JP2015100838A - Welding equipment and welding method - Google Patents

Welding equipment and welding method Download PDF

Info

Publication number
JP2015100838A
JP2015100838A JP2013245446A JP2013245446A JP2015100838A JP 2015100838 A JP2015100838 A JP 2015100838A JP 2013245446 A JP2013245446 A JP 2013245446A JP 2013245446 A JP2013245446 A JP 2013245446A JP 2015100838 A JP2015100838 A JP 2015100838A
Authority
JP
Japan
Prior art keywords
seam
displacement amount
steel pipe
welding
sectional shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013245446A
Other languages
Japanese (ja)
Other versions
JP6036665B2 (en
Inventor
啓治 川井
Keiji Kawai
啓治 川井
法嗣 三船
Noritsugu Mifune
法嗣 三船
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013245446A priority Critical patent/JP6036665B2/en
Publication of JP2015100838A publication Critical patent/JP2015100838A/en
Application granted granted Critical
Publication of JP6036665B2 publication Critical patent/JP6036665B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PROBLEM TO BE SOLVED: To weld the whole area of a portion to be seamed of a steel pipe outer surface with high accuracy correspondingly to a variety of shapes of the portion to be seamed of the steel pipe outer surface.SOLUTION: Welding equipment according to one aspect of the present invention includes: a welding machine for welding a portion to be seamed of a steel pipe outer surface; a weld torch moving part for moving a weld torch of the welding machine in a width direction of the portion to be seamed of the outer surface; a shape detecting part for detecting an outer peripheral sectional shape of the steel pipe; an arithmetic processing part; and a controlling part. The arithmetic processing part: sets first and second arithmetic processing ranges that respectively correspond to a position range of each steel material end part of a steel pipe outer peripheral surface; calculates a displacement amount of the outer peripheral sectional shape relative to a positional change in an outer peripheral direction of the steel pipe, for the first and second arithmetic processing ranges respectively; and calculates each position of both side seam edge parts in the width direction of the portion to be seamed of the outer surface, on the basis of a displacement amount equal to or less than a predetermined threshold out of the calculated displacement amount of the sectional shapes respectively. The controlling part controls the weld torch moving part such that the weld torch follows a center position between each of the positions of both side seam edge parts.

Description

本発明は、溶接鋼管のシーム部の外面側を溶接する溶接装置および溶接方法に関するものである。   The present invention relates to a welding apparatus and a welding method for welding an outer surface side of a seam portion of a welded steel pipe.

従来から、管状に成形した鋼管素材の継目部分(シーム部)を溶接して、UOE鋼管等の溶接鋼管が製造される。一般に、溶接鋼管の製造工程において、鋼管素材である鋼板は、その板幅方向両側の端部を開先形状に加工する開先加工を施された後、プレス加工等によって管状に成形される。その際、これら開先形状の両端部(元来、鋼板の板幅方向両側の端部であった部分)は、互いに突き合わさって、溶接鋼管の長手方向の継目部分、すなわち、溶接鋼管の製造に際して溶接すべきシーム部となる。   Conventionally, a welded steel pipe such as a UOE steel pipe is manufactured by welding a seam portion (seam portion) of a steel pipe material formed into a tubular shape. In general, in a manufacturing process of a welded steel pipe, a steel plate, which is a steel pipe material, is formed into a tubular shape by pressing or the like after being subjected to a groove processing in which end portions on both sides in the plate width direction are processed into a groove shape. At that time, both end portions of the groove shape (the portions that were originally the end portions on both sides in the plate width direction of the steel plate) are abutted with each other to produce a joint portion in the longitudinal direction of the welded steel pipe, that is, a welded steel pipe. At this time, it becomes a seam portion to be welded.

溶接鋼管(以下、鋼管と適宜略す)のシーム部は、通常、仮付け溶接された後、サブマージアーク溶接によって本溶接される。この本溶接では、まず、仮付け溶接後のシーム部を鋼管の内周面側から溶接する内面溶接が行われる。つぎに、この内面溶接後のシーム部を鋼管の外周面側から溶接する外面溶接が行われる。   A seam portion of a welded steel pipe (hereinafter abbreviated as a steel pipe as appropriate) is usually subjected to submerged arc welding after being tack welded. In this main welding, first, inner surface welding is performed in which the seam portion after tack welding is welded from the inner peripheral surface side of the steel pipe. Next, the outer surface welding which welds the seam part after this inner surface welding from the outer peripheral surface side of a steel pipe is performed.

また、上述した本溶接において、シーム部の溶接位置(すなわちアークを発生させる位置)を適正化することは、シーム部の本溶接の高い品質を確保する上で重要である。具体的には、外面溶接において、高い溶接品質を確保するためには、鋼管の外周面側のシーム部(以下、外面シーム部という)の全域に亘り、外面シーム部の幅方向の中心位置に溶接トーチを精度よく追従させながら、外面シーム部を溶接することが有効である。   Further, in the above-described main welding, it is important to optimize the welding position of the seam portion (that is, the position where the arc is generated) in order to ensure high quality of the main welding of the seam portion. Specifically, in order to ensure high welding quality in outer surface welding, the outer surface seam portion of the steel pipe (hereinafter referred to as the outer surface seam portion) is located at the center position in the width direction across the entire seam portion. It is effective to weld the outer seam while accurately following the welding torch.

なお、このような外面溶接に関する従来技術として、例えば、鋼管の開先部に扇状のレーザ光束を照射して開先部の断面形状を撮像し、撮像した開先部の断面形状の画像をもとに開先部の位置を検出し、この位置検出した開先部に溶接トーチを挿入するものがある(特許文献1参照)。この特許文献1に記載の従来技術では、撮像した開先部の断面形状の勾配の組合せを、予め設定されている複数の勾配パターンのいずれかに分類し、勾配パターンの分類に対応付けられた演算方式により、開先部の左右エッジの各位置座標を算出している。また、これら左右エッジ位置の中間点を開先中心位置とし、この開先中心位置の基準位置に対する相対的位置ずれを打ち消すように溶接トーチ駆動機構を駆動して、溶接トーチと開先部との相対位置を常に一定にしている。   As a conventional technique related to such outer surface welding, for example, a fan-shaped laser beam is irradiated to a groove portion of a steel pipe to capture a cross-sectional shape of the groove portion, and an image of the cross-sectional shape of the captured groove portion is also obtained. In some cases, the position of the groove portion is detected, and a welding torch is inserted into the groove portion where the position is detected (see Patent Document 1). In the prior art described in Patent Document 1, the combination of the gradients of the cross-sectional shape of the imaged groove portion is classified into one of a plurality of preset gradient patterns, and is associated with the gradient pattern classification. The position coordinates of the left and right edges of the groove portion are calculated by the calculation method. Further, the intermediate point between the left and right edge positions is set as the groove center position, and the welding torch drive mechanism is driven so as to cancel the relative positional deviation of the groove center position with respect to the reference position. The relative position is always constant.

特公平6−95010号公報Japanese Patent Publication No. 6-95010

しかしながら、上述した従来技術では、鋼管に形成された外面シーム部の断面形状の勾配パターンと、予め設定した開先部の断面形状の勾配パターンとが合致しなければ、外面シーム部の幅方向両側の各端部(以下、シームエッジ部という)を検出することができない。このような事態は、例えば、鋼管のシーム部を仮付け溶接してなる溶接ビード(以下、仮付け溶接ビードという)がハンピングまたは溶落ち等に起因して不連続状態となる等、予期せぬ外的要因によって、外面シーム部の断面形状が予測困難な形状となった場合に起こり得る。上記のようにシームエッジ部の検出ができないことから、外面シーム部の幅方向の中心位置を得ることが難しく、このため、外面シーム部の全域に亘って外面シーム部の幅方向の中心位置に精度よく溶接トーチを追従させることは困難である。この結果、外面シーム部の溶接欠陥が発生する可能性がある。さらには、手動操作によって外面シーム部の幅方向の中心位置に溶接トーチを追従させる作業が発生するため、作業者の負担が増大するのみならず、鋼管の溶接効率の低下を招来し、延いては、鋼管の製造効率の低下に繋がる。   However, in the above-described prior art, if the gradient pattern of the cross-sectional shape of the outer surface seam portion formed on the steel pipe does not match the preset gradient pattern of the cross-sectional shape of the groove portion, both sides in the width direction of the outer surface seam portion Cannot be detected (hereinafter referred to as seam edge portions). Such a situation is unexpected, for example, when a weld bead formed by tack welding a seam portion of a steel pipe (hereinafter referred to as a tack weld bead) becomes discontinuous due to humping or fusing. This may occur when the cross-sectional shape of the outer surface seam portion is difficult to predict due to an external factor. Since the seam edge portion cannot be detected as described above, it is difficult to obtain the center position in the width direction of the outer surface seam portion. For this reason, the center position in the width direction of the outer surface seam portion is accurate over the entire area of the outer seam portion. It is difficult to follow the welding torch well. As a result, a weld defect in the outer seam portion may occur. Furthermore, since the operation of causing the welding torch to follow the center position in the width direction of the outer seam portion by manual operation occurs, not only the burden on the worker increases, but also the welding efficiency of the steel pipe is reduced and extended. Leads to a decrease in the manufacturing efficiency of the steel pipe.

また、鋼管の高強度厚肉および低温靭性仕様の要求が、近年、増加する傾向にある。このような鋼管の製品要求に応じるべく、開先形状を一段開先から二段開先に仕様変更して鋼管の溶接品質の向上を図る等、鋼管の開先形状が複雑化し、これに伴い、鋼管の外面シーム部の形状が多種多様化している。しかしながら、上述した従来技術では、このような鋼管の多種多様な外面シーム部の形状に対応しきれない。このため、鋼管の多種多様な外面シーム部の形状に対応してシームエッジ部を検出でき、この結果、多種多様な形状の外面シーム部を精度よく溶接できることが要望されている。   In addition, demands for high-strength and high-temperature toughness specifications of steel pipes have been increasing in recent years. In order to meet such product requirements for steel pipes, the groove shape of steel pipes has become complicated, such as changing the groove shape from one stage to two stages and improving the weld quality of steel pipes. The shape of the outer seam is diversified. However, the above-described conventional technology cannot cope with various shapes of the outer surface seam portion of the steel pipe. For this reason, a seam edge part can be detected corresponding to the shape of various outer surface seam parts of a steel pipe, and as a result, it is desired that the outer surface seam part of various shapes can be welded with high accuracy.

本発明は、上記の事情に鑑みてなされたものであって、鋼管の多種多様な外面シーム部の形状に対応して、鋼管の外面シーム部全域を精度よく溶接することが可能な溶接装置および溶接方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and a welding apparatus capable of accurately welding the entire outer surface seam portion of a steel pipe in accordance with the shapes of various outer surface seam portions of the steel pipe, and An object is to provide a welding method.

