JP2015102416A - Bubble detection device - Google Patents

Bubble detection device Download PDF

Info

Publication number
JP2015102416A
JP2015102416A JP2013242926A JP2013242926A JP2015102416A JP 2015102416 A JP2015102416 A JP 2015102416A JP 2013242926 A JP2013242926 A JP 2013242926A JP 2013242926 A JP2013242926 A JP 2013242926A JP 2015102416 A JP2015102416 A JP 2015102416A
Authority
JP
Japan
Prior art keywords
bubble
bubbles
frequency
detection device
ship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013242926A
Other languages
Japanese (ja)
Other versions
JP6361062B2 (en
Inventor
秀樹 堀内
Hideki Horiuchi
秀樹 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2013242926A priority Critical patent/JP6361062B2/en
Publication of JP2015102416A publication Critical patent/JP2015102416A/en
Application granted granted Critical
Publication of JP6361062B2 publication Critical patent/JP6361062B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bubble detection device which detects the presence and absence of the generation of bubbles.SOLUTION: A bubble detection device includes: a vibrator 10 which transmits an ultrasonic wave with a prescribed frequency to bubbles being a measuring target and receives a reflection wave from the bubbles to convert it into an electric signal (second electric signal 24); and a control unit 20 which drives the vibrator 10 and processes the second electric signal 24. The control unit 20 calculates a frequency variation amount of the second electric signal 24, compares the calculated frequency variation amount with a preset frequency variation amount and detects the presence and absence of the bubbles, the size and density of the bubbles in accordance with a comparison result.

Description

本発明は、気泡検出装置に関する。   The present invention relates to a bubble detection device.

近年、気泡によって船舶の船底に作用する水による摩擦抵抗を低減する空気潤滑(Air Lubrication)法(以下、AL法と称する)を用いた船舶が知られている。例えば、特許文献1には、AL法を用いた摩擦抵抗低減船が開示されている。   In recent years, a ship using an air lubrication method (hereinafter referred to as an AL method) that reduces frictional resistance caused by water acting on the ship bottom by bubbles is known. For example, Patent Document 1 discloses a frictional resistance reduction ship using the AL method.

特許文献1に記載の摩擦抵抗低減船では、船舶の船首部から船尾部に至る船底の部分に気泡発生装置を設けている。船舶の航行時に、航行速度より僅かに速い流速で気泡発生装置から気泡を含む気泡水を噴き出すと、気泡が水流とともに船底の表面に沿って後方へ拡散しながら移動し、船底の浸水部を覆う。これにより、船舶の航行時における船舶の船底における水との摩擦抵抗を低減するとともに、気泡の上昇力を推力の一部として利用し、燃費などの推進効率を向上させている。   In the frictional resistance reduction ship described in Patent Document 1, a bubble generating device is provided at the bottom of the ship from the bow part to the stern part of the ship. During the navigation of a ship, when bubble water containing bubbles is ejected from the bubble generator at a flow rate slightly faster than the navigation speed, the bubbles move while diffusing backward along the surface of the ship bottom along with the water flow, covering the flooded part of the ship bottom. . As a result, frictional resistance with water at the bottom of the ship during navigation of the ship is reduced, and ascending force of bubbles is used as a part of thrust to improve propulsion efficiency such as fuel efficiency.

特開平9−118288号公報JP-A-9-118288

しかしながら、従来、上記のようなAL法を用いた摩擦抵抗低減船において気泡発生装置が発生する気泡を観測する場合、船底に水中カメラを取り付けて、実際の気泡を観測していた。このように水中カメラで気泡を観測する場合、カメラの部品、或いは取り付け部などが水中にあるために経年劣化し、定期的に交換を行なう必要があった。また、特に海水中に静止状態で置かれる場合、フジツボなどの海中生物が付着しやすく、交換、クリーニングなどの定期的な作業が発生していた。すなわち、従来において、水中カメラで気泡観測する場合、気泡を観測するためのコストを上昇させていた。また、水中カメラにより撮像した画像を処理して気泡の存在の有無、気泡の大きさ、密度を検出するため、容量の大きい画像信号の処理が必要となり、信号処理が煩雑になるという問題があった。
また、船首から船底に潜り込む気泡により、測深器やドップラーソナー、ドップラーログなどの超音波機器から発せられる超音波が遮蔽され、従来の超音波機器(従来機器)においては、正常な計測が妨害されてしまう(「泡かみ」などと呼称される)という問題がある。このため、船底の気泡の検出時においては、超音波機器が現在計測不能であることを通知するため、気泡の大きさ、密度を気泡検出機能により精確に検出する機能(気泡処理機能)を、超音波機器に持たせる必要がある。
However, conventionally, when observing bubbles generated by a bubble generating device in a frictional resistance reduction ship using the above-described AL method, an actual bubble is observed by attaching an underwater camera to the bottom of the ship. When air bubbles are observed with an underwater camera in this way, the camera parts or attachments are underwater, so that they have deteriorated over time and have to be replaced regularly. In particular, when placed in seawater in a stationary state, marine organisms such as barnacles tend to adhere, and periodic operations such as replacement and cleaning have occurred. That is, conventionally, when bubbles are observed with an underwater camera, the cost for observing the bubbles has been increased. Also, since the image captured by the underwater camera is processed to detect the presence / absence of bubbles, the size and density of bubbles, processing of image signals with a large capacity is required, and there is a problem that the signal processing becomes complicated. It was.
In addition, the bubbles that enter the bottom of the ship from the bow block the ultrasonic waves emitted from ultrasonic instruments such as sounding instruments, Doppler sonar, and Doppler logs, and normal ultrasonic equipment (conventional equipment) interferes with normal measurement. There is a problem that it is called ("foaming" etc.). For this reason, when detecting bubbles on the ship's bottom, in order to notify that the ultrasonic device is currently unable to measure, the function of detecting the size and density of the bubbles accurately using the bubble detection function (bubble processing function) It is necessary to have the ultrasonic equipment.

