JP2015100233A - Non-contact power supply system - Google Patents

Non-contact power supply system Download PDF

Info

Publication number
JP2015100233A
JP2015100233A JP2013239867A JP2013239867A JP2015100233A JP 2015100233 A JP2015100233 A JP 2015100233A JP 2013239867 A JP2013239867 A JP 2013239867A JP 2013239867 A JP2013239867 A JP 2013239867A JP 2015100233 A JP2015100233 A JP 2015100233A
Authority
JP
Japan
Prior art keywords
power
coil
transmission
signal
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013239867A
Other languages
Japanese (ja)
Inventor
克夫 松原
Katsuo Matsubara
克夫 松原
角田 孝典
Takanori Tsunoda
孝典 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2013239867A priority Critical patent/JP2015100233A/en
Publication of JP2015100233A publication Critical patent/JP2015100233A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transceivers (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a signal transmission system between the transmission and reception sides of a non-contact power supply system, using a part of the configuration of the non-contact power supply system.SOLUTION: A part of an antenna in a power transmission/reception part is used as an antenna for signal transmission, to thereby form a signal transmission system. A tap is extracted from the intermediate point of a power reception-side coil 38, so that both sides of the coil are used as a power reception coil and a signal transmission coil 381. Also, a tap is extracted from the intermediate point of a power transmission-side coil 33, so that both sides of the coil are used as a power transmission coil and a signal reception coil 331. The signal transmission/reception is performed based on a design of a resonance system configuration whose resonance frequency greatly deviates from a resonance frequency for power supply.

Description

この発明は、非接触にて電力を送るシステムにおいて信号伝送する方法に関する発明である。   The present invention relates to a method for transmitting a signal in a system for sending power without contact.

この種の特開2012−060730にある非接触給電の従来例を図1に示す。   FIG. 1 shows a conventional example of non-contact power feeding in this kind of JP2012-060730A.

またこの種の非接触給電の方式については非特許文献1に解説されるように4つの組み合わせがある。この等価回路を図2に示す。   Further, there are four combinations of this type of non-contact power feeding method as described in Non-Patent Document 1. This equivalent circuit is shown in FIG.

さて、この図1の方式は、送電側装置の発信器11の電力を送電側アンテナ14に電力注入し、これと磁気結合した受電側アンテナ15に伝える。受電側ではこの受電側アンテナを介して負荷16に電力供給する形態となっている。   In the system of FIG. 1, the power of the transmitter 11 of the power transmission side device is injected into the power transmission side antenna 14 and transmitted to the power reception side antenna 15 magnetically coupled thereto. On the power receiving side, power is supplied to the load 16 via the power receiving side antenna.

ここで、たとえばこの負荷として電池のような充電系を考えると、この充電状態情報を供給側に伝えたいニーズが生まれる。   Here, for example, when a charging system such as a battery is considered as the load, there is a need to transmit the charging state information to the supply side.

この例では、充電が完了したことを制御部18で検出し、リレー19を解放することにより抵抗17を負荷系に直列挿入する回路方式となっている。このことにより、送電側に供給電流の変化を発生させ、これを状態検出部13で検出し、送電制御部12で発信器を停止する等の制御を行なおうとするものである。   In this example, the control unit 18 detects that the charging is completed, and the relay 19 is released so that the resistor 17 is inserted in series into the load system. As a result, a change in supply current is generated on the power transmission side, this is detected by the state detection unit 13, and control such as stopping the transmitter by the power transmission control unit 12 is performed.

遠井敬大, 金子裕良, 阿部茂 : 非接触給電の最大効率の結合係数kとコイルのQによる表現, 半導体電力変換研究会, SPC−11−179(2011.12.1)Takahiro Toui, Hiroyoshi Kaneko, Shigeru Abe: Representation of maximum efficiency of non-contact power feeding by coupling coefficient k and coil Q, Semiconductor Power Conversion Study Group, SPC-11-179 (2011.1.12.1)

特開2012−060730号公報JP 2012-060730 A

この公知例では、構成が非常にシンプルであり、充電が完了した情報を伝えるとか、異常であるかないかを伝えるとかというような、単純に状態を伝えるだけのアプリケーションにおいてはなかなか良いアイデアである。
しかしながら、受電側の電流情報とか温度情報とかをリアルタイムで給電側に伝えるような用途においては以下のような問題がある。
In this known example, the configuration is very simple, and it is a good idea for an application that simply conveys the status, such as conveying information that charging has been completed or whether it is abnormal or not.
However, there are the following problems in applications in which current information on the power receiving side or temperature information is transmitted to the power feeding side in real time.

