって小径となるコーン面状の前記弁座43aを具える。前記弁軸45は、前記弁座43aと当接して該弁座43aを閉じる頭部45aと、この頭部45aから後方にのびかつ前記中心孔43に固定の保持筒48によって前後にスライド自在に保持される軸部45bとを具える。又前記バネ片46は、軸部45bに外挿され、常時は弁座43aを閉止する。   The supply / discharge port portion 5 and the connection port portion 10 are formed of a pair of automatic detachable connectors 41 and 42 that can be automatically detachable from each other. As shown in FIG. 4, one connector 41 includes a base tube portion 44 having a center hole 43, a valve shaft 45 that can open and close a valve seat 43 a provided in the center hole 43, and the valve shaft 45. And a spring piece 46 biased toward the valve seat 43a. The base tube portion 44 of this example has a stepped tube shape in which a small diameter connection tube portion 44b is provided in front of a body portion 44a that is attached to an attached object (for example, the core segment 63, the lower mold 8). A seal ring 47 that seals between the body portion 44a and an object to be attached is disposed on the body portion 44a. The center hole 43 includes the valve seat 43a having a cone surface shape having a small diameter toward the front at a front end portion thereof. The valve shaft 45 is slidable back and forth by a head 45a that abuts the valve seat 43a and closes the valve seat 43a, and a holding cylinder 48 that extends rearward from the head 45a and is fixed to the center hole 43. And a shaft portion 45b to be held. The spring piece 46 is extrapolated to the shaft portion 45b and normally closes the valve seat 43a.

又他方のコネクタ42も、中心孔53を有する基筒部54と、前記中心孔53に設ける弁座53aを開閉しうる弁軸55と、この弁軸55を弁座53aに向かって付勢するバネ片56とを具える。本例では、前記基筒部54は、被取付け物(例えば中子セグメント63、下金型8)に取り付く胴部54aの前端側に大径な接続筒部54bを設けた段付き筒状をなし、前記胴部54aには、被取付け物との間をシールするシールリング57が配される。前記中心孔53は、前方に向かって小径となるコーン面状の前記弁座53aと、この弁座53aの前方側に配されかつ前記接続筒部44bに填り合う接続孔部53bと、弁座53aの後方側に配されかつ弁軸55を収容する収容孔部53cとを具える。なお接続孔部53bには、接続筒部44bとの間をシールするシールリング59が配される。前記弁軸55は、前記弁座53aと当接して該弁座53aを閉じる頭部55aと、この頭部55aから後方にのびかつ前記収容孔部53cに固定の保持筒58によって前後にスライド自在に保持される軸部55bと、前記頭部55aから前方にのびる突出ピン部55cとを具える。又前記バネ片56は、軸部55bに外挿され、常時は弁座53aを閉止する。   The other connector 42 also has a base tube portion 54 having a center hole 53, a valve shaft 55 that can open and close a valve seat 53a provided in the center hole 53, and biases the valve shaft 55 toward the valve seat 53a. And a spring piece 56. In this example, the base tube portion 54 has a stepped tube shape in which a large-diameter connecting tube portion 54b is provided on the front end side of a body portion 54a that is attached to an attached object (for example, the core segment 63 and the lower mold 8). None, the body portion 54a is provided with a seal ring 57 that seals the body 54a. The center hole 53 includes a cone-shaped valve seat 53a having a small diameter toward the front, a connection hole 53b that is disposed on the front side of the valve seat 53a and fits into the connection cylinder portion 44b, An accommodation hole 53c is provided on the rear side of the seat 53a and accommodates the valve shaft 55. A seal ring 59 that seals between the connection tube portion 44b is disposed in the connection hole portion 53b. The valve shaft 55 is slidable back and forth by a head 55a that contacts the valve seat 53a and closes the valve seat 53a, and a holding cylinder 58 that extends backward from the head 55a and is fixed to the receiving hole 53c. And a projecting pin portion 55c extending forward from the head portion 55a. The spring piece 56 is extrapolated to the shaft portion 55b, and normally closes the valve seat 53a.