上述した課題を解決し、目的を達成するために、本発明にかかる溶接装置は、鋼管の長手方向に沿って前記鋼管の外周面側のシーム部に対し相対的に溶接トーチを移動させつつ、前記シーム部を溶接する溶接機と、前記シーム部の幅方向に前記溶接トーチを移動させる溶接トーチ移動部と、互いに突き合わせて前記シーム部を形成する一端部および他端部を含む前記鋼管の外周面の断面形状を光学的に検出する形状検出部と、前記鋼管の外周方向に沿った前記一端部の位置範囲に対応する第1の演算処理範囲と前記鋼管の外周方向に沿った前記他端部の位置範囲に対応する第2の演算処理範囲とを設定し、前記外周方向の位置変化に対する前記一端部の断面形状の変位量および前記他端部の断面形状の変位量を前記第1の演算処理範囲および前記第2の演算処理範囲について各々算出し、前記第1の演算処理範囲について算出した前記一端部の断面形状の変位量のうちの所定閾値以下の変位量をもとに、前記シーム部の幅方向の両側シームエッジ部のうちの一方のシームエッジ部の位置を算出し、且つ、前記第2の演算処理範囲について算出した前記他端部の断面形状の変位量のうちの前記所定閾値以下の変位量をもとに、前記両側シームエッジ部のうちの他方のシームエッジ部の位置を算出する演算処理部と、算出された前記一方のシームエッジ部の位置と前記他方のシームエッジ部の位置との間の中心位置に前記溶接トーチを追従させるように前記溶接トーチ移動部を制御する制御部と、を備えたことを特徴とする。   In order to solve the above-described problems and achieve the object, the welding apparatus according to the present invention moves the welding torch relative to the seam portion on the outer peripheral surface side of the steel pipe along the longitudinal direction of the steel pipe, An outer periphery of the steel pipe including a welding machine for welding the seam part, a welding torch moving part for moving the welding torch in the width direction of the seam part, and one end part and the other end part that abut each other to form the seam part A shape detecting unit for optically detecting a cross-sectional shape of the surface; a first calculation processing range corresponding to a position range of the one end along the outer peripheral direction of the steel pipe; and the other end along the outer peripheral direction of the steel pipe A second calculation processing range corresponding to the position range of the portion, and the displacement amount of the cross-sectional shape of the one end portion and the displacement amount of the cross-sectional shape of the other end portion with respect to the position change in the outer peripheral direction are set to the first Processing range and The width of the seam portion is calculated based on a displacement amount equal to or less than a predetermined threshold among the displacement amounts of the cross-sectional shape of the one end portion calculated for the second calculation processing range. A displacement amount equal to or less than the predetermined threshold value among the displacement amounts of the cross-sectional shape of the other end portion calculated for the second calculation processing range, and calculating the position of one of the seam edge portions on both sides in the direction. Based on the calculation processing unit for calculating the position of the other seam edge part of the both-side seam edge parts, and the center position between the calculated position of the one seam edge part and the position of the other seam edge part And a control unit that controls the welding torch moving unit so as to follow the welding torch.

また、本発明にかかる溶接装置は、上記の発明において、前記演算処理部は、前記第1の演算処理範囲について算出した前記一端部の断面形状の変位量ピークの中から、前記所定閾値以下の変位量ピークを前記一方のシームエッジ部の変位量候補として選択し、選択した前記変位量候補の中から、前記鋼管の開先形状に基づいて前記一方のシームエッジ部の変位量ピークを決定し、決定した前記変位量ピークをなす前記一方のシームエッジ部の位置を算出し、且つ、前記第2の演算処理範囲について算出した前記他端部の断面形状の変位量ピークの中から、前記所定閾値以下の変位量ピークを前記他方のシームエッジ部の変位量候補として選択し、選択した前記変位量候補の中から、前記鋼管の開先形状に基づいて前記他方のシームエッジ部の変位量ピークを決定し、決定した前記変位量ピークをなす前記他方のシームエッジ部の位置を算出することを特徴とする。   Further, in the welding apparatus according to the present invention, in the above invention, the calculation processing unit is less than the predetermined threshold value from the displacement amount peak of the cross-sectional shape of the one end calculated for the first calculation processing range. A displacement amount peak is selected as a displacement amount candidate of the one seam edge portion, and a displacement amount peak of the one seam edge portion is determined based on a groove shape of the steel pipe from the selected displacement amount candidates, and determined. The position of the one seam edge portion forming the displacement amount peak is calculated, and the displacement amount peak of the cross-sectional shape of the other end portion calculated for the second calculation processing range is equal to or less than the predetermined threshold value. A displacement peak is selected as a displacement amount candidate for the other seam edge portion, and the other seam edge portion is selected from the selected displacement amount candidates based on the groove shape of the steel pipe. The amount of displacement peak determined, and calculates the position of the other seam edge portion forming the determined the amount of displacement peak.

また、本発明にかかる溶接装置は、上記の発明において、前記演算処理部は、前記シーム部の仮付け溶接によって前記シーム部に形成された溶接ビードの位置を挟んで互いに離間するように、前記第1の演算処理範囲および前記第2の演算処理範囲を設定することを特徴とする。   In the welding device according to the present invention, in the above invention, the arithmetic processing unit may be spaced apart from each other across a position of a weld bead formed in the seam portion by tack welding of the seam portion. A first calculation processing range and the second calculation processing range are set.

また、本発明にかかる溶接方法は、互いに突き合わせて鋼管の外周面側のシーム部を形成する一端部および他端部を含む前記鋼管の外周面の断面形状を光学的に検出する形状検出ステップと、前記鋼管の外周方向に沿った前記一端部の位置範囲に対応する第1の演算処理範囲と、前記鋼管の外周方向に沿った前記他端部の位置範囲に対応する第2の演算処理範囲とを設定する範囲設定ステップと、前記外周方向の位置変化に対する前記一端部の断面形状の変位量および前記他端部の断面形状の変位量を、前記第1の演算処理範囲および前記第2の演算処理範囲について各々算出する変位量算出ステップと、前記第1の演算処理範囲について算出した前記一端部の断面形状の変位量のうちの所定閾値以下の変位量をもとに、前記シーム部の幅方向の両側シームエッジ部のうちの一方のシームエッジ部の位置を算出し、且つ、前記第2の演算処理範囲について算出した前記他端部の断面形状の変位量のうちの前記所定閾値以下の変位量をもとに、前記両側シームエッジ部のうちの他方のシームエッジ部の位置を算出するエッジ位置算出ステップと、算出した前記一方のシームエッジ部の位置と前記他方のシームエッジ部の位置との間の中心位置に溶接トーチが追従するように、前記シーム部の幅方向に前記溶接トーチを移動させる溶接トーチ移動ステップと、前記鋼管の長手方向に沿って前記シーム部に対し相対的に前記溶接トーチを移動させつつ、前記シーム部を溶接する溶接ステップと、を含むことを特徴とする。   Further, the welding method according to the present invention includes a shape detection step for optically detecting a cross-sectional shape of the outer peripheral surface of the steel pipe including one end and the other end that abut each other to form a seam portion on the outer peripheral surface side of the steel pipe. The first calculation processing range corresponding to the position range of the one end along the outer peripheral direction of the steel pipe and the second calculation processing range corresponding to the position range of the other end along the outer peripheral direction of the steel pipe A range setting step for setting the first cross-sectional shape displacement amount of the one end portion and the displacement amount of the cross-sectional shape of the other end portion with respect to the position change in the outer circumferential direction. A displacement amount calculating step for calculating each of the calculation processing ranges, and a displacement amount equal to or less than a predetermined threshold among the displacement amounts of the cross-sectional shape of the one end calculated for the first calculation processing range. Width The position of one seam edge part of the both-side seam edge parts is calculated, and the displacement amount equal to or less than the predetermined threshold among the displacement amounts of the cross-sectional shape of the other end portion calculated for the second calculation processing range is calculated. Based on the edge position calculating step of calculating the position of the other seam edge portion of the both-side seam edge portions, and at the center position between the calculated position of the one seam edge portion and the position of the other seam edge portion. A welding torch moving step for moving the welding torch in the width direction of the seam portion so that the welding torch follows, and moving the welding torch relative to the seam portion along the longitudinal direction of the steel pipe And a welding step of welding the seam portion.

また、本発明にかかる溶接方法は、上記の発明において、前記エッジ位置算出ステップは、前記第1の演算処理範囲について算出した前記一端部の断面形状の変位量ピークの中から、前記所定閾値以下の変位量ピークを前記一方のシームエッジ部の変位量候補として選択し、選択した前記変位量候補の中から、前記鋼管の開先形状に基づいて前記一方のシームエッジ部の変位量ピークを決定し、決定した前記変位量ピークをなす前記一方のシームエッジ部の位置を算出し、且つ、前記第2の演算処理範囲について算出した前記他端部の断面形状の変位量ピークの中から、前記所定閾値以下の変位量ピークを前記他方のシームエッジ部の変位量候補として選択し、選択した前記変位量候補の中から、前記鋼管の開先形状に基づいて前記他方のシームエッジ部の変位量ピークを決定し、決定した前記変位量ピークをなす前記他方のシームエッジ部の位置を算出することを特徴とする。   In the welding method according to the present invention as set forth in the invention described above, the edge position calculation step includes a displacement amount peak of the cross-sectional shape of the one end calculated for the first calculation processing range, which is equal to or less than the predetermined threshold value. The displacement amount peak of the one seam edge portion is selected as a displacement amount candidate, and from the selected displacement amount candidates, the displacement amount peak of the one seam edge portion is determined based on the groove shape of the steel pipe, The position of the one seam edge portion that forms the determined displacement amount peak is calculated, and the displacement amount peak of the cross-sectional shape of the other end portion calculated for the second calculation processing range is equal to or less than the predetermined threshold value. Is selected as a displacement amount candidate for the other seam edge portion, and the other shim edge portion is selected from the selected displacement amount candidates based on the groove shape of the steel pipe. Determining the displacement of the peak of Muejji unit, and calculates the position of the other seam edge portion forming the determined the amount of displacement peak.

また、本発明にかかる溶接方法は、上記の発明において、前記範囲設定ステップは、前記シーム部の仮付け溶接によって前記シーム部に形成された溶接ビードの位置を挟んで互いに離間するように、前記第1の演算処理範囲および前記第2の演算処理範囲を設定することを特徴とする。   In the welding method according to the present invention, in the above invention, the range setting step may be performed such that the range setting step is separated from each other with a position of a weld bead formed in the seam portion by tack welding of the seam portion. A first calculation processing range and the second calculation processing range are set.

本発明によれば、鋼管の多種多様な外面シーム部の形状に対応して、鋼管の外面シーム部全域を精度よく溶接することができるという効果を奏する。   According to the present invention, there is an effect that the entire outer seam portion of the steel pipe can be welded with high accuracy corresponding to the shape of various outer seam portions of the steel pipe.

図1は、本実施の形態にかかる溶接装置の一構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a welding apparatus according to the present embodiment. 図2は、図1に示す溶接装置を上方から見た図である。FIG. 2 is a view of the welding apparatus shown in FIG. 1 as viewed from above. 図3は、形状検出部による鋼管の外周断面形状の光学的な検出を説明する図である。FIG. 3 is a diagram for explaining optical detection of the outer peripheral cross-sectional shape of the steel pipe by the shape detection unit. 図4は、本発明の実施の形態にかかる溶接方法の一例を示すフローチャートである。FIG. 4 is a flowchart showing an example of the welding method according to the embodiment of the present invention. 図5は、本実施の形態におけるシームエッジ部の位置算出に必要な演算処理範囲の設定と外周断面形状の変位量の算出とを説明する図である。FIG. 5 is a diagram for explaining the setting of the calculation processing range necessary for calculating the position of the seam edge portion and the calculation of the displacement amount of the outer cross-sectional shape in this embodiment. 図6は、本実施の形態におけるシームエッジ部の位置算出の演算処理を説明する図である。FIG. 6 is a diagram for explaining calculation processing for position calculation of the seam edge portion in the present embodiment.

以下に、添付図面を参照して、本発明にかかる溶接装置および溶接方法の好適な実施の形態について詳細に説明する。なお、本実施の形態により、本発明が限定されるものではない。また、各図面において同一構成部分には同一符号を付している。   Hereinafter, preferred embodiments of a welding apparatus and a welding method according to the present invention will be described in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiment. Moreover, the same code | symbol is attached | subjected to the same component in each drawing.

