JP2015104744A - Joining method - Google Patents

Joining method Download PDF

Info

Publication number
JP2015104744A
JP2015104744A JP2013247923A JP2013247923A JP2015104744A JP 2015104744 A JP2015104744 A JP 2015104744A JP 2013247923 A JP2013247923 A JP 2013247923A JP 2013247923 A JP2013247923 A JP 2013247923A JP 2015104744 A JP2015104744 A JP 2015104744A
Authority
JP
Japan
Prior art keywords
joining
oxide film
bonding
joined
insert material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013247923A
Other languages
Japanese (ja)
Other versions
JP6213897B2 (en
Inventor
宮本 健二
Kenji Miyamoto
健二 宮本
中川 成幸
Nariyuki Nakagawa
成幸 中川
南部 俊和
Toshikazu Nanbu
俊和 南部
義喜 新村
Yoshiki Niimura
義喜 新村
井上 雅之
Masayuki Inoue
雅之 井上
真一 由田
Shinichi Yoshida
真一 由田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2013247923A priority Critical patent/JP6213897B2/en
Publication of JP2015104744A publication Critical patent/JP2015104744A/en
Application granted granted Critical
Publication of JP6213897B2 publication Critical patent/JP6213897B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

PROBLEM TO BE SOLVED: To provide a joining method capable of reducing adverse influence on joining strength and conductivity of electricity and heat, even if a height of a projection formed on a joint surface for easily removing an oxide film is varied, when removing the oxide film and joining an insert material and a joining object material by eutectic reaction between the insert material and the joining object material, by interposing the insert material between the joint surfaces formed with the oxide film.SOLUTION: A projection 1c constituting an uneven structure of the joint surface is formed in an inclined state without erecting on the joint surface. For example, when a shape of the projection 1c is a pyramidal shape, an intersection C with a bottom surface of a perpendicular lowered to a bottom surface from its apex T, is dislocated from the center of gravity G of the bottom surface.

Description

本発明は、表面に酸化皮膜が存在する金属材料の接合方法に係り、さらに詳しくは、上記金属材料を大気中、低加圧、低温度で接合することができ、母材や周辺への熱や加圧力の影響を最小限に抑えることができ、しかも安定した接合強度が得られる接合方法と、このような方法により接合された半導体装置に関するものである。   The present invention relates to a method for joining a metal material having an oxide film on the surface, and more specifically, the metal material can be joined at low pressure and low temperature in the atmosphere, and heat to the base material and the surroundings can be obtained. In particular, the present invention relates to a bonding method capable of minimizing the influence of the applied pressure and obtaining stable bonding strength, and a semiconductor device bonded by such a method.

例えば、アルミニウム系金属から成る材料の表面には、緻密で強固な酸化皮膜が生成されており、このような酸化皮膜の存在が障害となるため、これらアルミニウム系金属材料については、一般に、冶金的な接合が難しい。   For example, a dense and strong oxide film is formed on the surface of an aluminum-based metal material, and the presence of such an oxide film is an obstacle. Therefore, these aluminum-based metal materials are generally metallurgical. Is difficult to join.

このようなアルミニウム系金属材料との接合においては、Alと共晶反応を生ずる金属として、例えばZnを含むインサート材を接合面間に介在させた状態で加圧、加熱し、アルミニウム系材料とインサート材との間に共晶反応を生じさせて接合することが知られている。
すなわち、アルミニウム系材料とインサート材との間に共晶反応を生じさせることによって、アルミニウム系材料表面の酸化皮膜を除去し、生じた共晶溶融物と共に接合面から排出することによって、酸化皮膜による接合品質への影響が解消され、健全な接合が可能になる。
In joining with such an aluminum-based metal material, for example, an insert material containing Zn as a metal that causes a eutectic reaction with Al is pressed and heated in a state of being interposed between the joint surfaces, and the aluminum-based material and the insert It is known to cause a eutectic reaction between the materials and join them.
That is, by causing a eutectic reaction between the aluminum-based material and the insert material, the oxide film on the surface of the aluminum-based material is removed, and the resulting eutectic melt is discharged from the joint surface, thereby causing an oxide film. The influence on the bonding quality is eliminated and sound bonding is possible.

このとき、アルミニウム系材料とインサート材との直接的な接触を促進し、共晶反応の起点を早期に形成して、上記接合プロセスをより円滑なものとするために、酸化皮膜を破壊するための応力集中手段として、凹凸構造(突起)を接合面に形成することが提案されている(引用文献1参照)。   At this time, in order to promote direct contact between the aluminum-based material and the insert material, to form the starting point of the eutectic reaction early, and to make the joining process smoother, in order to destroy the oxide film As a stress concentration means, it has been proposed to form a concavo-convex structure (protrusion) on the joint surface (see cited document 1).

特開2013−78793号公報JP 2013-78793 A

しかしながら、上記特許文献1に記載の方法においては、凹凸構造が微細であることから、高精度の凹凸構造を加工することが難しく、突起の高さなどがばらついた場合には、十分な接触領域が得られないことがあり、このような場合には接合強度が変動するという問題があった。また、接合面の電気伝導性や熱伝導性も損なわれることがあった。   However, in the method described in Patent Document 1, since the concavo-convex structure is fine, it is difficult to process a high-precision concavo-convex structure, and when the height of the protrusions varies, a sufficient contact area is obtained. May not be obtained, and in such a case, there is a problem that the bonding strength varies. In addition, the electrical conductivity and thermal conductivity of the joint surface may be impaired.

本発明は、接合面に凹凸を設け、接合面間に介在させたインサート材と被接合材の間に生じる共晶反応を利用して接合面の酸化皮膜を除去する接合方法における上記のような課題に鑑みてなされたものである。そして、その目的とするところは、凹凸加工のばらつきによる接合強度や電気・熱の伝導性への影響を軽減することができる接合方法を提供することにある。また、このような接合方法を適用した接合部品として、半導体装置を提供することにある。   As described above, the present invention provides a method for removing an oxide film on a bonding surface by providing a concavity and convexity on the bonding surface and utilizing a eutectic reaction generated between the insert material and the material to be bonded interposed between the bonding surfaces. It was made in view of the problem. The object of the present invention is to provide a bonding method capable of reducing the influence on the bonding strength and the electrical / thermal conductivity due to the unevenness of the irregularities. Another object of the present invention is to provide a semiconductor device as a joining component to which such a joining method is applied.

本発明者らは、上記目的を達成すべく、鋭意検討を重ねた結果、接合面の凹凸構造を構成する突起を接合面に直立させることなく、非対称、すなわち突起の中心軸を接合面に対して傾斜した状態に形成することによって、上記課題が解決できることを見出し、本発明を完成するに到った。   As a result of intensive studies to achieve the above object, the present inventors have found that the projections constituting the concavo-convex structure of the joint surface do not stand upright on the joint surface, that is, asymmetry, that is, the central axis of the projection is The present invention has been completed by finding that the above-mentioned problems can be solved by forming the film in an inclined state.

すなわち、本発明は上記知見に基づくものであって、本発明の接合方法においては、少なくとも一方が表面に酸化皮膜を形成している2つの金属部材の間にインサート材を介在させた状態の被接合材を相対的に加圧しつつ加熱し、酸化皮膜を形成している金属とインサート材の間で共晶反応を発生させ、生じた共晶反応溶融物を酸化皮膜と共に接合面から排出して上記被接合材を接合するに際して、上記金属部材の接合面の少なくとも一方に、上記酸化皮膜を破壊するために複数の突起を設け、該突起の少なくとも60%の中心線を接合面に対して傾けて形成するようにしたことを特徴としている。
また、本発明の半導体装置は、本発明の上記接合方法によって接合されていることを特徴とする。
In other words, the present invention is based on the above knowledge, and in the joining method of the present invention, at least one of the objects is covered with an insert material between two metal members having an oxide film formed on the surface. The bonding material is heated while being relatively pressurized, causing a eutectic reaction between the metal forming the oxide film and the insert material, and discharging the resulting eutectic reaction melt together with the oxide film from the bonding surface. When joining the materials to be joined, a plurality of protrusions are provided on at least one of the joining surfaces of the metal member to break the oxide film, and a center line of at least 60% of the protrusions is inclined with respect to the joining surface. It is characterized by being formed.
The semiconductor device of the present invention is bonded by the above bonding method of the present invention.