このコネクタ41、42は、コネクタ41の前記接続筒部44bが、前記コネクタ42の接続孔部53b内に挿入されることにより接続される。この接続状態(挿入状態)では、コネクタ42の弁軸55の突出ピン部55cが、コネクタ41の弁軸45の頭部45aと当接することで、双方の弁軸45、55が後退し、各弁座43a、53aを開放できる。これにより、コネクタ41、42間が導通される。本例では、給排口部5にコネクタ41が採用され、接続口部10にコネクタ42が採用される場合が示されるが、その逆であっても良い。   The connectors 41 and 42 are connected by inserting the connecting tube portion 44 b of the connector 41 into the connecting hole portion 53 b of the connector 42. In this connected state (inserted state), the protruding pin portion 55c of the valve shaft 55 of the connector 42 comes into contact with the head portion 45a of the valve shaft 45 of the connector 41, so that both valve shafts 45 and 55 are retracted. The valve seats 43a and 53a can be opened. As a result, the connectors 41 and 42 are electrically connected. In this example, the case where the connector 41 is employed for the supply / exhaust port portion 5 and the connector 42 is employed for the connection port portion 10 is shown, but the reverse is also possible.

次に、第2発明であるタイヤ製造方法は、前記タイヤ加硫機1を用いて生タイヤTを加硫する加硫工程を具える。この加硫工程では、加硫金型3への投入に先駆け、加硫金型3に対する生タイヤ付きの剛性中子2の位相角度を調整する相対角度調整工程を具える。この相対角度調整工程では、前記相対角度調整手段17を作動させ、中子支持軸部15を、生タイヤ付きの剛性中子2とともに軸芯回りで回転させ、かつ所定の回転位置Pで停止させる。これにより、給排口部5と接続口部10とが位置合わせされ、投入時の自動接続が行われる。   Next, the tire manufacturing method according to the second aspect of the invention includes a vulcanization step of vulcanizing the raw tire T using the tire vulcanizer 1. This vulcanization step includes a relative angle adjustment step of adjusting the phase angle of the rigid core 2 with the green tire with respect to the vulcanization die 3 prior to the introduction into the vulcanization die 3. In this relative angle adjusting step, the relative angle adjusting means 17 is operated to rotate the core support shaft portion 15 around the shaft core together with the rigid core 2 with the green tire and to stop at a predetermined rotational position P. . Thereby, the supply / exhaust port part 5 and the connection port part 10 are aligned, and the automatic connection at the time of insertion is performed.

特に、本例の相対角度調整工程では、前述のn個の回転位置Pのうち、加硫後のタイヤのユニフォーミティにとって最適となる回転位置P0(図示しない。)にて生タイヤ付きの剛性中子2を停止させる。これにより、加硫後のタイヤのユニフォーミティを向上させることができる。   In particular, in the relative angle adjustment step of the present example, among the n rotational positions P described above, the rotational position P0 (not shown) that is optimal for the uniformity of the vulcanized tire is being rigid with the raw tire. Child 2 is stopped. Thereby, the uniformity of the vulcanized tire can be improved.

前述の如く、中子工法によって形成されるタイヤのユニフォーミティには、剛性中子2上で生タイヤTを形成する際に生じる生タイヤ形成要因、剛性中子2のタイヤ成形面Sの形状などに起因するに中子要因、加硫金型3の金型面の形状などに起因するに金型要因などがある。従って、これらの要因による影響を互いに打ち消し合わせて、総合的な影響を減じることで、ユニフォーミティを向上させることが可能となる。   As described above, the uniformity of the tire formed by the core method includes the raw tire formation factor generated when the raw tire T is formed on the rigid core 2, the shape of the tire molding surface S of the rigid core 2, and the like. There are a core factor due to the above, a mold factor due to the shape of the mold surface of the vulcanizing mold 3 and the like. Therefore, it is possible to improve the uniformity by canceling the influences of these factors and reducing the overall influence.

