JP2015104196A - Polymer actuator - Google Patents

Polymer actuator Download PDF

Info

Publication number
JP2015104196A
JP2015104196A JP2013242264A JP2013242264A JP2015104196A JP 2015104196 A JP2015104196 A JP 2015104196A JP 2013242264 A JP2013242264 A JP 2013242264A JP 2013242264 A JP2013242264 A JP 2013242264A JP 2015104196 A JP2015104196 A JP 2015104196A
Authority
JP
Japan
Prior art keywords
force
polymer actuator
laminate
polymer
liquid chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013242264A
Other languages
Japanese (ja)
Other versions
JP6212365B2 (en
Inventor
仁 小嶋
Hitoshi Kojima
仁 小嶋
利博 平井
Toshihiro Hirai
利博 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Shinshu University NUC
Original Assignee
Nippon Signal Co Ltd
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd, Shinshu University NUC filed Critical Nippon Signal Co Ltd
Priority to JP2013242264A priority Critical patent/JP6212365B2/en
Publication of JP2015104196A publication Critical patent/JP2015104196A/en
Application granted granted Critical
Publication of JP6212365B2 publication Critical patent/JP6212365B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To make a polymer actuator worked when a voltage is applied.SOLUTION: A force generating part 6 has a laminate 18 formed by laminating electrodes on both surfaces of a gel layer 14, and a driving surface is retracted by contraction of a thickness of the laminate 18 caused by voltage application. A force generating part 8 has a sealed liquid chamber 20 having a driving surface of the force generating part 6 as part of a wall surface. The liquid chamber 20 is filled with an operating fluid 22. At part of a wall surface of the liquid chamber 20, a diaphragm 24 of a force take-out part 10 is provided. When the laminate 18 is contracted, the diaphragm 24 is displaced and a force is applied to a driving load according to a pressure of the operating fluid 22.

Description

本発明は高分子アクチュエータに関する。   The present invention relates to a polymer actuator.

誘電性高分子(誘電体ポリマー)に電圧を印加すると伸縮・屈曲する特性が知られており、当該特性を利用したアクチュエータ(高分子アクチュエータ)の研究開発が行われている。高分子アクチュエータは、駆動力の発生源が樹脂であり軽量で、また単位重量・体積あたりの発生力が大きいなどの特徴を有し、新たな分野での利用も期待されている。   The property of expanding and contracting when a voltage is applied to a dielectric polymer (dielectric polymer) is known, and research and development of an actuator (polymer actuator) using the property is being conducted. Polymer actuators are characterized in that the driving force is generated from resin and light in weight, and the generated force per unit weight and volume is large, and are expected to be used in new fields.

下記特許文献1,2に示される高分子アクチュエータは、陽極、誘電体ポリマー及び陰極を重ねた積層体を備え、電極間に電圧を印加して誘電体ポリマーを変形させ、積層体の厚みを収縮させる。また、電圧の印加を停止、又は電圧を下げることで誘電体ポリマーの弾性により積層体の厚みを復元させる。   The polymer actuator shown in the following Patent Documents 1 and 2 includes a laminate in which an anode, a dielectric polymer, and a cathode are stacked, and a voltage is applied between the electrodes to deform the dielectric polymer, thereby shrinking the thickness of the laminate. Let Further, the thickness of the laminate is restored by the elasticity of the dielectric polymer by stopping the application of voltage or lowering the voltage.

なお、下記特許文献3には高分子アクチュエータに用いることができる誘電体ポリマーの例について紹介されている。   Patent Document 3 below introduces examples of dielectric polymers that can be used in polymer actuators.

特開2012−125087号公報JP 2012-125087 A 特開2012−130201号公報JP2012-130201A 特開2005−323482号公報JP 2005-323482 A

電圧印加時に収縮し電圧非印加時に伸張する積層体を用いた従来の高分子アクチュエータは、電圧の印加を停止した際の誘電体ポリマーの弾性力によって外部に対して仕事をする。そのため、当該アクチュエータが発生する力はもっぱら誘電体ポリマーの弾性により支配される。   A conventional polymer actuator using a laminate that contracts when a voltage is applied and expands when a voltage is not applied works to the outside by the elastic force of the dielectric polymer when the voltage application is stopped. Therefore, the force generated by the actuator is governed solely by the elasticity of the dielectric polymer.

この点、電圧印加時に仕事をする構成とすれば、力の大きさ等の制御の自由度が高まる。しかし、電圧印加による積層体の収縮時に外部に対して仕事を行う場合、積層体には引張応力が働くことになり、例えば、電極と誘電体ポリマーとが分離したり、誘電体ポリマー内に亀裂が生じたりして、アクチュエータとしての機能が低下しやすいという問題があった。特に、大きな変位を得るために陽極、誘電体ポリマー及び陰極からなる1組の積層構造を複数積層した構成では、積層数の増加と共に応力に対して弱い箇所が生じる確率が高くなる。   In this regard, if the configuration is such that work is performed when a voltage is applied, the degree of freedom in controlling the magnitude of the force and the like is increased. However, when work is applied to the outside when the laminate contracts due to voltage application, tensile stress acts on the laminate, for example, the electrode and the dielectric polymer are separated, or cracks are formed in the dielectric polymer. Or the like, and the function as an actuator is likely to deteriorate. In particular, in a configuration in which a plurality of laminated structures each composed of an anode, a dielectric polymer, and a cathode are laminated in order to obtain a large displacement, the probability that a portion that is weak against stress increases as the number of laminated layers increases.

本発明は上記問題点を解決するためになされたものであり、陽極、誘電体ポリマー及び陰極を重ねた積層体の厚みを収縮させる際に外部に対して仕事を行うのに好適な高分子アクチュエータを提供することを目的とする。   The present invention has been made to solve the above problems, and is a polymer actuator suitable for performing work on the outside when shrinking the thickness of a laminate in which an anode, a dielectric polymer, and a cathode are stacked. The purpose is to provide.

本発明に係る高分子アクチュエータは、誘電性高分子材料層の両面に電極を重ねた積層体を有し、前記積層体の駆動面にする一方表面に可撓性を備えた前記電極を配し、電圧印加による前記積層体の厚みの収縮で前記駆動面を後退させる力発生部と、前記駆動面を壁面の一部とし作動液を充填された密閉液室からなる力伝達部と、前記積層体の収縮に応じて、前記壁面の一部をなす可動部が変位し駆動負荷に力を作用する力作用部と、を有する。   The polymer actuator according to the present invention includes a laminate in which electrodes are stacked on both sides of a dielectric polymer material layer, and the electrode having flexibility is arranged on one surface which serves as a driving surface of the laminate. A force generating unit that retracts the driving surface by contraction of the thickness of the laminate by applying a voltage; a force transmitting unit that includes a sealed liquid chamber filled with a working fluid with the driving surface as a part of a wall surface; The movable portion that forms part of the wall surface is displaced in accordance with contraction of the body, and has a force acting portion that applies force to the driving load.

他の本発明に係る高分子アクチュエータにおいては、前記積層体は、前記誘電性高分子材料層を1層のみ有し、かつ当該積層体の面積が任意の方向への平行投影像よりも大きくなる立体形状を有する。   In another polymer actuator according to the present invention, the laminate has only one dielectric polymer material layer, and the area of the laminate is larger than a parallel projection image in an arbitrary direction. It has a three-dimensional shape.

さらに他の本発明に係る高分子アクチュエータは、さらに、前記密閉液室内に固定され前記作動液を通過させると共に、前記積層体の非収縮時には、前記駆動面となる前記積層体の一方の表面を押さえる積層体押さえ部材を有する。   Still further, the polymer actuator according to another aspect of the present invention is fixed in the sealed liquid chamber and allows the working fluid to pass therethrough, and when the laminated body is not contracted, one surface of the laminated body serving as the driving surface is provided. A laminated body pressing member for pressing is provided.