本発明の気泡検出装置は、所定周波数の超音波を測定対象である気泡に対して送信し、前記気泡からの反射波を受信して電気信号に変換する振動子と、前記振動子を駆動するとともに、前記電気信号を処理する制御装置と、を備えた気泡検出装置であって、前記制御装置は、前記電気信号の周波数変化量を算出し、算出した周波数変化量を、予め設定される周波数変化量と比較して、比較結果に応じて、前記気泡の存在の有無、気泡の大きさ、密度を検出することを特徴とする。   The bubble detection device of the present invention transmits an ultrasonic wave having a predetermined frequency to a bubble to be measured, receives a reflected wave from the bubble and converts it into an electrical signal, and drives the transducer And a control device that processes the electrical signal, wherein the control device calculates a frequency change amount of the electrical signal and sets the calculated frequency change amount to a preset frequency. Compared with the amount of change, the presence / absence of the bubble, the size and density of the bubble are detected according to the comparison result.

また、本発明の気泡検出装置において、前記周波数変化量は、前記電気信号の周波数分布における送信周波数に対するピークの広がりである、ことを特徴とする。   In the bubble detection device of the present invention, the frequency change amount is a peak spread with respect to a transmission frequency in the frequency distribution of the electrical signal.

また、本発明の気泡検出装置において、前記予め設定される周波数変化量は、前記振動子の気泡を送信する方向に対して、前記振動子からの距離に応じて複数個数設定されており、前記制御装置は、算出した周波数変化量を、前記複数個数設定される周波数変化量各々と比較して、比較結果に応じて、前記気泡を含む層の厚みを検出する、ことを特徴とする。   Further, in the bubble detection device of the present invention, a plurality of the preset frequency change amounts are set in accordance with a distance from the transducer with respect to a direction of transmitting the bubbles of the transducer, The control device compares the calculated frequency variation amount with each of the plurality of frequency variation amounts set, and detects the thickness of the layer including the bubbles according to the comparison result.

また、本発明の気泡検出装置において、前記気泡は、船舶の船底に設けられた気泡発生装置が発生する気泡であることを特徴とする。なお、本発明の気泡検出装置は、AL法の船で発生する気泡に限らずに、通常の航行時においてバルバスバウなどの船首方向から船底に潜り込む気泡も検出対象とするものである。   In the bubble detection device of the present invention, the bubble is a bubble generated by a bubble generation device provided at the bottom of a ship. The bubble detection device of the present invention is not limited to the bubbles generated in the AL method ship, but also detects bubbles that enter the bottom of the ship from the bow direction such as a Barbus bow during normal navigation.

本発明によれば、振動子とともに気泡検出装置を構成する制御装置を水中に配置する必要はないため、定期的な交換を行なう必要がなくなる。また、振動子は走行中などの気泡発生時は振動しているため、海水中に静止状態で置かれる期間が少なく、生物が付着する可能性が低いため、交換、クリーニングなどの定期的な作業は発生しにくい。そのため、従来に比べて、気泡を検出するためのコストを削減できる。また、制御装置が電気信号の周波数変化量を算出し、算出した周波数変化量を、予め設定される周波数変化量と比較して、比較結果に応じて、前記気泡の存在の有無、気泡の大きさ、密度を検出する。そのため、画像処理等の複雑な信号処理を必要とせず、気泡の存在の有無等を簡単に検出することが可能な気泡検出装置を新たに提供できる。
また、従来機器に気泡処理機能を搭載する場合には、通常の船速や測深などの計測に用いる測定系(振動子から送受信器に至る系)を気泡処理機能に用いることになる。しかしながら、気泡検出判定を行う際、従来機器のような遠距離の海底や潮流を測定する送信パワーおよび受信ゲインでは高すぎるため、送信パワーおよび受信ゲインを下げる必要がある。そのため、従来機器に気泡処理機能を搭載する場合、新たな振動子や送受信機が必要となってしまう。本発明の気泡検出装置によれば、送信パワーおよび受信ゲインを下げるために、新たな振動子や送受信機などを装備する必要もなく、ソフトウエアの変更のみで、測深器やドップラーソナー、ドップラーログなどの従来機器に気泡処理機能を追加することが可能となる。
According to the present invention, since it is not necessary to dispose the control device that constitutes the bubble detection device together with the vibrator in water, it is not necessary to perform periodic replacement. In addition, since the vibrator vibrates when bubbles are generated, such as when traveling, the period of time during which it remains stationary in seawater is low, and there is a low possibility of organisms adhering. Is unlikely to occur. Therefore, the cost for detecting bubbles can be reduced as compared with the conventional case. Further, the control device calculates the frequency change amount of the electric signal, compares the calculated frequency change amount with a preset frequency change amount, and determines whether the bubble is present or not, depending on the comparison result. Detect density. Therefore, it is possible to newly provide a bubble detection device that does not require complicated signal processing such as image processing and can easily detect the presence or absence of bubbles.
In addition, when a bubble processing function is installed in a conventional device, a measurement system (system from a transducer to a transmitter / receiver) used for measurement such as normal ship speed and depth measurement is used for the bubble processing function. However, when performing bubble detection determination, since the transmission power and reception gain for measuring the seabed and tidal current at a long distance as in conventional devices are too high, it is necessary to reduce the transmission power and reception gain. Therefore, when a bubble processing function is mounted on a conventional device, a new vibrator or transceiver is required. According to the bubble detection device of the present invention, it is not necessary to equip a new transducer or transmitter / receiver in order to lower the transmission power and the reception gain, and only by changing the software, the sounding device, the Doppler sonar, the Doppler log It is possible to add a bubble processing function to conventional devices such as.

本実施形態の気泡検出装置100が一例として配置される船舶を、船底側からみた図である。It is the figure which looked at the ship by which the bubble detection apparatus 100 of this embodiment is arrange | positioned as an example from the ship bottom side. 気泡検出装置100の構成を示すブロック図である。1 is a block diagram showing a configuration of a bubble detection device 100. FIG. 振動子10の機能を説明するための図である。FIG. 5 is a diagram for explaining a function of a vibrator 10. 第2の電気信号24の時間変化を示す図である。It is a figure which shows the time change of the 2nd electric signal 24. FIG. 信号処理部21による気泡の存在の有無、形状の検出を説明するための図である。It is a figure for demonstrating the presence or absence of a bubble by the signal processing part 21, and the detection of a shape.