従って、n個の回転位置Pのうちで、前記要因による総合的な影響が小さくなりユニフォーミティにとって最適となる回転位置P0を選択し、この最適となる回転位置P0にて生タイヤ付きの剛性中子2を加硫金型3に投入することで、タイヤのユニフォーミティを向上することができる。   Accordingly, among the n rotational positions P, a rotational position P0 that is less affected by the above factors and is optimal for the uniformity is selected, and the rigidity with the raw tire is selected at the optimal rotational position P0. By introducing the child 2 into the vulcanizing mold 3, the uniformity of the tire can be improved.

前記最適な回転位置P0として、以下のような方法で選択できる。例えば、加硫金型3への投入時の位相角度を試験的に設定して、タイヤを試作する。そして試作タイヤのFV(フォースバリエーション)を測定した結果から、生タイヤ形成要因、中子要因、金型要因、加硫機要因などを解析し、FVが最も小さくなる位相角度を求めるとともに、n個の回転位置Pのうちで、前記FVが最も小さくなる位相角度により近いものを最適な回転位置P0として採用する。   The optimum rotational position P0 can be selected by the following method. For example, the phase angle at the time of charging into the vulcanizing mold 3 is set on a trial basis, and a tire is prototyped. From the results of measuring the FV (force variation) of the prototype tire, the raw tire formation factor, core factor, mold factor, vulcanizer factor, etc. are analyzed to determine the phase angle at which FV is the smallest, and n Among these rotational positions P, the one closer to the phase angle at which the FV becomes the smallest is adopted as the optimum rotational position P0.

他の方法として、例えば、生タイヤTの成形前の段階で、剛性中子2のタイヤ形成面におけるRRO(以下「中子RRO」という。)、及び加硫金型3の金型面におけるRRO(以下「金型RRO」という。)を事前に測定する。そして、その測定結果に基づき、各回転位置Pにおいて、中子RROと金型RROとを重ね合わせ、その時の重ね合わせのRROの分布が一周に亘って最も均一で小さくなる時の回転位置を最適な回転位置P0として採用する。   Other methods include, for example, RRO on the tire forming surface of the rigid core 2 (hereinafter referred to as “core RRO”) and RRO on the mold surface of the vulcanizing mold 3 before the green tire T is molded. (Hereinafter referred to as “mold RRO”) is measured in advance. Based on the measurement results, the core RRO and the mold RRO are superposed at each rotational position P, and the rotational position when the distribution of the superposed RRO is the most uniform and small over one round is optimal. This is adopted as the correct rotation position P0.

なお搬送装置から生タイヤTを受取った時の中子支持軸部15の位相角度(基準位置)から、前記最適な回転位置P0まで中子支持軸部15を回転させる際の回転時間を短縮させるために、基準位置から最適な回転位置P0までの回転角度が180度を超える場合、と越えない場合とで、中子支持軸部15の回転方向を正逆変更させることが好ましい。   Note that the rotation time when the core support shaft 15 is rotated from the phase angle (reference position) of the core support shaft 15 when the raw tire T is received from the transport device to the optimum rotation position P0 is shortened. Therefore, it is preferable to change the rotation direction of the core support shaft portion 15 forward and backward depending on whether the rotation angle from the reference position to the optimum rotation position P0 exceeds 180 degrees or not.

以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。   As mentioned above, although especially preferable embodiment of this invention was explained in full detail, this invention is not limited to embodiment of illustration, It can deform | transform and implement in a various aspect.