(溶接装置の構成)
まず、本発明の実施の形態にかかる溶接装置の構成について説明する。図1は、本実施の形態にかかる溶接装置の一構成例を示す図である。図2は、図1に示す溶接装置を上方から見た図である。本実施の形態にかかる溶接装置1は、仮付け溶接および内面溶接が施された後の鋼管15を外面溶接するものであり、図1,2に示すように、鋼管15を搬送する搬送コンベア2と、鋼管15の外面シーム部16を溶接するアーク溶接機3と、アーク溶接機3の溶接トーチ3aの位置を調整する溶接トーチ移動部4と、鋼管15の外周面の断面形状(以下、外周断面形状と適宜いう)を検出する形状検出部5とを備える。また、溶接装置1は、鋼管15の鋼材条件等を入力する条件入力部6と、外面シーム部16全域の高精度な溶接に要する各種演算処理を行う演算処理部7と、外面シーム部16に対する溶接トーチ3aの追従を制御する制御部8とを備える。
(Configuration of welding equipment)
First, the structure of the welding apparatus concerning embodiment of this invention is demonstrated. FIG. 1 is a diagram illustrating a configuration example of a welding apparatus according to the present embodiment. FIG. 2 is a view of the welding apparatus shown in FIG. 1 as viewed from above. A welding apparatus 1 according to the present embodiment is for welding a steel pipe 15 after being subjected to tack welding and inner surface welding, and as shown in FIGS. The arc welder 3 for welding the outer surface seam portion 16 of the steel pipe 15, the welding torch moving part 4 for adjusting the position of the welding torch 3a of the arc welder 3, and the cross-sectional shape of the outer peripheral surface of the steel pipe 15 (hereinafter referred to as the outer periphery) And a shape detecting unit 5 for detecting a sectional shape as appropriate. Further, the welding apparatus 1 has a condition input unit 6 for inputting the steel material conditions and the like of the steel pipe 15, an arithmetic processing unit 7 for performing various arithmetic processes required for high-precision welding of the entire outer surface seam unit 16, and the outer surface seam unit 16. And a control unit 8 that controls the follow-up of the welding torch 3a.

搬送コンベア2は、複数の搬送ロール等を用いて構成され、鋼管15をその長手方向(図1,2の太線矢印参照)に搬送する。この際、搬送コンベア2は、図1,2に示すように、鋼管15の溶接対象部分である外面シーム部16を上方に向けた態様にして鋼管15を搬送する。また、搬送コンベア2は、鋼管15の長手方向の一端から他端に至る全域がアーク溶接機3の溶接トーチ3a下方を通過し終えるまで、鋼管15の搬送を継続する。   The conveyance conveyor 2 is comprised using a some conveyance roll etc., and conveys the steel pipe 15 in the longitudinal direction (refer the thick line arrow of FIG. 1, 2). At this time, as shown in FIGS. 1 and 2, the transport conveyor 2 transports the steel pipe 15 with the outer surface seam portion 16, which is a welded portion of the steel pipe 15, facing upward. Moreover, the conveyance conveyor 2 continues conveyance of the steel pipe 15 until the whole region from one end of the longitudinal direction of the steel pipe 15 to the other end has passed below the welding torch 3a of the arc welding machine 3.

アーク溶接機3は、サブマージアーク溶接法等によって鋼管15の外面シーム部16をアーク溶接する。具体的には、アーク溶接機3は、複数の溶接トーチ3a等を用いて構成され、搬送コンベア2の近傍の位置に設置される。アーク溶接機3は、複数の溶接トーチ3aの各々を上下方向に移動させ、これにより、鋼管15の外面シーム部16に対する各溶接トーチ3aの高さを適正に調整する。このようなアーク溶接機3は、搬送コンベア2による搬送中の鋼管15の外面シーム部16に対し、複数の溶接トーチ3aを適度に接近させて、外面シーム部16にアークを発生させる。また、アーク溶接機3は、上述した搬送コンベア2の作用により、鋼管15の長手方向に沿って外面シーム部16に対し相対的に複数の溶接トーチ3aを移動させつつ、この外面シーム部16全域をアーク溶接する。   The arc welder 3 arc welds the outer seam portion 16 of the steel pipe 15 by a submerged arc welding method or the like. Specifically, the arc welder 3 is configured using a plurality of welding torches 3 a and the like, and is installed at a position in the vicinity of the transport conveyor 2. The arc welder 3 moves each of the plurality of welding torches 3a in the vertical direction, thereby appropriately adjusting the height of each welding torch 3a with respect to the outer surface seam portion 16 of the steel pipe 15. Such an arc welder 3 causes the outer surface seam portion 16 to generate an arc by appropriately bringing the plurality of welding torches 3a close to the outer surface seam portion 16 of the steel pipe 15 being conveyed by the conveyor 2. Further, the arc welding machine 3 moves the plurality of welding torches 3 a relative to the outer surface seam portion 16 along the longitudinal direction of the steel pipe 15 by the action of the conveyor 2 described above, and the entire area of the outer surface seam portion 16. Arc welding.

溶接トーチ移動部4は、鋼管15の外面シーム部16の幅方向に溶接トーチ3aを移動させて、外面シーム部16と溶接トーチ3aとの相対位置関係を調整する。具体的には、図2に示すように、溶接トーチ移動部4は、駆動軸を介してアーク溶接機3と接続される。溶接トーチ移動部4は、この駆動軸をその突没方向(図2の両側太線矢印参照)に移動させることにより、アーク溶接機3を鋼管15の外面シーム部16の幅方向に移動させる。溶接トーチ移動部4は、このアーク溶接機3の移動を通して、アーク溶接機3の各溶接トーチ3aを外面シーム部16の幅方向に移動させる。これにより、溶接トーチ移動部4は、各溶接トーチ3aの位置と外面シーム部16の中心位置との相対関係を一定に維持する。   The welding torch moving part 4 moves the welding torch 3a in the width direction of the outer surface seam part 16 of the steel pipe 15 to adjust the relative positional relationship between the outer surface seam part 16 and the welding torch 3a. Specifically, as shown in FIG. 2, the welding torch moving unit 4 is connected to the arc welding machine 3 via a drive shaft. The welding torch moving unit 4 moves the arc welding machine 3 in the width direction of the outer surface seam portion 16 of the steel pipe 15 by moving the drive shaft in the projecting and retracting direction (see the double-sided thick arrows in FIG. 2). The welding torch moving unit 4 moves each welding torch 3 a of the arc welding machine 3 in the width direction of the outer surface seam part 16 through the movement of the arc welding machine 3. Thereby, the welding torch moving part 4 maintains the relative relationship between the position of each welding torch 3a and the center position of the outer surface seam part 16 constant.

形状検出部5は、外面シーム部16を含む鋼管15の外周面の断面形状を光学的に検出するものである。具体的には、図1に示すように、形状検出部5は、鋼管15の外周面に対して投光する投光部5aと、投光された鋼管15の外周面からの反射光を撮像する撮像部5bとを有する。図3は、形状検出部による鋼管の外周断面形状の光学的な検出を説明する図である。   The shape detection unit 5 optically detects the cross-sectional shape of the outer peripheral surface of the steel pipe 15 including the outer surface seam portion 16. Specifically, as shown in FIG. 1, the shape detection unit 5 images a light projecting unit 5 a that projects light to the outer peripheral surface of the steel pipe 15 and reflected light from the outer peripheral surface of the projected steel pipe 15. Imaging section 5b. FIG. 3 is a diagram for explaining optical detection of the outer peripheral cross-sectional shape of the steel pipe by the shape detection unit.

投光部5aは、半導体レーザ素子等の光出力装置を用いて構成され、鋼管15の外周面に対して、レーザ光等の所定の波長帯域の光を照射する。この際、投光部5aは、図3に示すように、扇状の光等の所定の投光範囲をもつ光を、所定の方向(例えば鋼管15の外周面に対して垂直な方向)から鋼管15の外周面18に照射する。この投光部5aによって投光される鋼管15の外周面18には、互いに突き合わせて外面シーム部16を形成する鋼管素材の一端部および他端部、具体的には図3に示す鋼材端部13,14が含まれる。鋼材端部13,14は、管状に成形される前の鋼管素材である鋼板の板幅方向両側の各端部であって、所定の開先形状(本実施の形態においては二段開先形状)に加工されている。これら鋼材端部13,14同士を突き合わせることにより、図3に示すような鋼管15の外面シーム部16および開先部17が形成される。なお、この外面シーム部16には仮付け溶接が既に施されているため、図3に示すように、仮付け溶接ビード19が、外面シーム部16に沿って形成されている。   The light projecting unit 5 a is configured using a light output device such as a semiconductor laser element, and irradiates the outer peripheral surface of the steel pipe 15 with light of a predetermined wavelength band such as laser light. At this time, as shown in FIG. 3, the light projecting unit 5a emits light having a predetermined light projection range such as fan-shaped light from a predetermined direction (for example, a direction perpendicular to the outer peripheral surface of the steel pipe 15). The 15 outer peripheral surfaces 18 are irradiated. On the outer peripheral surface 18 of the steel pipe 15 projected by the light projecting part 5a, one end part and the other end part of the steel pipe material that abut each other to form the outer surface seam part 16, specifically, the steel material end part shown in FIG. 13 and 14 are included. The steel material end portions 13 and 14 are end portions on both sides in the plate width direction of the steel plate, which is a steel pipe material before being formed into a tubular shape, and have a predetermined groove shape (in this embodiment, a two-step groove shape). Has been processed. By abutting these steel material end portions 13 and 14, the outer seam portion 16 and the groove portion 17 of the steel pipe 15 as shown in FIG. 3 are formed. Since the outer surface seam portion 16 has already been tack welded, a tack weld bead 19 is formed along the outer surface seam portion 16 as shown in FIG.

撮像部5bは、固体撮像素子等を用いて構成され、図1,3に示すように、投光部5aの光軸に対して傾斜する方向に受光領域を有するように配置される。撮像部5bは、投光部5aによって投光された鋼管15の外周面18からの反射光を受光し、受光した反射光に対して光電変換処理等の所定の処理を行う。これにより、撮像部5bは、投光部5aによって鋼管15の外周面18に形成された光の帯、すなわち、鋼管15の外周断面形状21を撮像する。この外周断面形状21には、図3に示すように、鋼管15の外周面18に連続する鋼材端部13,14の各断面形状と、鋼材端部13,14同士を突き合わせて形成される外面シーム部16および開先部17の各断面形状とが含まれる。ここで、外面シーム部16は、通常、シームエッジ部13a,14aと、開先端面13c,14cと、仮付け溶接ビード19とによって形成される。シームエッジ部13a,14aは、外面シーム部16の幅方向の両側エッジ部である。一方のシームエッジ部13aは、鋼材端部13において互いに隣接する開先端面13c,13dの境界をなす縁部(角部)である。他方のシームエッジ部14aは、鋼材端部14において互いに隣接する開先端面14c,14dの境界をなす縁部(角部)である。開先部17は、上述した外面シーム部16と、開先エッジ部13b,14bと、開先端面13d,14dとによって形成される。開先エッジ部13b,14bは、開先部17の幅方向の両側エッジ部である。一方の開先エッジ部13bは、鋼材端部13において互いに隣接する開先端面13dと外周面18との境界をなす縁部(角部)である。他方の開先エッジ部14bは、鋼材端部14において互いに隣接する開先端面14dと外周面18との境界をなす縁部(角部)である。   The imaging unit 5b is configured using a solid-state imaging device or the like, and is disposed so as to have a light receiving region in a direction inclined with respect to the optical axis of the light projecting unit 5a, as shown in FIGS. The imaging unit 5b receives the reflected light from the outer peripheral surface 18 of the steel pipe 15 projected by the light projecting unit 5a, and performs predetermined processing such as photoelectric conversion processing on the received reflected light. Thereby, the imaging part 5b images the light strip formed on the outer peripheral surface 18 of the steel pipe 15 by the light projecting part 5a, that is, the outer peripheral cross-sectional shape 21 of the steel pipe 15. As shown in FIG. 3, the outer peripheral cross-sectional shape 21 has an outer surface formed by abutting each cross-sectional shape of the steel material end portions 13 and 14 that are continuous with the outer peripheral surface 18 of the steel pipe 15 and the steel material end portions 13 and 14. Each cross-sectional shape of the seam part 16 and the groove part 17 is included. Here, the outer surface seam portion 16 is usually formed by the seam edge portions 13 a and 14 a, the open front end surfaces 13 c and 14 c, and the tack weld bead 19. The seam edge portions 13 a and 14 a are both side edge portions in the width direction of the outer surface seam portion 16. One seam edge portion 13 a is an edge portion (corner portion) that forms a boundary between the open end surfaces 13 c and 13 d adjacent to each other in the steel material end portion 13. The other seam edge portion 14 a is an edge portion (corner portion) that forms a boundary between the open end surfaces 14 c and 14 d adjacent to each other in the steel material end portion 14. The groove portion 17 is formed by the outer surface seam portion 16, the groove edge portions 13b and 14b, and the open tip surfaces 13d and 14d. The groove edge portions 13 b and 14 b are both edge portions in the width direction of the groove portion 17. One groove edge portion 13 b is an edge portion (corner portion) that forms a boundary between the open tip surface 13 d and the outer peripheral surface 18 that are adjacent to each other in the steel material end portion 13. The other groove edge portion 14 b is an edge portion (corner portion) that forms a boundary between the open end surface 14 d and the outer peripheral surface 18 that are adjacent to each other in the steel material end portion 14.

