JP2015100219A - Dc feeder protection relay device - Google Patents

Dc feeder protection relay device Download PDF

Info

Publication number
JP2015100219A
JP2015100219A JP2013239376A JP2013239376A JP2015100219A JP 2015100219 A JP2015100219 A JP 2015100219A JP 2013239376 A JP2013239376 A JP 2013239376A JP 2013239376 A JP2013239376 A JP 2013239376A JP 2015100219 A JP2015100219 A JP 2015100219A
Authority
JP
Japan
Prior art keywords
current
value
positive component
current change
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013239376A
Other languages
Japanese (ja)
Other versions
JP6063852B2 (en
Inventor
良一 井上
Ryoichi Inoue
良一 井上
智教 中司
Tomonori Nakatsukasa
智教 中司
上村 修
Osamu Kamimura
修 上村
和宜 福田
Kazunobu Fukuda
和宜 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013239376A priority Critical patent/JP6063852B2/en
Publication of JP2015100219A publication Critical patent/JP2015100219A/en
Application granted granted Critical
Publication of JP6063852B2 publication Critical patent/JP6063852B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a DC feeder protection relay device capable of improving sensitivity to feeder failure detection.SOLUTION: A DC feeder protection relay device of an embodiment comprises: a current detection unit which acquires a current value of a DC feeder; a current positive component calculation unit which calculates a current positive component; a pulsion ratio calculation unit which calculates a pulsion ratio on the basis of a first current positive component and a second current positive component; a detection signal output unit which outputs a detection signal when the pulsion ratio is determined to be not less than a pulsion ratio comparison value; a current change value calculation unit which calculates a current change value which is the difference between the first current positive component and a third current positive component; a difference calculation unit which calculates a current change difference which is the difference between the current change value and a current change comparison value; an integration value calculation unit which calculates a current change integration value integrated by multiplying the current change difference by a coefficient; a control signal output unit which outputs a control signal when the current change integration value is determined to be not less than a determination value; and a trip command output unit which outputs a trip command when a detection signal and a control signal are acquired.

Description

本発明の実施形態は、直流き電保護継電装置に関する。   Embodiments described herein relate generally to a DC feeder protection relay device.

図12に示す一般的なき電回路において、変電所SSおよび変電所SSは、例えば数十km間隔で設けられる。 In the general feeding circuit shown in FIG. 12, the substation SS 1 and the substation SS 2 are provided, for example, at intervals of several tens km.

各変電所SS,SSからは直流電力がき電線31に供給される。 DC power is supplied to the feeder 31 from each of the substations SS 1 and SS 2 .

変電所SSは、交流電源41、整流器42、変流器(CT)43、き電遮断器45、連絡遮断装置46、および直流き電保護継電装置47を備える。 The substation SS 1 includes an AC power supply 41, a rectifier 42, a current transformer (CT) 43, a feeder circuit breaker 45, a communication breaker device 46, and a DC feeder protection relay device 47.

交流電源41から供給される交流電力は、整流器42によって直流電力に変換され、き電遮断器45を通過してき電線31の一端に供給される。   AC power supplied from the AC power supply 41 is converted into DC power by the rectifier 42, passes through the feeder circuit breaker 45, and is supplied to one end of the feeder 31.

同様に変電所SSは、交流電源51、整流器52、CT53、き電遮断器55、連絡遮断装置56、および直流き電保護継電装置57を備える。 Similarly substation SS 2 includes an AC power supply 51 includes a rectifier 52, CT53, feeding circuit breaker 55, contact shut-off device 56 and a DC feeding circuit protective relay device 57.

交流電源51から供給される交流電力は、整流器52によって直流電力に変換され、き電遮断器55を通過してき電線31の他端に供給される。   AC power supplied from the AC power source 51 is converted into DC power by the rectifier 52, passes through the feeder circuit breaker 55, and is supplied to the other end of the feeder 31.

整流器42,52によって変換された直流電力は、レール32にも供給され、き電線31およびレール32は、電気車33に電力を供給する。   The DC power converted by the rectifiers 42 and 52 is also supplied to the rail 32, and the feeder 31 and the rail 32 supply power to the electric vehicle 33.

直流き電保護継電装置47,57は、CT43,53からき電線31の電流値を取得し、き電線31で故障等が発生した場合にき電遮断器45,55を開放する。   The DC feeder protection relay devices 47 and 57 obtain the current value of the feeder line 31 from the CTs 43 and 53, and open the feeder breakers 45 and 55 when a failure or the like occurs in the feeder line 31.

例えば、直流き電保護継電装置47がき電線3の故障を検出した場合、変電所SSのき電遮断器45を開放する。また、連絡遮断装置46,56は互いに連絡線34で接続されるため、直流き電保護継電装置47は変電所SSの連絡遮断装置46を介して変電所SSの連絡遮断装置56に遮断指令信号を出力する。すなわち、き電遮断器55は、直流き電保護継電装置57あるいは連絡遮断装置56によって開放される。 For example, when detecting a failure of the DC feeding circuit protective relay device 47 brat wire 3, to open the substation SS 1 eaves electric breaker 45. Further, since the contact blocking device 46, 56 which are connected by communication line 34 to each other, a DC feeding circuit protective relay device 47 is in contact shut-off device 56 of the substation SS 2 through the contact cutoff apparatus 46 of the substation SS 1 Outputs a shutoff command signal. That is, the feeder circuit breaker 55 is opened by the DC feeder protection relay device 57 or the communication interruption device 56.

特開2011−53189号公報JP 2011-53189 A

き電線31で故障が発生し、故障点抵抗Rが0.45[Ω]の場合の故障点区間長比率dと、所定時間当たりの故障点における電流の変化値ΔI、所定時間当たりの変電所SSに流れる電流の変化値ΔI、所定時間当たりの変電所SSに流れる電流の変化値ΔIとの関係の一例を図13に示す。また、故障点抵抗Rが0.7[Ω]の場合の故障点区間長比率dと、所定時間当たりの故障点における電流の変化値ΔI、所定時間当たりの変電所SSに流れる電流の変化値ΔI,所定時間当たりの変電所SSに流れる電流の変化値ΔIとの関係の一例を図14に示す。 When the failure occurs in the feeder 31 and the failure point resistance Rf is 0.45 [Ω], the failure point section length ratio d, the current change value ΔI f at the failure point per predetermined time, change value [Delta] I 1 of the current flowing through the substation SS 1, an example of the relationship between the change value [Delta] I 2 of the current flowing through the substation SS 2 per predetermined time is shown in FIG. 13. Further, the failure point section length ratio d when the failure point resistance R f is 0.7 [Ω], the current change value ΔI f at the failure point per predetermined time, and the current flowing through the substation SS 1 per predetermined time. FIG. 14 shows an example of the relationship between the change value ΔI 1 of the current and the change value ΔI 2 of the current flowing through the substation SS 2 per predetermined time.