本発明によれば、接合面に形成する凹凸構造の突起の60%以上を接合面に対して傾けたものとしたため、接合時の加圧によって、突起が倒れ易く、変形し易くなることから、接合面における接触面積が増し、突起の加工精度のばらつきが吸収され、接合品質を安定化することができる。   According to the present invention, since 60% or more of the protrusions of the concavo-convex structure formed on the bonding surface are inclined with respect to the bonding surface, the protrusions easily fall down and easily deform due to the pressure applied during bonding. The contact area on the joining surface is increased, and variations in the processing accuracy of the protrusions are absorbed, so that the joining quality can be stabilized.

(a)〜(e)は本発明の接合方法における酸化皮膜の排除過程を概略的に示す工程図である。(A)-(e) is process drawing which shows roughly the exclusion process of the oxide film in the joining method of this invention. は本発明の接合方法における凹凸構造の形成部位の例を示す説明図である。These are explanatory drawings which show the example of the formation site | part of the uneven structure in the joining method of this invention. (a)〜(d)は本発明の接合方法における突起の第1の形状例を示す説明図である。(A)-(d) is explanatory drawing which shows the 1st example of a shape of the processus | protrusion in the joining method of this invention. (a)〜(d)は本発明の接合方法における突起の第2の形状例を示す説明図である。(A)-(d) is explanatory drawing which shows the 2nd example of a shape of the protrusion in the joining method of this invention. (a)〜(d)は本発明の接合方法における突起の第3の形状例を示す説明図である。(A)-(d) is explanatory drawing which shows the 3rd example of a processus | protrusion in the joining method of this invention. 本発明の接合方法により接合された部品の一例として半導体装置の構造を示す概略図である。It is the schematic which shows the structure of a semiconductor device as an example of the components joined by the joining method of this invention. 本発明の実施例における丸棒同士の突き合わせ接合の要領を示す斜視図である。It is a perspective view which shows the point of the butt | joining joining of the round bars in the Example of this invention. 本発明の実施例における半導体装置の接合要領を示す斜視図である。It is a perspective view which shows the junction point of the semiconductor device in the Example of this invention.

以下に、本発明の接合方法について、さらに詳細、具体的に説明する。なお、本明細書において「%」は、特記しない限り、質量百分率を意味するものとする。   Hereinafter, the bonding method of the present invention will be described in more detail and specifically. In the present specification, “%” means mass percentage unless otherwise specified.

本発明の接合方法においては、上記したように、被接合材の間にインサート材を介在させ、接合材のうち、接合面に酸化皮膜を生成している金属とインサート材の間で共晶反応を生じさせ、生成した共晶反応溶融物を上記酸化皮膜と共に接合面から排出することによって、比較的低温度(共晶温度)で、新生面による接合が可能になる。
このとき、両接合面の少なくとも一方に、多数の突起を設け、これらの少なくとも60%の突起を接合面に対して傾斜した状態に形成するようにしている。
In the joining method of the present invention, as described above, an insert material is interposed between the materials to be joined, and the eutectic reaction between the insert material and the metal that forms an oxide film on the joining surface of the joining material. And the generated eutectic reaction melt is discharged from the bonding surface together with the oxide film, so that bonding on the new surface becomes possible at a relatively low temperature (eutectic temperature).
At this time, a large number of protrusions are provided on at least one of the joint surfaces, and at least 60% of the protrusions are inclined with respect to the joint surface.

したがって、上記突起によって接合面の酸化皮膜を低荷重で破壊して、インサート材と直接に接触させることによって、共晶反応の起点とすることができ、低加圧、低温度で接合することができ、被接合材や周辺部材への影響を最小限に抑えることができる。
また、突起を接合面に直立させることなく、接合面に対して予め傾斜させたため、接合時における相手接合面からの押圧によって、突起が変形して倒れ易くなり、接合面同士の接触面積が増す結果、突起の加工精度のばらつきを吸収して、接合品質が安定したものとなり、接合強度や電気伝導性、熱伝導性の向上が可能になる。
Therefore, by destroying the oxide film on the joint surface with a low load by the protrusion and bringing it directly into contact with the insert material, it can be the starting point of the eutectic reaction, and can be joined at low pressure and low temperature. It is possible to minimize the influence on the material to be joined and peripheral members.
In addition, since the protrusions are inclined in advance with respect to the bonding surface without standing upright on the bonding surfaces, the protrusions are easily deformed and fall down by pressing from the mating bonding surface during bonding, and the contact area between the bonding surfaces increases. As a result, variations in the processing accuracy of the protrusions are absorbed, the bonding quality is stabilized, and the bonding strength, electrical conductivity, and thermal conductivity can be improved.

本発明の接合方法では、接合面に形成する凹凸構造を構成する複数の突起のすべてを必ずしも傾斜さなくてもよいが、全突起数の少なくとも60%を傾斜構造としなければならない。
すなわち、直立した非傾斜突起がの占める割合が40%を超えると、このような突起から成る凹凸構造全体としての変形能が不足し、上記のような効果が得られなくなることによる。
In the bonding method of the present invention, all of the plurality of protrusions constituting the concavo-convex structure formed on the bonding surface need not necessarily be inclined, but at least 60% of the total number of protrusions must be inclined.
That is, when the proportion of upright non-inclined protrusions exceeds 40%, the deformability of the entire concavo-convex structure composed of such protrusions is insufficient, and the above effects cannot be obtained.

本発明の接合方法においては、まず、被接合材の少なくとも一方の接合面に、多数の突起から成る凹凸を形成しておく。なお、本発明においては、後述するように、この突起を接合面に対して傾けた状態に形成することを要する。
次いで、このような突起から成る凹凸構造を備えた接合面の間に、酸化皮膜を備えた被接合材を構成する金属と共晶反応を生じる元素を含むインサート材を介在させる。
In the joining method of the present invention, first, irregularities made of a large number of protrusions are formed on at least one joining surface of the materials to be joined. In the present invention, as described later, it is necessary to form the protrusions in a state inclined with respect to the joint surface.
Next, an insert material containing an element that causes a eutectic reaction with the metal constituting the material to be joined provided with the oxide film is interposed between the joint surfaces provided with the concavo-convex structure including such protrusions.

そして、接合に際しては、両被接合材に相対的な荷重を付与し、接合面に形成された突起によって局所的な応力を増加させ、接合面の酸化皮膜を局所的に破壊する。
接合面の酸化皮膜が局部的、機械的に破壊され、新生面が露出し、共晶反応が発生する温度に到達すると、共晶反応が生じ、接合界面に被接合材中の元素とインサート材に含まれる元素との共晶反応による溶融物が生成する。
In joining, a relative load is applied to both materials to be joined, and local stress is increased by the protrusions formed on the joining surfaces, and the oxide film on the joining surfaces is locally broken.
When the oxide film on the joint surface is destroyed locally and mechanically, the new surface is exposed and reaches the temperature at which the eutectic reaction occurs, the eutectic reaction occurs, and the elements in the material to be joined and the insert material are joined at the joint interface. A melt is formed by the eutectic reaction with the contained elements.

被接合材へのさらなる加圧によって、生じた共晶反応溶融物と共に接合面の酸化皮膜を接合界面から排出して、被接合材の接合面を直接接合するようにしている。
このとき、接合面には多数の突起から成る凹凸構造が形成されており、突起の先端が選択的に相手面に接触し、局所的に応力を増大させるため、低い荷重で酸化皮膜を局所破壊して、共晶反応を引き起こすことができ、低い荷重のもとに、新生面による強固な接合が可能となる。
By further pressurization of the material to be joined, the oxide film on the joining surface is discharged from the joining interface together with the eutectic reaction melt generated, and the joining surface of the material to be joined is directly joined.
At this time, a concavo-convex structure consisting of a large number of protrusions is formed on the joint surface, and the tip of the protrusions selectively contacts the mating surface and locally increases the stress. Thus, a eutectic reaction can be caused, and a strong bonding with a new surface can be performed under a low load.

図1(a)〜(e)は、本発明の接合方法による酸化皮膜の排出プロセスをアルミニウム系金属材料同士の接合を例として、説明するための概略図である。   FIG. 1A to FIG. 1E are schematic views for explaining an oxide film discharge process according to the bonding method of the present invention, taking as an example the bonding between aluminum-based metal materials.