以下、添付図面を参照しながら、本発明の好ましい実施の形態について説明する。
図1は、本実施形態の気泡検出装置100が一例として配置される船舶を、船底側からみた図である。なお、ここでは、気泡検出装置100を船舶に配置する例について説明するが、本実施形態の気泡検出装置100は船舶に限定して用いられるものではない。本願発明の技術的範囲は、特許請求の範囲の記載に基づいて定められる。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a view of a ship in which the bubble detection device 100 of the present embodiment is disposed as an example, as viewed from the ship bottom side. In addition, although the example which arrange | positions the bubble detection apparatus 100 in a ship is demonstrated here, the bubble detection apparatus 100 of this embodiment is not limited to a ship, and is used. The technical scope of the present invention is determined based on the description of the scope of claims.

図1においては、船舶40を船底側から見ており、船舶40を、船首側(前側)が図面右側、船尾側(後側)が図面左側となるように示している。
気泡発生装置50は、船舶40の船底において、前側に配置される。気泡発生装置50は、船舶40の航行時に、気泡を発生する。気泡は、水流とともに船舶40の船底の表面に沿って後方へ拡散しながら移動し、船舶40の船底の浸水部を覆う。これにより、船舶40の航行時における船舶40の船底に対する水の摩擦抵抗を低減する。
In FIG. 1, the ship 40 is viewed from the bottom side, and the ship 40 is shown with the bow side (front side) on the right side of the drawing and the stern side (rear side) on the left side of the drawing.
The bubble generating device 50 is disposed on the front side of the bottom of the ship 40. The bubble generating device 50 generates bubbles when the ship 40 navigates. The bubbles move while diffusing backward along the surface of the bottom of the ship 40 together with the water flow, and cover the flooded part of the bottom of the ship 40. Thereby, the frictional resistance of the water with respect to the bottom of the ship 40 at the time of navigation of the ship 40 is reduced.

振動子10は、船舶40の船底において、気泡発生装置50と船舶の後側との間に設けられる。振動子10は、気泡検出装置100(図1において不図示)の一部を構成し、気泡に対して超音波を出力するとともに、気泡から反射される超音波が入力される。以下、振動子10を含んで構成される気泡検出装置100について図面を参照しつつ詳述する。   The vibrator 10 is provided on the bottom of the ship 40 between the bubble generating device 50 and the rear side of the ship. The vibrator 10 constitutes a part of the bubble detection device 100 (not shown in FIG. 1), outputs ultrasonic waves to the bubbles, and receives ultrasonic waves reflected from the bubbles. Hereinafter, the bubble detection device 100 including the vibrator 10 will be described in detail with reference to the drawings.

図2は、気泡検出装置100の構成を示すブロック図である。また、図3は振動子10の機能を説明するための図である。また、図4は、第2の電気信号24の時間変化を示す図である。
気泡検出装置100は、振動子10と、制御装置20と、表示機器30とを備える。
FIG. 2 is a block diagram illustrating a configuration of the bubble detection device 100. FIG. 3 is a diagram for explaining the function of the vibrator 10. FIG. 4 is a diagram showing a time change of the second electric signal 24.
The bubble detection device 100 includes a vibrator 10, a control device 20, and a display device 30.

振動子10は、超音波の送受信センサーであり、上述のように、水中の船底に装備される。
振動子10は、送受信部22からの第1の電気信号23を超音波に変換して、図3に示すように、船舶40の船底から、船首方向へ(気泡の流れる方向とは逆方向へ)角度(俯角)、例えば75°の俯角を持たせて水中に対して超音波を発信する。超音波は、水中の気泡により直接反射されるか、或いは振動子10と気泡との間、および気泡と気泡の間で乱反射(反射及び減衰)され、振動子10に再び入力する。もちろん、超音波に対する反射、乱反射の程度は、気泡の大きさ、水流における気泡の密度、あるいは、振動子10と気泡を含む水流との距離、気泡を含む水流の幅(厚み)により、異なったものとなる。なお、水流の厚みとは、船舶の進行方向に対して垂直方向、すなわち深さ方向における気泡を含む水流の厚みである。
図3では、厚み方向を区間(領域)(1)、(2)、(3)と分けて示している。領域(1)に対応する受信信号は、領域(1)での多重反射信号となる。また、領域(2)に対応する受信信号は、領域(1)での多重反射信号も含む。また、領域(3)に対応する、さらに領域(1)および領域(2)での多重反射信号を含む。
図2に戻って、振動子10は、水中からのエコー(残響)として入力される超音波を第2の電気信号24に変換して送受信部22に対して出力する。
The transducer 10 is an ultrasonic transmission / reception sensor, and is mounted on the underwater ship bottom as described above.
The transducer 10 converts the first electrical signal 23 from the transmission / reception unit 22 into ultrasonic waves, and from the bottom of the ship 40 toward the bow (in the direction opposite to the direction in which bubbles flow), as shown in FIG. ) An ultrasonic wave is transmitted to the water with an angle (a depression angle), for example, a depression angle of 75 °. The ultrasonic waves are directly reflected by the bubbles in the water, or are irregularly reflected (reflected and attenuated) between the transducer 10 and the bubbles and between the bubbles and are input to the transducer 10 again. Of course, the degree of reflection and diffuse reflection with respect to the ultrasonic wave differs depending on the size of the bubble, the density of the bubble in the water flow, the distance between the vibrator 10 and the water flow containing the bubble, and the width (thickness) of the water flow containing the bubble. It will be a thing. The thickness of the water flow is the thickness of the water flow including bubbles in the direction perpendicular to the traveling direction of the ship, that is, in the depth direction.
In FIG. 3, the thickness direction is divided into sections (regions) (1), (2), and (3). The received signal corresponding to the area (1) is a multiple reflection signal in the area (1). Further, the received signal corresponding to the region (2) includes the multiple reflection signal in the region (1). Further, it includes multiple reflection signals in the region (1) and the region (2) corresponding to the region (3).
Returning to FIG. 2, the transducer 10 converts an ultrasonic wave input as an echo (reverberation) from the water into a second electric signal 24 and outputs the second electric signal 24 to the transmission / reception unit 22.