上述した投光部5aおよび撮像部5bを備えた形状検出部5は、互いに突き合わせて外面シーム部16および開先部17を形成する鋼材端部13,14を含む鋼管15の外周断面形状21を光学的に検出する。すなわち、形状検出部5は、上述した投光部5aおよび撮像部5bの各作用によって、鋼管15の外周断面形状21の画像を取得し、この取得した画像に所定の画像解析処理を行うことにより、図3に示す鋼材端部13,14、外面シーム部16、および開先部17の各外周面側の断面形状を検出する。また、形状検出部5は、図1,2に示すように、アーク溶接機3の鋼管入側端部に固定配置される。このように配置された形状検出部5は、鋼管15がアーク溶接機3の溶接トーチ3aに到達する前のタイミング、すなわち、アーク溶接機3によって外面シーム部16がアーク溶接される前のタイミングに、鋼管15の外周断面形状21を検出する。形状検出部5は、鋼管15の搬送(進行)に伴って連続的または断続的に外周断面形状21の検出処理を順次行い、その都度、検出した外周断面形状21を演算処理部7に送信する。   The shape detection unit 5 including the light projecting unit 5a and the imaging unit 5b described above has the outer peripheral cross-sectional shape 21 of the steel pipe 15 including the steel material end portions 13 and 14 that abut each other to form the outer surface seam portion 16 and the groove portion 17. Detect optically. That is, the shape detection unit 5 acquires an image of the outer circumferential cross-sectional shape 21 of the steel pipe 15 by the above-described actions of the light projecting unit 5a and the imaging unit 5b, and performs predetermined image analysis processing on the acquired image. 3, the cross-sectional shapes on the outer peripheral surface sides of the steel material end portions 13 and 14, the outer surface seam portion 16, and the groove portion 17 shown in FIG. 3 are detected. Moreover, the shape detection part 5 is fixedly arrange | positioned at the steel pipe entrance side edge part of the arc welding machine 3, as shown in FIGS. The shape detection unit 5 arranged in this way has a timing before the steel pipe 15 reaches the welding torch 3a of the arc welder 3, that is, a timing before the outer surface seam portion 16 is arc welded by the arc welder 3. The outer peripheral cross-sectional shape 21 of the steel pipe 15 is detected. The shape detection unit 5 sequentially performs the detection processing of the outer peripheral cross-sectional shape 21 continuously or intermittently as the steel pipe 15 is conveyed (progressed), and transmits the detected outer peripheral cross-sectional shape 21 to the arithmetic processing unit 7 each time. .

条件入力部6は、外面溶接対象の鋼管15の鋼材条件を入力するものである。具体的には、条件入力部6は、プロセスコンピュータ等、鋼管製造ライン(図示せず)の操業に必要なオーダ情報を鋼管毎に管理する装置を用いて実現される。条件入力部6は、鋼管15の鋼材条件および製品仕様等を示すオーダ情報を演算処理部7に入力する。これにより、条件入力部6は、鋼材条件として、鋼管15の材厚および開先形状の各条件を演算処理部7に入力する。なお、条件入力部6は、入力キーおよびマウス等の入力デバイスを用いて実現され、作業者による入力操作に応じて、鋼管15の材厚および開先形状の各条件を演算処理部7に入力してもよい。あるいは、条件入力部6は、プロセスコンピュータおよび入力デバイス等を適宜組み合わせたものでもよい。   The condition input unit 6 inputs the steel material conditions of the steel pipe 15 to be externally welded. Specifically, the condition input part 6 is implement | achieved using the apparatus which manages the order information required for operation of a steel pipe manufacturing line (not shown), such as a process computer, for every steel pipe. The condition input unit 6 inputs order information indicating the steel material conditions and product specifications of the steel pipe 15 to the arithmetic processing unit 7. Thereby, the condition input unit 6 inputs the material thickness and groove shape conditions of the steel pipe 15 to the arithmetic processing unit 7 as steel material conditions. The condition input unit 6 is realized by using an input device such as an input key and a mouse, and inputs the conditions of the material thickness and groove shape of the steel pipe 15 to the arithmetic processing unit 7 in accordance with an input operation by an operator. May be. Alternatively, the condition input unit 6 may be a combination of a process computer and an input device as appropriate.

演算処理部7は、アーク溶接機3によって鋼管15の外面シーム部16全域を精度よくアーク溶接するために必要な各種演算処理を行う。具体的には、演算処理部7は、鋼管15の外周方向に沿った一方の鋼材端部13の位置範囲に対応して、第1の演算処理範囲を設定する。且つ、演算処理部7は、鋼管15の外周方向に沿った他方の鋼材端部14の位置範囲に対応して、第2の演算処理範囲を設定する。ついで、演算処理部7は、設定した第1の演算処理範囲について、鋼管15の外周方向の位置変化に対する一方の鋼材端部13の断面形状の変位量を算出する。且つ、演算処理部7は、設定した第2の演算処理範囲について、鋼管15の外周方向の位置変化に対する他方の鋼材端部14の断面形状の変位量を算出する。その後、演算処理部7は、上述した第1の演算処理範囲について算出した一方の鋼材端部13の断面形状の変位量の中から所定閾値以下の変位量を導出する。演算処理部7は、この導出した変位量をもとに、外面シーム部16の幅方向の両側シームエッジ部13a,14aのうちの一方のシームエッジ部13aの位置を算出する。これに並行して、演算処理部7は、上述した第2の演算処理範囲について算出した他方の鋼材端部14の断面形状の変位量の中から所定閾値以下の変位量を導出する。演算処理部7は、この導出した変位量をもとに、これら両側シームエッジ部13a,14aのうちの他方のシームエッジ部14aの位置を算出する。演算処理部7は、上述したように外面シーム部16の両側シームエッジ部13a,14aの各位置を算出する都度、得られたシームエッジ部13a,14aの各位置情報を制御部8に送信する。   The arithmetic processing unit 7 performs various arithmetic processes necessary for accurately arc-welding the entire outer seam portion 16 of the steel pipe 15 by the arc welder 3. Specifically, the arithmetic processing unit 7 sets a first arithmetic processing range corresponding to the position range of one steel material end 13 along the outer circumferential direction of the steel pipe 15. And the arithmetic processing part 7 sets the 2nd arithmetic processing range corresponding to the position range of the other steel material edge part 14 along the outer peripheral direction of the steel pipe 15. FIG. Next, the arithmetic processing unit 7 calculates the amount of displacement of the cross-sectional shape of one steel material end 13 with respect to the position change in the outer peripheral direction of the steel pipe 15 for the set first arithmetic processing range. And the arithmetic processing part 7 calculates the displacement amount of the cross-sectional shape of the other steel material edge part 14 with respect to the position change of the outer peripheral direction of the steel pipe 15 about the set 2nd arithmetic processing range. Thereafter, the arithmetic processing unit 7 derives a displacement amount equal to or less than a predetermined threshold value from the displacement amount of the cross-sectional shape of the one steel material end portion 13 calculated for the first arithmetic processing range described above. The arithmetic processing unit 7 calculates the position of one of the seam edge portions 13a and 14a in the width direction of the outer surface seam portion 16 based on the derived displacement amount. In parallel with this, the arithmetic processing unit 7 derives a displacement amount equal to or less than a predetermined threshold value from the displacement amount of the cross-sectional shape of the other steel material end portion 14 calculated for the above-described second arithmetic processing range. The arithmetic processing unit 7 calculates the position of the other seam edge portion 14a of the both-side seam edge portions 13a, 14a based on the derived displacement amount. As described above, the arithmetic processing unit 7 transmits the position information of the obtained seam edge portions 13 a and 14 a to the control unit 8 every time the positions of the both-side seam edge portions 13 a and 14 a of the outer surface seam portion 16 are calculated.

制御部8は、アーク溶接機3の溶接トーチ3aを鋼管15の外面シーム部16の中心位置に追従させる追従動作を制御するものである。具体的には、制御部8は、演算処理部7によって算出された外面シーム部16の両側シームエッジ部13a,14aの各位置情報を取得する。制御部8は、これらの各位置情報を演算処理部7から取得する都度、この一方のシームエッジ部13aの位置と他方のシームエッジ部14aの位置との間の中心位置を算出する。ついで、制御部8は、この算出した中心位置、すなわち、外面シーム部16の中心位置に各溶接トーチ3aを追従させるように、溶接トーチ移動部4を制御する。制御部8は、この溶接トーチ移動部4の制御を通して、外面シーム部16の中心位置への各溶接トーチ3aの追従動作を制御する。   The control unit 8 controls a follow-up operation for causing the welding torch 3a of the arc welder 3 to follow the center position of the outer surface seam portion 16 of the steel pipe 15. Specifically, the control unit 8 acquires the position information of the both-side seam edge portions 13 a and 14 a of the outer surface seam portion 16 calculated by the arithmetic processing unit 7. The control unit 8 calculates the center position between the position of the one seam edge portion 13a and the position of the other seam edge portion 14a every time the position information is acquired from the arithmetic processing unit 7. Next, the control unit 8 controls the welding torch moving unit 4 so that each welding torch 3a follows the calculated center position, that is, the center position of the outer surface seam portion 16. The control unit 8 controls the follow-up operation of each welding torch 3 a to the center position of the outer surface seam portion 16 through the control of the welding torch moving unit 4.

(溶接方法)
つぎに、本発明の実施の形態にかかる溶接方法について説明する。図4は、本発明の実施の形態にかかる溶接方法の一例を示すフローチャートである。図5は、本実施の形態におけるシームエッジ部の位置算出に必要な演算処理範囲の設定と外周断面形状の変位量の算出とを説明する図である。図6は、本実施の形態におけるシームエッジ部の位置算出の演算処理を説明する図である。本実施の形態にかかる溶接装置1(図1,2参照)は、図4に示すステップS101〜S108の各処理を適宜繰り返し行うことにより、鋼管15の外面シーム部16の中心位置にアーク溶接機3の各溶接トーチ3aを追従させつつ、この外面シーム部16全域を溶接する。
(Welding method)
Below, the welding method concerning embodiment of this invention is demonstrated. FIG. 4 is a flowchart showing an example of the welding method according to the embodiment of the present invention. FIG. 5 is a diagram for explaining the setting of the calculation processing range necessary for calculating the position of the seam edge portion and the calculation of the displacement amount of the outer cross-sectional shape in the present embodiment. FIG. 6 is a diagram for explaining calculation processing for position calculation of the seam edge portion in the present embodiment. The welding apparatus 1 (see FIGS. 1 and 2) according to the present embodiment performs an arc welding machine at the center position of the outer surface seam portion 16 of the steel pipe 15 by appropriately repeating the processes of steps S101 to S108 shown in FIG. 3, the entire outer seam portion 16 is welded while following each welding torch 3a.