ここで、故障点区間長比率dは、変電所SSから変電所SSまでの距離を1としたときの変電所SSから故障点までの比率である。例えば、d=0.5のときは両変電所SS,SSの中間地点にて故障が発生することを表す。 Here, the failure point section length ratio d is a ratio from the substation SS 1 to the failure point when the distance from the substation SS 1 to the substation SS 2 is 1. For example, when d = 0.5, it indicates that a failure occurs at an intermediate point between the two substations SS 1 and SS 2 .

図13,14において、電流の変化値ΔIが閾値ΔIsetを超えると直流き電保護継電装置47が動作し、電流の変化値ΔIが閾値ΔIsetを超えると直流き電保護継電装置57が動作することを示す。 13 and 14, when the current change value ΔI 1 exceeds the threshold value ΔI set , the DC feeding protection relay device 47 operates. When the current change value ΔI 2 exceeds the threshold value ΔI set , the DC feeding protection relay is performed. It shows that the device 57 operates.

図13では、d=0〜0.6にて変電所SSの直流き電保護継電装置47が動作し、d=0.4〜1.0にて変電所SSの直流き電保護継電装置57が動作することになる。 In FIG. 13, the DC feeding protection relay device 47 of the substation SS 1 operates at d = 0 to 0.6, and the DC feeding protection of the substation SS 2 at d = 0.4 to 1.0. The relay device 57 operates.

一方、図14では、d=0〜0.4にて変電所SSの直流き電保護継電装置47が動作し、d=0.6〜1.0にて変電所SSの直流き電保護継電装置57が動作するが、d=0.4〜0.6にて無保護区間が生じてしまう。すなわち、故障点抵抗Rが増加することで、両変電所SS,SSから無保護になってしまう区間が生じてしまう。 On the other hand, in FIG. 14, the DC feeding protection relay device 47 of the substation SS 1 operates at d = 0 to 0.4, and the DC feeding of the substation SS 2 at d = 0.6 to 1.0. Although the electric protection relay device 57 operates, an unprotected section occurs at d = 0.4 to 0.6. In other words, an increase in the fault point resistance Rf causes a section in which both the substations SS 1 and SS 2 become unprotected.

次に、故障点抵抗Rを0.6[Ω]としたときの(a)電流と時間との関係の一例、(b)電流の変化値と時間との関係の一例、(c)き電遮断器の遮断動作と時間との関係の一例を図15乃至図17に示す。なお、図15では、故障点区間長比率d=0、図16では、故障点区間長比率d=0.25、図17では、故障点区間長比率d=0.5である。図15(c)、図16(c)、図17(c)中の「act1」は、変電所SSのき電遮断器45の動作を表し、「act2」は、変電所SSのき電遮断器55の動作を示す。 Next, (a) an example of the relationship between current and time when the fault point resistance Rf is 0.6 [Ω], (b) an example of the relationship between current change value and time, (c) An example of the relationship between the interruption operation of the electric circuit breaker and time is shown in FIGS. In FIG. 15, the failure point interval length ratio d = 0, in FIG. 16, the failure point interval length ratio d = 0.25, and in FIG. 17, the failure point interval length ratio d = 0.5. FIG. 15 (c), the FIG. 16 (c), the "act1" in FIG. 17 (c) shows the operation of the substation SS 1 eaves electric breaker 45, "act2" is eaves substation SS 2 The operation of the circuit breaker 55 will be described.

図15より、d=0のとき変電所SSのき電遮断器45は、およそt=50[ms]で開放され、変電所SSのき電遮断器55は開放されない。 From FIG. 15, when d = 0, the feeder circuit breaker 45 of the substation SS 1 is opened at about t = 50 [ms], and the feeder circuit breaker 55 of the substation SS 2 is not opened.

図16より、d=0.25のとき変電所SSのき電遮断器45は、およそt=63[ms]で開放され、その後変電所SSのき電遮断器55は、およそt=135[ms]で開放される。 From FIG. 16, when d = 0.25, the feeder circuit breaker 45 of the substation SS 1 is opened at about t = 63 [ms], and then the feeder circuit breaker 55 of the substation SS 2 is about t = It is released at 135 [ms].

図17より、d=0.5のとき変電所SSのき電遮断器45、変電所SSのき電遮断器55ともに開放されない。 From FIG. 17, when d = 0.5, neither the feeder breaker 45 of the substation SS 1 nor the feeder breaker 55 of the substation SS 2 is opened.

すなわち、両変電所SS,変電所SS間のどの地点にて故障が発生するかにより、直流き電保護継電装置47,57は、近端動作、遠端不動作となり近端開放後の遠端側の電流の変化値も閾値に到達しない場合がある。そのため、き電線31の保護は近端側のき電保護継電装置47,57と連絡遮断装置46,56に委ねられる。 That is, depending on where the fault occurs between the two substations SS 1 and SS 2 , the DC feeder protection relay devices 47 and 57 become the near end operation and the far end non-operation, and the near end is opened. In some cases, the far-end current change value does not reach the threshold value. For this reason, the protection of the feeder 31 is left to the feeder protection relay devices 47 and 57 and the contact breakers 46 and 56 on the near end side.

そこで、本発明の実施形態はこれらの課題を解決するために、き電線の故障検出に対する感度を改善することができる直流き電保護継電装置を提供するものである。   Therefore, in order to solve these problems, an embodiment of the present invention provides a DC feeder protection relay device that can improve the sensitivity to failure detection of feeders.