別の本発明に係る高分子アクチュエータは、さらに、前記力発生部を前記作動液から分離し保護する膜であって、前記駆動面となる前記積層体の一方の表面を被覆し当該表面に追随して変形する分離膜を有する。   Another polymer actuator according to another aspect of the present invention is a film that separates and protects the force generation unit from the hydraulic fluid, and covers one surface of the laminate that serves as the driving surface and follows the surface. And having a separation membrane that deforms.

さらに別の本発明に係る高分子アクチュエータは、前記力発生部及び前記力伝達部を格納するケースを有し、前記電極のうち前記誘電性高分子材料層に対し前記駆動面とは反対側に配置された背面電極は、前記電圧印加により前記誘電性高分子材料層を引き込む複数の貫通孔を有し、当該貫通孔は前記ケースの外部と連通する。   Still another polymer actuator according to another aspect of the present invention has a case for storing the force generation unit and the force transmission unit, and is on the opposite side of the dielectric polymer material layer from the drive surface of the electrode. The arranged back electrode has a plurality of through holes into which the dielectric polymer material layer is drawn by applying the voltage, and the through holes communicate with the outside of the case.

さらに本発明に係る高分子アクチュエータは、誘電性高分子からなるゲル層を挟んで第1及び第2電極層を配置した積層体を有し、電圧印加により前記ゲル層を前記第1電極層に引き寄せて前記積層体の厚みを収縮させ駆動力を発生する力発生部と、前記第2電極層を壁面の一部とし圧力伝達液を充填された密閉液室からなる力伝達部と、を有する。   Furthermore, the polymer actuator according to the present invention has a laminate in which the first and second electrode layers are arranged with a gel layer made of a dielectric polymer interposed therebetween, and the gel layer is applied to the first electrode layer by voltage application. A force generating part that draws and contracts the thickness of the laminate to generate a driving force; and a force transmitting part that includes a sealed liquid chamber filled with a pressure transmitting liquid with the second electrode layer as a part of a wall surface. .

当該高分子アクチュエータにおいては、前記力伝達部として、前記積層体に隣接した液室であって、駆動負荷に力を作用する力作用部の可動部を当該液室の前記壁面の一部とする積層体外液室を有する構成とすることができる。   In the polymer actuator, the force transmitting portion is a liquid chamber adjacent to the laminated body, and a movable portion of a force acting portion that applies a force to a driving load is a part of the wall surface of the liquid chamber. It can be set as the structure which has a laminated body external liquid chamber.

また当該高分子アクチュエータにおいては、前記ゲル層と前記第2電極層との間に設けられ、前記圧力伝達液として導電性液体を充填された積層体内液室を有する構成とすることもできる。   In addition, the polymer actuator may include a laminated body fluid chamber that is provided between the gel layer and the second electrode layer and is filled with a conductive liquid as the pressure transmission liquid.

本発明によれば、陽極、誘電体ポリマー及び陰極を重ねた積層体の厚みを収縮させる際に外部に対して仕事を行うのに好適な高分子アクチュエータが得られる。   According to the present invention, it is possible to obtain a polymer actuator suitable for performing work on the outside when shrinking the thickness of a laminate in which an anode, a dielectric polymer, and a cathode are stacked.

本発明の第1の実施形態に係る高分子アクチュエータの電圧非印加状態での模式的な断面図である。It is a typical sectional view in the voltage non-application state of the polymer actuator concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る高分子アクチュエータの電圧印加状態での模式的な断面図である。It is a typical sectional view in the voltage application state of the polymer actuator concerning a 1st embodiment of the present invention. 本発明の第2の実施形態に係る高分子アクチュエータの模式的な断面図である。It is typical sectional drawing of the polymer actuator which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る高分子アクチュエータの電圧非印加状態での模式的な部分断面図である。It is a typical fragmentary sectional view in the voltage non-application state of the polymer actuator which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る高分子アクチュエータの電圧印加状態での模式的な部分断面図である。It is a typical fragmentary sectional view in the voltage application state of the polymer actuator concerning a 2nd embodiment of the present invention. 本発明の第3の実施形態に係る高分子アクチュエータの模式的な断面図である。It is typical sectional drawing of the polymer actuator which concerns on the 3rd Embodiment of this invention.

以下、本発明の実施の形態(以下実施形態という)について、図面に基づいて説明する。   Hereinafter, embodiments of the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.

[第1の実施形態]
図1及び図2は第1の実施形態に係る高分子アクチュエータ2の模式的な断面図である。図1、図2は高分子アクチュエータ2の駆動方向に沿った断面図であり、同図の縦方向が駆動方向となる。図1は電圧非印加状態を示しており、図2は電圧印加状態を示している。
[First Embodiment]
FIG.1 and FIG.2 is typical sectional drawing of the polymer actuator 2 which concerns on 1st Embodiment. 1 and 2 are cross-sectional views along the driving direction of the polymer actuator 2, and the vertical direction in FIG. 1 is the driving direction. FIG. 1 shows a voltage non-application state, and FIG. 2 shows a voltage application state.

高分子アクチュエータ2は力発生部6、力伝達部8及び力取り出し部(力作用部)10を備える。本実施形態ではこれら各部はケース4により一体とされている。力発生部6は誘電性高分子材料層の両面に電極を重ねた積層体を有し、電圧印加による積層体の厚みの収縮により駆動面を後退させる。具体的には、力発生部6は陰極12、ゲル層14及び陽極16からなる積層体18を有する。力伝達部8は力発生部6が発生した力を液体を介して力取り出し部10に伝達する。具体的には、力伝達部8は液室20と作動液22とで構成される。力取り出し部10は力伝達部8により力発生部6から伝達された力を外部に取り出す。力取り出し部10は本実施形態ではダイアフラム24で構成される。さらに高分子アクチュエータ2は、分離膜26及び積層体押さえ部材28を有する。   The polymer actuator 2 includes a force generating unit 6, a force transmitting unit 8, and a force extracting unit (force acting unit) 10. In the present embodiment, these parts are integrated by a case 4. The force generator 6 has a laminate in which electrodes are stacked on both sides of a dielectric polymer material layer, and the drive surface is retracted by contraction of the thickness of the laminate due to voltage application. Specifically, the force generator 6 has a laminate 18 composed of a cathode 12, a gel layer 14, and an anode 16. The force transmission unit 8 transmits the force generated by the force generation unit 6 to the force extraction unit 10 through the liquid. Specifically, the force transmission unit 8 includes a liquid chamber 20 and a hydraulic fluid 22. The force extraction unit 10 extracts the force transmitted from the force generation unit 6 by the force transmission unit 8 to the outside. In this embodiment, the force extraction unit 10 is configured by a diaphragm 24. Furthermore, the polymer actuator 2 has a separation membrane 26 and a laminate pressing member 28.

以下、さらに詳細に高分子アクチュエータ2の各部の構成を説明する。   Hereinafter, the configuration of each part of the polymer actuator 2 will be described in more detail.

ケース4は力発生部6及び力伝達部8を内包する。またケース4内の空間の一部は力伝達部8の液室20を構成し、ケース4は液室20につながる開口部30を形成され、当該開口部30に力取り出し部10が取り付けられる。また、ケース4は陽極16に設けられる貫通孔32をケース4外部と連通させる孔34を形成される。ケース4は高分子アクチュエータ2の動作にて変形しない剛性を有する。   The case 4 includes a force generation unit 6 and a force transmission unit 8. A part of the space in the case 4 constitutes the liquid chamber 20 of the force transmission unit 8, and the case 4 is formed with an opening 30 connected to the liquid chamber 20, and the force extraction unit 10 is attached to the opening 30. Further, the case 4 is formed with a hole 34 that allows the through hole 32 provided in the anode 16 to communicate with the outside of the case 4. The case 4 has a rigidity that is not deformed by the operation of the polymer actuator 2.