まず、図1(a)に示すように、被接合材としてアルミニウム合金材から成る被接合材1、1の間に、Alと共晶反応を生じる材料として、Zn(亜鉛)を含有する材料、例えば亜鉛箔から成るインサート材2を挟んだ状態に重ねる。
このとき、被接合材1、1の表面、ここでは図中上側の被接合材1の接合面には、多数の突起1cから成る凹凸構造が形成されており、これら被接合材1、1の表面には、それぞれAlを主成分とする酸化皮膜1aが生成している。
First, as shown in FIG. 1A, a material containing Zn (zinc) as a material that causes a eutectic reaction with Al between the materials to be bonded 1 and 1 made of an aluminum alloy material as a material to be bonded, For example, the insert material 2 made of zinc foil is sandwiched.
At this time, a concavo-convex structure composed of a large number of protrusions 1c is formed on the surface of the materials 1 and 1 to be bonded, here, the bonding surface of the material 1 to be bonded in the upper side in the figure. Oxide films 1a mainly composed of Al 2 O 3 are formed on the surface.

次に、図1(b)に示すように両被接合材1、1を加圧して、これらをインサート材2を介して密着させ、さらに荷重を付加しながら加熱を開始する。すると、低荷重にもかかわらず、凹凸構造の突起1cの先端が接触した部位の応力が局所的に急激に上昇し、被接合材1の酸化被膜1aが機械的に破壊され、図1(c)に示すように、亀裂Cが入る。
亀裂Cを介して、被接合材1の新生面とインサート材2が直接的に接触した状態で、接合面の温度が共晶反応が発生する温度に到達すると、被接合材1中のAlとインサート材2のZnとの間に共晶反応を起こし、共晶溶融相が発生する。そして、図1(d)に示すように、共晶溶融範囲が拡がり、破壊された酸化皮膜1aの欠片が共晶溶融相中に分散する。
Next, as shown in FIG.1 (b), both the to-be-joined materials 1 and 1 are pressurized, these are closely_contact | adhered via the insert material 2, and a heating is started, adding a load. Then, in spite of the low load, the stress at the portion where the tip of the projection 1c of the concavo-convex structure contacts locally rapidly increases, and the oxide film 1a of the material 1 to be joined is mechanically broken, and FIG. As shown in FIG.
When the new surface of the material to be bonded 1 and the insert material 2 are in direct contact with each other through the crack C, when the temperature of the bonding surface reaches a temperature at which a eutectic reaction occurs, Al in the material to be bonded 1 and the insert A eutectic reaction occurs between Zn of the material 2 and a eutectic melt phase is generated. Then, as shown in FIG. 1 (d), the eutectic melting range is expanded, and the broken pieces of the oxide film 1a are dispersed in the eutectic melting phase.

続く加圧によって、図1(e)に示すように、共晶反応溶融物が接合界面から排出され、この液相中に分散されていた酸化皮膜1aの欠片も共晶溶融物と共に排出物Dとなって、同時に接合界面から押し出され、両被接合材1、1の新生面が互いに接合される。   By subsequent pressurization, as shown in FIG. 1 (e), the eutectic reaction melt is discharged from the bonding interface, and the fragments of the oxide film 1a dispersed in this liquid phase are also discharged together with the eutectic melt. At the same time, they are pushed out from the bonding interface, and the new surfaces of the materials to be bonded 1 and 1 are bonded to each other.

上記突起1cの形成位置については、接合面の1箇所以上に形成すればよく、上記のように被接合材1、1の接合面の一方に形成するほか、図2に示すように、接合面の両方に設けることができる。両面に形成することによって、酸化皮膜の破壊起点をより多くすることができる。   About the formation position of the said protrusion 1c, what is necessary is just to form in one or more places of a joining surface, and it forms in one of the joining surfaces of the to-be-joined materials 1 and 1 as mentioned above, and as shown in FIG. Both can be provided. By forming it on both surfaces, it is possible to increase the breakdown starting point of the oxide film.

また、凹凸構造を構成する突起1cは、接合面に対して傾斜させた状態に形成することが必要である。その形状としては、接合面に直立していることなく、傾いている限り、特に限定されるものではないが、例えば、図3〜図5に示すようなものを採用することができる。   Further, the protrusion 1c constituting the concavo-convex structure needs to be formed in an inclined state with respect to the joint surface. The shape is not particularly limited as long as it is tilted without standing upright on the joint surface. For example, the shape shown in FIGS. 3 to 5 can be adopted.

すなわち、図3に示すように、先端部を点状とすること、つまり錐状突起とすることができる。ここでは、錐状突起の代表例として、四角錐状の例を示す。
この実施形態による凹凸構造は、図3(a)に示すように、接合面上に、ピッチpで隙間なく縦横方向に並べられた無数の四角錐状の突起1cから構成されている。
That is, as shown in FIG. 3, the tip portion can be formed into a dot shape, that is, a conical protrusion. Here, an example of a quadrangular pyramid is shown as a representative example of the conical protrusion.
As shown in FIG. 3A, the concavo-convex structure according to this embodiment is composed of innumerable quadrangular pyramidal projections 1c arranged in the vertical and horizontal directions at a pitch p without a gap on the joint surface.

それぞれの突起1cは、図3(b)に拡大して示すように、正確な四角錐のように、対称形状ではなく、傾いた形状をなしており、頂点Tから、当該突起1cの底面に下ろした垂線は、底面の重心GからずれたCの位置において、底面と交わる。   As shown in an enlarged view of FIG. 3 (b), each protrusion 1c has an inclined shape instead of a symmetric shape, like an accurate quadrangular pyramid. From the apex T to the bottom surface of the protrusion 1c. The lowered vertical line intersects the bottom surface at a position C deviated from the center of gravity G of the bottom surface.

この頂点Tからの垂線と底面との交点Cと底面の重心Gとの位置関係については、図3(c)及び(d)に示すように、重心Gと交点Cとを結ぶ線分が底面と交差する点をそれぞれE1、E2とし、E1−E2間距離をL、重心Gと交点Cとの距離をdとするとき、d/Lの値が0.1以上であることが望ましい。
すなわち、d/Lの値が0.1に満たない突起1cは、その形状を傾けたことにはならず、傾斜させたことによる本発明の効果が十分に得られないことがあることによる。
Regarding the positional relationship between the intersection C between the perpendicular line from the vertex T and the bottom surface and the center of gravity G of the bottom surface, as shown in FIGS. 3C and 3D, the line segment connecting the center of gravity G and the intersection C is the bottom surface. It is preferable that the value of d / L is 0.1 or more, where E1 and E2 are points intersecting each other, L is the distance between E1 and E2, and d is the distance between the center of gravity G and the intersection C.
That is, the protrusion 1c whose d / L value is less than 0.1 is not inclined in shape, and the effect of the present invention due to the inclination may not be sufficiently obtained.

図4は、突起形状の他の形態例として、先端部が線状となるもの、つまり三角柱を横にして並列させた屋根型突起(鋸歯状断面)の例を示すものである。
この実施形態による凹凸構造は、図4(a)に示すように、接合面上に、ピッチpで横方向に隙間なく平行に並べられた無数の三角柱状の突起1cから構成されている。
FIG. 4 shows another example of the shape of the protrusion, in which the tip is linear, that is, an example of a roof-type protrusion (sawtooth-shaped cross section) arranged in parallel with a triangular prism.
As shown in FIG. 4A, the concavo-convex structure according to this embodiment is composed of innumerable triangular prism-shaped projections 1c arranged in parallel at a pitch p in the lateral direction without gaps on the joint surface.