1 タイヤ加硫機
2 剛性中子
3 加硫金型
4 中心機構
5 給排口部
8 下金型
10 接続口部
15 中子支持軸部
16 中子支持軸案内部
17 相対角度調整手段
20 駆動手段
21 回転量検知手段
22 固定手段
22A 回転板
22B ストッパ
23A 係止溝
23B 係止突起
24 第1の係合部
25 第2の係合部
H チャンバ室
P 回転位置
S タイヤ成形面
T 生タイヤ
DESCRIPTION OF SYMBOLS 1 Tire vulcanizer 2 Rigid core 3 Vulcanization mold 4 Center mechanism 5 Supply / discharge port 8 Lower mold 10 Connection port 15 Core support shaft portion 16 Core support shaft guide portion 17 Relative angle adjustment means 20 Drive Means 21 Rotation amount detection means 22 Fixing means 22A Rotating plate 22B Stopper 23A Locking groove 23B Locking protrusion 24 First engagement portion 25 Second engagement portion H Chamber chamber P Rotation position S Tire molding surface T Raw tire

Claims (6)

外表面にタイヤ成形面を有する剛性中子の前記タイヤ成形面に形成された生タイヤを、前記剛性中子ごと加硫金型内に投入する中心機構を有するタイヤ加硫機であって、
前記中心機構は、
生タイヤ付きの剛性中子を同心に支持でき、かつ上下に移動することにより、上昇位置にて生タイヤ付きの剛性中子を受け取りかつ下降位置にて受け取った生タイヤ付きの剛性中子を前記加硫金型内に投入しうる中子支持軸部と、
前記中子支持軸部を、上下に移動可能かつ軸芯回りで回転可能に外挿保持する中子支持軸案内部と、
前記投入に先駆け、受け取った生タイヤ付きの剛性中子とともに前記中子支持軸部を軸芯回りで回転させかつ所定の回転位置で停止させることにより、加硫金型に対する生タイヤ付きの剛性中子の位相角度を調整する相対角度調整手段とを具えることを特徴とするタイヤ加硫機。
A tire vulcanizer having a central mechanism for feeding a raw tire formed on the tire molding surface of a rigid core having a tire molding surface on the outer surface into a vulcanization mold together with the rigid core,
The central mechanism is
The rigid core with the green tire can be supported concentrically and moved up and down to receive the rigid core with the green tire at the raised position and the rigid core with the green tire received at the lowered position. A core support shaft that can be put into the vulcanization mold;
A core support shaft guide portion that extrapolates and holds the core support shaft portion so as to be movable up and down and rotatable around an axis;
Prior to the introduction, by rotating the core support shaft portion around the axis and stopping at a predetermined rotational position together with the received rigid core with the raw tire, the rigidity with the raw tire with respect to the vulcanization mold is reduced. A tire vulcanizer comprising a relative angle adjusting means for adjusting the phase angle of the child.
前記剛性中子は、熱流体が充填される内側加熱用のチャンバ室を内部に有し、かつ下面に前記チャンバ室に熱流体を給排気する給排口部を具えるとともに、
前記加硫金型は、上面に前記給排口部に接続可能な接続口部を設けた下金型を具え、
かつ前記所定の回転位置は、前記給排口部が接続口部と一致する位置であることを特徴とする請求項1記載のタイヤ加硫機。
The rigid core has an inner heating chamber chamber filled with a thermal fluid, and has a supply / discharge port portion for supplying and exhausting the thermal fluid to the chamber chamber on the lower surface,
The vulcanization mold includes a lower mold provided with a connection port portion connectable to the supply / discharge port portion on an upper surface,
2. The tire vulcanizer according to claim 1, wherein the predetermined rotational position is a position where the supply / discharge port portion coincides with a connection port portion.
前記相対角度調整手段は、前記中子支持軸部を回転駆動する駆動手段と、中子支持軸部の回転量を検知する回転量検知手段と、所定の回転位置にて中子支持軸部を固定する固定手段とを具えることを特徴とする請求項1又は2記載のタイヤ加硫機。   The relative angle adjusting means includes a driving means for rotationally driving the core support shaft portion, a rotation amount detecting means for detecting a rotation amount of the core support shaft portion, and a core support shaft portion at a predetermined rotational position. The tire vulcanizer according to claim 1 or 2, further comprising fixing means for fixing. 前記固定手段は、前記中子支持軸部と一体回転できかつ外周にV溝状の係止溝又は該係止溝に係合しうるV字状の係止突起の一方からなる第1の係合部を有する回転板と、前記係止溝又は係止突起の他方からなる第2の係合部を第1の係合部に向かって半径方向に進退自在に有するストッパとを具えることを特徴とする請求項1〜3の何れかに記載のタイヤ加硫機。   