積層体18において、ゲル層14は誘電体ポリマー層(誘電性高分子材料層)であり、その一方面に接して陰極12が重ねられ、他方面に接して陽極16が配置される。陰極12及び陽極16は図示しない配線により駆動回路(図示せず)に接続され、当該駆動回路から電位を設定され、例えば、陰極12と陽極16との間に電圧を印加しない状態(電圧非印加状態)とされたり、陰極12に対して陽極16に正電圧を印加する状態(電圧印加状態)とされたりする。   In the laminate 18, the gel layer 14 is a dielectric polymer layer (dielectric polymer material layer), and the cathode 12 is superimposed on one surface thereof, and the anode 16 is disposed on the other surface. The cathode 12 and the anode 16 are connected to a drive circuit (not shown) by wiring not shown, and the potential is set by the drive circuit. For example, no voltage is applied between the cathode 12 and the anode 16 (no voltage applied) State), or a state in which a positive voltage is applied to the anode 16 with respect to the cathode 12 (voltage application state).

積層体18は電圧印加状態にて厚みが収縮するように構成されている。その基本的な原理・構造は従来の高分子アクチュエータに基づく。本実施形態の積層体18では、上述のように陽極16に貫通孔32からなる凹部を形成し、ゲル層14は電圧非印加時に基本的には貫通孔32に入らないように配置される。ゲル層14は例えば、ポリ塩化ビニル(PVC)を主材料とし、可塑剤が添加されたものである。電圧印加時にはゲル層14は陽極16との接触面積を増加させるようにクリープ変形し、これにより凹部に引き込まれる。その結果、陰極12と陽極16の上面との間に存在するゲル層14の量が減り、ゲル層14に密着した陰極12が陽極16側に後退して積層体18は圧縮変形し薄くなる。ちなみに、電圧を非印加状態にすると、ゲル層14はその弾性により元の位置に復元し積層体18は元の厚みに戻る。   The laminated body 18 is configured so that the thickness contracts when a voltage is applied. Its basic principle and structure is based on conventional polymer actuators. In the laminated body 18 of this embodiment, the concave part which consists of the through-hole 32 is formed in the anode 16 as mentioned above, and the gel layer 14 is arrange | positioned so that it may not enter into the through-hole 32 fundamentally when a voltage is not applied. The gel layer 14 is made of, for example, polyvinyl chloride (PVC) as a main material and added with a plasticizer. When a voltage is applied, the gel layer 14 undergoes creep deformation so as to increase the contact area with the anode 16 and is thereby drawn into the recess. As a result, the amount of the gel layer 14 existing between the cathode 12 and the upper surface of the anode 16 is reduced, the cathode 12 in close contact with the gel layer 14 recedes toward the anode 16 side, and the laminate 18 is compressed and thinned. Incidentally, when the voltage is not applied, the gel layer 14 is restored to its original position due to its elasticity, and the laminate 18 returns to its original thickness.

積層体18は陽極16を例えば、ケース4に固定され、陰極12を液室20側に向けてケース4内に格納される。つまり積層体18の陰極12の側の表面が積層体18に印加される電圧に応じて進退する駆動面をなす。   The laminate 18 is stored in the case 4 with the anode 16 fixed to the case 4, for example, and the cathode 12 facing the liquid chamber 20. That is, the surface on the cathode 12 side of the laminated body 18 forms a driving surface that advances and retreats according to the voltage applied to the laminated body 18.

陰極12は例えば、金属薄膜や金属メッシュで形成され、ゲル層14の形状変化に追随して変形する可撓性を有する。例えば、分離膜26に金属薄膜を蒸着等で形成し、当該金属薄膜を陰極12とすることもできる。   The cathode 12 is formed of, for example, a metal thin film or a metal mesh, and has flexibility to deform following the shape change of the gel layer 14. For example, a metal thin film can be formed on the separation film 26 by vapor deposition or the like, and the metal thin film can be used as the cathode 12.

陰極12のゲル層14側の面は基本的には滑らかな平面に形成する。これにより、陰極12とゲル層14との間に引張応力が作用する場合に、不用意に応力が集中する箇所の発生を避けることができ、両者の密着状態が維持されやすい。一方、陰極12とゲル層14との密着面内での引張応力の変動が大きくならないように配慮しつつ、陰極12の表面に凹凸を設けて表面積を大きくし、密着力を高めることもできる。例えば、陰極12のゲル層14側の面を1方向又は2次元的に波状に変化する形状としてもよい。   The surface of the cathode 12 on the gel layer 14 side is basically formed in a smooth plane. Thereby, when a tensile stress acts between the cathode 12 and the gel layer 14, it is possible to avoid the occurrence of a location where the stress is inadvertently concentrated, and it is easy to maintain a close contact state between the two. On the other hand, it is possible to increase the surface area by increasing the surface area of the cathode 12 by increasing the surface area of the cathode 12 while taking into consideration that the fluctuation of the tensile stress in the adhesion surface between the cathode 12 and the gel layer 14 does not increase. For example, the surface of the cathode 12 on the gel layer 14 side may have a shape that changes in one direction or two-dimensionally in a wave shape.

陽極16は電圧印加によりゲル層14が移動しても撓まないように構成され、これにより積層体18の変形が好適に駆動面の変位に変換される。陽極16にはゲル層14に面する領域全体に多数の貫通孔32が配列される。当該貫通孔32は電圧印加時にゲル層14を内部に引き込むためのものである。陽極16においてゲル層14が引き込まれる凹部が閉じた空間であると、ゲル層14が凹部に引き込まれる際に当該空間の気圧が高くなり、ゲル層14の引き込みが阻害され得る。そこで、陽極16に設ける凹部は貫通孔32とし、孔34を介してケース4の外部と連通させることが好適である。   The anode 16 is configured so as not to bend even when the gel layer 14 is moved by voltage application, whereby the deformation of the laminated body 18 is preferably converted into displacement of the driving surface. A large number of through holes 32 are arranged in the anode 16 over the entire region facing the gel layer 14. The through hole 32 is for drawing the gel layer 14 into the interior when a voltage is applied. If the concave portion into which the gel layer 14 is drawn in the anode 16 is a closed space, when the gel layer 14 is drawn into the concave portion, the air pressure in the space becomes high, and the pulling in of the gel layer 14 can be inhibited. Therefore, it is preferable that the recess provided in the anode 16 is a through hole 32 and communicates with the outside of the case 4 through the hole 34.

なお、積層体18は特開2012−161221号公報に示される、陽極16に凹部を形成せず、ゲル層14の陽極16側に凸部を形成する構造とすることもできる。この場合にはケース4の孔34は不要であり、また陽極16を液室20側に向け、陰極12をケース4に固定する構成とすることもできる。   In addition, the laminated body 18 can also be made into the structure which forms a convex part in the anode 16 side of the gel layer 14, without forming a recessed part in the anode 16 shown by Unexamined-Japanese-Patent No. 2012-161221. In this case, the hole 34 of the case 4 is unnecessary, and the anode 16 may be directed to the liquid chamber 20 and the cathode 12 may be fixed to the case 4.