それぞれの突起1cは、図4(b)に示すように、その断面は、2等辺三角形ではなく、非対称に傾いた形状をなしており、先端部である最頂線(稜線)の中点Mから、当該突起1cの底面に下ろした垂線は、上記した四角錐の場合と同様に、底面の重心GからずれたCの位置において、底面と交わる。
この頂点Tからの垂線と底面との交点Cと底面の重心Gとの位置関係については、図4(c)及び(d)に示すように、上記四角錐の場合と同様に、重心Gと交点Cとを結ぶ線分が底面と交差する点をそれぞれE1、E2とし、E1−E2間距離をL、重心Gと交点Cとの距離をdとするとき、d/Lの値が0.1以上であることが望ましい。
As shown in FIG. 4B, each protrusion 1c has a cross section that is not an isosceles triangle, but an asymmetrically inclined shape, and is the midpoint M of the apex line (ridge line) that is the tip. From the above, the perpendicular line dropped to the bottom surface of the projection 1c intersects the bottom surface at the position C deviated from the center of gravity G of the bottom surface, as in the case of the quadrangular pyramid described above.
As shown in FIGS. 4C and 4D, the positional relationship between the intersection C between the perpendicular line from the vertex T and the bottom surface and the center of gravity G of the bottom surface is similar to that of the square pyramid, as shown in FIGS. The points where the line connecting the intersection C intersects the bottom are E1 and E2, respectively, the distance between E1 and E2 is L, and the distance between the center of gravity G and the intersection C is d. It is desirable to be 1 or more.

さらに、図5に示すように、他の形態例として、先端部を面状をなすもの、つまり錐台状突起とすることも可能である。
この実施形態による凹凸構造は、図5(a)に示すように、接合面上に、ピッチpで隙間なく縦横方向に並べられた無数の四角錐台状の突起1cから構成されている。
Furthermore, as shown in FIG. 5, as another embodiment, the tip portion may have a planar shape, that is, a frustum-shaped protrusion.
As shown in FIG. 5 (a), the concavo-convex structure according to this embodiment is composed of innumerable quadrangular pyramid-shaped protrusions 1c arranged on the joint surface in the vertical and horizontal directions at a pitch p with no gap.

それぞれの突起1cは、図5(b)に拡大して示すように、正確な四角錐台のような対称形状ではなく、傾いた形状を有しており、頂面の重心Gtから、当該突起1cの底面に下ろした垂線は、四角錐の場合(第1形態)と同様に、底面の重心GからずれたCの位置において、底面と交わる。   As shown in an enlarged view in FIG. 5B, each protrusion 1c has an inclined shape rather than a symmetrical shape such as an accurate quadrangular frustum. The perpendicular line drawn down to the bottom surface of 1c intersects the bottom surface at the position C deviated from the center of gravity G of the bottom surface, as in the case of the quadrangular pyramid (first form).

この突起頂面の重心Gtから下ろした垂線と底面との交点Cと底面の重心Gとの位置関係については、上記第1及び第2の形態例と変わるところはない。
すなわち、図5(c)及び(d)に示すように、重心Gと交点Cとを結ぶ線分が底面と交差する点をそれぞれE1、E2とし、E1−E2間距離をL、重心G−交点C間距離をdとするとき、d/Lの値が0.1以上であることが望ましい。
The positional relationship between the intersection C between the perpendicular line drawn from the center of gravity Gt of the projection top surface and the bottom surface and the center of gravity G of the bottom surface is not different from the first and second embodiments.
That is, as shown in FIGS. 5C and 5D, the points where the line segment connecting the center of gravity G and the intersection C intersects the bottom surface are E1 and E2, respectively, the distance between E1 and E2 is L, and the center of gravity G- When the distance between the intersection points C is d, it is desirable that the value of d / L is 0.1 or more.

上記突起1cの形状としては、応力を集中させて、酸化皮膜の破壊を促進させる機能さえあれば、数や形状的な制限はなく、上記の他には、波形やかまぼこ形、半球状など凸部先端を曲面とすることも可能である。なお、当該曲面の曲率半径は小さいほど、応力集中が顕著なものとなって、酸化皮膜が破壊し易くなることは言うまでもない。   The shape of the protrusion 1c is not limited in terms of number or shape as long as it has a function of concentrating stress and promoting the destruction of the oxide film. It is also possible to make the tip of the part a curved surface. Needless to say, the smaller the radius of curvature of the curved surface, the more conspicuous the stress concentration becomes, and the more easily the oxide film is broken.

突起1cの形状については、アスペクト比が0.001以上、ピッチが1μm以上であることが好ましく、さらにはアスペクト比0.1以上、ピッチ10μm以上であることが望ましい。すなわち、アスペクト比が0.001未満、ピッチが1μm未満の場合には、十分に応力を集中させることができず、酸化皮膜の破壊が困難となることがあることによる。   As for the shape of the protrusions 1c, the aspect ratio is preferably 0.001 or more and the pitch is 1 μm or more, more preferably, the aspect ratio is 0.1 or more and the pitch is 10 μm or more. That is, when the aspect ratio is less than 0.001 and the pitch is less than 1 μm, the stress cannot be sufficiently concentrated, and the oxide film may be difficult to break.

上記突起1cは、切削加工、研削加工、塑性加工(ローラ加工)、レーザ加工、放電加工、エッチング加工、リソグラフィーなどによって形成することができ、その形成方法としては、特に限定されるものではない。しかし、塑性加工によれば、非常に低コストで形成が可能である。   The protrusion 1c can be formed by cutting, grinding, plastic processing (roller processing), laser processing, electric discharge processing, etching processing, lithography, or the like, and the forming method is not particularly limited. However, the plastic working can be formed at a very low cost.

上記したように、アルミニウム系金属材料を亜鉛箔から成るインサート材を用いて接合する例について説明した。このように、本発明の接合方法における被接合材としては、強固な酸化皮膜を形成するアルミニウム系やマグネシウム系の金属材料が対象となるが、少なくとも一方の被接合材が表面に酸化皮膜を形成している限り、本発明方法の接合対象となり得る。
すなわち、酸化皮膜が形成されない金(Au)同士の接合を除き、すべての実用金属、例えば、銅及び銅合金、ニッケル及びニッケル合金、鉄鋼材料などに適用することが可能である。また、同種材料のみならず、異種材料間の接合にも適用することができる。
As described above, the example in which the aluminum metal material is joined using the insert material made of zinc foil has been described. As described above, the materials to be bonded in the bonding method of the present invention include aluminum-based and magnesium-based metal materials that form a strong oxide film, but at least one of the materials to be bonded forms an oxide film on the surface. As long as it is, it can become a joining object of the method of the present invention.
That is, it can be applied to all practical metals, for example, copper and copper alloys, nickel and nickel alloys, steel materials, etc., except for bonding of gold (Au) where an oxide film is not formed. Further, it can be applied not only to the same kind of material but also to the joining between different kinds of materials.

ここで、インサート材としては、上記したようなアルミニウム系金属材料の接合の場合には、Alとの間に共晶反応を生じる金属材料であればよく、亜鉛箔の他には、マグネシウム(Mg)箔、錫(Sn)箔や、Zn、Mg、Sn、あるいはこれらを主成分とする合金、さらにはこれら金属とAlとの合金を用いることも可能である。
なお、「主成分」とは上記金属の含有量が80%以上のものを言うものとする。具体的には、Zn,Mg,Sn,Zn+Mg,Zn+Sn,Mg+Sn,Zn+Mg+Sn,Zn+Al,Mg+Al,Sn+Al,Zn+Mg+Al,Zn+Sn+Al,Mg+Sn+Al,Zn+Mg+Sn+Alを80%以上含有する金属(純金属又は合金)を意味する。
Here, the insert material may be a metal material that causes a eutectic reaction with Al in the case of joining the aluminum-based metal material as described above. In addition to the zinc foil, magnesium (Mg It is also possible to use a foil, a tin (Sn) foil, Zn, Mg, Sn, an alloy containing these as a main component, or an alloy of these metals and Al.
The “main component” means that the metal content is 80% or more. Specifically, it means a metal (pure metal or alloy) containing 80% or more of Zn, Mg, Sn, Zn + Mg, Zn + Sn, Mg + Sn, Zn + Mg + Sn, Zn + Al, Mg + Al, Sn + Al, Zn + Mg + Al, Zn + Sn + Al, Mg + Sn + Al, Zn + Mg + Sn + Al.

また、Alとの間に共晶反応を生じる金属として、Cu(銅)を用いることもできるが、Cuの融点はAlの融点よりも高いことから、インサート材としては、予めAlを合金化することによって、その融点をアルミニウム合金母材の融点より低くなるように成分調整したCu−Al合金を用いる必要がある。   Cu (copper) can also be used as a metal that causes a eutectic reaction with Al. However, since the melting point of Cu is higher than the melting point of Al, Al is previously alloyed as an insert material. Therefore, it is necessary to use a Cu—Al alloy whose components are adjusted so that its melting point is lower than the melting point of the aluminum alloy base material.