このような方式では共振系のシステムを使う制約上、単一の周波数で扱う必要があり、振幅変調された波形を信号として認識することになる。   In such a system, it is necessary to handle at a single frequency due to the restriction of using a resonance system, and an amplitude-modulated waveform is recognized as a signal.

このため、給電系の大きさも変化せざるを得ない。これは給電上のシステムとしては都合の良いものではない。   For this reason, the size of the power feeding system must be changed. This is not convenient for a power supply system.

さらにこのケースでは、負荷に変化を与えることで変調信号を形成することをもくろんでいるのであるが、当然のことながら負荷開閉が必要になりそのスイッチング速度は限界があり高速の信号伝送は困難である。   Furthermore, in this case, it is intended to form a modulation signal by changing the load, but naturally it is necessary to open and close the load, the switching speed is limited, and high-speed signal transmission is difficult. is there.

この発明は、これらの諸問題に対応するために考案されたものである。その考え方の基本は送電用のアンテナコイルの一部分を利用して、異なる周波数を有する共振系を実現し信号伝送に供せようとするものである。   The present invention has been devised to address these various problems. The basic idea is to realize a resonance system having different frequencies by using a part of an antenna coil for power transmission and to use it for signal transmission.

この発明に係る非接触給電システムは、対抗する給電用のアンテナコイルの一部を信号伝送用のコイルとして利用することである。   The non-contact power feeding system according to the present invention is to use a part of the antenna coil for power feeding as a coil for signal transmission.

そして、このような構成をすることで、給電系の周波数とは大きく離れた周波数領域での独立した通信が可能となるとともにその速度についても、大きな制約を受けない。逆にこの回路が給電系を変動させるようなこともない。さらにこの系も共振型の一つの非接触の信号伝送系を構成することになり、信号信頼性(秘匿性)は高い。   With such a configuration, independent communication is possible in a frequency region far away from the frequency of the power feeding system, and the speed is not greatly limited. Conversely, this circuit does not change the power feeding system. Furthermore, this system also constitutes one resonance type non-contact signal transmission system, and the signal reliability (confidentiality) is high.

請求項1に記載の発明によれば、1つの送電コイルと受電コイルの一部のコイル部分を共有して使って異なる共振周波数を持った信号伝送系の非接触の伝送システムを実現する。   According to the first aspect of the present invention, a non-contact transmission system of a signal transmission system having different resonance frequencies is realized by sharing one coil part of the power transmission coil and the power reception coil.

これらの、周波数の設定は相互の干渉を受けないようなパラメータを選択でき、このため給電系が変動するような影響はしない。さらに独立伝送系を実現するため、独自の高速なデータ伝送が可能であり、この情報も非接触ではあるが共振系を実現しているため秘匿性の高いデータ送受信が可能になる。   These frequency settings can select parameters that are not subject to mutual interference. Therefore, there is no influence that the feed system fluctuates. Furthermore, since an independent transmission system is realized, original high-speed data transmission is possible, and although this information is also non-contact, a resonant system is realized, so that highly confidential data transmission / reception becomes possible.

請求項1では受電側から送電側へ信号伝送する方式を記載し、請求項2ではその逆方向への信号伝送を記載している。   Claim 1 describes a signal transmission method from the power receiving side to the power transmission side, and claim 2 describes signal transmission in the opposite direction.

請求項3に記載の発明は、請求項1、2の発明による構造的な組み合わせ形状を提案するものである。本請求項の構造体によれば、一体化された同心円状のコイルを給電用と信号伝送用に分割利用する提案である。   The invention described in claim 3 proposes a structural combination shape according to the inventions of claims 1 and 2. According to the structure of this claim, it is a proposal to divide and use the integrated concentric coil for power feeding and signal transmission.

この提案では、信号伝送用のコイルとして、全体コイルの外周部を利用する提案を行っている。こうすることで信号伝送系の相互インダクタンスを大きく獲得できる優位性がある。   In this proposal, a proposal is made to use the outer peripheral portion of the entire coil as a signal transmission coil. By doing so, there is an advantage that a large mutual inductance of the signal transmission system can be obtained.