液室20は密閉された空間であり、その壁面の一部は力発生部6の駆動面からなり、また開口部30には力取り出し部10が設けられる。液室20には作動液22が充填される。作動液22として、非圧縮性で、液室20の内壁面となるケース4、駆動面、力取り出し部10を浸食等しない液体が用いられる。   The liquid chamber 20 is a hermetically sealed space, part of the wall surface of which is a driving surface of the force generating unit 6, and the force extracting unit 10 is provided in the opening 30. The liquid chamber 20 is filled with a working liquid 22. As the hydraulic fluid 22, a liquid that is incompressible and does not erode the case 4, the drive surface, and the force extraction unit 10 that are the inner wall surface of the liquid chamber 20 is used.

分離膜26は力発生部6を作動液22から分離し保護する膜である。分離膜26は力発生部6の駆動面となる陰極12の表面を被覆し当該表面に追随して変位、変形すると共に、作動液22が力発生部6に浸潤することを阻止する。よって、分離膜26は柔軟性を有し、かつ作動液22に対して耐性を有する材料からなる。また、図1又は図2に示す構造では分離膜26はゲル層14に接触する部分を有するので、ゲル層14やそれに含まれる可塑剤等に対する耐性を有することが好ましい。   The separation membrane 26 is a membrane that separates and protects the force generator 6 from the hydraulic fluid 22. The separation membrane 26 covers the surface of the cathode 12 serving as the driving surface of the force generation unit 6, and is displaced and deformed following the surface, and prevents the hydraulic fluid 22 from infiltrating the force generation unit 6. Therefore, the separation membrane 26 is made of a material having flexibility and resistance to the hydraulic fluid 22. In addition, in the structure shown in FIG. 1 or FIG. 2, the separation membrane 26 has a portion in contact with the gel layer 14, and therefore preferably has resistance to the gel layer 14 and a plasticizer included therein.

例えば、分離膜26の端部はケース4に接着、溶着され、作動液22が力発生部6側に浸入することを阻止する。   For example, the end of the separation membrane 26 is bonded and welded to the case 4 to prevent the hydraulic fluid 22 from entering the force generating unit 6 side.

なお、作動液22が力発生部6に浸入しても高分子アクチュエータ2の動作に悪影響を与えない液体、例えば、絶縁性を有し陰極12と陽極16との短絡を生じず、またゲル層14の劣化を生じないような液体であれば、分離膜26は省略することも可能である。   A liquid that does not adversely affect the operation of the polymer actuator 2 even if the hydraulic fluid 22 enters the force generating unit 6, for example, has an insulating property, does not cause a short circuit between the cathode 12 and the anode 16, and is a gel layer. The separation membrane 26 can be omitted if it is a liquid that does not cause the deterioration of 14.

積層体押さえ部材28は液室20内に固定され作動液22を通過させると共に、積層体18の非収縮時には、駆動面となる陰極12の表面を押さえる部材である。例えば、積層体押さえ部材28はメッシュ状、多孔質状とすることができる。   The laminated body pressing member 28 is a member that is fixed in the liquid chamber 20 and allows the hydraulic fluid 22 to pass therethrough and that holds down the surface of the cathode 12 serving as a driving surface when the laminated body 18 is not contracted. For example, the laminated body pressing member 28 can be mesh-shaped or porous.

後述するように、高分子アクチュエータ2は力発生部6の駆動面の変位を作動液22を介して力取り出し部10の可動部の変位として取り出すものであるが、逆に、力取り出し部10の可動部の変位が力発生部6の駆動面の変位を生じ得る。具体的には、電圧非印加状態にて、力取り出し部10の可動部が例えば外力を受けて外向きに変位すると、作動液22の圧力が低下して駆動面が引っ張られる。その結果、陰極12がゲル層14から剥離したり、ゲル層14内に亀裂が生じたりして積層体18に欠陥が生じ高分子アクチュエータ2の性能が低下し得る。この点、積層体押さえ部材28を設けることで、電圧非印加時にて力取り出し部10の可動部が引っ張られても、駆動面(分離膜26又は陰極12の表面)は積層体押さえ部材28により変位が阻止され、上述の不都合が防止される。   As will be described later, the polymer actuator 2 extracts the displacement of the driving surface of the force generator 6 as the displacement of the movable portion of the force extractor 10 via the hydraulic fluid 22. The displacement of the movable part can cause the displacement of the driving surface of the force generating part 6. Specifically, when the movable part of the force extracting unit 10 receives an external force and is displaced outward in a voltage non-applied state, for example, the pressure of the hydraulic fluid 22 is reduced and the driving surface is pulled. As a result, the cathode 12 may be peeled off from the gel layer 14 or a crack may be generated in the gel layer 14, resulting in a defect in the laminate 18 and the performance of the polymer actuator 2 may be degraded. In this respect, by providing the laminated body pressing member 28, the driving surface (the surface of the separation film 26 or the cathode 12) is held by the laminated body pressing member 28 even when the movable portion of the force extraction unit 10 is pulled when no voltage is applied. Displacement is prevented and the above-mentioned disadvantages are prevented.

また、陰極12は可撓性を有するので、液室20内での作動液22の流動やケース4の振動等により、陰極12、ゲル層14が波打つなど揺らいだ状態となり得る。電圧非印加時に陰極12等が揺らいだ状態にあると、電圧を印加したときの駆動力の立ち上がりが遅くなり得る。この点、積層体押さえ部材28を設けて電圧非印加時の駆動面を静定させることで、当該不都合を防止して電圧印加に対する駆動力の応答速度を確保することができる。   In addition, since the cathode 12 has flexibility, the cathode 12 and the gel layer 14 may be swayed and waved by the flow of the working liquid 22 in the liquid chamber 20 and the vibration of the case 4. If the cathode 12 or the like is in a swaying state when no voltage is applied, the rising of the driving force when a voltage is applied can be delayed. In this respect, by providing the laminated body pressing member 28 to stabilize the driving surface when no voltage is applied, the inconvenience can be prevented and the response speed of the driving force with respect to the voltage application can be ensured.

力取り出し部10は液室20の壁面の一部をなす可動部としてダイアフラム24を有し、積層体18の収縮時に作動液22の圧力に応じてダイアフラム24が変位し駆動負荷に力を作用する。力取り出し部10はダイアフラム24に限定されず、例えば、ベローズ、ピストンなど圧力変化を変位に変換する周知の構造を用いることができる。   The force take-out unit 10 has a diaphragm 24 as a movable part forming a part of the wall surface of the liquid chamber 20, and the diaphragm 24 is displaced according to the pressure of the working fluid 22 when the laminate 18 is contracted to exert a force on the driving load. . The force take-out unit 10 is not limited to the diaphragm 24, and for example, a well-known structure that converts a pressure change into a displacement such as a bellows or a piston can be used.

次に高分子アクチュエータ2の動作について説明する。高分子アクチュエータ2は積層体18の収縮時に駆動負荷に対して仕事をすることができる。以下当該動作について説明する。当該動作では例えば、図1に示す電圧非印加状態から図2に示す電圧印加状態とする際に高分子アクチュエータ2は外部に対して仕事をする。積層体18に電圧を印加することで積層体18は圧縮変形し、駆動面(分離膜26又は陰極12の表面)が後退する。すると、油圧駆動と同様の原理で、駆動面の後退による液室20の容積の増加量を相殺するようにダイアフラム24が変位して液室20の容積を一定に保つ。そのダイアフラム24の変位で仕事を行うことができる。なお、力取り出し部10の変位する部分の面積を変えることによって、力取り出し部10での取り出す力と変位量との割り当てを変更することができる。   Next, the operation of the polymer actuator 2 will be described. The polymer actuator 2 can work against the driving load when the laminate 18 is contracted. The operation will be described below. In this operation, for example, when the voltage non-application state shown in FIG. 1 is changed to the voltage application state shown in FIG. 2, the polymer actuator 2 works to the outside. By applying a voltage to the laminate 18, the laminate 18 is compressed and deformed, and the drive surface (the surface of the separation membrane 26 or the cathode 12) is retracted. Then, the diaphragm 24 is displaced and the volume of the liquid chamber 20 is kept constant so as to offset the increase in the volume of the liquid chamber 20 due to the backward movement of the drive surface on the same principle as the hydraulic drive. Work can be performed by the displacement of the diaphragm 24. Note that by changing the area of the portion of the force take-out unit 10 that is displaced, the assignment of the force to be taken out by the force take-out unit 10 and the amount of displacement can be changed.