上記課題を達成するために、実施形態の直流き電保護継電装置は、遮断器あるいは開閉器に接続され、電気車に電力を供給する直流き電線の電流値を一定時間ごとに取得する電流検出部と、前記電流検出部で取得された前記電流値の正成分である電流正成分を算出する電流正成分算出部と、前記電流検出部により取得された第1電流値から、前記電流正成分算出部にて算出された第1電流正成分と、前記電流検出部により前記第1電流値の第1所定回数前に取得された第2電流値から、前記電流正成分算出部にて算出された第2電流正成分とに基づいて、前記電流正成分の変化率を示す突進率を算出する突進率算出部と、前記突進率が、予め整定された突進率比較値以上か否かを判定し、前記突進率比較値以上と判定された場合に、検出信号を出力する検出信号出力部と、前記第1電流正成分と、前記電流検出部により前記第1電流値の第2所定回数前に取得された第3電流値から前記電流正成分算出部にて算出された第3電流正成分との差である電流変化値を算出する電流変化値算出部と、前記電流変化値算出部により算出された前記電流変化値と、予め整定された電流変化比較値との差である電流変化差分を算出する差分算出部と、前記差分算出部により算出された電流変化差分に、予め整定された係数を乗じて前記一定時間ごとに積算した電流変化積算値を算出する積算値算出部と、電流変化積算値が、予め整定された判定値以上か否かを判定し、前記判定値以上と判定された場合に、制御信号を出力する制御信号出力部と、前記検出信号出力部から前記検出信号を取得し、かつ前記制御信号出力部から前記制御信号を取得した場合に、前記遮断器あるいは前記開閉器を開放するトリップ指令を出力するトリップ指令出力部とを有する。   In order to achieve the above object, a DC feeder protection relay device according to an embodiment is a current that is connected to a circuit breaker or a switch and acquires a current value of a DC feeder that supplies power to an electric vehicle at regular intervals. From the detection unit, a current positive component calculation unit that calculates a current positive component that is a positive component of the current value acquired by the current detection unit, and the first current value acquired by the current detection unit, the current positive component Calculated by the current positive component calculation unit from the first current positive component calculated by the component calculation unit and the second current value acquired by the current detection unit a first predetermined number of times before the first current value. A rush rate calculation unit that calculates a rush rate indicating a change rate of the current positive component based on the second positive current component, and whether or not the rush rate is equal to or higher than a preset rush rate comparison value. If it is determined that it is equal to or greater than the rush rate comparison value, the detection signal Calculated by the positive current component calculation unit from the detection signal output unit to be output, the first positive current component, and the third current value acquired by the current detection unit a second predetermined number of times before the first current value. A current change value calculation unit that calculates a current change value that is a difference from the generated third current positive component, the current change value calculated by the current change value calculation unit, and a current change comparison value that is set in advance, A difference calculation unit that calculates a current change difference that is a difference between the current change difference, and a current change difference calculated by the difference calculation unit is multiplied by a coefficient set in advance to calculate a current change integrated value that is integrated every predetermined time An integrated value calculation unit; a control signal output unit that determines whether or not the current change integrated value is greater than or equal to a predetermined determination value; and when the determination is greater than or equal to the determination value, and the detection Obtaining the detection signal from the signal output unit; One said when acquiring the control signal from the control signal output section, and a trip command output unit for outputting a trip command to open the breaker or the switch.

本実施形態に係る直流き電保護継電装置とその周辺装置の構成を示す全体構成図。1 is an overall configuration diagram showing the configuration of a DC feeder protective relay device and its peripheral devices according to the present embodiment. 本実施形態に係る直流き電保護継電装置の構成を示すブロック図。The block diagram which shows the structure of the DC feeding protection relay apparatus which concerns on this embodiment. 本実施形態に係る直流き電保護継電装置のリレー演算部の構成を示すブロック図。The block diagram which shows the structure of the relay calculating part of the DC feeding protection relay apparatus which concerns on this embodiment. 本実施形態に係る直流き電保護継電装置の動作を示すフローチャート。The flowchart which shows operation | movement of the DC feeding protection relay apparatus which concerns on this embodiment. 本実施形態に係る直流き電保護継電装置のリレー演算部の動作を示すフローチャート。The flowchart which shows operation | movement of the relay calculating part of the DC feeding protection relay apparatus which concerns on this embodiment. 本実施形態に係る直流き電保護継電装置において算出された電流変化値ΔI(m)と時間との関係を示す一例。An example which shows the relationship between current change value ( DELTA ) I (m) calculated in the DC feeding protection relay apparatus which concerns on this embodiment, and time. 本実施形態に係る直流き電保護継電装置において算出された電流変化値ΔI(m)および電流変化積算値Σd(m)と時間との関係を示す一例。An example which shows the relationship between current change value ( DELTA ) I (m) and current change integrated value ( SIGMA ) d (m) and time which were calculated in the DC feeding protection relay apparatus which concerns on this embodiment. 本実施形態に係る直流き電保護継電装置において算出された電流変化値ΔI(m)と時間との関係を示す一例。An example which shows the relationship between current change value ( DELTA ) I (m) calculated in the DC feeding protection relay apparatus which concerns on this embodiment, and time. 本実施形態に係る直流き電保護継電装置において算出された電流変化値ΔI(m)および電流変化積算値Σd(m)と時間との関係を示す一例。An example which shows the relationship between current change value ( DELTA ) I (m) and current change integrated value ( SIGMA ) d (m) and time which were calculated in the DC feeding protection relay apparatus which concerns on this embodiment. 本実施形態に係る直流き電保護継電装置において算出された電流変化値ΔI(m)と時間との関係を示す一例。An example which shows the relationship between current change value ( DELTA ) I (m) calculated in the DC feeding protection relay apparatus which concerns on this embodiment, and time. 本実施形態に係る直流き電保護継電装置において算出された電流変化値ΔI(m)および電流変化積算値Σd(m)と時間との関係を示す一例。An example which shows the relationship between current change value ( DELTA ) I (m) and current change integrated value ( SIGMA ) d (m) and time which were calculated in the DC feeding protection relay apparatus which concerns on this embodiment. 従来のき電回路図。FIG. 従来のき電回路において故障点区間長比率dと、所定時間当たりの故障点における電流の変化値ΔI、所定時間当たりの変電所SSに流れる電流の変化値ΔI、所定時間当たりの変電所SSに流れる電流の変化値ΔIとの関係の一例(R=0.45[Ω])。In the conventional feeding circuit circuit and the fault point interval length ratio d, the change value [Delta] I 1 of the current flowing through current change value [Delta] I f, the substation SS 1 per predetermined time in the fault point per predetermined time, substations per predetermined time An example of the relationship with the change value ΔI 2 of the current flowing through the location SS 2 (R f = 0.45 [Ω]). 従来のき電回路において故障点区間長比率dと、所定時間当たりの故障点における電流の変化値ΔI、所定時間当たりの変電所SSに流れる電流の変化値ΔI,所定時間当たりの変電所SSに流れる電流の変化値ΔIとの関係の一例(R=0.7[Ω])。In the conventional feeder circuit, the fault section length ratio d, the current change value ΔI f at the fault point per predetermined time, the current change value ΔI 1 of the current flowing through the substation SS 1 per predetermined time, and the substation per predetermined time An example of the relationship with the change value ΔI 2 of the current flowing through the location SS 2 (R f = 0.7 [Ω]). 従来のき電回路における(a)電流と時間との関係の一例、(b)電流の変化値と時間との関係の一例、(c)き電遮断器の遮断動作と時間との関係の一例(d=0)。(A) an example of the relationship between current and time in a conventional feeder circuit, (b) an example of relationship between change value of current and time, and (c) an example of relationship between interruption operation of the feeder circuit breaker and time. (D = 0). 従来のき電回路における(a)電流と時間との関係の一例、(b)電流の変化値と時間との関係の一例、(c)き電遮断器の遮断動作と時間との関係の一例(d=0.25)。(A) an example of the relationship between current and time in a conventional feeder circuit, (b) an example of relationship between change value of current and time, and (c) an example of relationship between interruption operation of the feeder circuit breaker and time. (D = 0.25). 従来のき電回路における(a)電流と時間との関係の一例、(b)電流の変化値と時間との関係の一例、(c)き電遮断器の遮断動作と時間との関係の一例(d=0.5)。(A) an example of the relationship between current and time in a conventional feeder circuit, (b) an example of relationship between change value of current and time, and (c) an example of relationship between interruption operation of the feeder circuit breaker and time. (D = 0.5).