The fixing means is a first engagement comprising either a V-groove-shaped locking groove or an V-shaped locking protrusion that can be engaged with the locking groove on the outer periphery, and can rotate integrally with the core support shaft portion. A rotating plate having a mating portion; and a stopper having a second engaging portion made of the other of the locking groove or the locking protrusion so as to be movable forward and backward in the radial direction toward the first engaging portion. The tire vulcanizer according to any one of claims 1 to 3. 請求項1〜4の何れかに記載のタイヤ加硫機を用いて生タイヤを加硫する加硫工程を有するタイヤ製造方法であって、
生タイヤ付きの剛性中子の加硫金型内への投入に先駆け、前記中子支持軸部を、前記受け取った生タイヤ付きの剛性中子とともに軸芯回りで回転させかつ所定の回転位置で停止させることにより、加硫金型に対する生タイヤ付きの剛性中子の位相角度を調整する相対角度調整工程を具えることを特徴とするタイヤ製造方法。
A tire manufacturing method comprising a vulcanization step of vulcanizing a raw tire using the tire vulcanizer according to claim 1,
Prior to the insertion of the rigid core with the green tire into the vulcanization mold, the core support shaft portion is rotated around the shaft core together with the received rigid core with the green tire and at a predetermined rotational position. A tire manufacturing method comprising a relative angle adjustment step of adjusting a phase angle of a rigid core with a green tire with respect to a vulcanization mold by stopping.
前記剛性中子は、熱流体が充填される内側加熱用のチャンバ室を内部に有し、かつ下面に前記チャンバ室に熱流体を給排気する給排口部を具え、
前記加硫金型は、上面に前記給排口部に接続可能な接続口部を設けた下金型を具え、
かつ前記所定の回転位置は、前記給排口部が接続口部と一致する位置であり、
しかも前記給排口部と接続口部との形成数nは複数かつ同数であり、それぞれ同一円周線上に等間隔を隔てて形成されることにより、給排口部が接続口部と一致する回転位置がn個存在するとともに、
前記相対角度調整工程では、前記n個の回転位置のうち、加硫後のタイヤのユニフォーミティにとって最適となる回転位置にて生タイヤ付きの剛性中子を停止させることを特徴とする請求項5記載のタイヤ製造方法。
The rigid core has an inner heating chamber chamber filled with a thermal fluid inside, and has a supply / exhaust port portion for supplying and exhausting the thermal fluid to and from the lower surface on the lower surface,
The vulcanization mold includes a lower mold provided with a connection port portion connectable to the supply / discharge port portion on an upper surface,
And the predetermined rotation position is a position where the supply / exhaust port portion coincides with the connection port portion,
Moreover, the number n of the supply / exhaust port portions and the connection port portions are the same and the same, and the supply / discharge port portions coincide with the connection port portions by being formed at equal intervals on the same circumferential line. While there are n rotational positions,
6. The rigid core with a raw tire is stopped at the rotation position that is optimal for the uniformity of the vulcanized tire among the n rotation positions in the relative angle adjustment step. The tire manufacturing method as described.
JP2013249433A 2013-12-02 2013-12-02 Tire vulcanizer and tire manufacturing method using the same Active JP6196543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013249433A JP6196543B2 (en) 2013-12-02 2013-12-02 Tire vulcanizer and tire manufacturing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013249433A JP6196543B2 (en) 2013-12-02 2013-12-02 Tire vulcanizer and tire manufacturing method using the same

Publications (2)

Publication Number Publication Date
JP2015104906A true JP2015104906A (en) 2015-06-08
JP6196543B2 JP6196543B2 (en) 2017-09-13

Family

ID=53435326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013249433A Active JP6196543B2 (en) 2013-12-02 2013-12-02 Tire vulcanizer and tire manufacturing method using the same