特許文献に見る非接触給電システムの信号伝送概念図である。It is a signal transmission conceptual diagram of the non-contact electric power feeding system seen in patent documents. 非接触給電のための1次、2次の回路方式概説である。It is an outline of primary and secondary circuit systems for non-contact power feeding. 本考案による非接触給電システムのブロック図である。It is a block diagram of the non-contact electric power feeding system by this invention. 信号送受信部の構成例である。It is a structural example of a signal transmission / reception part. 信号受信部の周波数特性例である。It is an example of the frequency characteristic of a signal receiving part. コイルアンテナの実現法である。This is a method for realizing a coil antenna.

発明を実施する為の形態BEST MODE FOR CARRYING OUT THE INVENTION

一般的に非特許文献1に示されるように、非接触の給電方式には直列、並列の組み合わせがあり4種類のパターンが考えられる。この回路ブロック図を図2に示しておく。今回の説明資料はこのうち1次直列、2次直列の例を示しておくが、これに限定するわけではない。   In general, as shown in Non-Patent Document 1, there are four types of non-contact power feeding methods, including a combination of series and parallel. This circuit block diagram is shown in FIG. The explanatory material this time shows examples of primary series and secondary series, but this is not restrictive.

図3に、この発明に係る非接触給電回路のブロック図を示す。図3の主たる回路部分の構成は図1に示した公知例と同様であるが、本考案は送受電部を有するコイル33,38を分割して給電用途と信号伝送用用途に利用するところにある。こうすることコイル部分の一体化形成が可能になる。以下図面にしたがって説明する。   FIG. 3 shows a block diagram of a non-contact power feeding circuit according to the present invention. The configuration of the main circuit portion of FIG. 3 is the same as that of the known example shown in FIG. 1, but the present invention divides the coils 33 and 38 having the power transmission / reception unit and uses them for power feeding and signal transmission. is there. This makes it possible to integrally form the coil portion. This will be described below with reference to the drawings.

図3において30は電力供給用の発信器であり、直列のキャパシタ31を介して332の送電コイルを駆動する。これと磁気結合した382の受電コイルから、直列のキャパシタ36を介して負荷35に電力を供給するという、非接触給電系を示している。図中の32,37は回路系の直列抵抗要素をまとめて表示したものである。   In FIG. 3, reference numeral 30 denotes a power supply transmitter that drives a power transmission coil 332 through a series capacitor 31. This shows a non-contact power feeding system in which power is supplied to a load 35 via a series capacitor 36 from a power receiving coil 382 magnetically coupled thereto. 32 and 37 in the figure collectively represent series resistance elements of the circuit system.

この系ではその送電側、受電側の共振周波数は、
f=1/2π√LCにより決定され、これを合致させる。このL,Cはそれぞれの送電側の31,332、受電側の36,382が該当する。
In this system, the resonance frequency of the power transmission side and the power reception side is
This is determined by f = 1 / 2π√LC and is matched. L and C correspond to 31 and 332 on the power transmission side and 36 and 382 on the power reception side, respectively.

なお、この系以外の図2に示す1次―2次結合方式による共振周波数、L,Cの関係式は非特許文献1を参照されたい。   Refer to Non-Patent Document 1 for the relational expression of resonance frequency and L, C by the primary-secondary coupling method shown in FIG.

さて、本発明で特徴的なのは、先に既述したようにコイルを分割利用することである。33,38のコイルを分割したタップを挟んで各々331,332及び381,382のコイルを構成する。このうち332と382は給電用コイルとして利用し、331と381を信号伝送用として利用する構成となっている。   The feature of the present invention is that the coil is divided and used as described above. The coils 331, 332 and 381, 382 are formed by sandwiching taps obtained by dividing the coils 33, 38, respectively. Of these, 332 and 382 are used as power supply coils, and 331 and 381 are used for signal transmission.

信号伝送系の回路はこれらのタップ位置からそれぞれ信号送信部39、信号受信部34へ結合される構成となっている。   The circuit of the signal transmission system is configured to be coupled to the signal transmission unit 39 and the signal reception unit 34 from these tap positions, respectively.