さらに、被接合材としてもアルミニウム系金属材料に限定されることはなく、上記したように、例えば銅及び銅合金、マグネシウム及びマグネシウム合金、ニッケル及びニッケル基合金、鉄系材料の接合に適用することができる。   Further, the material to be joined is not limited to the aluminum-based metal material, and as described above, for example, it can be applied to the joining of copper and copper alloys, magnesium and magnesium alloys, nickel and nickel-base alloys, and iron-based materials. Can do.

銅や銅系合金の接合におけるインサート材としては、例えばAl、Ag(銀)、Snや、これらの合金を上記した要領で用いることができる。
なお、Cuとの間に共晶反応を生じる金属としては、上記の他に、Ti(チタン)を挙げることができるが、Tiの融点はCuの融点よりも高いことから、上記同様に、Tiに予めCuを合金化したCuよりも低融点の合金をインサート材として使用することが必要となる。
As an insert material in the joining of copper or a copper-based alloy, for example, Al, Ag (silver), Sn, or an alloy thereof can be used as described above.
In addition to the above, Ti (titanium) can be cited as a metal that causes a eutectic reaction with Cu. However, since the melting point of Ti is higher than the melting point of Cu, similarly to the above, Ti In addition, it is necessary to use an alloy having a lower melting point than Cu obtained by previously alloying Cu as an insert material.

また、マグネシウムやマグネシウム系合金の接合に用いるインサート材としては、例えばAl、Znや、これらの合金を上記同様の要領で使用することができる。
なお、Si(ケイ素)もMgとの間に共晶反応を生じる元素であるが、Siの融点はMgの融点よりも高いため、上記同様に、予めMgを合金化したMgよりも低融点の合金をインサート材として使用することが必要となる。また、上記Alについても、Mgの融点に近いことから、同様にMgを合金化したインサート材を用いることが望ましい。
Moreover, as an insert material used for joining magnesium or a magnesium-based alloy, for example, Al, Zn, or an alloy thereof can be used in the same manner as described above.
Si (silicon) is an element that causes a eutectic reaction with Mg. However, since the melting point of Si is higher than that of Mg, similarly to the above, it has a lower melting point than Mg obtained by alloying Mg in advance. It is necessary to use an alloy as the insert material. Also, since Al is close to the melting point of Mg, it is desirable to use an insert material in which Mg is similarly alloyed.

さらに、ニッケルやニッケル基合金の接合に使用するインサート材としては、例えばCuや、これらの合金を同様の要領で用いることができる。
また、Cuの他に、Niとの間に共晶反応を生じる金属として、Ti,Nb(ニオブ),Cr(クロム)を挙げることができるが、これら金属の融点は何れもNiの融点よりも高いため、予めNiを合金化することによって、上記同様にNiよりも低融点化した合金をインサート材として使用する必要がある。
Furthermore, as an insert material used for joining nickel or a nickel base alloy, for example, Cu or an alloy thereof can be used in the same manner.
In addition to Cu, Ti, Nb (niobium), and Cr (chromium) can be cited as metals that cause a eutectic reaction with Ni. The melting point of these metals is higher than that of Ni. Therefore, it is necessary to use an alloy having a lower melting point than Ni by alloying Ni in advance as an insert material.

そして、鉄系材料の接合には、FeにC、NあるいはCrを合金化することによって、母材よりも低融点化した材料をインサート材として用いることができる。   For joining iron-based materials, a material having a lower melting point than that of the base material by alloying Fe with C, N, or Cr can be used as an insert material.

このようなインサート材の形状や両被接合材の間に介在させる方法としては、組成や形状(厚さ)などに関する選択の自由度が高いことから、箔の形態で両材料の間に挟み込むことが望ましい。
また、めっきやパウダーデポジション法によって、両材料の一方あるいは両方の接合面にインサート材を予め被覆しておくことも可能である。
As a method of interposing between the shape of the insert material and the two materials to be joined, since there is a high degree of freedom in selecting the composition and shape (thickness), it is sandwiched between both materials in the form of foil. Is desirable.
Moreover, it is also possible to coat | cover an insert material beforehand to the joint surface of one or both of both materials by plating or the powder deposition method.

本発明の接合方法は、不活性ガス雰囲気で行うこともできるが、大気中でも何ら支障はなく行うことができる。
もちろん、真空中で行うことも可能であるが、真空設備が必要となるばかりでなく、インサート材の溶融により真空計やゲートバルブを損傷する可能性があるので、大気中で行うことがコスト的にも有利である。
The bonding method of the present invention can be performed in an inert gas atmosphere, but can be performed in the air without any trouble.
Of course, it can be performed in a vacuum, but not only vacuum equipment is required, but also the vacuum gauge and gate valve may be damaged by melting of the insert material. It is also advantageous.

本発明の接合方法において、接合部を上記温度範囲に加熱し、維持するための手段としては、特に限定されることはなく、例えば、抵抗加熱や高周波加熱、赤外線加熱、あるいはこれらを組み合わせた方法を採用することができる。
また、接合温度については、高過ぎると、母材が溶け込むために液相が過剰に発生し、液相が過多になると接合界面に残存し、強度が得られなくなる傾向がある。具体的には、共晶点以上、共晶点+100℃までの温度範囲が好ましい。
In the bonding method of the present invention, the means for heating and maintaining the bonded portion within the above temperature range is not particularly limited, and for example, resistance heating, high-frequency heating, infrared heating, or a combination thereof Can be adopted.
In addition, if the bonding temperature is too high, the base material dissolves and an excessive liquid phase is generated, and if the liquid phase is excessive, it remains at the bonding interface and the strength tends not to be obtained. Specifically, a temperature range from the eutectic point to eutectic point + 100 ° C. is preferable.

上記接合温度への昇温速度については、遅い場合には、界面が酸化されて溶融物の排出性が低下して、強度が低下する原因となることがあるため、速い方が望ましい。特に大気中の接合の場合には、この傾向がある。具体的には、3℃/秒以上、10℃/秒以上がより望ましく、25℃/秒以上であることがさらに望ましい。   As for the rate of temperature rise to the bonding temperature, if it is slow, the interface is oxidized and the melt discharge property is lowered, which may cause the strength to be lowered. This tendency occurs particularly in the case of bonding in the atmosphere. Specifically, it is more preferably 3 ° C./second or more, 10 ° C./second or more, and further preferably 25 ° C./second or more.

また、本発明の接合方法における接合時の加圧力としては、30MPa以下の低い加圧力で接合することができ、付加荷重を低減して、被接合材の損傷を防止できると共に、加圧システムが簡素化でき、エネルギー消費を抑えることができ、コストの低減が可能になる。   In addition, as a pressing force at the time of bonding in the bonding method of the present invention, bonding can be performed with a low pressing force of 30 MPa or less, an applied load can be reduced, damage to the materials to be bonded can be prevented, and a pressurizing system can be used. It can be simplified, energy consumption can be suppressed, and cost can be reduced.

本発明の接合方法は、上記したように、酸化皮膜を備えた種々の金属の接合に適用することができるが、その代表例として半導体装置を挙げることができる。
図6は、半導体チップを上記接合方法により絶縁基板上に接合して成る半導体装置の構造を示す概略断面図である。
As described above, the bonding method of the present invention can be applied to bonding various metals having an oxide film, and a typical example thereof is a semiconductor device.
FIG. 6 is a schematic cross-sectional view showing the structure of a semiconductor device formed by bonding a semiconductor chip onto an insulating substrate by the above bonding method.

すなわち、図に示す半導体装置は、ヒートシンク11上に固定された絶縁基板12を備え、当該基板12の表面上に配置された配線金属13にシリコンチップ14が接合された構造を備えている。
上記配線金属13はアルミニウム合金から成るものであり、シリコンチップ14の接合面には、予めアルミニウムによるコーティングが施してあり、これらアルミニウム系金属同士が本発明方法によって接合されている。
That is, the semiconductor device shown in the figure includes an insulating substrate 12 fixed on a heat sink 11 and a structure in which a silicon chip 14 is bonded to a wiring metal 13 disposed on the surface of the substrate 12.
The wiring metal 13 is made of an aluminum alloy, and the bonding surface of the silicon chip 14 is preliminarily coated with aluminum, and these aluminum-based metals are bonded to each other by the method of the present invention.