すなわち、本実施の形態にかかる溶接方法において、溶接装置1は、図4に示すように、まず、外面溶接対象である鋼管15の鋼材条件を取得する(ステップS101)。ステップS101において、溶接装置1の演算処理部7には、条件入力部6によって鋼管15のオーダ情報が入力される。演算処理部7は、条件入力部6からのオーダ情報に含まれる鋼管15の鋼材条件を取得し、この取得した鋼材条件に基づく鋼管15の材厚および開先形状を認識する。   That is, in the welding method according to the present embodiment, as shown in FIG. 4, the welding apparatus 1 first acquires the steel material conditions of the steel pipe 15 that is the outer surface welding target (step S <b> 101). In step S <b> 101, the order information of the steel pipe 15 is input to the arithmetic processing unit 7 of the welding apparatus 1 by the condition input unit 6. The arithmetic processing unit 7 acquires the steel material condition of the steel pipe 15 included in the order information from the condition input unit 6, and recognizes the material thickness and groove shape of the steel pipe 15 based on the acquired steel material condition.

ついで、溶接装置1は、互いに突き合わせて鋼管15の外面シーム部16を形成する鋼材端部13,14を含む鋼管15の外周断面形状21を光学的に検出する(ステップS102)。ステップS102において、形状検出部5は、投光部5aによって鋼管15の外周面に形成した光の帯を撮像部5bによって撮像し、得られた画像を処理することにより、鋼管15の外周断面形状21を検出する。この検出した外周断面形状21には、図3に示したように、鋼材端部13,14と、鋼材端部13,14同士を突き合わせて形成される外面シーム部16および開先部17とが含まれる。   Next, the welding apparatus 1 optically detects the outer peripheral cross-sectional shape 21 of the steel pipe 15 including the steel material end portions 13 and 14 that abut each other to form the outer surface seam portion 16 of the steel pipe 15 (step S102). In step S102, the shape detection unit 5 captures the band of light formed on the outer peripheral surface of the steel pipe 15 by the light projecting unit 5a by the imaging unit 5b, and processes the obtained image to thereby obtain the outer cross-sectional shape of the steel pipe 15 21 is detected. As shown in FIG. 3, the detected outer peripheral cross-sectional shape 21 includes steel end portions 13 and 14, and an outer surface seam portion 16 and a groove portion 17 formed by abutting the steel end portions 13 and 14 together. included.

続いて、溶接装置1は、検出した外周断面形状21をもとに、外面シーム部16のシームエッジ部13a,14aの位置算出に必要な演算処理を行う範囲を設定する(ステップS103)。ステップS103において、演算処理部7は、上述したステップS101に示したように条件入力部6から取得した鋼管15の材厚および開先形状をもとに、図5に示すように、鋼管15の外周方向に沿った一方の鋼材端部13の位置範囲X1〜X4と他方の鋼材端部14の位置範囲X5〜X8とを設定する。なお、演算処理部7は、鋼管15の材厚の増加および開先形状の複雑化のうち少なくとも一方に伴い、鋼材端部13,14の位置範囲を拡大する。ついで、演算処理部7は、鋼管15の外周方向の位置Xの全範囲のうち、鋼材端部13の位置範囲X1〜X4に対応して第1の演算処理範囲R1を設定し、且つ、鋼材端部14の位置範囲X5〜X8に対応して第2の演算処理範囲R2を設定する。この際、演算処理部7は、図5に示すように、外面シーム部16に形成された仮付け溶接ビード19の位置を挟んで互いに離間するように、第1の演算処理範囲R1および第2の演算処理範囲R2を設定する。   Subsequently, the welding apparatus 1 sets a range for performing arithmetic processing necessary for calculating the positions of the seam edge portions 13a and 14a of the outer surface seam portion 16 based on the detected outer peripheral cross-sectional shape 21 (step S103). In step S103, the arithmetic processing unit 7 uses the steel pipe 15 thickness and groove shape obtained from the condition input unit 6 as shown in step S101 described above, as shown in FIG. A position range X1 to X4 of one steel material end 13 along the outer circumferential direction and a position range X5 to X8 of the other steel material end 14 are set. In addition, the arithmetic processing part 7 expands the position range of the steel material edge parts 13 and 14 with at least one among the increase in the material thickness of the steel pipe 15, and complication of a groove shape. Next, the arithmetic processing unit 7 sets a first arithmetic processing range R1 corresponding to the position ranges X1 to X4 of the steel material end 13 out of the entire range of the position X in the outer circumferential direction of the steel pipe 15, and the steel material A second arithmetic processing range R2 is set corresponding to the position range X5 to X8 of the end portion 14. At this time, as shown in FIG. 5, the arithmetic processing unit 7 includes the first arithmetic processing range R <b> 1 and the second arithmetic processing range R <b> 1 so as to be separated from each other with the position of the tack weld bead 19 formed on the outer seam part 16. An arithmetic processing range R2 is set.

ここで、第1の演算処理範囲R1は、形状検出部5によって検出された鋼管15の外周断面形状21の全域の中から、鋼材端部13の各エッジ部、すなわち、外面シーム部16の一方のシームエッジ部13aと開先部17の一方の開先エッジ部13bとに関する演算処理が行われるように制限した範囲である。このような第1の演算処理範囲R1には、図5に示すように、シームエッジ部13aと開先エッジ部13bとが含まれる。一方、第2の演算処理範囲R2は、外周断面形状21の全域の中から、鋼材端部14の各エッジ部、すなわち、外面シーム部16の他方のシームエッジ部14aと開先部17の他方の開先エッジ部14bとに関する演算処理が行われるように制限した範囲である。このような第2の演算処理範囲R2には、図5に示すように、シームエッジ部14aと開先エッジ部14bとが含まれる。   Here, the first arithmetic processing range R1 is one of the edge portions of the steel material end portion 13, that is, one of the outer surface seam portions 16, out of the entire area of the outer peripheral cross-sectional shape 21 of the steel pipe 15 detected by the shape detection unit 5. This is a range that is limited so that the arithmetic processing related to the seam edge portion 13a and one groove edge portion 13b of the groove portion 17 is performed. As shown in FIG. 5, the first calculation processing range R1 includes a seam edge portion 13a and a groove edge portion 13b. On the other hand, the second calculation processing range R2 is selected from the entire outer peripheral cross-sectional shape 21 of each edge portion of the steel material end portion 14, that is, the other seam edge portion 14a of the outer surface seam portion 16 and the other of the groove portion 17. The range is limited so that the calculation processing related to the groove edge portion 14b is performed. As shown in FIG. 5, the second calculation processing range R2 includes a seam edge portion 14a and a groove edge portion 14b.

上述したステップS103を実行後、溶接装置1は、ステップS102において検出した鋼管15の外周断面形状21の変位量を演算処理範囲毎に算出する(ステップS104)。ステップS104において、演算処理部7は、設定した第1の演算処理範囲R1について、鋼管15の外周方向の位置変化に対する鋼材端部13の断面形状の変位量を算出する。且つ、演算処理部7は、設定した第2の演算処理範囲R2について、鋼管15の外周方向の位置変化に対する鋼材端部14の断面形状の変位量を算出する。この際、演算処理部7は、鋼管15の外周方向の位置と鋼材端部13の断面形状の位置との相関を示す関数を導出し、この関数を微分解析処理することにより、上記鋼材端部13の断面形状の変位量Yを算出する。また、演算処理部7は、鋼管15の外周方向の位置と鋼材端部14の断面形状の位置との相関を示す関数を導出し、この関数を微分解析処理することにより、上記鋼材端部14の断面形状の変位量Yを算出する。以上の結果、演算処理部7は、図5の相関線Laに示されるように、第1の演算処理範囲R1内に鋼材端部13の断面形状における各変曲点の変位量YのピークP1,P2,P3を取得し、且つ、第2の演算処理範囲R2内に鋼材端部14の断面形状における各変曲点の変位量YのピークP4,P5,P6を取得する。   After executing step S103 described above, the welding apparatus 1 calculates the displacement amount of the outer peripheral cross-sectional shape 21 of the steel pipe 15 detected in step S102 for each calculation processing range (step S104). In step S <b> 104, the arithmetic processing unit 7 calculates the amount of displacement of the cross-sectional shape of the steel material end 13 with respect to the position change in the outer circumferential direction of the steel pipe 15 for the set first arithmetic processing range R <b> 1. And the arithmetic processing part 7 calculates the displacement amount of the cross-sectional shape of the steel material edge part 14 with respect to the position change of the outer peripheral direction of the steel pipe 15 about the set 2nd arithmetic processing range R2. At this time, the arithmetic processing unit 7 derives a function indicating a correlation between the position in the outer circumferential direction of the steel pipe 15 and the position of the cross-sectional shape of the steel material end portion 13, and performs differential analysis processing on the function, thereby obtaining the steel material end portion. The displacement amount Y of 13 cross-sectional shapes is calculated. The arithmetic processing unit 7 derives a function indicating the correlation between the position in the outer peripheral direction of the steel pipe 15 and the position of the cross-sectional shape of the steel material end 14, and performs differential analysis processing on the function, whereby the steel material end 14. The displacement amount Y of the cross-sectional shape is calculated. As a result of the above, the calculation processing unit 7 has the peak P1 of the displacement amount Y of each inflection point in the cross-sectional shape of the steel material end 13 within the first calculation processing range R1, as indicated by the correlation line La in FIG. , P2 and P3, and the peaks P4, P5 and P6 of the displacement amount Y of each inflection point in the cross-sectional shape of the steel material end 14 in the second calculation processing range R2.

ここで、第1の演算処理範囲R1および第2の演算処理範囲R2は、上述したように、鋼管15の材厚および開先形状に基づく鋼材端部13,14の各位置範囲に対応して各々設定される。これにより、第1の演算処理範囲R1および第2の演算処理範囲R2は、鋼材端部13,14の各エッジ部の位置を算出する範囲として必要最小限に絞り込まれる。
したがって、たとえ鋼管15の外周面にスパッタ27が予期せず発生した場合であっても、演算処理部7は、第1の演算処理範囲R1および第2の演算処理範囲R2から、スパッタ27に対応する変位量YのピークP7を除外することができる。この結果、演算処理部7は、鋼材端部13,14の各エッジ部以外の不要な変曲点の変位量ピーク(すなわち外乱)を可能な限り減らすことができる。
Here, the first calculation processing range R1 and the second calculation processing range R2 correspond to the position ranges of the steel material end portions 13 and 14 based on the material thickness and groove shape of the steel pipe 15 as described above. Each is set. As a result, the first calculation processing range R1 and the second calculation processing range R2 are narrowed down to the minimum necessary as the ranges for calculating the positions of the edge portions of the steel material end portions 13 and 14.
Therefore, even if the sputter 27 is unexpectedly generated on the outer peripheral surface of the steel pipe 15, the arithmetic processing unit 7 supports the sputter 27 from the first arithmetic processing range R1 and the second arithmetic processing range R2. The peak P7 of the displacement amount Y to be performed can be excluded. As a result, the arithmetic processing unit 7 can reduce the displacement amount peak (that is, disturbance) of unnecessary inflection points other than the edge portions of the steel material end portions 13 and 14 as much as possible.