以下、実施形態を図面に基づき説明する。   Hereinafter, embodiments will be described with reference to the drawings.

(実施形態)
図1は、本実施形態に係る直流き電保護継電装置とその周辺装置の構成を示す全体構成図である。
(Embodiment)
FIG. 1 is an overall configuration diagram showing configurations of a DC feeding protective relay device and peripheral devices thereof according to the present embodiment.

直流電気鉄道のき電系統においては、1区間のき電線3の両端にそれぞれ変電所1,2が接続され、各変電所1,2からは所要とする直流電力がき電線3に供給される。   In the feeding system of the DC electric railway, the substations 1 and 2 are connected to both ends of the feeder 3 in one section, respectively, and the required DC power is supplied to the feeder 3 from each of the substations 1 and 2.

変電所1は、交流電源11、整流器12、断路器13、変流器(CT)14、き電遮断器15、連絡遮断装置16、交流遮断器17および直流き電保護継電装置100を備える。   The substation 1 includes an AC power source 11, a rectifier 12, a disconnector 13, a current transformer (CT) 14, a feeder circuit breaker 15, a communication breaker 16, an AC breaker 17, and a DC feeder protection relay device 100. .

交流電源11から供給される交流電力は、整流器12によって直流電力に変換され、き電遮断器15を通過してき電線3の一端に供給される。   AC power supplied from the AC power supply 11 is converted into DC power by the rectifier 12, passes through the feeder circuit breaker 15, and is supplied to one end of the electric wire 3.

同様に変電所2は、交流電源21、整流器22、断路器23、CT24、き電遮断器25、連絡遮断装置26、交流遮断器27および直流き電保護継電装置200を備える。   Similarly, the substation 2 includes an AC power source 21, a rectifier 22, a disconnector 23, a CT 24, a feeder breaker 25, a communication breaker 26, an AC breaker 27, and a DC feeder protection relay device 200.

交流電源21から供給される交流電力は、整流器22によって直流電力に変換され、き電遮断器25を通過してき電線3の他端に供給される。   The AC power supplied from the AC power supply 21 is converted into DC power by the rectifier 22, passes through the feeder circuit breaker 25, and is supplied to the other end of the electric wire 3.

整流器12,22によって変換された直流電力は、レール4にも供給され、き電線3およびレール4は、図示しない電気車に電力を供給する。   The DC power converted by the rectifiers 12 and 22 is also supplied to the rail 4, and the feeder 3 and the rail 4 supply power to an electric vehicle (not shown).

直流き電保護継電装置100,200は、CT14,24からき電線3の電流値を取得し、き電線3で故障等が発生した場合にき電遮断器15,25を開放する。   The DC feeder protection relay devices 100 and 200 acquire the current value of the feeder line 3 from the CTs 14 and 24, and open the feeder breakers 15 and 25 when a failure or the like occurs in the feeder line 3.

例えば、直流き電保護継電装置100がき電線3の故障を検出した場合、変電所1のき電遮断器15を開放する。また、連絡遮断装置16,26は互いに連絡線5で接続されるため、直流き電保護継電装置100は変電所1の連絡遮断装置16を介して変電所2の連絡遮断装置26に遮断指令信号を出力する。すなわち、き電遮断器25は、直流き電保護継電装置200あるいは連絡遮断装置26によって開放される。   For example, when the DC feeder protection relay device 100 detects a failure of the feeder 3, the feeder breaker 15 of the substation 1 is opened. Further, since the communication interruption devices 16 and 26 are connected to each other by the communication line 5, the DC feeder protection relay device 100 instructs the communication interruption device 26 of the substation 2 to cut off through the communication interruption device 16 of the substation 1. Output a signal. That is, the feeder circuit breaker 25 is opened by the DC feeder protection relay device 200 or the communication breaker device 26.

次に、直流き電保護継電装置100の構成について説明する。図2は、本実施形態に係る直流き電保護継電装置の構成を示すブロック図である。直流き電保護継電装置200は、直流き電保護継電装置100と同様の構成であるため説明を省略する。   Next, the configuration of the DC feeder protection relay device 100 will be described. FIG. 2 is a block diagram showing the configuration of the DC feeding protection relay device according to the present embodiment. Since the DC feeding protection relay device 200 has the same configuration as the DC feeding protection relay device 100, the description thereof is omitted.

直流き電保護継電装置100は、入力変換器101、アナログフィルタ102、AD変換器103、リレー演算部104を備える。   The DC feeder protection relay device 100 includes an input converter 101, an analog filter 102, an AD converter 103, and a relay calculation unit 104.

入力変換器101は、CT14およびアナログフィルタ102に接続され、CT14により測定されたき電線3の電流値を取得し、アナログフィルタ102に出力する処理部である。   The input converter 101 is a processing unit that is connected to the CT 14 and the analog filter 102, acquires the current value of the feeder 3 measured by the CT 14, and outputs the current value to the analog filter 102.

アナログフィルタ102は、入力変換器101およびAD変換器103に接続され、入力変換器101から取得した電流値のノイズや高調波成分を除去し、AD変換器103に出力する処理部である。   The analog filter 102 is a processing unit that is connected to the input converter 101 and the AD converter 103, removes noise and harmonic components of the current value acquired from the input converter 101, and outputs them to the AD converter 103.