この動作において、パスカルの原理により、液室20の内壁面には均等な圧力が作用する。つまり、高分子アクチュエータ2は作動液22を用いた力伝達部8を備えることで、仕事をする際に駆動面に作用する力を均一にすることができる。特に、駆動面の後退時には駆動面は作動液22から負圧を受け引っ張られるが、当該負圧が駆動面内で均一になる。つまり、駆動面内にて負圧の大きさにばらつきが生じないことにより、陰極12がゲル層14から剥離したり、ゲル層14内に亀裂が生じたりしにくくなる。   In this operation, an equal pressure acts on the inner wall surface of the liquid chamber 20 according to the Pascal principle. In other words, the polymer actuator 2 includes the force transmission unit 8 using the hydraulic fluid 22, so that the force acting on the drive surface when working can be made uniform. In particular, when the drive surface is retracted, the drive surface is pulled by receiving a negative pressure from the hydraulic fluid 22, but the negative pressure becomes uniform in the drive surface. That is, since there is no variation in the magnitude of the negative pressure in the driving surface, the cathode 12 is unlikely to peel off from the gel layer 14 or cracks in the gel layer 14 are less likely to occur.

積層体18は複数層のゲル層14を有する構成、例えば、陰極12、ゲル層14、陽極16、ゲル層14、陰極12、…というように陰極12、ゲル層14及び陽極16からなる1単位の積層構造が繰り返して含まれるような構成とすることもできる。しかし、上述の作動液22による圧力の均一化の効果は作動液22に近い層ほど好適に得られ、作動液22から離れるほど当該効果は弱まり得る。よって積層体18の欠陥の発生を抑制する観点からは積層体18に含まれるゲル層14の層数は少ない方がよく、特に積層体18は図1、図2に示すようにゲル層14を1層だけ含む構成とするのが好適である。   The laminated body 18 has a structure having a plurality of gel layers 14, for example, one unit composed of a cathode 12, a gel layer 14, and an anode 16 such as a cathode 12, a gel layer 14, an anode 16, a gel layer 14, a cathode 12. It can also be set as the structure in which these laminated structures are repeatedly included. However, the effect of equalizing the pressure by the above-described hydraulic fluid 22 is preferably obtained as the layer is closer to the hydraulic fluid 22, and the effect can be weakened away from the hydraulic fluid 22. Therefore, from the viewpoint of suppressing the occurrence of defects in the laminated body 18, the number of gel layers 14 included in the laminated body 18 is preferably small. In particular, the laminated body 18 has a gel layer 14 as shown in FIGS. 1 and 2. It is preferable that only one layer is included.

高分子アクチュエータ2は上述の構成により電圧印加時に仕事をする動作を可能とし、これにより、発生する力の大きさや速度を電圧により制御することが容易となる。   The polymer actuator 2 can perform an operation to work when a voltage is applied due to the above-described configuration, which makes it easy to control the magnitude and speed of the generated force with the voltage.

なお、高分子アクチュエータ2は、電圧印加により収縮した積層体18を電圧非印加時の非収縮状態に復元させる際に駆動負荷に対して仕事をする動作を行うようにもできる。   The polymer actuator 2 can also perform an operation to work on the driving load when the laminate 18 contracted by voltage application is restored to the non-contracted state when no voltage is applied.

また、高分子アクチュエータ2を例えば安全装置に用いて、停電に連動して当該安全装置を起動させる機構を構成することができる。具体的には、電源が供給されている通常時には、当該電源を用いて高分子アクチュエータ2に電圧を印加して積層体18を収縮状態に維持し、停電時に積層体18が非収縮状態に戻る際の力取り出し部10のダイアフラム24等の可動部の変位により安全装置のスイッチを起動させる。この動作は、従来の高分子アクチュエータを用いても可能であるが、本実施形態の高分子アクチュエータ2は、安全装置のスイッチが通常時に設定される状態を維持するのに付勢力を必要するものである場合にも好適である。   Moreover, the mechanism which starts the said safety device in response to a power failure can be comprised using the polymer actuator 2 for a safety device, for example. Specifically, during normal times when power is supplied, the voltage is applied to the polymer actuator 2 using the power source to maintain the laminate 18 in a contracted state, and the laminate 18 returns to a non-contracted state during a power failure. The switch of the safety device is activated by the displacement of the movable part such as the diaphragm 24 of the force extraction unit 10 at the time. Although this operation can be performed using a conventional polymer actuator, the polymer actuator 2 of the present embodiment requires an urging force to maintain the state where the switch of the safety device is normally set. It is also suitable when

具体的には、当該スイッチは例えばばねなどの弾性体により、安全装置が起動しない状態(ここでは、スイッチのオフ状態とする)を維持するには付勢力を要するメカニカルな構成を有し、当該付勢力がなければスイッチは自らオン状態となり安全装置が起動する。高分子アクチュエータ2は当該スイッチに付勢力を与えるために用い得る。高分子アクチュエータ2は通電時にスイッチのばねなどに対して仕事をし、当該スイッチをオフ状態にする。通電状態では、当該仕事はばねなどに位置エネルギーとして保持されると共に、高分子アクチュエータ2はスイッチをオフ状態に維持する。   Specifically, the switch has a mechanical configuration that requires an urging force to maintain a state where the safety device does not start (here, the switch is turned off) by an elastic body such as a spring, for example. If there is no biasing force, the switch is turned on by itself and the safety device is activated. The polymer actuator 2 can be used to apply a biasing force to the switch. The polymer actuator 2 works with respect to the spring of the switch when energized to turn the switch off. In the energized state, the work is held as potential energy in a spring or the like, and the polymer actuator 2 maintains the switch in the off state.

一方、停電すると高分子アクチュエータ2はスイッチに対する付勢力を発生しなくなる。その際、積層体18がゲル層14の弾性で非収縮状態に復元することによってだけでなく、スイッチのばねなどが位置エネルギーが低い状態へ復元する力も合わさって、スイッチはオン状態に切り替わり安全装置が起動する。   On the other hand, when a power failure occurs, the polymer actuator 2 does not generate a biasing force on the switch. At this time, the switch is turned on and the safety device is turned on not only by the laminate 18 being restored to the non-contracted state due to the elasticity of the gel layer 14 but also the force of restoring the spring of the switch to a low potential energy state. Starts.

当該動作において、スイッチをオフ状態に維持する期間には高分子アクチュエータ2の積層体18はスイッチの復元力に抗して収縮状態に保たれるが、当該状態において高分子アクチュエータ2は力伝達部8を備えたことにより積層体18に欠陥が生じにくく、一方、停電時にはスイッチの復元力が存在するので、積層体18のゲル層14の弾性での復元力だけの場合より速やかに安全装置が起動される。   In this operation, the laminated body 18 of the polymer actuator 2 is kept in the contracted state against the restoring force of the switch during the period in which the switch is kept in the OFF state. 8 is less likely to cause defects in the laminated body 18, and on the other hand, since there is a restoring force of the switch at the time of a power failure, the safety device can be quickly operated compared to the case where only the elastic restoring force of the gel layer 14 of the laminated body 18 is used. It is activated.