本図では、受電側からの信号伝送を主眼に記載したため、信号送信部は受電側、信号受信部は送電側になっているが、逆方向の情報伝送が必要な場合は、これらの回路の接続を逆にすれば実現できるのは自明である。   In this figure, since the signal transmission from the power receiving side is mainly described, the signal transmitting unit is the power receiving side and the signal receiving unit is the power transmitting side. However, if information transmission in the reverse direction is required, these circuits Obviously, this can be achieved by reversing the connection.

ここで、当該信号伝送のための回路部分を抜き出して、図4に表示する。この例では信号発信回路45は受電側に接続され、ここから直列のキャパシタ46を介して信号送信用コイル381に接続される。   Here, a circuit portion for the signal transmission is extracted and displayed in FIG. In this example, the signal transmission circuit 45 is connected to the power receiving side, and is connected to the signal transmission coil 381 through the capacitor 46 in series.

同様に、信号受信側では信号受信コイル331から直列のキャパシタ41を介し、信号受信部に接続される。この中間に配置される44のフィルタ素子についての説明は後述する。   Similarly, on the signal receiving side, the signal receiving coil 331 is connected to the signal receiving unit via the series capacitor 41. The description of 44 filter elements arranged in the middle will be described later.

図4の42,47はそれぞれの回路部分の直列等価抵抗をまとめて示したものであり、系の送信側、受信側の共振周波数はf=1/2π√LCにより決定され、これを合致させる。
ここでL,Cはそれぞれ381と46及び331と41となる。44の要素はこの基本的な周波数決定には関与しない定数で定められるものとする。
42 and 47 in FIG. 4 collectively show the series equivalent resistances of the respective circuit portions. The resonance frequency on the transmission side and reception side of the system is determined by f = 1 / 2π√LC, and these are matched. .
Here, L and C are 381 and 46 and 331 and 41, respectively. The 44 elements are determined by constants that are not involved in this basic frequency determination.

ここでは、当該信号伝送の回路方式も1次直列―2次直列方式で記載しているが、図2で示す4つの方式すべてが可能である。さらにこの時の当該共振周波数とC,Lの関係は非特許文献1を参照されたい。   Here, the signal transmission circuit method is also described as a primary serial-secondary serial method, but all four methods shown in FIG. 2 are possible. Further, refer to Non-Patent Document 1 for the relationship between the resonance frequency and C and L at this time.

この図4の44の部位について図5を用いて詳述する。そもそもこの系においては圧倒的に電力送信のエネルギーが大きく、信号受信部でのS/N比を悪くする恐れがある。このため必要に応じ図5(A)に示すような当該給電用周波数f1で大きなインピーダンスを持つ帯域除去フィルタを51,52を用いて構成し、信号受信部に入力するのが安定である。もちろんこの時の除去帯域は電力帯域のf1である。
こうした場合の最終的な信号受信部での周波数特性は図5(B)に示すように大きなS/Nが得られ、安定した信号伝送を可能にするものである。
この時、このフィルタは給電用周波数と信号伝送用周波数は離して設計されるため、ほとんど影響しない。
4 will be described in detail with reference to FIG. In the first place, in this system, the power transmission energy is overwhelmingly large, and there is a possibility that the S / N ratio in the signal receiving unit is deteriorated. For this reason, it is stable to configure a band elimination filter having a large impedance at the power feeding frequency f1 as shown in FIG. 5A using 51 and 52 as necessary and to input it to the signal receiving unit. Of course, the removal band at this time is f1 of the power band.
As shown in FIG. 5B, the final frequency characteristics in the signal receiving unit in such a case can provide a large S / N and enable stable signal transmission.
At this time, since this filter is designed to separate the power feeding frequency and the signal transmission frequency, there is almost no influence.

図6に実際のアンテナコイルの利用法を図示する。61,62はそれぞれ同心円状の送受電(信)アンテナである。給電用周波数と信号伝送用周波数のエリアはその干渉面でもできるだけ離すのが妥当である。このため信号伝送用コイルの利用巻き数は全体のごく一部とするのがよい。   FIG. 6 illustrates how to use an actual antenna coil. Reference numerals 61 and 62 denote concentric power transmitting / receiving antennas. It is appropriate to separate the power feeding frequency and signal transmission frequency areas as much as possible even in terms of interference. For this reason, the number of windings of the signal transmission coil is preferably a very small part.