上述したステップS104を実行後、溶接装置1は、第1の演算処理範囲R1および第2の演算処理範囲R2の各々について算出した鋼材端部13,14の各断面形状の変位量をもとに、外面シーム部16の幅方向の両側シームエッジ部13a,14aの各位置を算出する(ステップS105)。ステップS105において、演算処理部7は、第1の演算処理範囲R1について算出した鋼材端部13の断面形状の変位量のうち、所定閾値以下の変位量を導出し、この導出した変位量をもとに、両側シームエッジ部13a,14aのうちの一方のシームエッジ部13aの位置を算出する。且つ、演算処理部7は、第2の演算処理範囲R2について算出した鋼材端部14の断面形状の変位量のうち、所定閾値以下の変位量を導出し、この導出した変位量をもとに、両側シームエッジ部13a,14aのうちの他方のシームエッジ部14aの位置を算出する。   After executing step S104 described above, the welding apparatus 1 uses the displacement amounts of the cross-sectional shapes of the steel material end portions 13 and 14 calculated for each of the first calculation processing range R1 and the second calculation processing range R2. Then, the respective positions of the both side seam edge portions 13a, 14a in the width direction of the outer surface seam portion 16 are calculated (step S105). In step S105, the arithmetic processing unit 7 derives a displacement amount equal to or less than a predetermined threshold among the displacement amounts of the cross-sectional shape of the steel material end portion 13 calculated for the first arithmetic processing range R1, and the calculated displacement amount is also obtained. In addition, the position of one of the seam edge portions 13a and 14a is calculated. And the arithmetic process part 7 derives | leads-out the displacement amount below a predetermined threshold among the displacement amounts of the cross-sectional shape of the steel material edge part 14 calculated about 2nd calculation process range R2, Based on this derived displacement amount The position of the other seam edge portion 14a of the both-side seam edge portions 13a and 14a is calculated.

具体的には、図6に示すように、演算処理部7は、第1の演算処理範囲R1内の断面形状の変位量と第2の演算処理範囲R2内の断面形状の変位量とに対して、閾値Ythを設定する。ここで、閾値Ythは、多種多様な開先形状の鋼材端部の各エッジ部の変位量ピーク以上であり、且つ、スパッタ発生部分または仮付け溶接ビード部分等、上記各エッジ部以外の変位量ピーク未満となる値である。このような閾値Ythは、鋼管製造の過去実績データ、シミュレーションデータまたは実験データ等に基づいて導出され、演算処理部7に予めプログラム設定される。   Specifically, as shown in FIG. 6, the arithmetic processing unit 7 calculates the displacement of the cross-sectional shape in the first arithmetic processing range R1 and the displacement of the cross-sectional shape in the second arithmetic processing range R2. Then, the threshold value Yth is set. Here, the threshold value Yth is equal to or greater than the displacement amount peak of each edge portion of a wide variety of groove-shaped steel material end portions, and the displacement amount other than the above-described edge portions such as a spatter generation portion or a tack weld bead portion. The value is less than the peak. Such a threshold value Yth is derived based on past performance data, simulation data, experimental data, or the like of steel pipe production, and is preset in the arithmetic processing unit 7.

ついで、演算処理部7は、第1の演算処理範囲R1について算出した鋼材端部13の断面形状の変位量Yと、予め設定した閾値Ythとを比較する。この比較処理の結果に基づき、演算処理部7は、第1の演算処理範囲R1内の変位量YのピークP1,P2,P3の中から、閾値Yth以下となる変位量YのピークP1,P2をシームエッジ部13aの変位量候補として選択する。演算処理部7は、選択した変位量候補の中から、鋼管15の開先形状に基づいてシームエッジ部13aの変位量ピークを決定する。例えば、鋼管15の開先形状が二段開先形状である場合、演算処理部7は、変位量候補であるピークP1,P2のうち、第1の演算処理範囲R1の仮付け溶接ビード19と反対側(図6に向かって左側)から起算して2番目のピークP2をシームエッジ部13aの変位量ピークとする。演算処理部7は、このように決定した変位量ピーク(ピークP2)をなすシームエッジ部13aの位置X3の位置座標を算出する。   Next, the arithmetic processing unit 7 compares the displacement amount Y of the cross-sectional shape of the steel material end 13 calculated for the first arithmetic processing range R1 with a preset threshold value Yth. Based on the result of the comparison processing, the arithmetic processing unit 7 determines the peaks P1, P2 of the displacement amount Y that are equal to or less than the threshold Yth from the peaks P1, P2, P3 of the displacement amount Y within the first arithmetic processing range R1. Are selected as displacement amount candidates of the seam edge portion 13a. The arithmetic processing unit 7 determines the displacement amount peak of the seam edge portion 13a based on the groove shape of the steel pipe 15 from the selected displacement amount candidates. For example, when the groove shape of the steel pipe 15 is a two-step groove shape, the calculation processing unit 7 is on the opposite side to the tack welding bead 19 in the first calculation processing range R1 among the peaks P1 and P2 that are displacement amount candidates. The second peak P2 calculated from (left side as viewed in FIG. 6) is set as the displacement amount peak of the seam edge portion 13a. The arithmetic processing unit 7 calculates the position coordinates of the position X3 of the seam edge portion 13a that forms the displacement amount peak (peak P2) determined in this way.

これに並行して、演算処理部7は、第2の演算処理範囲R2について算出した鋼材端部14の断面形状の変位量Yと、予め設定した閾値Ythとを比較する。この比較処理の結果に基づき、演算処理部7は、第2の演算処理範囲R2内の変位量YのピークP4,P5,P6の中から、閾値Yth以下となる変位量YのピークP5,P6をシームエッジ部14aの変位量候補として選択する。演算処理部7は、選択した変位量候補の中から、鋼管15の開先形状に基づいてシームエッジ部14aの変位量ピークを決定する。例えば、鋼管15の開先形状が二段開先形状である場合、演算処理部7は、変位量候補であるピークP5,P6のうち、第2の演算処理範囲R2の仮付け溶接ビード19と反対側(図6に向かって右側)から起算して2番目のピークP5をシームエッジ部14aの変位量ピークとする。演算処理部7は、このように決定した変位量ピーク(ピークP5)をなすシームエッジ部14aの位置X6の位置座標を算出する。   In parallel with this, the arithmetic processing unit 7 compares the displacement amount Y of the cross-sectional shape of the steel material end portion 14 calculated for the second arithmetic processing range R2 with a preset threshold value Yth. Based on the result of the comparison processing, the arithmetic processing unit 7 determines the peaks P5, P6 of the displacement Y that are equal to or less than the threshold Yth from the peaks P4, P5, P6 of the displacement Y within the second arithmetic processing range R2. Are selected as displacement amount candidates of the seam edge portion 14a. The arithmetic processing unit 7 determines a displacement amount peak of the seam edge portion 14 a based on the groove shape of the steel pipe 15 from the selected displacement amount candidates. For example, when the groove shape of the steel pipe 15 is a two-step groove shape, the calculation processing unit 7 is opposite to the tack welding bead 19 in the second calculation processing range R2 among the peaks P5 and P6 that are displacement amount candidates. The second peak P5 is calculated from (from the right side in FIG. 6) as the displacement amount peak of the seam edge portion 14a. The arithmetic processing unit 7 calculates the position coordinates of the position X6 of the seam edge portion 14a that forms the displacement amount peak (peak P5) determined in this way.

一方、鋼管15の開先形状がn段開先形状(nは2以上の整数)である場合、演算処理部7は、選択した変位量候補のうち、第1の演算処理範囲R1の仮付け溶接ビード19と反対側から起算してn番目のピークをシームエッジ部13aの変位量ピークとする。このことは、第2の演算処理範囲R2についても同様である。   On the other hand, when the groove shape of the steel pipe 15 is an n-step groove shape (n is an integer equal to or greater than 2), the arithmetic processing unit 7 includes the temporary welding bead in the first arithmetic processing range R1 among the selected displacement amount candidates. The n-th peak from the side opposite to 19 is defined as the displacement amount peak of the seam edge portion 13a. The same applies to the second calculation processing range R2.

上述したステップS105を実行後、溶接装置1は、算出した一方のシームエッジ部13aの位置と他方のシームエッジ部14aの位置との間の中心位置にアーク溶接機3の各溶接トーチ3aを移動させて、外面シーム部16の中心位置に各溶接トーチ3aを追従させる(ステップS106)。ステップS106において、制御部8は、上述したように演算処理部7が算出したシームエッジ部13aの位置座標とシームエッジ部14aの位置座標とを取得する。ついで、制御部8は、取得した各位置座標をもとに、シームエッジ部13aの位置X3とシームエッジ部14aの位置X6との間の中心位置Xc、すなわち、外面シーム部16の中心位置を算出する。その後、制御部8は、この算出した外面シーム部16の中心位置に各溶接トーチ3aが追従するように溶接トーチ移動部4を制御する。溶接トーチ移動部4は、制御部8の制御に基づいてアーク溶接機3を外面シーム部16の幅方向に移動させ、これにより、各溶接トーチ3aを、外面シーム部16の幅方向に移動させて外面シーム部16の中心位置に追従させる。   After executing step S105 described above, the welding apparatus 1 moves each welding torch 3a of the arc welding machine 3 to a center position between the calculated position of one seam edge portion 13a and the position of the other seam edge portion 14a. Each welding torch 3a is caused to follow the center position of the outer seam portion 16 (step S106). In step S106, the control unit 8 acquires the position coordinates of the seam edge part 13a and the position coordinates of the seam edge part 14a calculated by the arithmetic processing unit 7 as described above. Next, the control unit 8 calculates the center position Xc between the position X3 of the seam edge part 13a and the position X6 of the seam edge part 14a, that is, the center position of the outer surface seam part 16 based on the acquired position coordinates. . Then, the control part 8 controls the welding torch moving part 4 so that each welding torch 3a follows the calculated center position of the outer surface seam part 16. The welding torch moving unit 4 moves the arc welding machine 3 in the width direction of the outer surface seam portion 16 based on the control of the control unit 8, thereby moving each welding torch 3 a in the width direction of the outer surface seam portion 16. To follow the center position of the outer seam portion 16.

つぎに、溶接装置1は、鋼管15の長手方向に沿って外面シーム部16に対し相対的に各溶接トーチ3aを移動させつつ、外面シーム部16を溶接する(ステップS107)。ステップS107において、溶接トーチ移動部4は、制御部8の制御に基づいて駆動し、これにより、外面シーム部16の中心位置に各溶接トーチ3aを追従させた状態を維持する。アーク溶接機3は、このような追従状態の各溶接トーチ3aを外面シーム部16に適度に接近させて外面シーム部16にアークを発生させつつ、鋼管15の長手方向に沿って外面シーム部16をアーク溶接する。   Next, the welding apparatus 1 welds the outer surface seam portion 16 while moving each welding torch 3a relative to the outer surface seam portion 16 along the longitudinal direction of the steel pipe 15 (step S107). In step S <b> 107, the welding torch moving unit 4 is driven based on the control of the control unit 8, and thereby maintains the state in which each welding torch 3 a follows the center position of the outer surface seam unit 16. The arc welder 3 causes each of the following welding torches 3a to appropriately approach the outer surface seam portion 16 to generate an arc in the outer surface seam portion 16, and generates the outer surface seam portion 16 along the longitudinal direction of the steel pipe 15. Arc welding.

その後、溶接装置1は、鋼管15の外面シーム部16の溶接が完了していない場合(ステップS108,No)、上述したステップS102に戻り、このステップS102以降の処理を繰り返す。一方、溶接装置1は、外面シーム部16の全域を溶接完了した場合(ステップS108,Yes)、本処理を終了する。すなわち、溶接装置1は、鋼管15の長手方向の全域に亘って外面シーム部16を溶接し終えるまで、上述したステップS102〜S108の各処理を繰り返し行う。また、溶接装置1は、新規の鋼管15を受け入れる都度、この鋼管15に対して上述したステップS101〜S108の各処理を適宜繰り返し行う。   Thereafter, when the welding of the outer seam portion 16 of the steel pipe 15 is not completed (No at Step S108), the welding apparatus 1 returns to Step S102 described above and repeats the processes after Step S102. On the other hand, the welding apparatus 1 complete | finishes this process, when the welding of the whole region of the outer surface seam part 16 is completed (step S108, Yes). That is, the welding apparatus 1 repeatedly performs the processes of steps S102 to S108 described above until the outer seam portion 16 is completely welded over the entire length of the steel pipe 15. Moreover, whenever the welding apparatus 1 receives the new steel pipe 15, it repeats each process of step S101-S108 mentioned above with respect to this steel pipe 15 suitably.