これら配線金属13とシリコンチップ14の接合に際しては、予め、アルミニウム合金製の配線金属13の接合面に、無数の突起から成る凹凸構造を塑性加工あるいは切削加工によって形成しておく。
そして、これら配線金属13とシリコンチップ14間に、厚さ25μmのAl−Sn−Zn合金の急冷箔帯をインサート材として配置し、治具を用いて、常時15MPa以下の加圧力が掛かるように固定される。
In joining the wiring metal 13 and the silicon chip 14, an uneven structure including innumerable protrusions is formed in advance on the joining surface of the wiring metal 13 made of aluminum alloy by plastic working or cutting.
Then, a quenching foil strip of 25 μm thick Al—Sn—Zn alloy is disposed as an insert material between the wiring metal 13 and the silicon chip 14 so that a pressing force of 15 MPa or less is always applied using a jig. Fixed.

そして、例えばろう付け炉内にこの状態で収納し、400℃に1分間保持することによって、配線金属13とシリコンチップ14を接合することができる。
この方法によれば、Pb(鉛)フリーであることに加えて、低温度、短時間で接合が完了することから、半導体チップへの熱影響を最小限のものとすることができ、部品の歪みや性能劣化を防止することができる。また、複数のチップを同時に接合することができる。なお、半導体チップとしては、上記したシリコンチップ以外にも、種々のもの、例えばSiCやGaNなどを用いることができる。
Then, for example, the wiring metal 13 and the silicon chip 14 can be joined by storing in this state in a brazing furnace and holding at 400 ° C. for 1 minute.
According to this method, in addition to being free of Pb (lead), since the bonding is completed at a low temperature and in a short time, the thermal influence on the semiconductor chip can be minimized, and the component Distortion and performance degradation can be prevented. In addition, a plurality of chips can be bonded simultaneously. In addition to the silicon chip described above, various semiconductor chips such as SiC and GaN can be used as the semiconductor chip.

以下、本発明を実施例に基づいて具体的に説明する。なお、本発明はこのような実施例によって何ら限定されない。   Hereinafter, the present invention will be specifically described based on examples. In addition, this invention is not limited at all by such an Example.

〔1〕実施例1
(発明例1)
図7に示すように、JIS H 4000に、A1070として規定される工業用純アルミニウム(99.99%Al)から成る長さ15mm、径5mmの丸棒3と、長さ25mm、径10mmの丸棒4を用意した。
このとき、径10mmの丸棒4の接合面には、図3に示したような角錐状の突起1c(a=0.1mm、h=0.1mm、p=0.1mm、d/L=0.35)から成る凹凸構造をダイヤモンド工具を用いた切削加工によって形成した。
[1] Example 1
(Invention Example 1)
As shown in FIG. 7, a 15 mm long, 5 mm diameter round bar 3 made of industrial pure aluminum (99.99% Al) defined as A1070, and a 25 mm long, 10 mm diameter round A rod 4 was prepared.
At this time, a pyramidal projection 1c (a = 0.1 mm, h = 0.1 mm, p = 0.1 mm, d / L = as shown in FIG. 3 is formed on the joint surface of the round bar 4 having a diameter of 10 mm. An uneven structure consisting of 0.35) was formed by cutting using a diamond tool.

そして、上記丸棒3と丸棒4の接合面間に、急冷単ロール方によって作製したZn−3.5%Al−2.5%Mg合金から成る厚さ0.1mmの箔帯をインサート材2として挟んだ。
そして、大気中において接合部の周囲に配置した高周波加熱コイルSによって400℃に加熱し、5MPaで加圧した状態に1分間保持することによって、上記丸棒3、4を接合した。
A 0.1 mm thick foil strip made of a Zn-3.5% Al-2.5% Mg alloy made by a rapid cooling single roll method is inserted between the joint surfaces of the round bar 3 and the round bar 4 as an insert material. Sandwiched as 2.
And the said round bars 3 and 4 were joined by heating to 400 degreeC with the high frequency heating coil S arrange | positioned around the junction part in air | atmosphere, and hold | maintaining in the state pressurized by 5 MPa for 1 minute.

(発明例2)
丸棒4の接合面に、図4に示したような三角柱を並列させた鋸歯状断面を有する突起1c(a=0.1mm、h=0.1mm、p=0.1mm、d/L=0.35)から成る凹凸構造を形成したこと以外は、上記発明例1と同様の操作を繰り返すことによって、丸棒3、4を接合し、発明例2とした。
(Invention Example 2)
A protrusion 1c (a = 0.1 mm, h = 0.1 mm, p = 0.1 mm, d / L = having a sawtooth cross section in which triangular prisms as shown in FIG. Except having formed the uneven | corrugated structure which consists of 0.35), by repeating the same operation as the said invention example 1, the round bars 3 and 4 were joined and it was set as invention example 2.

(発明例3)
丸棒4の接合面に、図5に示したような角錐台状の突起1c(a=0.1mm、h=0.1mm、p=0.1mm、w=0.02mm、d/L=0.35)から成る凹凸構造を形成したこと以外は、上記発明例1と同様の操作を繰り返すことによって、丸棒3、4を接合し、発明例3とした。
(Invention Example 3)
On the joint surface of the round bar 4, a truncated pyramid-shaped projection 1c as shown in FIG. 5 (a = 0.1 mm, h = 0.1 mm, p = 0.1 mm, w = 0.02 mm, d / L = Except having formed the uneven | corrugated structure which consists of 0.35), the round bar 3 and 4 was joined by repeating the same operation as the said invention example 1, and it was set as invention example 3. FIG.

(発明例4)
丸棒3及び丸棒4をASTM(アメリカ材料試験協会)にAZ91として規定されるマグネシウム合金(9%Al)から成るものとしたことの他は、上記発明例1と同様の操作を繰り返すことによって、丸棒3、4を接合し、発明例4とした。
(Invention Example 4)
By repeating the same operation as in the invention example 1 except that the round bar 3 and the round bar 4 are made of a magnesium alloy (9% Al) defined as AZ91 by ASTM (American Society for Testing and Materials). The round bars 3 and 4 were joined to obtain Invention Example 4.

(発明例5)
丸棒3及び丸棒4を無酸素銅から成るものとしたことの他は、上記発明例1と同様の操作を繰り返すことによって、丸棒3、4を接合し、発明例5とした。
(Invention example 5)
Except that the round bar 3 and the round bar 4 are made of oxygen-free copper, the same operation as in the above-described Invention Example 1 is repeated, whereby the round bars 3 and 4 are joined to obtain Invention Example 5.

(比較例1)
インサート材を用いることなく、上記発明例1と同様の操作を繰り返すことによって、丸棒3、4を接合し、比較例1とした。
(Comparative Example 1)
The round bars 3 and 4 were joined by repeating the same operation as the said invention example 1 without using an insert material, and it was set as the comparative example 1.

(比較例2)
インサート材を用いることなく、上記発明例2と同様の操作を繰り返すことによって、丸棒3、4を接合し、比較例2とした。
(Comparative Example 2)
The round bars 3 and 4 were joined by repeating the same operation as the said invention example 2 without using an insert material, and it was set as the comparative example 2.

(比較例3)
インサート材を用いることなく、上記発明例3と同様の操作を繰り返すことによって、丸棒3、4を接合し、比較例3とした。
(Comparative Example 3)
By repeating the same operation as in the above-mentioned Invention Example 3 without using an insert material, the round bars 3 and 4 were joined to obtain Comparative Example 3.

(比較例4)
丸棒4の接合面に、対称形状をなす角錐状突起(a=0.1mm、h=0.1mm、p=0.1mm、d/L=0)を直立させてなる凹凸構造を形成したこと以外は、上記比較例1(インサート材なし)と同様の操作を繰り返すことによって、丸棒3、4を接合し、比較例4とした。
(Comparative Example 4)
A concavo-convex structure in which pyramid-shaped protrusions (a = 0.1 mm, h = 0.1 mm, p = 0.1 mm, d / L = 0) having a symmetric shape are formed upright on the joint surface of the round bar 4 is formed. Except for this, the same operation as in Comparative Example 1 (without insert material) was repeated, whereby the round bars 3 and 4 were joined to obtain Comparative Example 4.