しかしながら、送受信の結合度合いを考えるとできるだけ外周部を利用して、送受信の相互インダクタンスを高めるのが良好である。
この例では、外周部分の何ターンかを信号伝送用に利用し、内部の多数のコイル部分で非接触給電する方法を提案する。この場合、一般にこの接続点を回路コモンに接続される。
However, considering the degree of coupling between transmission and reception, it is preferable to increase the mutual inductance of transmission and reception by using the outer periphery as much as possible.
In this example, a method is proposed in which several turns of the outer peripheral portion are used for signal transmission and non-contact power feeding is performed by a large number of internal coil portions. In this case, this connection point is generally connected to the circuit common.

この発明に係る非接触給電装置は電気自動車の充電システム、高電圧部への絶縁電源供給システム等に応用できる。   The contactless power supply device according to the present invention can be applied to a charging system for an electric vehicle, an insulated power supply system for a high voltage section, and the like.

11 発信器
12 発信制御部
13 検出部
14 送電アンテナ
15 受電アンテナ
16 負荷
17 抵抗
18 制御部
19 リレー
30 発信器
31 キャパシタ
32 送電側回路抵抗
33 送電側コイル
331 信号受信コイル
34 信号受信部
35 負荷
36 受電側キャパシタ
37 受電側回路抵抗
38 受電側コイル
381 信号送信コイル
39 信号送信部
40 信号検出部
41 信号受信部キャパシタ
42 信号受信部回路抵抗
44 帯域除去フィルタ
45 信号発信回路
46 信号送信部キャパシタ
47 信号送信部回路抵抗
51 帯域除去フィルタ用キャパシタ
52 帯域除去フィルタ用インダクタ
61 送電部アンテナ形状図
62 受電部アンテナ形状図
DESCRIPTION OF SYMBOLS 11 Transmitter 12 Transmission control part 13 Detection part 14 Power transmission antenna 15 Power reception antenna 16 Load 17 Resistance 18 Control part 19 Relay 30 Transmitter 31 Capacitor 32 Power transmission side circuit resistance 33 Power transmission side coil 331 Signal reception coil 34 Signal reception part 35 Load 36 Power receiving side capacitor 37 Power receiving side circuit resistance 38 Power receiving side coil 381 Signal transmitting coil 39 Signal transmitting unit 40 Signal detecting unit 41 Signal receiving unit capacitor 42 Signal receiving unit circuit resistance 44 Band elimination filter 45 Signal transmitting circuit 46 Signal transmitting unit capacitor 47 Signal Transmitter circuit resistance 51 Band-rejection filter capacitor 52 Band-rejection filter inductor 61 Power transmission unit antenna configuration 62 Power reception unit antenna configuration

Claims (3)

送電コイルとこの送電コイルに電力を供給する送電側装置と、この送電コイルと電磁結合する受電コイルとこの受電コイルから負荷に電力を供給する受電側装置を有する非接触の電磁誘導型の電力供給システムにおいて、
受電側装置に信号送信機能を有し、受電側コイルの中間点からタップを取り出し、その各々両側のコイルを受電コイル、信号送信コイルとして利用するとともに、
送電側装置に信号受信機能を有し、送電側コイルの中間点からタップを取り出し、その各々両側のコイルを送電コイル、信号受信コイルとして利用し、
給電用、信号伝送用に各々独立した共振周波数にて磁気結合することを特徴する、相互の拠点の情報通信が可能な非接触給電システム。
Non-contact electromagnetic induction type power supply having a power transmission coil, a power transmission side device that supplies power to the power transmission coil, a power reception coil that is electromagnetically coupled to the power transmission coil, and a power reception side device that supplies power to the load from the power reception coil In the system,
The power receiving side device has a signal transmission function, takes out the tap from the middle point of the power receiving side coil, uses the coils on both sides thereof as a power receiving coil and a signal transmission coil,
The power transmission side device has a signal reception function, takes out the tap from the intermediate point of the power transmission side coil, uses the coils on both sides thereof as a power transmission coil and a signal reception coil,
A non-contact power feeding system capable of information communication between mutual bases, wherein magnetic coupling is performed at an independent resonance frequency for power feeding and signal transmission.
送電コイルとこの送電コイルに電力を供給する送電側装置と、この送電コイルと電磁結合する受電コイルとこの受電コイルから負荷に電力を供給する受電側装置を有する非接触の電磁誘導型の電力供給システムにおいて、
送電側装置に信号送信機能を有し、送電側コイルの中間点からタップを取り出し、その各々両側のコイルを送電コイル、信号送信コイルとして利用するとともに、
受電側装置に信号受信機能を有し、受電側コイルの中間点からタップを取り出し、その各々両側のコイルを受電コイル、信号受信コイルとして利用し、
給電用、信号伝送用に各々独立した共振周波数にて磁気結合することを特徴する、相互の拠点の情報通信が可能な非接触給電システム。
Non-contact electromagnetic induction type power supply having a power transmission coil, a power transmission side device that supplies power to the power transmission coil, a power reception coil that is electromagnetically coupled to the power transmission coil, and a power reception side device that supplies power to the load from the power reception coil In the system,
The power transmission side device has a signal transmission function, takes out the tap from the middle point of the power transmission side coil, uses the coils on both sides thereof as a power transmission coil and a signal transmission coil,
The power receiving side device has a signal receiving function, and taps are taken out from the midpoint of the power receiving side coil, and the coils on both sides thereof are used as the power receiving coil and the signal receiving coil,
A non-contact power feeding system capable of information communication between mutual bases, wherein magnetic coupling is performed at an independent resonance frequency for power feeding and signal transmission.
1、2項請求範囲のシステムにおいて、当該送受電側コイルとして同心円状の巻線を有するコイルの外周側コイルを当該信号伝送のコイルとして利用する構成としたことを特徴とする、情報交換が可能な非接触給電システム。   In the system according to claims 1 and 2, information exchange is possible, characterized in that the coil on the outer peripheral side of the coil having concentric windings is used as the coil for signal transmission. Contactless power supply system.
JP2013239867A 2013-11-20 2013-11-20 Non-contact power supply system Pending JP2015100233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013239867A JP2015100233A (en) 2013-11-20 2013-11-20 Non-contact power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013239867A JP2015100233A (en) 2013-11-20 2013-11-20 Non-contact power supply system