以上、説明したように、本発明の実施の形態では、外面シーム部を形成する各鋼材端部を含む鋼管の外周断面形状を光学的に検出し、鋼管の外周方向に沿った各鋼材端部の位置範囲に各々対応する第1および第2の演算処理範囲を設定し、鋼管の外周方向の位置変化に対する各鋼材端部の断面形状の変位量を第1および第2の演算処理範囲について各々算出し、第1および第2の演算処理範囲について各々算出した各鋼材端部の断面形状の変位量のうちの所定閾値以下の変位量をもとに、外面シーム部の幅方向の両側シームエッジ部の各位置を算出し、算出した両側シームエッジ部の各位置間の中心位置に溶接トーチを追従させ且つ鋼管の長手方向に沿って外面シーム部に対し相対的に溶接トーチを移動させながら、外面シーム部を溶接している。   As described above, in the embodiment of the present invention, the outer circumferential cross-sectional shape of the steel pipe including each steel material end forming the outer seam portion is optically detected, and each steel material end along the outer circumferential direction of the steel pipe First and second calculation processing ranges respectively corresponding to the position ranges of the steel pipes are set, and the amount of displacement of the cross-sectional shape of each steel member relative to the position change in the outer circumferential direction of the steel pipe is set for each of the first and second calculation processing ranges. Both side seam edge portions in the width direction of the outer surface seam portion based on a displacement amount equal to or less than a predetermined threshold value among the displacement amounts of the cross-sectional shape of each steel material portion calculated and calculated for each of the first and second calculation processing ranges The outer surface seam is calculated by moving the welding torch relative to the outer surface seam portion along the longitudinal direction of the steel pipe along the center position between the calculated positions of the both side seam edge portions. Weld the part That.

このため、不連続な仮付け溶接ビードまたはスパッタ等の予期せぬ外的要因を可能な限り除外した範囲に絞り込んだ演算処理範囲について、鋼管の外周方向の位置変化に対する複数エッジ部の断面形状の変位量を算出することができる。このように変位量を算出した複数のエッジ部の中から、外面シーム部の幅方向の両側シームエッジ部を検出して、これら両側シームエッジ部の位置を精度よく算出することができる。これにより、一段開先等の簡易な開先形状を有する鋼管は勿論、二段開先以上の複雑な開先形状を有する鋼管についても、予期せぬ外的要因に阻害されることなく、外面シーム部の幅方向の中心位置を精度よく算出し、この中心位置に溶接トーチを精度よく追従させることができる。この結果、鋼管の多種多様な外面シーム部の形状に対応して、鋼管の外面シーム部全域を精度よく溶接できるとともに外面シーム部の溶接品質の向上を促進することができる。   For this reason, with regard to the calculation processing range narrowed down to the extent where unexpected external factors such as discontinuous tack weld beads or spatters are excluded as much as possible, the cross-sectional shape of the multiple edge portions with respect to the position change in the outer circumferential direction of the steel pipe The amount of displacement can be calculated. Thus, it is possible to detect both seam edge portions in the width direction of the outer surface seam portion from the plurality of edge portions whose displacement amounts have been calculated, and calculate the positions of these both seam edge portions with high accuracy. As a result, not only a steel pipe having a simple groove shape such as a one-step groove, but also a steel pipe having a complicated groove shape more than a two-stage groove, the outer seam portion is not hindered by an unexpected external factor. The center position in the width direction can be calculated with high accuracy, and the welding torch can follow the center position with high accuracy. As a result, the entire outer surface seam portion of the steel pipe can be welded with high accuracy corresponding to the shapes of various outer surface seam portions of the steel pipe, and the improvement of the welding quality of the outer surface seam portion can be promoted.

本発明にかかる溶接装置および溶接方法を鋼管製造ラインに適用することにより、たとえ鋼管の外面シーム部の仮付け溶接ビードが不連続または複雑な形状に形成された場合であっても、あるいは、鋼管の高強度厚肉および低温靭性仕様等の様々な製品要求に応じて開先形状が多種多様化した場合であっても、鋼管の全長に亘り、外面シーム部の幅方向の中心位置に溶接トーチを精度よく自動追従させつつ外面シーム部の全域を高品質に溶接することができる。これにより、鋼管の溶接補修作業および手動操作による溶接トーチの追従作業を省略できるとともに、鋼管の製造歩留まりを向上することができる。この結果、鋼管製造ラインにおける作業者の負担を軽減できるのみならず、多種多様な鋼管の溶接効率を向上でき、延いては、多種多様な鋼管の製造効率を大幅に向上することができる。   By applying the welding apparatus and welding method according to the present invention to a steel pipe production line, even if the temporary weld bead of the outer surface seam portion of the steel pipe is formed in a discontinuous or complicated shape, Even when the groove shape is diversified according to various product requirements such as high strength thick wall and low temperature toughness specifications, the welding torch is at the center position in the width direction of the outer seam part over the entire length of the steel pipe. The whole area of the outer seam can be welded with high quality while automatically following. Thereby, the welding repair work of the steel pipe and the follow-up work of the welding torch by manual operation can be omitted, and the manufacturing yield of the steel pipe can be improved. As a result, not only can the burden on the operator in the steel pipe production line be reduced, but also the welding efficiency of a wide variety of steel pipes can be improved, and consequently the production efficiency of a wide variety of steel pipes can be greatly improved.

なお、上述した実施の形態では、アーク溶接機3の各溶接トーチ3aの位置を鋼管15の長手方向について固定(一定)とし、搬送コンベア2によって鋼管15をその長手方向に搬送していたが、本発明は、これに限定されるものではない。すなわち、本発明において、各溶接トーチ3aは、鋼管15の長手方向について、鋼管15の外面シーム部16に対し相対的に移動すればよい。この際、鋼管15の位置を固定し、アーク溶接機3が、各溶接トーチ3aとともに鋼管15の長手方向に沿って移動してもよい。あるいは、鋼管15およびアーク溶接機3の双方を鋼管15の長手方向に移動させ、これにより、鋼管15の長手方向に沿って外面シーム部16に対し相対的に各溶接トーチ3aを移動させてもよい。   In the above-described embodiment, the position of each welding torch 3a of the arc welder 3 is fixed (constant) in the longitudinal direction of the steel pipe 15, and the steel pipe 15 is transported in the longitudinal direction by the transport conveyor 2. The present invention is not limited to this. That is, in the present invention, each welding torch 3 a may be moved relative to the outer surface seam portion 16 of the steel pipe 15 in the longitudinal direction of the steel pipe 15. At this time, the position of the steel pipe 15 may be fixed, and the arc welder 3 may move along the longitudinal direction of the steel pipe 15 together with each welding torch 3a. Alternatively, both the steel pipe 15 and the arc welder 3 are moved in the longitudinal direction of the steel pipe 15, and thereby each welding torch 3 a is moved relative to the outer seam portion 16 along the longitudinal direction of the steel pipe 15. Good.

また、上述した実施の形態では、アーク溶接機3に4つの溶接トーチ3aを設けていたが、本発明は、これに限定されるものではない。アーク溶接機3に設ける溶接トーチ3aの数は、特に4つに限定されず、1つでもよいし、複数でもよい。すなわち、本発明において、溶接トーチ3aの配置数は、特に問われない。   In the embodiment described above, the arc welding machine 3 is provided with the four welding torches 3a, but the present invention is not limited to this. The number of welding torches 3a provided in the arc welding machine 3 is not particularly limited to four, and may be one or plural. That is, in the present invention, the number of welding torches 3a is not particularly limited.

さらに、上述した実施の形態では、二段開先形状の鋼管15を溶接処理対象としていたが、本発明は、これに限定されるものではなく、複数段(例えば3段以上)の開先形状等、多種多様な開先形状の外面シーム部の溶接に適用することが可能である。   Furthermore, in the above-described embodiment, the steel pipe 15 having a two-step groove shape is a welding target, but the present invention is not limited to this, and a plurality of (for example, three or more) groove shapes, etc. It can be applied to the welding of a wide variety of groove-shaped outer seams.

また、上述した実施の形態により本発明が限定されるものではなく、上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。その他、上述した実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例および運用技術等は全て本発明に含まれる。   Further, the present invention is not limited by the above-described embodiment, and the present invention includes a configuration in which the above-described constituent elements are appropriately combined. In addition, all other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the above-described embodiments are included in the present invention.

1 溶接装置
2 搬送コンベア
3 アーク溶接機
3a 溶接トーチ
4 溶接トーチ移動部
5 形状検出部
5a 投光部
5b 撮像部
6 条件入力部
7 演算処理部
8 制御部
13,14 鋼材端部
13a,14a シームエッジ部
13b,14b 開先エッジ部
13c,13d,14c,14d 開先端面
15 鋼管
16 外面シーム部
17 開先部
18 外周面
19 仮付け溶接ビード
21 外周断面形状
27 スパッタ
La 相関線
R1 第1の演算処理範囲
R2 第2の演算処理範囲
DESCRIPTION OF SYMBOLS 1 Welding apparatus 2 Conveyor 3 Arc welding machine 3a Welding torch 4 Welding torch moving part 5 Shape detection part 5a Light projection part 5b Imaging part 6 Condition input part 7 Arithmetic processing part 8 Control part 13, 14 Steel material end part 13a, 14a Seam edge Part 13b, 14b Groove edge part 13c, 13d, 14c, 14d Open tip surface 15 Steel pipe 16 Outer seam part 17 Groove part 18 Outer peripheral surface 19 Tacking weld bead 21 Peripheral sectional shape 27 Sputter La correlation line R1 First calculation Processing range R2 Second arithmetic processing range

Claims (6)