AD変換器103は、アナログフィルタ102、リレー演算部104に接続され、アナログフィルタ102から取得したアナログデータの電流値をディジタル化し、リレー演算部104に出力する処理部である。   The AD converter 103 is a processing unit that is connected to the analog filter 102 and the relay calculation unit 104, digitizes the current value of the analog data acquired from the analog filter 102, and outputs it to the relay calculation unit 104.

次に、リレー演算部104の構成について図3を用いて説明する。図3は本実施形態に係る直流き電保護継電装置のリレー演算部の構成を示すブロック図である。   Next, the configuration of the relay calculation unit 104 will be described with reference to FIG. FIG. 3 is a block diagram showing the configuration of the relay operation unit of the DC feeding protection relay device according to the present embodiment.

リレー演算部104は、主にCPUによって動作されるプログラムによって実現され、HDD、SSD、RAM等の図示しない記憶媒体に保存される。   The relay calculation unit 104 is realized mainly by a program operated by a CPU, and is stored in a storage medium (not shown) such as an HDD, SSD, or RAM.

リレー演算部104は、電流検出部201、電流正成分算出部202、突進率算出部203、検出信号出力部204、電流変化値算出部205、差分算出部206、積算値算出部207、制御信号出力部208、トリップ指令出力部209を有する。   The relay calculation unit 104 includes a current detection unit 201, a positive current component calculation unit 202, a rush rate calculation unit 203, a detection signal output unit 204, a current change value calculation unit 205, a difference calculation unit 206, an integrated value calculation unit 207, and a control signal. An output unit 208 and a trip command output unit 209 are included.

電流検出部201は、AD変換器103によりディジタル化された電流値Ispを一定時間ごとに取得する処理部である。 The current detection unit 201 is a processing unit that acquires the current value Isp digitized by the AD converter 103 at regular intervals.

電流正成分算出部202は、電流検出部201で取得された電流値Isp(m)の正成分(電流正成分)I (m)を算出する処理部である。具体的には、下記の数式(1)により算出される。ここで、m=1,2,・・・,pであり、pはサンプリング数を表す。

Figure 2015100219
The current positive component calculation unit 202 is a processing unit that calculates a positive component (current positive component) I + (m) of the current value I sp (m) acquired by the current detection unit 201. Specifically, it is calculated by the following mathematical formula (1). Here, m = 1, 2,..., P, and p represents the number of sampling.
Figure 2015100219


数式(1)において、Isp(m)が負の場合、分子はゼロになる。

In Formula (1), when I sp (m) is negative, the numerator is zero.

突進率算出部203は、電流検出部201により直前(m回目のサンプリング)に取得された電流値(第1電流値)から電流正成分算出部202にて算出された電流正成分(第1電流正成分)I (m)と、電流検出部201により第1電流値の1つ前(m−1回目のサンプリング)に取得された電流値(第2電流値)から電流正成分算出部202にて算出された電流正成分(第2電流正成分)I (m−1)とに基づいて突進率αを算出する処理部である。具体的には、下記の数式(2)により算出される。

Figure 2015100219
The rush rate calculation unit 203 uses a current positive component (first current) calculated by the current positive component calculation unit 202 from the current value (first current value) acquired immediately before (m-th sampling) by the current detection unit 201. Positive component) I + (m) and a current positive component calculation unit 202 based on the current value (second current value) acquired by the current detection unit 201 immediately before the first current value (m−1 sampling). Is a processing unit that calculates the rush rate α on the basis of the current positive component (second current positive component) I + (m−1) calculated in (1) . Specifically, it is calculated by the following mathematical formula (2).
Figure 2015100219


すなわち、突進率は電流正成分の変化率を示している。ここで、係数kαは予め定められ、算出する単位時間当たりの電流増加量を調整するための係数である。

That is, the rush rate indicates the rate of change of the current positive component. Here, the coefficient k alpha is predetermined, a factor for adjusting the current increase per unit for calculating time.

検出信号出力部204は、突進率算出部203により算出された突進率が、数式(3)に示すように突進率比較値kα以上か否かを判定し、突進率が突進率比較値kα以上と判定された場合に、検出信号を出力する処理部である。 The detection signal output unit 204 determines whether or not the rush rate calculated by the rush rate calculation unit 203 is equal to or greater than the rush rate comparison value k α as shown in Equation (3), and the rush rate is the rush rate comparison value k. A processing unit that outputs a detection signal when it is determined that α is equal to or greater than α .

α≧kα (3)
ここで、突進率比較値kαは、予め整定される整定値である。
α ≧ k α (3)
Here, the rush rate comparison value k alpha, a setting value that is pre-settling.

電流変化値算出部205は、第1電流正成分と、電流検出部201により第1電流値の所定回数T前に取得された第3電流値から電流正成分算出部202にて算出された電流正成分(第3電流正成分)I (m−T)との差である電流変化値ΔI(m)を算出する処理部である。具体的には、下記の数式(4)により算出される。 The current change value calculation unit 205 calculates the current calculated by the current positive component calculation unit 202 from the first current positive component and the third current value acquired by the current detection unit 201 a predetermined number of times T before the first current value. This is a processing unit that calculates a current change value ΔI (m) that is a difference from the positive component (third current positive component) I + (m−T) . Specifically, it is calculated by the following mathematical formula (4).

ΔI(m)=I (m)−I (m−T) (4)
ここで、
T≧1 (5)
である。
ΔI (m) = I + (m) −I + (m−T) (4)
here,
T ≧ 1 (5)
It is.

差分算出部206は、電流変化値算出部205により算出された電流変化値ΔI(m)と、電流変化比較値kとの差である電流変化差分d(m)を算出する処理部である。具体的には、下記の数式(6)により算出される。 The difference calculation unit 206 is a processing unit that calculates a current change difference d (m) that is a difference between the current change value ΔI (m) calculated by the current change value calculation unit 205 and the current change comparison value k I. . Specifically, it is calculated by the following mathematical formula (6).

(m)=ΔI(m)−k (6)
ここで、電流変化比較値kは、予め整定される整定値である。
d (m) = ΔI (m) −k I (6)
Here, the current change comparison value k I is a set point which is pre-settling.