(比較例5)
丸棒4の接合面に、二等辺三角形断面を有する屋根型の突起1c(a=0.1mm、h=0.1mm、p=0.1mm、d/L=0)を直立させてなる凹凸構造を形成したこと以外は、上記比較例2(インサート材なし)と同様の操作を繰り返すことによって、丸棒3、4を接合し、比較例5とした。
(Comparative Example 5)
Unevenness formed by upstanding a roof-shaped protrusion 1c (a = 0.1 mm, h = 0.1 mm, p = 0.1 mm, d / L = 0) having an isosceles triangular cross section on the joint surface of the round bar 4 Except having formed the structure, the same operation as the said comparative example 2 (no insert material) was repeated, the round bars 3 and 4 were joined and it was set as the comparative example 5.

(比較例6)
丸棒4の接合面に、対称形状をなす角錐台状突起(a=0.1mm、h=0.1mm、p=0.1mm、w=0.02mm、d/L=0)を直立させてなる凹凸構造を形成したこと以外は、上記比較例3(インサート材なし)と同様の操作を繰り返すことによって、丸棒3、4を接合し、比較例4とした。
(Comparative Example 6)
A symmetrical truncated pyramid-shaped projection (a = 0.1 mm, h = 0.1 mm, p = 0.1 mm, w = 0.02 mm, d / L = 0) is made upright on the joint surface of the round bar 4. The round bars 3 and 4 were joined by repeating the same operation as in the comparative example 3 (no insert material) except that the concavo-convex structure was formed.

(比較例7)
丸棒4の接合面に、対称形状をなす角錐状突起(a=0.1mm、h=0.1mm、p=0.1mm、d/L=0)を直立させてなる凹凸構造を形成したこと以外は、上記発明例1(インサート材あり)と同様の操作を繰り返すことによって、丸棒3、4を接合し、比較例7とした。
(Comparative Example 7)
A concavo-convex structure in which pyramid-shaped protrusions (a = 0.1 mm, h = 0.1 mm, p = 0.1 mm, d / L = 0) having a symmetric shape are formed upright on the joint surface of the round bar 4 is formed. Except for this, by repeating the same operation as in the above-described Invention Example 1 (with insert material), the round bars 3 and 4 were joined to obtain Comparative Example 7.

(比較例8)
丸棒4の接合面に、二等辺三角形断面を有する屋根型の突起1c(a=0.1mm、h=0.1mm、p=0.1mm、d/L=0)を直立させてなる凹凸構造を形成したこと以外は、上記発明例2と同様の操作を繰り返すことによって、丸棒3、4を接合し、比較例8とした。
(Comparative Example 8)
Unevenness formed by upstanding a roof-shaped protrusion 1c (a = 0.1 mm, h = 0.1 mm, p = 0.1 mm, d / L = 0) having an isosceles triangular cross section on the joint surface of the round bar 4 Except that the structure was formed, the same operations as those in Invention Example 2 were repeated, whereby the round bars 3 and 4 were joined to obtain Comparative Example 8.

(比較例9)
丸棒4の接合面に、対称形状をなす角錐台状突起(a=0.1mm、h=0.1mm、p=0.1mm、w=0.02mm、d/L=0)を直立させてなる凹凸構造を形成したこと以外は、上記発明例3と同様の操作を繰り返すことによって、丸棒3、4を接合し、比較例9とした。
(Comparative Example 9)
A symmetrical truncated pyramid-shaped projection (a = 0.1 mm, h = 0.1 mm, p = 0.1 mm, w = 0.02 mm, d / L = 0) is made upright on the joint surface of the round bar 4. The round bars 3 and 4 were joined by repeating the same operation as that of the above-described Invention Example 3 except that the uneven structure was formed.

(比較例10)
丸棒4の接合面に、対称形状をなす角錐状突起(a=0.1mm、h=0.1mm、p=0.1mm、d/L=0)を直立させてなる凹凸構造を形成したこと以外は、上記発明例4(マグネシウム合金から成る被接合材)と同様の操作を繰り返すことによって、丸棒3、4を接合し、比較例10とした。
(Comparative Example 10)
A concavo-convex structure in which pyramid-shaped protrusions (a = 0.1 mm, h = 0.1 mm, p = 0.1 mm, d / L = 0) having a symmetric shape are formed upright on the joint surface of the round bar 4 is formed. Except for this, by repeating the same operation as in the above-described Invention Example 4 (material to be joined made of magnesium alloy), the round bars 3 and 4 were joined to obtain Comparative Example 10.

(比較例11)
丸棒4の接合面に、対称形状をなす角錐状突起(a=0.1mm、h=0.1mm、p=0.1mm、d/L=0)を直立させてなる凹凸構造を形成したこと以外は、上記発明例5(無酸素銅から成る被接合材)と同様の操作を繰り返すことによって、丸棒3、4を接合し、比較例11とした。
(Comparative Example 11)
A concavo-convex structure in which pyramid-shaped protrusions (a = 0.1 mm, h = 0.1 mm, p = 0.1 mm, d / L = 0) having a symmetric shape are formed upright on the joint surface of the round bar 4 is formed. Except for this, by repeating the same operation as in Invention Example 5 (material to be joined made of oxygen-free copper), the round bars 3 and 4 were joined to obtain Comparative Example 11.

(評価方法)
上記によって得られた丸棒3と丸棒4との各接合体の接合強度を万能試験器による引張試験(引張速度:1mm/分)によって評価した。なお、試験の繰り返し数は5回とし、その平均値をもって接合強度とすると共に、標準偏差をばらつきの指標として求めた。
また、丸棒3、4の端部にワイヤを溶接して、四点端子法により接合界面の電気抵抗を求めると共に、レーザフラッシュ法により接合界面の熱伝導度を求めた。これらの結果を表1に纏めて示す。
(Evaluation method)
The joint strength of each joined body of the round bar 3 and the round bar 4 obtained as described above was evaluated by a tensile test (tensile speed: 1 mm / min) using a universal tester. The test was repeated five times, and the average value was used as the bonding strength, and the standard deviation was obtained as an index of variation.
Further, wires were welded to the ends of the round bars 3 and 4, and the electrical resistance at the joint interface was obtained by the four-point terminal method, and the thermal conductivity at the joint interface was obtained by the laser flash method. These results are summarized in Table 1.

Figure 2015104744
Figure 2015104744

〔2〕実施例2
(発明例6)
図8に示すように、15mm×15mm×0.635mmのAlNから成るセラミックス板5の両面に、12mm×12mm×0.5mmの純アルミニウムから成る板材6、6を貼り付けたセラミックス基板の上に、Siから成る半導体チップ7を接合した。
接合に際して、半導体チップ7の接合面には純アルミニウムをスパッタリングする一方、図中上側のアルミニウム板材6の表面には、図4に示したような鋸歯状断面を有する突起1c(a=0.1mm、h=0.1mm、p=0.1mm、d/L=0.35)から成る凹凸構造をダイヤモンド工具を用いた切削加工によって形成した。
[2] Example 2
(Invention Example 6)
As shown in FIG. 8, on both sides of a ceramic plate 5 made of 15 mm × 15 mm × 0.635 mm AlN, plate materials 6 and 6 made of pure aluminum 12 mm × 12 mm × 0.5 mm are attached on a ceramic substrate. The semiconductor chip 7 made of Si was joined.
At the time of bonding, pure aluminum is sputtered on the bonding surface of the semiconductor chip 7, while the protrusion 1c (a = 0.1 mm) having a sawtooth cross section as shown in FIG. , H = 0.1 mm, p = 0.1 mm, d / L = 0.35) was formed by cutting using a diamond tool.