鋼管の長手方向に沿って前記鋼管の外周面側のシーム部に対し相対的に溶接トーチを移動させつつ、前記シーム部を溶接する溶接機と、
前記シーム部の幅方向に前記溶接トーチを移動させる溶接トーチ移動部と、
互いに突き合わせて前記シーム部を形成する一端部および他端部を含む前記鋼管の外周面の断面形状を光学的に検出する形状検出部と、
前記鋼管の外周方向に沿った前記一端部の位置範囲に対応する第1の演算処理範囲と前記鋼管の外周方向に沿った前記他端部の位置範囲に対応する第2の演算処理範囲とを設定し、前記外周方向の位置変化に対する前記一端部の断面形状の変位量および前記他端部の断面形状の変位量を前記第1の演算処理範囲および前記第2の演算処理範囲について各々算出し、前記第1の演算処理範囲について算出した前記一端部の断面形状の変位量のうちの所定閾値以下の変位量をもとに、前記シーム部の幅方向の両側シームエッジ部のうちの一方のシームエッジ部の位置を算出し、且つ、前記第2の演算処理範囲について算出した前記他端部の断面形状の変位量のうちの前記所定閾値以下の変位量をもとに、前記両側シームエッジ部のうちの他方のシームエッジ部の位置を算出する演算処理部と、
算出された前記一方のシームエッジ部の位置と前記他方のシームエッジ部の位置との間の中心位置に前記溶接トーチを追従させるように前記溶接トーチ移動部を制御する制御部と、
を備えたことを特徴とする溶接装置。
A welding machine for welding the seam part while moving the welding torch relatively to the seam part on the outer peripheral surface side of the steel pipe along the longitudinal direction of the steel pipe;
A welding torch moving part for moving the welding torch in the width direction of the seam part;
A shape detection unit that optically detects a cross-sectional shape of the outer peripheral surface of the steel pipe including one end and the other end that form a seam portion by butting each other;
A first calculation processing range corresponding to the position range of the one end portion along the outer peripheral direction of the steel pipe and a second calculation processing range corresponding to the position range of the other end portion along the outer peripheral direction of the steel pipe. And calculating a displacement amount of the cross-sectional shape of the one end portion and a displacement amount of the cross-sectional shape of the other end portion with respect to the position change in the outer circumferential direction for the first calculation processing range and the second calculation processing range, respectively. One seam edge of both seam edge portions in the width direction of the seam portion based on a displacement amount equal to or less than a predetermined threshold among the displacement amounts of the cross-sectional shape of the one end portion calculated for the first calculation processing range And calculating the position of the portion, and based on the displacement amount equal to or less than the predetermined threshold among the displacement amounts of the cross-sectional shape of the other end portion calculated for the second calculation processing range, The other side of An arithmetic processing unit for calculating the position of Muejji portion,
A control unit that controls the welding torch moving unit to cause the welding torch to follow a center position between the calculated position of the one seam edge part and the position of the other seam edge part;
A welding apparatus comprising:
前記演算処理部は、前記第1の演算処理範囲について算出した前記一端部の断面形状の変位量ピークの中から、前記所定閾値以下の変位量ピークを前記一方のシームエッジ部の変位量候補として選択し、選択した前記変位量候補の中から、前記鋼管の開先形状に基づいて前記一方のシームエッジ部の変位量ピークを決定し、決定した前記変位量ピークをなす前記一方のシームエッジ部の位置を算出し、且つ、前記第2の演算処理範囲について算出した前記他端部の断面形状の変位量ピークの中から、前記所定閾値以下の変位量ピークを前記他方のシームエッジ部の変位量候補として選択し、選択した前記変位量候補の中から、前記鋼管の開先形状に基づいて前記他方のシームエッジ部の変位量ピークを決定し、決定した前記変位量ピークをなす前記他方のシームエッジ部の位置を算出することを特徴とする請求項1に記載の溶接装置。   The arithmetic processing unit selects a displacement amount peak equal to or less than the predetermined threshold as a displacement amount candidate of the one seam edge portion from the displacement amount peaks of the cross-sectional shape of the one end calculated for the first arithmetic processing range. Then, the displacement amount peak of the one seam edge portion is determined based on the groove shape of the steel pipe from the selected displacement amount candidates, and the position of the one seam edge portion forming the determined displacement amount peak is determined. The displacement amount peak not more than the predetermined threshold is selected as a displacement amount candidate for the other seam edge portion from among the displacement amount peaks of the cross-sectional shape of the other end portion calculated for the second calculation processing range. Then, a displacement amount peak of the other seam edge portion is determined based on the groove shape of the steel pipe from the selected displacement amount candidates, and the determined displacement amount peak is determined. Welding device according to claim 1, characterized in that to calculate the position of the other seam edge portion. 前記演算処理部は、前記シーム部の仮付け溶接によって前記シーム部に形成された溶接ビードの位置を挟んで互いに離間するように、前記第1の演算処理範囲および前記第2の演算処理範囲を設定することを特徴とする請求項1または2に記載の溶接装置。   The arithmetic processing unit sets the first arithmetic processing range and the second arithmetic processing range so as to be separated from each other with the position of a weld bead formed in the seam portion by tack welding of the seam portion. The welding apparatus according to claim 1, wherein the welding apparatus is set. 互いに突き合わせて鋼管の外周面側のシーム部を形成する一端部および他端部を含む前記鋼管の外周面の断面形状を光学的に検出する形状検出ステップと、
前記鋼管の外周方向に沿った前記一端部の位置範囲に対応する第1の演算処理範囲と、前記鋼管の外周方向に沿った前記他端部の位置範囲に対応する第2の演算処理範囲とを設定する範囲設定ステップと、
前記外周方向の位置変化に対する前記一端部の断面形状の変位量および前記他端部の断面形状の変位量を、前記第1の演算処理範囲および前記第2の演算処理範囲について各々算出する変位量算出ステップと、
前記第1の演算処理範囲について算出した前記一端部の断面形状の変位量のうちの所定閾値以下の変位量をもとに、前記シーム部の幅方向の両側シームエッジ部のうちの一方のシームエッジ部の位置を算出し、且つ、前記第2の演算処理範囲について算出した前記他端部の断面形状の変位量のうちの前記所定閾値以下の変位量をもとに、前記両側シームエッジ部のうちの他方のシームエッジ部の位置を算出するエッジ位置算出ステップと、
算出した前記一方のシームエッジ部の位置と前記他方のシームエッジ部の位置との間の中心位置に溶接トーチが追従するように、前記シーム部の幅方向に前記溶接トーチを移動させる溶接トーチ移動ステップと、
前記鋼管の長手方向に沿って前記シーム部に対し相対的に前記溶接トーチを移動させつつ、前記シーム部を溶接する溶接ステップと、
を含むことを特徴とする溶接方法。
A shape detecting step for optically detecting a cross-sectional shape of the outer peripheral surface of the steel pipe including one end and the other end forming a seam portion on the outer peripheral surface side of the steel pipe by butting together
A first calculation processing range corresponding to the position range of the one end portion along the outer peripheral direction of the steel pipe, and a second calculation processing range corresponding to the position range of the other end portion along the outer peripheral direction of the steel pipe; A range setting step for setting
Displacement amounts for calculating the displacement amount of the cross-sectional shape of the one end portion and the displacement amount of the cross-sectional shape of the other end portion with respect to the position change in the outer peripheral direction for the first calculation processing range and the second calculation processing range, respectively. A calculation step;
One seam edge portion of both side seam edge portions in the width direction of the seam portion based on a displacement amount equal to or less than a predetermined threshold among the displacement amounts of the cross-sectional shape of the one end portion calculated for the first calculation processing range. Of the both-side seam edge portions based on a displacement amount equal to or less than the predetermined threshold among the displacement amounts of the cross-sectional shape of the other end portion calculated for the second calculation processing range. An edge position calculating step for calculating the position of the other seam edge portion;
A welding torch moving step of moving the welding torch in the width direction of the seam portion so that the welding torch follows a center position between the calculated position of the one seam edge portion and the position of the other seam edge portion; ,
A welding step of welding the seam portion while moving the welding torch relative to the seam portion along the longitudinal direction of the steel pipe;
The welding method characterized by including.
前記エッジ位置算出ステップは、前記第1の演算処理範囲について算出した前記一端部の断面形状の変位量ピークの中から、前記所定閾値以下の変位量ピークを前記一方のシームエッジ部の変位量候補として選択し、選択した前記変位量候補の中から、前記鋼管の開先形状に基づいて前記一方のシームエッジ部の変位量ピークを決定し、決定した前記変位量ピークをなす前記一方のシームエッジ部の位置を算出し、且つ、前記第2の演算処理範囲について算出した前記他端部の断面形状の変位量ピークの中から、前記所定閾値以下の変位量ピークを前記他方のシームエッジ部の変位量候補として選択し、選択した前記変位量候補の中から、前記鋼管の開先形状に基づいて前記他方のシームエッジ部の変位量ピークを決定し、決定した前記変位量ピークをなす前記他方のシームエッジ部の位置を算出することを特徴とする請求項4に記載の溶接方法。   In the edge position calculation step, a displacement amount peak equal to or less than the predetermined threshold is selected as a displacement amount candidate for the one seam edge portion from among the displacement amount peaks of the cross-sectional shape of the one end portion calculated for the first calculation processing range. The displacement amount peak of the one seam edge portion is determined based on the groove shape of the steel pipe from the selected displacement amount candidates selected, and the position of the one seam edge portion forming the determined displacement amount peak And a displacement amount peak equal to or less than the predetermined threshold value as a displacement amount candidate for the other seam edge portion among the displacement amount peaks of the cross-sectional shape of the other end portion calculated for the second calculation processing range. Select the displacement amount peak of the other seam edge portion based on the groove shape of the steel pipe from the selected displacement amount candidates, and the determined displacement Welding method according to claim 4, characterized in that to calculate the position of the other seam edge portion forming a peak. 前記範囲設定ステップは、前記シーム部の仮付け溶接によって前記シーム部に形成された溶接ビードの位置を挟んで互いに離間するように、前記第1の演算処理範囲および前記第2の演算処理範囲を設定することを特徴とする請求項4または5に記載の溶接方法。   In the range setting step, the first calculation processing range and the second calculation processing range are set so as to be separated from each other with a position of a weld bead formed in the seam portion by tack welding of the seam portion. The welding method according to claim 4, wherein the welding method is set.
JP2013245446A 2013-11-27 2013-11-27 Welding apparatus and welding method Active JP6036665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013245446A JP6036665B2 (en) 2013-11-27 2013-11-27 Welding apparatus and welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013245446A JP6036665B2 (en) 2013-11-27 2013-11-27 Welding apparatus and welding method

Publications (2)

Publication Number Publication Date
JP2015100838A true JP2015100838A (en) 2015-06-04
JP6036665B2 JP6036665B2 (en) 2016-11-30

Family

ID=53377013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013245446A Active JP6036665B2 (en) 2013-11-27 2013-11-27 Welding apparatus and welding method

Country Status (1)

Country Link
JP (1) JP6036665B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115319362A (en) * 2022-08-23 2022-11-11 江苏兴齐智能输电科技有限公司 Electric power steel pipe pole welding set based on longitudinal joint automatic tracking

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6996993B2 (en) * 2018-01-31 2022-01-17 株式会社神戸製鋼所 Single-sided submerged arc welding method and single-sided submerged arc welding equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4920062A (en) * 1972-06-17 1974-02-22
JPH08323477A (en) * 1995-03-24 1996-12-10 Sumitomo Metal Ind Ltd Device for detecting seam center in manufacturing welded tube and manufacture of welded tube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4920062A (en) * 1972-06-17 1974-02-22
JPH08323477A (en) * 1995-03-24 1996-12-10 Sumitomo Metal Ind Ltd Device for detecting seam center in manufacturing welded tube and manufacture of welded tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115319362A (en) * 2022-08-23 2022-11-11 江苏兴齐智能输电科技有限公司 Electric power steel pipe pole welding set based on longitudinal joint automatic tracking
CN115319362B (en) * 2022-08-23 2023-09-15 江苏兴齐智能输电科技有限公司 Electric power steel pipe pole welding set based on longitudinal joint automatic tracking

Also Published As

Publication number Publication date
JP6036665B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
RU2155654C2 (en) Method and apparatus for monitoring position of beam for working blanks
JP6148401B2 (en) Workpiece joining at hidden joint seams
CN101927395B (en) Weld joint tracking detection equipment and method
JP5537868B2 (en) Welding robot
CN105171289B (en) Become the cut deal multi-layer multi-pass welding method for planning track of groove width
US20100200554A1 (en) Welding equipment and welding method
JP5929948B2 (en) Weld inspection method
CN107378246A (en) A kind of method and system for correcting laser welding track
JP6036665B2 (en) Welding apparatus and welding method
JP2014508042A (en) Automated tube forming press with light source to measure tube inner contour
JP2018030173A (en) Seam heat treatment device and seam heat treatment method of electroseamed steel pipe
JP6135691B2 (en) Laser welding method
JP2005014027A (en) Weld zone image processing method, welding management system, feedback system for welding machine, and butt line detection system
WO2020039948A1 (en) Welding control device, display control device, welding system, welding control method, and program
JP7234420B2 (en) Method for scanning the surface of a metal workpiece and method for performing a welding process
US8800847B2 (en) Dynamic path correction of friction stir welding
JP5461070B2 (en) Abnormality detection method for laser welding system
JP2000024777A (en) Groove shape detecting device
JP6343711B1 (en) Seam tracking system and metal product manufacturing method
JP2007307612A (en) Automatic welding method and automatic welding equipment, and reference tool used for automatic welding
US20230356328A1 (en) Method for Welding Sheet Metal Parts
JP2006136904A (en) Apparatus and method of laser beam welding
JP2010260095A (en) Method and apparatus for evaluating laser welding quality
Matsui et al. Slit laser sensor guided real-time seam tracking arc welding robot system for non-uniform joint gaps
JP7300367B2 (en) METHOD AND DEVICE FOR DETECTING WELD SURFACE DIFFERENCE IN WELD OF ERW STEEL PIPE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R150 Certificate of patent or registration of utility model

Ref document number: 6036665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250