積算値算出部207は、差分算出部206により算出された電流変化差分d(m)に、係数kを乗じて一定時間ごと(サンプリングごと)に積算した電流変化積算値Σd(m)を算出する処理部である。具体的には、下記の数式(7)により算出される。

Figure 2015100219
The integrated value calculation unit 207 calculates a current change integrated value Σd (m) obtained by multiplying the current change difference d (m) calculated by the difference calculation unit 206 by the coefficient k d and integrated every fixed time (each sampling). Is a processing unit. Specifically, it is calculated by the following mathematical formula (7).
Figure 2015100219


ただし、数式(7)においてΣd(m)が負になった場合は、Σd(m)=0として置き換える。

However, if Σd (m) becomes negative in Equation (7), it is replaced as Σd (m) = 0.

制御信号出力部208は、積算値算出部207により算出された電流変化積算値Σd(m)が、数式(8)に示すように判定値kΣd以上か否かを判定し、判定値kΣd以上と判定された場合に、制御信号を出力する処理部である。 The control signal output unit 208 determines whether or not the current change integrated value Σd (m) calculated by the integrated value calculating unit 207 is equal to or greater than the determination value k Σd as shown in Equation (8), and determines the determination value k Σd. When it is determined as above, the processing unit outputs a control signal.

Σd(m)≧kΣd (8)
トリップ指令出力部209は、検出信号出力部204から出力された検出信号を取得し、かつ制御信号出力部208から出力された制御信号を取得した場合に、き電遮断器15を開放するトリップ指令を出力する処理部である。
Σd (m) ≧ k Σd (8)
The trip command output unit 209 obtains the detection signal output from the detection signal output unit 204 and the trip command to open the feeder circuit breaker 15 when the control signal output from the control signal output unit 208 is acquired. Is a processing unit for outputting.

トリップ指令出力部209は、き電遮断器15に代わる開閉器を開放するトリップ指令を出力するように構成されてもよい。   The trip command output unit 209 may be configured to output a trip command for opening a switch that replaces the feeder circuit breaker 15.

次に、直流き電保護継電装置100の動作について図4を用いて説明する。図4は、本実施形態に係る直流き電保護継電装置の動作を示すフローチャートである。   Next, the operation of the DC feeder protection relay device 100 will be described with reference to FIG. FIG. 4 is a flowchart showing the operation of the DC feeding protective relay device according to the present embodiment.

入力変換器101は、CT14により測定されたき電線3の電流値を取得し、アナログフィルタ102に出力する(S301)。   The input converter 101 acquires the current value of the feeder 3 measured by the CT 14 and outputs it to the analog filter 102 (S301).

アナログフィルタ102は、入力変換器101から取得した電流値のノイズや高調波成分を除去し、AD変換器305に出力する(S302)。   The analog filter 102 removes noise and harmonic components of the current value acquired from the input converter 101 and outputs them to the AD converter 305 (S302).

AD変換器103は、アナログフィルタ102から取得したアナログデータの電流値をディジタル化し、リレー演算部104に出力する(S303)。   The AD converter 103 digitizes the current value of the analog data acquired from the analog filter 102 and outputs it to the relay operation unit 104 (S303).

リレー演算部104は、AD変換器103からディジタル化された電流値を取得し、リレー演算を行い、条件を満たした場合にき電遮断器15を開放するトリップ指令を出力する(S304)。   The relay calculation unit 104 acquires a digitized current value from the AD converter 103, performs a relay calculation, and outputs a trip command to open the power breaker 15 when the condition is satisfied (S304).

次に、リレー演算部104の動作について図5を用いて詳しく説明する。図5は、本実施形態に係る直流き電保護継電装置のリレー演算部の動作を示すフローチャートである。   Next, the operation of the relay calculation unit 104 will be described in detail with reference to FIG. FIG. 5 is a flowchart showing the operation of the relay computing unit of the DC feeding protective relay device according to the present embodiment.

電流検出部201は、AD変換器103によりディジタル化された電流値を一定時間ごとに取得する(S401)。   The current detection unit 201 acquires the current value digitized by the AD converter 103 at regular intervals (S401).

電流正成分算出部202は、電流検出部201で取得された電流値の正成分である電流正成分を算出する(S402)。   The current positive component calculation unit 202 calculates a current positive component that is a positive component of the current value acquired by the current detection unit 201 (S402).

突進率算出部203は、電流検出部201により直前に取得された第1電流値から電流正成分算出部202にて算出された第1電流正成分と、電流検出部201により第1電流値の1つ前に取得された第2電流値から電流正成分算出部202にて算出された第2電流正成分とに基づいて突進率を算出する(S403)。   The rush rate calculating unit 203 calculates the first current positive component calculated by the current positive component calculating unit 202 from the first current value acquired immediately before by the current detecting unit 201, and the first current value by the current detecting unit 201. The rush rate is calculated based on the second current positive component calculated by the current positive component calculation unit 202 from the second current value acquired immediately before (S403).

検出信号出力部204は、突進率算出部203により算出された突進率が、突進率比較値以上か否かを判定する(S404)。   The detection signal output unit 204 determines whether or not the rush rate calculated by the rush rate calculation unit 203 is greater than or equal to the rush rate comparison value (S404).

検出信号出力部204は、突進率算出部203により算出された突進率が突進率比較値以上と判定された場合(S404 YES)に、検出信号を出力する(S405)。   The detection signal output unit 204 outputs a detection signal when it is determined that the rush rate calculated by the rush rate calculation unit 203 is equal to or greater than the rush rate comparison value (YES in S404) (S405).

電流変化値算出部205は、第1電流正成分と、電流検出部201により第1電流値の所定回数前に取得された第3電流値から電流正成分算出部202にて算出された第3電流正成分との差である電流変化値を算出する(S406)。   The current change value calculation unit 205 calculates the third current positive component calculated by the current positive component calculation unit 202 from the first current positive component and the third current value acquired by the current detection unit 201 a predetermined number of times before the first current value. A current change value which is a difference from the current positive component is calculated (S406).

差分算出部206は、電流変化値算出部205により算出された電流変化値と、電流変化比較値との差である電流変化差分を算出する(S407)。   The difference calculation unit 206 calculates a current change difference which is a difference between the current change value calculated by the current change value calculation unit 205 and the current change comparison value (S407).

積算値算出部207は、差分算出部206により算出された電流変化差分に、係数を乗じて一定時間ごと(サンプリングごと)に積算した電流変化積算値を算出する(S408)。   The integrated value calculating unit 207 calculates a current change integrated value obtained by multiplying the current change difference calculated by the difference calculating unit 206 by a coefficient and integrating the current change difference every fixed time (every sampling) (S408).