制御装置20は、図2に示すように、信号処理部21(制御部)、送受信部22、記憶部25を含んで構成される。
送受信部22は、振動子10が超音波送信に用いる送信波(バースト波)を生成する。また、送受信部22は、振動子10によりエコーとしての超音波を受信信号に増幅し、増幅後の受信信号(第2の電気信号24)を信号処理部21に対して出力する。
信号処理部21は、例えばマイコン等で構成され、送受信部22に接続される。信号処理部21は、この送受信部22から、所定周期のパルスである第1の電気信号23を発生させる。すなわち、信号処理部21は、第1の電気信号23により振動子10を駆動し、超音波送信に用いる送信波(バースト波)を発信させる。また、信号処理部21は、送受信部22による増幅後の電気信号(第2の電気信号24)を、例えばA/D(Analog To Digital)変換器にてディジタルデータとして取り込む。信号処理部21は、取り込んだディジタルデータに対してデジタルフィルタ、信号処理を行うことで、各時間における周波数を演算する。信号処理部21は、演算結果を用いて周波数変化量(周波数分布の広がり)を確認し、気泡発生装置50が発生する気泡の存在の有無、気泡の大きさ、密度を判定する(詳細後述)。
As illustrated in FIG. 2, the control device 20 includes a signal processing unit 21 (control unit), a transmission / reception unit 22, and a storage unit 25.
The transmission / reception unit 22 generates a transmission wave (burst wave) used by the transducer 10 for ultrasonic transmission. Further, the transmission / reception unit 22 amplifies the ultrasonic wave as an echo into a reception signal by the transducer 10 and outputs the amplified reception signal (second electric signal 24) to the signal processing unit 21.
The signal processing unit 21 is configured by a microcomputer or the like, for example, and is connected to the transmission / reception unit 22. The signal processing unit 21 generates a first electrical signal 23 that is a pulse having a predetermined cycle from the transmission / reception unit 22. That is, the signal processing unit 21 drives the vibrator 10 with the first electric signal 23 to transmit a transmission wave (burst wave) used for ultrasonic transmission. In addition, the signal processing unit 21 captures the electric signal (second electric signal 24) amplified by the transmission / reception unit 22 as digital data, for example, by an A / D (Analog To Digital) converter. The signal processing unit 21 calculates a frequency at each time by performing a digital filter and signal processing on the captured digital data. The signal processing unit 21 confirms the frequency change amount (the spread of the frequency distribution) using the calculation result, and determines the presence / absence of bubbles generated by the bubble generation device 50, the size and density of the bubbles (details will be described later). .

記憶部25には、信号処理部21が判定を行う際に用いる信号の周波数分布(基準周波数)などが予め記憶されている。
また、表示機器30は、信号処理部21による気泡検出結果を表示する。また、表示機器30は、同時に、気泡検出結果を外部機器へ、例えば海上機器用の専用通信において用いられるNMEA0183仕様に従った形式(フォーマット)で出力する。
The storage unit 25 stores in advance a frequency distribution (reference frequency) of a signal used when the signal processing unit 21 makes a determination.
Further, the display device 30 displays the bubble detection result by the signal processing unit 21. At the same time, the display device 30 outputs the bubble detection result to an external device, for example, in a format (format) according to the NMEA0183 specification used in dedicated communication for offshore equipment.

信号処理部21には、図4に反射レベルを示す第2の電気信号24が入力される。図4では、第2の電気信号24の電圧レベル(反射レベル)を縦軸に、第1の電気信号23の出力直後を時刻0として時刻0からの時間を横軸にプロットしている。図4に示すように、気泡から反射若しくは乱反射された超音波の第2の電気信号24への変換後の反射レベルは、時間の経過とともに減衰する波形となる。図3では、送信信号の後に示す受信信号のレベル(第2の電気信号24への変換後の反射レベル)は、図3に示す領域(1)、(2)、(3)に対応して、それぞれ時間の経過とともに減衰する波形となっていることがわかる。つまり、この反射レベルの大きさは、気泡の存在の有無、気泡の大きさ、密度により、変化する。   The signal processing unit 21 receives the second electric signal 24 indicating the reflection level in FIG. In FIG. 4, the voltage level (reflection level) of the second electrical signal 24 is plotted on the vertical axis, the time immediately after the output of the first electrical signal 23 is time 0, and the time from time 0 is plotted on the horizontal axis. As shown in FIG. 4, the reflection level after the conversion of the ultrasonic wave reflected or diffusely reflected from the bubble into the second electric signal 24 has a waveform that attenuates with time. In FIG. 3, the level of the received signal shown after the transmission signal (the reflection level after conversion into the second electrical signal 24) corresponds to the areas (1), (2), and (3) shown in FIG. It can be seen that the waveforms decay with time. That is, the magnitude of this reflection level changes depending on the presence / absence of bubbles, the size and density of the bubbles.

信号処理部21は、第2の電気信号24への変換後の反射レベルを信号処理、例えば高速フーリエ解析(FFT)することにより、受信信号の周波数分布を厚み方向の領域(1)、(2)、(3)ごとに算出する。
図5は、信号処理部21による気泡の存在の有無、形状の検出を説明するための図である。図5(a)〜(d)各々は、受信波の電力(Power)を受信波の周波数を横軸にプロットした、受信波の周波数解析結果を示している。また、各図において、送信周波数を基本周波数として示している。
図5(a)は、気泡がないときの信号処理部21による周波数解析結果を示している。図5(a)に示すように、気泡がないときは、送信周波数に対する受信周波数の周波数分布は、反射やドップラー効果が発生しないため、ほぼピークの無い波形となる。
図5(b)は、気泡があるときの、領域(1)に対する信号処理部21による周波数解析結果を示している。図5(b)に示すように、領域(1)での周波数分布は、気泡表面での多重反射などにより、周波数分布が、基本周波数よりも高周波側にシフトする、すなわち、ブロードな波形となる。
The signal processing unit 21 performs signal processing, for example, fast Fourier analysis (FFT) on the reflection level after conversion into the second electric signal 24, thereby converting the frequency distribution of the received signal into the thickness direction regions (1), (2 ) And (3).
FIG. 5 is a diagram for explaining the presence / absence of bubbles and the detection of the shape by the signal processing unit 21. Each of FIGS. 5A to 5D shows the frequency analysis result of the received wave in which the power (Power) of the received wave is plotted on the horizontal axis of the frequency of the received wave. Moreover, in each figure, the transmission frequency is shown as a fundamental frequency.
FIG. 5A shows the frequency analysis result by the signal processing unit 21 when there is no bubble. As shown in FIG. 5A, when there is no bubble, the frequency distribution of the reception frequency with respect to the transmission frequency has a waveform with almost no peak because no reflection or Doppler effect occurs.
FIG.5 (b) has shown the frequency analysis result by the signal processing part 21 with respect to area | region (1) when there exists a bubble. As shown in FIG. 5B, the frequency distribution in the region (1) shifts to a higher frequency side than the fundamental frequency due to multiple reflection on the bubble surface, that is, a broad waveform. .