Country Status (1)

Country Link
JP (1) JP6196543B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015104905A (en) * 2013-12-02 2015-06-08 住友ゴム工業株式会社 Tire vulcanizing machine and tire production method using the same
JP2017121773A (en) * 2016-01-08 2017-07-13 住友ゴム工業株式会社 Method for production of pneumatic tire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018857A (en) * 2000-07-13 2002-01-22 Kobe Steel Ltd Center mechanism
JP2003220613A (en) * 2002-01-29 2003-08-05 Yokohama Rubber Co Ltd:The Control method for loading and unloading bladder for vulcanizing tire and its apparatus
JP2006297599A (en) * 2005-04-15 2006-11-02 Bridgestone Corp Method and apparatus for heating green tire
JP2011167979A (en) * 2010-02-19 2011-09-01 Sumitomo Rubber Ind Ltd Method of manufacturing pneumatic tire
JP2013006367A (en) * 2011-06-24 2013-01-10 Sumitomo Rubber Ind Ltd Rigid core

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018857A (en) * 2000-07-13 2002-01-22 Kobe Steel Ltd Center mechanism
JP2003220613A (en) * 2002-01-29 2003-08-05 Yokohama Rubber Co Ltd:The Control method for loading and unloading bladder for vulcanizing tire and its apparatus
JP2006297599A (en) * 2005-04-15 2006-11-02 Bridgestone Corp Method and apparatus for heating green tire
JP2011167979A (en) * 2010-02-19 2011-09-01 Sumitomo Rubber Ind Ltd Method of manufacturing pneumatic tire
JP2013006367A (en) * 2011-06-24 2013-01-10 Sumitomo Rubber Ind Ltd Rigid core

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015104905A (en) * 2013-12-02 2015-06-08 住友ゴム工業株式会社 Tire vulcanizing machine and tire production method using the same
JP2017121773A (en) * 2016-01-08 2017-07-13 住友ゴム工業株式会社 Method for production of pneumatic tire

Also Published As

Publication number Publication date
JP6196543B2 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
JP5438545B2 (en) Pneumatic tire manufacturing method
JP6196543B2 (en) Tire vulcanizer and tire manufacturing method using the same
KR101757365B1 (en) Tire vulcanizing device
JP5432955B2 (en) Rigid core
CN1248845C (en) Method and apparatus for moulding and curing tyres for vehicle wheels
JP2014074590A (en) Device for measuring contour shape of core assembly and raw tire inspection method using the same
JP5753522B2 (en) Tire vulcanizer
US10118355B2 (en) Tire manufacturing method
JP5036419B2 (en) Tire vulcanization mold preheating device and tire manufacturing device
EP1163110B1 (en) Method for treading a tyre body
WO2014054416A1 (en) Tire vulcanizing method and tire manufacturing method
JP6185828B2 (en) Tire vulcanizer and tire manufacturing method using the same
CN110114207A (en) Device for loading the method for bicycle crude tyre in sulfurizing mould and for moulding and vulcanizing
US10449741B2 (en) Rigid core mold removal device and tire manufacturing method
JP2013006366A (en) Rigid core
WO2015159382A1 (en) Tire vulcanizing device and tire vulcanizing method
JP5973863B2 (en) Inspection method for core assembly
EP2072204A1 (en) Mould for vulcanisation of a raw blank of a tyre
JP5952003B2 (en) Tire printing equipment
JP6109016B2 (en) Rotating device for tire bead area
JP2005246819A (en) Bladder unit apparatus for molding/vulcanizing pneumatic radial tire
JP2008195058A (en) Tire vulcanizer and vulcanizing process
CN201998367U (en) Engineering tire retreading vulcanizing tank
KR100746638B1 (en) Position guiding device of inner liner
JP2015182296A (en) Rigid core device for manufacturing pneumatic tire, and method for manufacturing pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170818

R150 Certificate of patent or registration of utility model

Ref document number: 6196543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250