[第2の実施形態]
第2の実施形態に係る高分子アクチュエータ2Bにおいて上述の第1の実施形態に係る高分子アクチュエータ2と共通の構成要素には同一の符号を付して、その説明を省略又は簡略化する。
[Second Embodiment]
In the polymer actuator 2B according to the second embodiment, the same components as those of the polymer actuator 2 according to the first embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified.

図3は本実施形態に係る高分子アクチュエータ2Bの模式的な断面図である。図3は図1,図2と同様、高分子アクチュエータ2Bの駆動方向に沿った断面図であり、同図の縦方向が駆動方向となる。   FIG. 3 is a schematic cross-sectional view of the polymer actuator 2B according to the present embodiment. 3 is a cross-sectional view along the driving direction of the polymer actuator 2B, as in FIGS. 1 and 2, and the vertical direction in FIG. 3 is the driving direction.

高分子アクチュエータ2Bの積層体18Bは、図1,図2に示した高分子アクチュエータ2の積層体18と同様、ゲル層14を1層のみ有する構成であるが、積層体18Bの面積が積層体18Bを任意の方向へ平行投影した像よりも大きくなる立体形状を有する点で基本的に相違する。例えば、積層体18の面積が任意の方向への平行投影像よりも大きくなる立体形状として、積層体18Bがひだ、凹凸又は起伏を形成する形状とすることができる。ちなみに図1,図2の高分子アクチュエータ2では駆動方向への積層体18Bの平行投影像(平面形状に相当)が最大となるが、積層体18Bの面積はそれより大きくなる。   The laminated body 18B of the polymer actuator 2B is configured to have only one gel layer 14 like the laminated body 18 of the polymer actuator 2 shown in FIGS. 1 and 2, but the area of the laminated body 18B is a laminated body. This is basically different in that it has a three-dimensional shape that is larger than an image obtained by parallel projecting 18B in an arbitrary direction. For example, the stacked body 18B may have a shape in which folds, irregularities, or undulations are formed as a three-dimensional shape in which the area of the stacked body 18 is larger than a parallel projection image in an arbitrary direction. Incidentally, in the polymer actuator 2 of FIGS. 1 and 2, the parallel projection image (corresponding to a planar shape) of the stacked body 18B in the driving direction is the maximum, but the area of the stacked body 18B is larger than that.

ひだ等は積層体18Bに複数設けることができ、その断面は例えば、図3に示すように、山型に折れ曲がる部分と谷型に折れ曲がる部分とが交互に現れるジグザグ状となる。積層体18Bの面積はひだの数及び高低差に応じて大きくすることができる。複数のひだを積層体18Bの面内にてどのように形成するかは基本的には自由であるが、単純な例では、一方向に沿って平行に延びるように形成したり、同心円状に形成したりする。   Plural pleats or the like can be provided in the laminated body 18B, and the cross section thereof has, for example, a zigzag shape in which a portion bent in a mountain shape and a portion bent in a valley shape appear alternately. The area of the stacked body 18B can be increased according to the number of pleats and the height difference. How to form a plurality of pleats in the plane of the laminated body 18B is basically free, but in a simple example, the pleats may be formed so as to extend in parallel along one direction or concentrically. Or form.

分離膜26Bは積層体18Bの陰極12の表面に沿って形成される。すなわち、分離膜26Bも凹凸形状となる。また、積層体押さえ部材28Bは凹凸を有した駆動面を均一に押さえることができる形状とされる。図3に示す例では、積層体押さえ部材28Bは積層体18Bの表面に沿って屈曲する形状を有する。また、積層体18Bの谷の幅が狭い場合には、積層体押さえ部材28Bは櫛歯状の断面を有する形状とすることもできる。   The separation membrane 26B is formed along the surface of the cathode 12 of the stacked body 18B. That is, the separation membrane 26B also has an uneven shape. Further, the laminated body pressing member 28B has a shape capable of uniformly pressing the driving surface having irregularities. In the example shown in FIG. 3, the laminated body pressing member 28B has a shape that bends along the surface of the laminated body 18B. Further, when the width of the valley of the stacked body 18B is narrow, the stacked body pressing member 28B may have a shape having a comb-like cross section.

図4及び図5は図3に示す高分子アクチュエータ2Bの部分断面図であり、図4は電圧非印加状態を示しており、図5は電圧印加状態を示している。第1の実施形態と同様、電圧非印加状態では、積層体18Bの駆動面は積層体押さえ部材28Bに当接する。電圧印加状態ではゲル層14が陽極16の貫通孔32に引き込まれることにより積層体18が圧縮変形し、駆動面は後退する。   4 and 5 are partial cross-sectional views of the polymer actuator 2B shown in FIG. 3, FIG. 4 shows a voltage non-application state, and FIG. 5 shows a voltage application state. Similar to the first embodiment, in a voltage non-application state, the drive surface of the stacked body 18B contacts the stacked body pressing member 28B. When the voltage is applied, the gel layer 14 is drawn into the through hole 32 of the anode 16, whereby the laminate 18 is compressed and deformed, and the drive surface is retracted.

陰極12、ゲル層14及び陽極16からなる積層構造を1組のみ有する積層体18Bは、上述のように積層体18Bでの欠陥が生じにくくなる一方、当該積層構造を複数組有するものより駆動面の後退量は小さくなる。ここで、駆動面の後退による液室20の容積変化は積層体18Bの面積に比例して大きくなる。そこで、本実施形態の高分子アクチュエータ2Bは積層体18Bを上述のように面積が拡大する形状とすることで、1組の積層構造でも仕事量を大きくすることができ、また積層体18Bを屈曲させて面積を拡大するので、高分子アクチュエータ2の平面形状の拡大が抑制される。つまり、コンパクトで仕事量が大きな高分子アクチュエータ2を実現することができる。   The laminated body 18B having only one set of the laminated structure composed of the cathode 12, the gel layer 14, and the anode 16 is less likely to cause defects in the laminated body 18B as described above. The retraction amount of becomes smaller. Here, the volume change of the liquid chamber 20 due to the retreat of the drive surface increases in proportion to the area of the stacked body 18B. Therefore, in the polymer actuator 2B of the present embodiment, the laminated body 18B has a shape with an enlarged area as described above, so that the workload can be increased even with a single laminated structure, and the laminated body 18B is bent. Thus, since the area is enlarged, the expansion of the planar shape of the polymer actuator 2 is suppressed. That is, it is possible to realize a polymer actuator 2 that is compact and has a large work amount.

なお、作動液22は陰極12の谷を速やかに流通できる粘性のものを利用する。   The hydraulic fluid 22 uses a viscous fluid that can quickly flow through the valley of the cathode 12.

積層体18Bの面積が拡大する形状は、上述のように1つの連続面が折り畳まれた立体形状に限定されず、例えば、積層体18Bは複数の面に分割されていてもよい。   The shape in which the area of the stacked body 18B is expanded is not limited to the three-dimensional shape in which one continuous surface is folded as described above. For example, the stacked body 18B may be divided into a plurality of surfaces.

[第3の実施形態]
第3の実施形態に係る高分子アクチュエータ2Cにおいて上述の第1の実施形態に係る高分子アクチュエータ2と共通の構成要素には同一の符号を付して、その説明を省略又は簡略化する。
[Third Embodiment]
In the polymer actuator 2C according to the third embodiment, the same components as those of the polymer actuator 2 according to the first embodiment described above are denoted by the same reference numerals, and the description thereof is omitted or simplified.