次に、上記アルミニウム板材6と半導体チップ7の接合面間に、急冷単ロール方によって作製したZn−3.5%Al−2.5%Mg合金から成る厚さ0.1mmの箔帯をインサート材2として挟んだ。そして、この状態で、赤外線加熱方式の拡散接合装置により、5MPaの加圧力の下で、400℃に1分間保持することによって、半導体チップ7をセラミックス基板上のアルミニウム板材6に接合した。   Next, a 0.1 mm-thick foil strip made of a Zn-3.5% Al-2.5% Mg alloy produced by a rapid cooling single roll method is inserted between the joining surfaces of the aluminum plate 6 and the semiconductor chip 7. Sandwiched as material 2. Then, in this state, the semiconductor chip 7 was bonded to the aluminum plate 6 on the ceramic substrate by holding it at 400 ° C. for 1 minute under an applied pressure of 5 MPa with an infrared heating type diffusion bonding apparatus.

(比較例12)
アルミニウム板材6の接合面に、二等辺三角形断面を有する屋根型の突起1c(a=0.1mm、h=0.1mm、p=0.1mm、d/L=0)を直立させてなる凹凸構造を形成したこと以外は、上記発明例6と同様の操作を繰り返すことによって、半導体チップ7をセラミックス基板上のアルミニウム板材6に接合した。
(Comparative Example 12)
Concavities and convexities formed by erecting a roof-shaped protrusion 1c (a = 0.1 mm, h = 0.1 mm, p = 0.1 mm, d / L = 0) having an isosceles triangular section on the joint surface of the aluminum plate 6 Except that the structure was formed, the semiconductor chip 7 was joined to the aluminum plate 6 on the ceramic substrate by repeating the same operation as in the sixth invention example.

(評価方法)
上記によって得られた半導体装置の接合強度をダイシェア試験(シェア速度:100μm/秒)によって評価した。このとき、試験の繰り返し数を5回とし、その平均値をもって接合強度とすると共に、標準偏差をばらつきの指標として求めた。
また、得られた半導体装置を簡易回路に組み込んで、接合界面の電気抵抗を求めると共に、レーザフラッシュ法によって接合界面の熱伝導度を求めた。
これらの結果を表2に示す。
(Evaluation method)
The bonding strength of the semiconductor device obtained as described above was evaluated by a die shear test (shear rate: 100 μm / second). At this time, the number of test repetitions was 5, and the average value was used as the bonding strength, and the standard deviation was obtained as an index of variation.
Further, the obtained semiconductor device was incorporated into a simple circuit to determine the electrical resistance of the bonding interface, and the thermal conductivity of the bonding interface was determined by a laser flash method.
These results are shown in Table 2.

Figure 2015104744
Figure 2015104744

1 被接合材
1a 酸化皮膜
1c 突起
2 インサート材
1 Bonded material 1a Oxide film 1c Protrusion
2 Insert material

Claims (5)

少なくとも一方が表面に酸化皮膜を形成している2つの金属部材の間にインサート材を介在させた状態の被接合材を相対的に加圧しつつ加熱し、酸化皮膜を形成している金属とインサート材の間で共晶反応を発生させ、生じた共晶反応溶融物を酸化皮膜と共に接合面から排出して上記被接合材を接合するに際して、
上記金属部材の接合面の少なくとも一方に、上記酸化皮膜を破壊するために複数の突起を設け、該突起の少なくとも60%の中心線を接合面に対して傾けて形成することを特徴とする接合方法。
A metal and an insert in which an oxide film is formed by heating the material to be joined in a state in which an insert material is interposed between two metal members, at least one of which has an oxide film formed on the surface, while relatively pressing. When the eutectic reaction is generated between the materials and the resulting eutectic reaction melt is discharged together with the oxide film from the joining surface to join the materials to be joined,
A plurality of protrusions provided on at least one of the joint surfaces of the metal member to destroy the oxide film, and a center line of at least 60% of the protrusions is inclined with respect to the joint surface; Method.
上記微細突起の先端部が点状をなし、60%以上を占める微細突起の頂点から当該突起の底面に下ろした垂線と底面との交点が底面の重心からずれていることを特徴とする請求項1に記載の接合方法。   The tip of the fine protrusion has a dot shape, and the intersection of the perpendicular line and the bottom surface of the fine protrusion, which occupies 60% or more of the fine protrusion, deviates from the center of gravity of the bottom surface. 2. The joining method according to 1. 上記微細突起の先端部が線状をなし、60%以上を占める微細突起の最頂線の中点から当該突起の底面に下ろした垂線と底面との交点が底面の重心からずれていることを特徴とする請求項1に記載の接合方法。   The tip of the fine protrusion is linear, and the intersection of the perpendicular line and the bottom surface of the top surface of the fine protrusion, which occupies 60% or more, is shifted from the center of gravity of the bottom surface. The joining method according to claim 1, characterized in that: 上記微細突起の先端部が面状をなし、60%以上を占める微細突起の頂面の重心から当該突起の底面に下ろした垂線と底面との交点が底面の重心からずれていることを特徴とする請求項1に記載の接合方法。   The tip of the fine projection has a planar shape, and the intersection of the perpendicular line and the bottom surface of the top surface of the fine projection, which occupies 60% or more, and the bottom surface of the fine projection is shifted from the center of gravity of the bottom surface. The joining method according to claim 1. 請求項1〜4のいずれか1つの項に記載の方法により接合されていることを特徴とする半導体装置。
A semiconductor device bonded by the method according to claim 1.
JP2013247923A 2013-11-29 2013-11-29 Joining method Active JP6213897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013247923A JP6213897B2 (en) 2013-11-29 2013-11-29 Joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013247923A JP6213897B2 (en) 2013-11-29 2013-11-29 Joining method

Publications (2)

Publication Number Publication Date
JP2015104744A true JP2015104744A (en) 2015-06-08
JP6213897B2 JP6213897B2 (en) 2017-10-18

Family

ID=53435197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013247923A Active JP6213897B2 (en) 2013-11-29 2013-11-29 Joining method

Country Status (1)

Country Link
JP (1) JP6213897B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175502A (en) * 2004-12-24 2006-07-06 Nissan Motor Co Ltd Different kinds of metal welding method
JP2013078793A (en) * 2011-09-22 2013-05-02 Nissan Motor Co Ltd Joining method and joined component
JP2013176782A (en) * 2012-02-28 2013-09-09 Nissan Motor Co Ltd Joining method of metal material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175502A (en) * 2004-12-24 2006-07-06 Nissan Motor Co Ltd Different kinds of metal welding method
JP2013078793A (en) * 2011-09-22 2013-05-02 Nissan Motor Co Ltd Joining method and joined component
JP2013176782A (en) * 2012-02-28 2013-09-09 Nissan Motor Co Ltd Joining method of metal material

Also Published As

Publication number Publication date
JP6213897B2 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
JP6003108B2 (en) Joining method and joining part manufacturing method
JP5527635B2 (en) Aluminum metal joining method
US9272361B2 (en) Method for joining metal materials
Zhong et al. Effect of multiple reflow processes on the reliability of ball grid array (BGA) solder joints
JP2006198679A (en) Different kind of metal joining method
JP4350753B2 (en) Heat sink member and manufacturing method thereof
CN104272455A (en) Aluminium coated copper bond wire and method of making the same
JP5050440B2 (en) Semiconductor device and manufacturing method thereof
JP6016095B2 (en) Joining method and joining parts
JPWO2015004956A1 (en) Semiconductor device and manufacturing method thereof
JP2013198924A (en) Bonded body, method for manufacturing the same and member to be bonded
JP5376356B2 (en) Electronic element mounting method and electronic component mounted by the mounting method
JP6213897B2 (en) Joining method
Yao et al. Effect of cooling rate on interfacial fatigue-crack growth in Sn-Pb solder joints
Kumar et al. Thermosonic ball bonding behavior of Ag-Au-Pd alloy wire
Wu et al. Bonding silicon chips to aluminum substrates using Ag–In system without flux
JP2010082636A (en) Welding method of pillar-like member, method of manufacturing heat radiation member, and heat radiation member
JP2010105043A (en) Low temperature joining method for metal
JP2015080812A (en) Joint method
JP2023512826A (en) free solder foil
JP2015199076A (en) Joint method
Kim et al. Ambient temperature ultrasonic bonding of Si-dice using Sn-3.5 wt.% Ag
US20160001393A1 (en) Method for producing a circuit carrier and for connecting an electrical conductor to a metallization layer of a circuit carrier
JP6344605B2 (en) Manufacturing method of semiconductor device
JPWO2013129229A1 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170828

R151 Written notification of patent or utility model registration

Ref document number: 6213897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170910