図5(c)は、気泡があるときの、領域(2)に対する信号処理部21による周波数解析結果を示している。図5(c)に示すように、領域(2)での周波数分布は、領域(1)における多重反射信号も含むため、図5(b)に示す領域(1)での周波数分布よりも、さらにブロードな波形となる
図5(d)は、気泡があるときの、領域(3)に対する信号処理部21による周波数解析結果を示している。図5(d)に示すように、領域(3)での周波数分布は、領域(1)および領域(2)での多重反射信号を含むため、図5(c)に示す領域(2)での周波数分布よりも、さらにブロードな波形となる。
FIG.5 (c) has shown the frequency-analysis result by the signal processing part 21 with respect to area | region (2) when there exists a bubble. As shown in FIG. 5C, the frequency distribution in the region (2) also includes the multiple reflection signals in the region (1), so that the frequency distribution in the region (1) shown in FIG. FIG. 5D, which has a broader waveform, shows the frequency analysis result by the signal processing unit 21 for the region (3) when there is a bubble. As shown in FIG. 5 (d), the frequency distribution in the region (3) includes multiple reflection signals in the region (1) and the region (2), and thus in the region (2) shown in FIG. 5 (c). It becomes a broader waveform than the frequency distribution.

このように、図5(a)〜(d)に示すように、信号処理部21による周波数解析結果は、気泡の存在の有無、気泡の大きさや密度が変化することにより異なったものとなる。
そこで、これら周波数分布を事前に実験(図1に示す気泡発生装置50により気泡の大きさや密度、予め周波数分布を求める実験)により測定し、基準となる周波数分布(基準周波数分布)を記憶部25に保存し、テーブル化しておく。これにより、信号処理部21による気泡の大きさや密度の判定も可能となる。
また、テーブル化に際しては、気泡を含む層の厚さを変えて、周波数分布を測定し、領域毎に記憶部25に保存しておく。これにより、信号処理部21による各領域の周波数分布から気泡を含む層の厚みを判定することも可能となる。
As described above, as shown in FIGS. 5A to 5D, the frequency analysis result by the signal processing unit 21 differs depending on the presence / absence of bubbles and the size and density of the bubbles.
Therefore, these frequency distributions are measured in advance by an experiment (an experiment for obtaining the size and density of bubbles and the frequency distribution in advance by the bubble generation device 50 shown in FIG. 1), and the reference frequency distribution (reference frequency distribution) is stored in the storage unit 25. Save it to a table. Thereby, the size and density of bubbles can be determined by the signal processing unit 21.
Further, when forming the table, the frequency distribution is measured by changing the thickness of the layer containing bubbles, and is stored in the storage unit 25 for each region. Thereby, it becomes possible to determine the thickness of the layer containing bubbles from the frequency distribution of each region by the signal processing unit 21.

信号処理部21は、新たに測定した周波数分布と、記憶部25に保存した基準周波数分布との比較を、次のように行う。
例えば、記憶部25は、船底からの距離を示す上記領域、また気泡の大きさ、気泡の密度を一組として、各組それぞれに関連付けて、周波数に対するパワーを記憶している。
信号処理部21は、例えば、新たに測定した周波数分布に対して、任意の周波数におけるパワーの基準周波数との差分を算出する。そして、差分を算出する周波数全てにおいて各差分が所定の誤差値以内にある場合に、気泡の大きさ、気泡の密度が、基準周波数分布の気泡の大きさ、気泡の密度と同じであると判定する。また、気泡の大きさ、気泡の密度が決定されるまで記憶部25内の検索(サーチ)が行なわれる。
The signal processing unit 21 compares the newly measured frequency distribution with the reference frequency distribution stored in the storage unit 25 as follows.
For example, the storage unit 25 stores the power with respect to the frequency in association with each of the above-described areas indicating the distance from the ship bottom, the size of the bubbles, and the density of the bubbles as a set.
For example, the signal processing unit 21 calculates a difference between a newly measured frequency distribution and a power reference frequency at an arbitrary frequency. Then, when each difference is within a predetermined error value in all frequencies for calculating the difference, it is determined that the bubble size and bubble density are the same as the bubble size and bubble density in the reference frequency distribution. To do. Further, a search in the storage unit 25 is performed until the bubble size and bubble density are determined.

また、気泡を含む水流の厚みに関しては、上記サーチを領域毎に行い、領域に対応する基準周波数分布をサーチすることにより、判定される。例えば、領域(1)と(2)は対応する基準周波数分布と一致することにより決定されるが、領域(3)については決定されない場合、厚みは領域(1)と領域(2)の深さ方向の長さであると判定される。或いは、領域(1)は基準周波数分布が決定されるが、領域(2)、(3)については決定されない場合(例えば領域では気泡が合泡されている場合など)、厚みは領域(1)の深さ方向の長さであると判定される。   Further, the thickness of the water flow including bubbles is determined by performing the above search for each region and searching for a reference frequency distribution corresponding to the region. For example, if regions (1) and (2) are determined by matching the corresponding reference frequency distribution, but not determined for region (3), the thickness is the depth of region (1) and region (2). It is determined that the length is in the direction. Alternatively, when the reference frequency distribution is determined for the region (1) but not for the regions (2) and (3) (for example, when bubbles are formed in the region), the thickness is the region (1). It is determined to be the length in the depth direction.