制御信号出力部208は、積算値算出部207により算出された電流変化積算値が判定値以上か否かを判定する(S409)。   The control signal output unit 208 determines whether or not the current change integrated value calculated by the integrated value calculating unit 207 is greater than or equal to a determination value (S409).

制御信号出力部208は、電流変化積算値が判定値以上と判定された場合(S409 YES)に、制御信号を出力する(S410)。   The control signal output unit 208 outputs a control signal when the current change integrated value is determined to be greater than or equal to the determination value (YES in S409) (S410).

トリップ指令出力部209は、検出信号出力部204から出力された検出信号を取得し、かつ制御信号出力部208から出力された制御信号を取得した場合に、き電遮断器15を開放するトリップ指令を出力する(S411)。   The trip command output unit 209 obtains the detection signal output from the detection signal output unit 204 and the trip command to open the feeder circuit breaker 15 when the control signal output from the control signal output unit 208 is acquired. Is output (S411).

次にシミュレーション結果を示す。   Next, simulation results are shown.

図6は、本実施形態に係る直流き電保護継電装置において算出された電流変化値ΔI(m)と時間との関係を示す一例である。 FIG. 6 is an example showing the relationship between the current change value ΔI (m) calculated in the DC feeding protective relay device according to the present embodiment and time.

また、図7は、本実施形態に係る直流き電保護継電装置において算出された電流変化値ΔI(m)および電流変化積算値Σd(m)と時間との関係を示す一例である。 FIG. 7 is an example showing the relationship between the current change value ΔI (m) and the current change integrated value Σd (m) calculated in the DC feeding protective relay device according to this embodiment and time.

図6、図7において、故障点抵抗R=1.0[Ω]、故障点区間長比率d=0、電流変化比較値k=500[A]、判定値kΣd=10000、閾値ΔIset=1000[A]である。 6 and 7, failure point resistance R f = 1.0 [Ω], failure point section length ratio d = 0, current change comparison value k I = 500 [A], determination value k Σd = 10000, threshold ΔI set = 1000 [A].

閾値ΔIsetは、き電遮断器15,25を開放する動作判定として電流変化値ΔI(m)を用いた場合の閾値であり、その場合、電流変化値ΔI(m)が閾値ΔIsetを超えると、き電遮断器15,25が開放される。以下同様である。 The threshold value ΔI set is a threshold value when the current change value ΔI (m) is used as an operation determination for opening the feeder circuit breakers 15 and 25. In this case, the current change value ΔI (m) exceeds the threshold value ΔI set . Then, the feeder circuit breakers 15 and 25 are opened. The same applies hereinafter.

図6、図7中のΔI1(m)は変電所1の直流き電保護継電装置100により算出された電流変化値を、ΔI2(m)は変電所2の直流き電保護継電装置200により算出された電流変化値を表し、以下同様である。 6 and 7, ΔI 1 (m) is a current change value calculated by the DC feeder protection relay device 100 of the substation 1, and ΔI 2 (m) is a DC feeder protection relay of the substation 2. The current change value calculated by the apparatus 200 is represented, and so on.

また、図7中のΣd1(m)は変電所1の直流き電保護継電装置100により算出された電流変化積算値を、Σd2(m)は変電所2の直流き電保護継電装置200により算出された電流変化積算値を表し、以下同様である。 In FIG. 7, Σd 1 (m) is a current change integrated value calculated by the DC feeding protection relay device 100 of the substation 1, and Σd 2 (m) is a DC feeding protection relay of the substation 2. This represents the current change integrated value calculated by the apparatus 200, and so on.

図6に示すように、動作判定として電流変化値ΔI(m)を用いた場合、上記の条件では近端側の変電所1のき電遮断器15は開放されるが、遠端側の変電所2のき電遮断器25は開放されない。 As shown in FIG. 6, when the current change value ΔI (m) is used as the operation determination, the feeder circuit breaker 15 of the near-end side substation 1 is opened under the above conditions, but the far-end side substation is changed. The feeder circuit breaker 25 at location 2 is not opened.

一方、図7に示すように、本実施形態に係る直流き電保護継電装置によれば、近端側の変電所1の直流き電保護継電装置100、遠端側の変電所2の直流き電保護継電装置200ともに数式(8)を満たす。   On the other hand, as shown in FIG. 7, according to the DC feeding protection relay device according to the present embodiment, the DC feeding protection relay device 100 of the near-end side substation 1 and the far-end side substation 2 Both of the DC feeder protection relay devices 200 satisfy Expression (8).

なお、変電所2の直流き電保護継電装置200は、t=96[ms]にて数式(8)を満たしている。   Note that the DC feeder protective relay device 200 of the substation 2 satisfies Expression (8) at t = 96 [ms].

すなわち、直流き電保護継電装置100,200において、電流変化値ΔI(m)と電流変化比較値kとの差である電流変化差分d(m)に、係数kを乗じて積算することで、電流変化積算値Σd(m)は判定値kΣd以上となるため、き電遮断器15,25の両方を開放することが可能となる。 That is, in a DC feeding circuit protective relay devices 100 and 200, the current change value [Delta] I (m) to be the difference between the current change comparison value k I the current change difference d (m), is integrated by multiplying the coefficient k d Thus, since the current change integrated value Σd (m) is equal to or greater than the determination value k Σd , both the feeder circuit breakers 15 and 25 can be opened.

図8は、本実施形態に係る直流き電保護継電装置において算出された電流変化値ΔI(m)と時間との関係を示す一例である。 FIG. 8 is an example showing the relationship between the current change value ΔI (m) calculated in the DC feeder protection relay device according to the present embodiment and time.

また、図9は、本実施形態に係る直流き電保護継電装置において算出された電流変化値ΔI(m)および電流変化積算値Σd(m)と時間との関係を示す一例である。 FIG. 9 is an example showing the relationship between the current change value ΔI (m) and the current change integrated value Σd (m) calculated in the DC feeding protective relay device according to the present embodiment and time.

図8、図9において、故障点抵抗R=1.0[Ω]、故障点区間長比率d=0.2、電流変化比較値k=500[A]、判定値kΣd=10000、閾値ΔIset=1000[A]である。 8 and 9, failure point resistance R f = 1.0 [Ω], failure point section length ratio d = 0.2, current change comparison value k I = 500 [A], judgment value k Σd = 10000, The threshold value ΔI set = 1000 [A].

図8に示すように、動作判定として電流変化値ΔI(m)を用いた場合、上記の条件では近端側の変電所1のき電遮断器15は開放されるが、遠端側の変電所2のき電遮断器25は開放されない。 As shown in FIG. 8, when the current change value ΔI (m) is used as the operation determination, the feeder circuit breaker 15 of the near-end side substation 1 is opened under the above conditions, but the far-end side substation is changed. The feeder circuit breaker 25 at location 2 is not opened.