図6は本実施形態に係る高分子アクチュエータ2Cの模式的な断面図である。図6は図1,図2と同様、高分子アクチュエータ2Cの駆動方向に沿った断面図であり、同図の縦方向が駆動方向となる。   FIG. 6 is a schematic cross-sectional view of the polymer actuator 2C according to the present embodiment. 6 is a cross-sectional view along the driving direction of the polymer actuator 2C as in FIGS. 1 and 2, and the vertical direction in FIG. 6 is the driving direction.

高分子アクチュエータ2Cは、力伝達部8(以下、第1力伝達部と称する。)とは別に積層体18C内に第2力伝達部50を有する。第2力伝達部50は、陰極12とゲル層14との間に設けた液室52と、ここに圧力伝達液として封入された導電性の液体とからなる。第1力伝達部8を構成する液室20は積層体18Cに隣接し、液室20の壁面の一部として力取り出し部10の可動部(ダイアフラム24)を有する。液室20が積層体外の液室であるのに対し、第2力伝達部50の液室52はゲル層14と陰極12との間に設けられた積層体内の液室である。   The polymer actuator 2C includes a second force transmission unit 50 in the laminated body 18C separately from the force transmission unit 8 (hereinafter referred to as a first force transmission unit). The second force transmission unit 50 includes a liquid chamber 52 provided between the cathode 12 and the gel layer 14 and a conductive liquid sealed therein as a pressure transmission liquid. The liquid chamber 20 constituting the first force transmission unit 8 is adjacent to the stacked body 18 </ b> C, and has a movable portion (diaphragm 24) of the force extraction unit 10 as a part of the wall surface of the liquid chamber 20. While the liquid chamber 20 is a liquid chamber outside the laminate, the liquid chamber 52 of the second force transmission unit 50 is a liquid chamber in the laminate provided between the gel layer 14 and the cathode 12.

液室52に封入される導電性液体は陰極12と共にゲル層14に電圧を印加する陰極として機能する。すなわち、高分子アクチュエータ2Cの積層体18Cにおける陰極は、固体からなる陰極12と、導電性液体である液体陰極層54とからなる。なお、本実施形態では、陰極12は動作時に発生する力により撓まない程度の剛性を有する構成とすることができる。   The conductive liquid sealed in the liquid chamber 52 functions as a cathode that applies a voltage to the gel layer 14 together with the cathode 12. That is, the cathode in the laminated body 18C of the polymer actuator 2C includes the cathode 12 made of a solid and the liquid cathode layer 54 that is a conductive liquid. In the present embodiment, the cathode 12 can be configured to have a rigidity that does not bend due to a force generated during operation.

第2力伝達部50は第1力伝達部8と同様、パスカルの原理により、液室52の内壁面には均等な圧力を及ぼす。つまり、高分子アクチュエータ2Cは第2力伝達部50を備えることで、陽極16にゲル層14を引き寄せて積層体18Cの厚みを収縮させ駆動力を発生する際に、ゲル層14や陰極12に作用する力が均一になる。よって、第1力伝達部8と併せて第2力伝達部50を設けることで、陰極12とゲル層14との剥離やゲル層14内における亀裂といった積層体18における欠陥の発生をさらに好適に防止できる。   Similar to the first force transmission unit 8, the second force transmission unit 50 applies an equal pressure to the inner wall surface of the liquid chamber 52 based on the Pascal principle. That is, the polymer actuator 2C includes the second force transmission unit 50, so that when the gel layer 14 is attracted to the anode 16 to contract the thickness of the stacked body 18C and a driving force is generated, the gel layer 14 and the cathode 12 The applied force becomes uniform. Therefore, by providing the second force transmission unit 50 together with the first force transmission unit 8, it is more preferable to generate defects in the stacked body 18 such as separation between the cathode 12 and the gel layer 14 and a crack in the gel layer 14. Can be prevented.

なお、第1力伝達部8は、積層体18の欠陥の発生を抑制する効果を有すると共に、積層体18の面積に対する力取り出し部10の変位する部分の面積の比を変えることを可能とし、当該比を変えることで上述したように力取り出し部10での取り出す力と変位量との割り当てを変更することができる。ここで、取り出す力と変位量との割り当てを変換するための別途の構成を高分子アクチュエータ2C内に設けたり、高分子アクチュエータ2Cの外部で当該変換を行う場合には、第1力伝達部8を省略して第2力伝達部50だけとしても、積層体18の欠陥の発生を抑制することが可能である。   The first force transmission unit 8 has the effect of suppressing the occurrence of defects in the stacked body 18 and can change the ratio of the area of the displaced portion of the force extracting unit 10 to the area of the stacked body 18. By changing the ratio, it is possible to change the allocation between the force to be extracted by the force extraction unit 10 and the displacement amount as described above. Here, when a separate configuration for converting the allocation of the force to be extracted and the displacement amount is provided in the polymer actuator 2C, or when the conversion is performed outside the polymer actuator 2C, the first force transmission unit 8 is used. Even if only the second force transmission unit 50 is omitted, it is possible to suppress the occurrence of defects in the stacked body 18.

2,2B,2C 高分子アクチュエータ、4 ケース、6 力発生部、8 力伝達部、10 力取り出し部、12 陰極、14 ゲル層、16 陽極、18 積層体、20,52 液室、22 作動液、24 ダイアフラム、26,26B 分離膜、28,28B 積層体押さえ部材、30 開口部、32 貫通孔、34 孔、50 第2力伝達部、54 液体陰極層。   2,2B, 2C Polymer actuator, 4 case, 6 force generator, 8 force transmitter, 10 force takeout, 12 cathode, 14 gel layer, 16 anode, 18 laminate, 20, 52 liquid chamber, 22 hydraulic fluid , 24 Diaphragm, 26, 26B Separation membrane, 28, 28B Laminate pressing member, 30 opening, 32 through hole, 34 hole, 50 second force transmission unit, 54 liquid cathode layer.

Claims (8)