なお、任意の周波数でのパワーを比較するに際して、比較するポイントを増やして、多くの周波数について判定を行ってもよい。このような構成により、新たに測定した周波数分布が、記憶部25に記憶された基準周波数分布のいずれかと一致することにより、気泡の形状(気泡の大きさ、密度と、気泡を含む水流の厚み)を検出することができる。なお、記憶部25に該当する気泡のデータが存在しない場合は、表示機器30を介して、ユーザに該当する気泡が存在しない旨を周知する構成にしてもよい。また、この新たな気泡のデータを記憶部25に記憶させ、次回の気泡の検出からこの新たな気泡の検出を行なう構成としてもよい。また、検出する気泡の状態はいつも同じではない。そのため、気泡検出の際、複数回の測定を行い、得られた複数の周波数分布の平均を求めて、すなわち周波数分布における任意の周波数におけるパワーの平均値を求めて、この平均値が示す周波数分布を新たな周波数分布として、上述した比較演算を行う構成としてもよい。このようにすれば、気泡の存在の有無、気泡の形状の検出を行なう際の検出精度を向上することができる。   Note that when comparing the power at an arbitrary frequency, the number of points to be compared may be increased, and determination may be performed for many frequencies. With such a configuration, the newly measured frequency distribution matches with any of the reference frequency distributions stored in the storage unit 25, so that the shape of the bubbles (the size and density of the bubbles and the thickness of the water flow including the bubbles). ) Can be detected. In addition, when there is no bubble data corresponding to the storage unit 25, a configuration may be adopted in which the user is informed that there is no bubble corresponding to the user via the display device 30. The new bubble data may be stored in the storage unit 25, and the new bubble may be detected from the next bubble detection. Also, the state of the detected bubbles is not always the same. Therefore, at the time of bubble detection, measurement is performed a plurality of times, the average of the obtained frequency distributions is obtained, that is, the average value of power at an arbitrary frequency in the frequency distribution is obtained, and the frequency distribution indicated by this average value May be used as a new frequency distribution to perform the above-described comparison calculation. In this way, it is possible to improve the detection accuracy when detecting the presence / absence of bubbles and the shape of bubbles.

また、比較の際、新たに測定した周波数分布を表示機器30に表示し、ユーザが記憶部25から基準周波数を読み出し、新たに測定した周波数分布と基準周波数分布との比較を表示機器30上で行う構成としてもよい。   Further, at the time of comparison, the newly measured frequency distribution is displayed on the display device 30, the user reads the reference frequency from the storage unit 25, and the comparison between the newly measured frequency distribution and the reference frequency distribution is performed on the display device 30. It is good also as a structure to perform.

このように、本発明の気泡検出装置100は、所定周波数の超音波を測定対象である気泡に対して送信し、気泡からの反射波を受信して電気信号(第2の電気信号24)に変換する振動子10と、振動子10を駆動するとともに、第2の電気信号24を処理する制御装置20と、を備える。制御装置20は、第2の電気信号24の周波数変化量を算出し、算出した周波数変化量を、予め設定される周波数変化量と比較して、比較結果に応じて、気泡の存在の有無、気泡の大きさ、密度を検出する。   As described above, the bubble detection device 100 of the present invention transmits an ultrasonic wave having a predetermined frequency to a bubble to be measured, receives a reflected wave from the bubble, and generates an electric signal (second electric signal 24). A transducer 10 to be converted and a control device 20 that drives the transducer 10 and processes the second electrical signal 24 are provided. The control device 20 calculates the frequency change amount of the second electrical signal 24, compares the calculated frequency change amount with a preset frequency change amount, and according to the comparison result, the presence or absence of bubbles, Detect the size and density of bubbles.

本発明によれば、振動子10とともに気泡検出装置100を構成する制御装置20を水中に配置する必要はないため、定期的な交換を行なう必要がなくなる。また、振動子10は走行中などの気泡発生時は振動しているため、海水中に静止状態で置かれる期間が少なく、生物が付着する可能性が低いため、交換、クリーニングなどの定期的な作業は発生しにくい。そのため、従来に比べて、気泡を検出するためのコストを削減できる。また、また、制御装置20が電気信号(第2の電気信号)の周波数変化量を算出し、算出した周波数変化量を、予め設定される周波数変化量と比較して、比較結果に応じて、気泡の存在の有無、気泡の大きさ、密度を検出する。そのため、画像処理等の複雑な信号処理を必要とせず、気泡の存在の有無等を簡単に検出することが可能な気泡検出装置を新たに提供できる。   According to the present invention, it is not necessary to arrange the control device 20 that constitutes the bubble detection device 100 together with the vibrator 10 in water, so that it is not necessary to perform periodic replacement. In addition, since the vibrator 10 vibrates when bubbles are generated during running or the like, the period during which the vibrator 10 is placed in a stationary state in seawater is small, and the possibility that organisms will adhere is low. Work is hard to occur. Therefore, the cost for detecting bubbles can be reduced as compared with the conventional case. Further, the control device 20 calculates the frequency change amount of the electric signal (second electric signal), compares the calculated frequency change amount with a preset frequency change amount, and according to the comparison result, The presence / absence of bubbles, the size and density of bubbles are detected. Therefore, it is possible to newly provide a bubble detection device that does not require complicated signal processing such as image processing and can easily detect the presence or absence of bubbles.

また、本発明の気泡検出装置100は、予め設定される周波数変化量(基準周波数分布)は、振動子10の気泡を送信する方向に対して、振動子10からの距離に応じて複数例えば領域(1)〜(3)に対応した複数個数設定されており、制御装置20は、算出した周波数変化量前記複数個数設定される周波数変化量各々と比較して、比較結果に応じて、気泡を含む層の厚みを検出する、ことを特徴とする。
これにより、各領域(1)〜(3)の周波数分布から気泡を含む層の厚みも計測可能となる。
In the bubble detection device 100 of the present invention, the frequency change amount (reference frequency distribution) set in advance is, for example, a plurality of regions depending on the distance from the transducer 10 in the direction in which the bubbles of the transducer 10 are transmitted. A plurality of numbers corresponding to (1) to (3) are set, and the control device 20 compares the calculated frequency change amount with each of the frequency change amounts set in accordance with the comparison result. The thickness of the containing layer is detected.
Thereby, the thickness of the layer containing bubbles can also be measured from the frequency distribution of each region (1) to (3).