Publications (1)

Publication Number Publication Date
JP2015100233A true JP2015100233A (en) 2015-05-28

Family

ID=53376530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013239867A Pending JP2015100233A (en) 2013-11-20 2013-11-20 Non-contact power supply system

Country Status (1)

Country Link
JP (1) JP2015100233A (en)

Similar Documents

Publication Publication Date Title
JP5449504B1 (en) Multiplexed transmission system and transmitter-side multiplexed transmission apparatus using wireless power transmission
CN110785911A (en) System, apparatus and method for adaptive tuning of wireless power transmission
CN110679060A (en) Transmission assembly for universal wireless charging device and method thereof
US20170077754A1 (en) Near field communication and wireless power transfer dual mode antennas for metal backed devices
CN108136924B (en) Method and apparatus for utilizing bipolar dual D vehicle couplers in wireless power transfer applications
EP3350899B1 (en) Methods and apparatus utilizing multi-filar alignment assistance in wireless power transfer applications
JP6201380B2 (en) Non-contact communication coil, non-contact power feeding device, and non-contact power receiving device
US20160322854A1 (en) Wearable receive coils for wireless power transfer with no electrical contact
JP2019535224A (en) Wireless power transmission device, wireless power transmission system, and method for driving wireless power transmission system
KR20140076993A (en) Wireless power device
KR101926615B1 (en) Combo antenna module and mobile electronic device having the same
JP2015100232A (en) Non-contact power supply system
JP2015100233A (en) Non-contact power supply system
US11722179B2 (en) Wireless power transmission systems and methods for selectively signal damping for enhanced communications fidelity
KR102269280B1 (en) Coil device and apparatus including the same
Iida et al. Performance of data transmission in wireless power transfer with coil displacements
KR101765222B1 (en) Apparatus and method for wireless power transferring, and wireless power transfer system
US11711112B2 (en) Wireless power transmission systems and methods with selective signal damping active mode
US11695449B2 (en) Wireless power transmission systems and methods with signal damping operating modes
US11489555B2 (en) Wireless power transmitter for high fidelity communications with amplitude shift keying
JP5819030B2 (en) Multiplexing transmission system by wireless power transmission, transmitting side multiplexing transmission apparatus, and accounting / information system
US20230113247A1 (en) Systems for Extending Wireless Power Transmission Charge Volume Utilizing Repeater Antennas
KR101965367B1 (en) Dual open type resonance coils with in phase series feeding method for wireless power transmission
JP2014050302A (en) Non-contact power supply device
JP2011175311A (en) Radio communication medium