誘電性高分子材料層の両面に電極を重ねた積層体を有し、前記積層体の駆動面にする一方表面に可撓性を備えた前記電極を配し、電圧印加による前記積層体の厚みの収縮で前記駆動面を後退させる力発生部と、
前記駆動面を壁面の一部とし作動液を充填された密閉液室からなる力伝達部と、
前記積層体の収縮に応じて、前記壁面の一部をなす可動部が変位し駆動負荷に力を作用する力作用部と、
を有することを特徴とする高分子アクチュエータ。
A thickness of the laminate by applying a voltage, having a laminate in which electrodes are stacked on both sides of a dielectric polymer material layer, and arranging the electrode having flexibility on one surface as a driving surface of the laminate. A force generator that retracts the drive surface by contraction of
A force transmission part comprising a sealed liquid chamber in which the driving surface is a part of a wall surface and filled with a working fluid;
In response to the contraction of the laminated body, a movable portion that forms a part of the wall surface is displaced, and a force acting portion that applies a force to a driving load;
A polymer actuator characterized by comprising:
請求項1に記載の高分子アクチュエータにおいて、
前記積層体は、前記誘電性高分子材料層を1層のみ有し、かつ当該積層体の面積が任意の方向への平行投影像よりも大きくなる立体形状を有すること、を特徴とする高分子アクチュエータ。
The polymer actuator according to claim 1, wherein
The laminated body has only one dielectric polymer material layer and has a three-dimensional shape in which the area of the laminated body is larger than a parallel projection image in an arbitrary direction. Actuator.
請求項1又は請求項2に記載の高分子アクチュエータにおいて、
前記密閉液室内に固定され前記作動液を通過させると共に、前記積層体の非収縮時には、前記駆動面となる前記積層体の一方の表面を押さえる積層体押さえ部材を有することを特徴とする高分子アクチュエータ。
The polymer actuator according to claim 1 or 2,
A polymer having a laminate pressing member that is fixed in the sealed liquid chamber and allows the working fluid to pass therethrough and that presses one surface of the laminate as the driving surface when the laminate is not contracted. Actuator.
請求項1から請求項3のいずれか1つに記載の高分子アクチュエータにおいて、
前記力発生部を前記作動液から分離し保護する膜であって、前記駆動面となる前記積層体の一方の表面を被覆し当該表面に追随して変形する分離膜を有することを特徴とする高分子アクチュエータ。
In the polymer actuator according to any one of claims 1 to 3,
A membrane that separates and protects the force generating portion from the working fluid, and has a separation membrane that covers one surface of the laminate as the driving surface and deforms following the surface. Polymer actuator.
請求項1から請求項4のいずれか1つに記載の高分子アクチュエータにおいて、
前記力発生部及び前記力伝達部を格納するケースを有し、
前記電極のうち前記誘電性高分子材料層に対し前記駆動面とは反対側に配置された背面電極は、前記電圧印加により前記誘電性高分子材料層を引き込む複数の貫通孔を有し、当該貫通孔は前記ケースの外部と連通すること、を特徴とする高分子アクチュエータ。
In the polymer actuator according to any one of claims 1 to 4,
A case for storing the force generation unit and the force transmission unit;
The back electrode disposed on the opposite side of the drive surface relative to the dielectric polymer material layer of the electrode has a plurality of through holes that draw the dielectric polymer material layer by applying the voltage, A polymer actuator, wherein the through hole communicates with the outside of the case.
誘電性高分子からなるゲル層を挟んで第1及び第2電極層を配置した積層体を有し、電圧印加により前記ゲル層を前記第1電極層に引き寄せて前記積層体の厚みを収縮させ駆動力を発生する力発生部と、
前記第2電極層を壁面の一部とし圧力伝達液を充填された密閉液室からなる力伝達部と、
を有することを特徴とする高分子アクチュエータ。
It has a laminate in which a first electrode layer and a second electrode layer are arranged with a gel layer made of a dielectric polymer interposed therebetween, and the gel layer is drawn to the first electrode layer by applying a voltage to shrink the thickness of the laminate. A force generator that generates a driving force;
A force transmission part comprising a sealed liquid chamber in which the second electrode layer is a part of a wall surface and filled with a pressure transmission liquid;
A polymer actuator characterized by comprising:
請求項6に記載の高分子アクチュエータにおいて、
前記力伝達部として、前記積層体に隣接した液室であって、駆動負荷に力を作用する力作用部の可動部を当該液室の前記壁面の一部とする積層体外液室を有すること、を特徴とする高分子アクチュエータ。
The polymer actuator according to claim 6, wherein
As the force transmission unit, a liquid chamber adjacent to the stacked body, the movable portion of the force acting unit that exerts a force on a driving load being a part of the wall surface of the liquid chamber is provided as a liquid chamber outside the stacked body. A polymer actuator characterized by.
請求項6又は請求項7に記載の高分子アクチュエータにおいて、
前記力伝達部として、前記ゲル層と前記第2電極層との間に設けられ、前記圧力伝達液として導電性液体を充填された積層体内液室を有すること、を特徴とする高分子アクチュエータ。
The polymer actuator according to claim 6 or 7,
A polymer actuator, comprising: a laminated body fluid chamber provided between the gel layer and the second electrode layer as the force transmission unit and filled with a conductive liquid as the pressure transmission liquid.
JP2013242264A 2013-11-22 2013-11-22 Polymer actuator Active JP6212365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013242264A JP6212365B2 (en) 2013-11-22 2013-11-22 Polymer actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013242264A JP6212365B2 (en) 2013-11-22 2013-11-22 Polymer actuator

Publications (2)

Publication Number Publication Date
JP2015104196A true JP2015104196A (en) 2015-06-04
JP6212365B2 JP6212365B2 (en) 2017-10-11

Family

ID=53379493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013242264A Active JP6212365B2 (en) 2013-11-22 2013-11-22 Polymer actuator

Country Status (1)

Country Link
JP (1) JP6212365B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7053024B2 (en) 2018-06-15 2022-04-12 徹 竹内 Emergency escape evacuation device in a building

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09302246A (en) * 1996-05-20 1997-11-25 Casio Comput Co Ltd Functional polymer element and its production
JP2005323482A (en) * 2004-05-11 2005-11-17 Japan Carlit Co Ltd:The Actuator
JP2012125087A (en) * 2010-12-10 2012-06-28 Iai:Kk Polymer actuator and actuator device
JP2012130201A (en) * 2010-12-17 2012-07-05 Shinshu Univ Shrinkage type gel actuator controlling method
JP2012161221A (en) * 2011-02-03 2012-08-23 Shinshu Univ Gel actuator and gel used for the same
WO2013122047A1 (en) * 2012-02-14 2013-08-22 国立大学法人信州大学 Gel actuator and method for producing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09302246A (en) * 1996-05-20 1997-11-25 Casio Comput Co Ltd Functional polymer element and its production
JP2005323482A (en) * 2004-05-11 2005-11-17 Japan Carlit Co Ltd:The Actuator
JP2012125087A (en) * 2010-12-10 2012-06-28 Iai:Kk Polymer actuator and actuator device
JP2012130201A (en) * 2010-12-17 2012-07-05 Shinshu Univ Shrinkage type gel actuator controlling method
JP2012161221A (en) * 2011-02-03 2012-08-23 Shinshu Univ Gel actuator and gel used for the same
US20130307374A1 (en) * 2011-02-03 2013-11-21 Shinshu University Gel actuator and gel used therein
WO2013122047A1 (en) * 2012-02-14 2013-08-22 国立大学法人信州大学 Gel actuator and method for producing same

Also Published As

Publication number Publication date
JP6212365B2 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
US10746206B1 (en) Soft-bodied fluidic actuator
EP1212800B1 (en) Electroactive polymer generators
US7923064B2 (en) Electroactive polymer manufacturing
CA2537231C (en) Electroactive polymer pre-strain
JP5713417B2 (en) Gel actuator and manufacturing method thereof
FI20175691A1 (en) Electrostatic actuator structure
CN108638049A (en) One kind being based on electrically driven (operated) PVC-gel flexible manipulators
TW201503437A (en) Process for the production of a multilayer electromechanical transducer
JP6212365B2 (en) Polymer actuator
US7719164B2 (en) Patterned dielectric elastomer actuator and method of fabricating the same
JP6323948B2 (en) Actuator element and actuator
JP2014217238A (en) Actuator
KR100862464B1 (en) Dielectric polymer actuator and leaner driving device using the same
EP2053670B1 (en) An elongated actuator structure
JP2009273201A (en) Electric power generating apparatus using electroactive polymer
JP2020022214A (en) Dielectric elastomer transducer system
US8829765B2 (en) Piezoelectric actuator device
CN107408622B (en) Piezoelectric generator, button, radio module and the method for manufacturing piezoelectric generator
CN108900110B (en) EAP driving structure based on negative rigidity preload
Hau et al. A Compact High-Force Dielectric Elastomer Membrane Actuator
JP2009027065A (en) Electrostrictive actuator
Honda et al. Design and characterization of contraction motion actuator converted from swelling pneumatic balloon actuator for large deformation and force
JP2011188720A (en) Driving device
JP2006204099A (en) Electrostriction polymer actuator
JP6622078B2 (en) Power generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170915

R150 Certificate of patent or registration of utility model

Ref document number: 6212365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250