以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の変更等も含まれる。
例えば、上記実施形態の説明では、領域(1)〜(3)の3つの領域に分けたが、船底からの領域の設定数は3でなく、任意の数であってよい。分割を増やして、分割した領域の数に応じて基準周波数分布を記憶部25に記憶させることにより、比較の精度が高くなり、気泡の存在の有無、気泡の大きさ、密度、気泡を含む層の厚みを精度よく検出することができる。
The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes modifications and the like without departing from the gist of the present invention.
For example, in the description of the above embodiment, the area (1) to (3) is divided into three areas. However, the number of areas set from the ship bottom is not three but may be an arbitrary number. By increasing the number of divisions and storing the reference frequency distribution in the storage unit 25 according to the number of divided regions, the accuracy of comparison increases, and the presence / absence of bubbles, the size and density of bubbles, and the layer containing bubbles Can be detected with high accuracy.

また、上記実施形態の説明では、振動子10を船舶40の船底に1個設ける構成について説明したが、振動子10を異なる位置に複数個配置する構成としてもよい。この場合、1つの制御装置20が、振動子10から入力される第2の電気信号24各々を個別に処理して、各振動子10が設けられた位置における気泡の存在の有無、及び気泡の形状を検出する構成としてよい。また、このように得られた各振動子10での気泡の検出結果に差がある場合、気泡発生装置50が発生する気泡の形状を変更するようにしてもよい。例えば、振動子10を、船舶40の船底に、船首から船尾への中心線に対して同じ距離に位置するように2個配置したとする。船舶40が直進している場合、船舶40の燃費などの推進効率を考えると、左右の振動子10で同じ形状の気泡が検出されることが望ましい。そこで、左右の振動子10で同じ形状の気泡が検出されない場合、気泡発生装置50が発生する気泡の量を左右で異なるものとし、左右の振動子10で検出する気泡の形状が同じになるように制御し、船舶40の推進効率を向上する構成としてもよい。   In the above description of the embodiment, the configuration in which one vibrator 10 is provided on the bottom of the ship 40 has been described. However, a plurality of vibrators 10 may be arranged at different positions. In this case, one control device 20 individually processes each of the second electric signals 24 input from the vibrator 10 to determine whether there is a bubble at the position where each vibrator 10 is provided, It may be configured to detect the shape. In addition, when there is a difference between the bubble detection results obtained by the vibrators 10 as described above, the shape of the bubbles generated by the bubble generation device 50 may be changed. For example, it is assumed that two vibrators 10 are arranged on the bottom of the ship 40 so as to be located at the same distance from the center line from the bow to the stern. When the ship 40 is traveling straight, it is desirable that bubbles of the same shape are detected by the left and right vibrators 10 in view of propulsion efficiency such as fuel efficiency of the ship 40. Therefore, when bubbles of the same shape are not detected by the left and right vibrators 10, the amount of bubbles generated by the bubble generator 50 is different on the left and right so that the shapes of the bubbles detected by the left and right vibrators 10 are the same. It is good also as a structure which controls to improve the propulsion efficiency of the ship 40.

10…振動子、20…制御装置、21…信号処理部、22…送受信部、23…第1の電気信号、24…第2の電気信号、25…記憶部、30…表示機器、40…船舶、50…気泡発生装置   DESCRIPTION OF SYMBOLS 10 ... Vibrator, 20 ... Control apparatus, 21 ... Signal processing part, 22 ... Transmission / reception part, 23 ... 1st electric signal, 24 ... 2nd electric signal, 25 ... Memory | storage part, 30 ... Display apparatus, 40 ... Ship 50 ... Bubble generating device

Claims (4)

所定周波数の超音波を測定対象である気泡に対して送信し、前記気泡からの反射波を受信して電気信号に変換する振動子と、
前記振動子を駆動するとともに、前記電気信号を処理する制御装置と、
を備えた気泡検出装置であって、
前記制御装置は、前記電気信号の周波数変化量を算出し、算出した周波数変化量を、予め設定される周波数変化量と比較して、比較結果に応じて、前記気泡の存在の有無、気泡の大きさ、密度を検出することを特徴とする気泡検出装置。
A transducer that transmits ultrasonic waves of a predetermined frequency to a bubble to be measured, receives a reflected wave from the bubble, and converts it into an electrical signal;
A controller for driving the vibrator and processing the electrical signal;
A bubble detection device comprising:
The control device calculates a frequency change amount of the electrical signal, compares the calculated frequency change amount with a preset frequency change amount, and according to a comparison result, whether the bubble is present or not, A bubble detection device that detects size and density.
前記周波数変化量は、前記電気信号の周波数分布における送信周波数に対するピークの広がりである、
ことを特徴とする請求項1に記載の気泡検出装置。
The frequency change amount is a spread of a peak with respect to a transmission frequency in a frequency distribution of the electrical signal.
The bubble detection device according to claim 1.
前記予め設定される周波数変化量は、前記振動子の気泡を送信する方向に対して、前記振動子からの距離に応じて複数個数設定されており、
前記制御装置は、算出した周波数変化量を、前記複数個数設定される周波数変化量各々と比較して、比較結果に応じて、前記気泡を含む層の厚みを検出する、
ことを特徴とする請求項1または請求項2いずれか一項に記載の気泡検出装置。
A plurality of the preset frequency change amounts are set in accordance with the distance from the vibrator with respect to the direction in which bubbles of the vibrator are transmitted,
The control device compares the calculated frequency change amount with each of the plurality of frequency change amounts that are set, and detects the thickness of the layer containing bubbles according to the comparison result.
The bubble detection device according to any one of claims 1 and 2.
前記気泡は、船舶の船底に設けられた気泡発生装置が発生する気泡であることを特徴とする請求項1から請求項3いずれか一項に記載の気泡検出装置。   The bubble detection device according to any one of claims 1 to 3, wherein the bubble is a bubble generated by a bubble generation device provided on a ship bottom.
JP2013242926A 2013-11-25 2013-11-25 Bubble detection device Active JP6361062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013242926A JP6361062B2 (en) 2013-11-25 2013-11-25 Bubble detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013242926A JP6361062B2 (en) 2013-11-25 2013-11-25 Bubble detection device

Publications (2)

Publication Number Publication Date
JP2015102416A true JP2015102416A (en) 2015-06-04
JP6361062B2 JP6361062B2 (en) 2018-07-25

Family

ID=53378227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013242926A Active JP6361062B2 (en) 2013-11-25 2013-11-25 Bubble detection device

Country Status (1)

Country Link
JP (1) JP6361062B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017215178A (en) * 2016-05-31 2017-12-07 日本無線株式会社 Ultrasonic measurement device, ultrasonic measurement program and ultrasonic measurement method
JP2020067367A (en) * 2018-10-24 2020-04-30 日本無線株式会社 Bubble measurement device and bubble measurement program
EP3792655A1 (en) 2019-09-12 2021-03-17 Furuno Electric Company Limited Underwater detection device and bubble detection method
JP2021096181A (en) * 2019-12-18 2021-06-24 国立研究開発法人産業技術総合研究所 Air bubble detector, method for detecting air bubble, and program thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4542644A (en) * 1983-09-26 1985-09-24 The United States Of America As Represented By The United States Department Of Energy Void/particulate detector
JPH04505368A (en) * 1989-11-13 1992-09-17 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー How to measure particle size distribution and concentration in suspensions using ultrasound
JPH1073575A (en) * 1996-08-29 1998-03-17 Central Res Inst Of Electric Power Ind Bubble inspector in structure
JP2004271348A (en) * 2003-03-10 2004-09-30 Univ Nihon Instrument for measuring concentration of fine particles
JP2010261719A (en) * 2009-04-30 2010-11-18 Electric Power Dev Co Ltd Method for analyzing suspended substance, system for analyzing suspended substance, method for analyzing suspended sand concentration, and system for analyzing suspended sand concentration
JP2011163774A (en) * 2010-02-04 2011-08-25 Hokkaido Univ Device for monitoring fluid and system for reducing frictional resistance of hull which uses the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4542644A (en) * 1983-09-26 1985-09-24 The United States Of America As Represented By The United States Department Of Energy Void/particulate detector
JPH04505368A (en) * 1989-11-13 1992-09-17 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー How to measure particle size distribution and concentration in suspensions using ultrasound
JPH1073575A (en) * 1996-08-29 1998-03-17 Central Res Inst Of Electric Power Ind Bubble inspector in structure
JP2004271348A (en) * 2003-03-10 2004-09-30 Univ Nihon Instrument for measuring concentration of fine particles
JP2010261719A (en) * 2009-04-30 2010-11-18 Electric Power Dev Co Ltd Method for analyzing suspended substance, system for analyzing suspended substance, method for analyzing suspended sand concentration, and system for analyzing suspended sand concentration
JP2011163774A (en) * 2010-02-04 2011-08-25 Hokkaido Univ Device for monitoring fluid and system for reducing frictional resistance of hull which uses the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017215178A (en) * 2016-05-31 2017-12-07 日本無線株式会社 Ultrasonic measurement device, ultrasonic measurement program and ultrasonic measurement method
JP2020067367A (en) * 2018-10-24 2020-04-30 日本無線株式会社 Bubble measurement device and bubble measurement program
JP7217129B2 (en) 2018-10-24 2023-02-02 日本無線株式会社 Air bubble measurement device and air bubble measurement program
EP3792655A1 (en) 2019-09-12 2021-03-17 Furuno Electric Company Limited Underwater detection device and bubble detection method
JP2021043121A (en) * 2019-09-12 2021-03-18 古野電気株式会社 Underwater detector and method for detecting air bubbles
JP7372792B2 (en) 2019-09-12 2023-11-01 古野電気株式会社 Underwater detection device and bubble detection method
JP2021096181A (en) * 2019-12-18 2021-06-24 国立研究開発法人産業技術総合研究所 Air bubble detector, method for detecting air bubble, and program thereof
JP7426071B2 (en) 2019-12-18 2024-02-01 国立研究開発法人産業技術総合研究所 Bubble detection device, bubble detection method and its program

Also Published As

Publication number Publication date
JP6361062B2 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
JP6361062B2 (en) Bubble detection device
JP2005265845A (en) Horizontal wave measuring system and method
JPH0235954B2 (en)
KR101238387B1 (en) Towing tank using ultrasonic measurement of ice thickness measurement system and method
CN105114774A (en) Shipborne depthometer fixing device
US9404744B2 (en) System and method for a handheld current profiler
JPWO2014192532A1 (en) Marine environment information detection device, route setting device, marine environment information detection method, and program
JP5812397B2 (en) Underwater detection device, underwater detection method, and underwater detection program
EP3792655B1 (en) Underwater detection device and bubble detection method
JP5507267B2 (en) Method and apparatus for calculating thickness of damping material
KR100979286B1 (en) Apparatus and method for detecting distance and orientation between objects under water
JP2008076294A (en) Under-bottom-of-water survey method and instrument
JP4075472B2 (en) Ship detecting method and ship detecting device using cross fan beam
KR20130042891A (en) Speed log and echo sounder transducer in a vessel
CN101153817A (en) Hydrophone test approach for ocean sound field phase velocity
JP5720017B2 (en) GPS fish finder
JP2014173880A (en) Bubble detecting device
JP5708018B2 (en) Active sonar device
JP2011247624A (en) Underwater detection device and underwater detection method
JP2017156303A (en) Water bottom altitude detection device, underwater sailing body, and water bottom altitude detection method
CN202854166U (en) Portable acoustic doppler flow velocity instrument
RU2478983C1 (en) Method for detection of splashing-down object submersion depth
JP2014173881A (en) Bubble detecting device
CN210775547U (en) Acoustic wave flow velocity profiler
RU98254U1 (en) MULTI-FREQUENCY CORRELATION HYDROACOUSTIC LAG

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180607

R150 Certificate of patent or registration of utility model

Ref document number: 6361062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150