一方、図9に示すように、本実施形態に係る直流き電保護継電装置によれば、近端側の変電所1の直流き電保護継電装置100、遠端側の変電所2の直流き電保護継電装置200ともに数式(8)を満たすため、き電遮断器15,25の両方を開放することが可能となる。   On the other hand, as shown in FIG. 9, according to the DC feeding protection relay device according to the present embodiment, the DC feeding protection relay device 100 of the near-end side substation 1 and the far-end side substation 2 Since both of the DC feeder protection relay devices 200 satisfy Formula (8), both feeder feeders 15 and 25 can be opened.

なお、変電所1の直流き電保護継電装置100は、t=29[ms]にて数式(8)を満たし、変電所2の直流き電保護継電装置200は、t=99[ms]にて数式(8)を満たしている。   The DC feeding protection relay device 100 of the substation 1 satisfies the formula (8) at t = 29 [ms], and the DC feeding protection relay device 200 of the substation 2 has t = 99 [ms. ] Satisfies Formula (8).

図10は、本実施形態に係る直流き電保護継電装置において算出された電流変化値ΔI(m)と時間との関係を示す一例である。 FIG. 10 is an example showing the relationship between the current change value ΔI (m) calculated in the DC feeding protective relay device according to the present embodiment and time.

また、図11は、本実施形態に係る直流き電保護継電装置において算出された電流変化値ΔI(m)および電流変化積算値Σd(m)と時間との関係を示す一例である。 FIG. 11 is an example showing the relationship between the current change value ΔI (m) and the current change integrated value Σd (m) calculated in the DC feeding protective relay device according to the present embodiment and time.

図10、図11において、故障点抵抗R=1.0[Ω]、故障点区間長比率d=0.2、電流変化比較値k=500[A]、判定値kΣd=10000、閾値ΔIset=1000[A]である。 10 and 11, the failure point resistance R f = 1.0 [Ω], the failure point interval length ratio d = 0.2, the current change comparison value k I = 500 [A], the determination value k Σd = 10000, The threshold value ΔI set = 1000 [A].

図10に示すように、動作判定として電流変化値ΔI(m)を用いた場合、上記の条件では近端側の変電所1のき電遮断器15、遠端側の変電所2のき電遮断器25ともに開放されない。 As shown in FIG. 10, when the current change value ΔI (m) is used as the operation determination, the feeding circuit breaker 15 of the near-end side substation 1 and the feeding line of the far-end side substation 2 are used under the above conditions. Neither the circuit breaker 25 is opened.

一方、図11に示すように、本実施形態に係る直流き電保護継電装置によれば、近端側の変電所1の直流き電保護継電装置100、遠端側の変電所2の直流き電保護継電装置200ともに数式(8)を満たすため、き電遮断器15,25の両方を開放することが可能となる。   On the other hand, as shown in FIG. 11, according to the DC feeding protection relay device according to the present embodiment, the DC feeding protection relay device 100 of the near-end side substation 1 and the far-end side substation 2 Since both of the DC feeder protection relay devices 200 satisfy Formula (8), both feeder feeders 15 and 25 can be opened.

なお、変電所1の直流き電保護継電装置100、変電所2の直流き電保護継電装置200ともに、t=86[ms]にて数式(8)を満たしている。 Note that both the DC feeding protection relay device 100 of the substation 1 and the DC feeding protection relay device 200 of the substation 2 satisfy Expression (8) at t = 86 [ms].

以上説明したように本実施形態に係る直流き電保護継電装置によれば、き電線3の故障検出に対する感度を改善することができる。   As described above, according to the DC feeder protection relay device according to the present embodiment, the sensitivity to the failure detection of the feeder 3 can be improved.

本実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。本実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。本実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   This embodiment is presented as an example and is not intended to limit the scope of the invention. The present embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. This embodiment and its modifications are included in the invention described in the claims and equivalents thereof as well as included in the scope and spirit of the invention.

1,2,SS,SS…変電所
3,31…き電線
4,32…レール
5,34…連絡線
11,21,41,51…交流電源
12,22,42,52…整流器
13,23…断路器
14,24,43,53…変流器(CT)
15,25,45,55…き電遮断器
16,26,46,56…連絡遮断装置
17,27…交流遮断器
33…電気車
47,57,100,200…直流き電保護継電装置
101…入力変換器
102…アナログフィルタ
103…AD変換器
104…リレー演算部
201…電流検出部
202…電流正成分算出部
203…突進率算出部
204…検出信号出力部
205…電流変化算出部
206…差分算出部
207…積算値算出部
208…制御信号出力部
209…トリップ指令出力部
1, 2, SS 1 , SS 2 ... substation 3, 31 ... feeder 4, 4, 32 ... rail 5, 34 ... communication line 11, 21, 41, 51 ... AC power supply 12, 22, 42, 52 ... rectifier 13, 23 ... Disconnector 14, 24, 43, 53 ... Current transformer (CT)
15, 25, 45, 55... Feeder circuit breaker 16, 26, 46, 56... Contact breaker 17, 27. ... input converter 102 ... analog filter 103 ... AD converter 104 ... relay calculation unit 201 ... current detection unit 202 ... current positive component calculation unit 203 ... rush rate calculation unit 204 ... detection signal output unit 205 ... current change calculation unit 206 ... Difference calculation unit 207 ... integrated value calculation unit 208 ... control signal output unit 209 ... trip command output unit

Claims (1)

遮断器あるいは開閉器に接続され、電気車に電力を供給する直流き電線の電流値を一定時間ごとに取得する電流検出部と、
前記電流検出部で取得された前記電流値の正成分である電流正成分を算出する電流正成分算出部と、
前記電流検出部により取得された第1電流値から、前記電流正成分算出部にて算出された第1電流正成分と、前記電流検出部により前記第1電流値の第1所定回数前に取得された第2電流値から、前記電流正成分算出部にて算出された第2電流正成分とに基づいて、前記電流正成分の変化率を示す突進率を算出する突進率算出部と、
前記突進率が、予め整定された突進率比較値以上か否かを判定し、前記突進率比較値以上と判定された場合に、検出信号を出力する検出信号出力部と、
前記第1電流正成分と、前記電流検出部により前記第1電流値の第2所定回数前に取得された第3電流値から前記電流正成分算出部にて算出された第3電流正成分との差である電流変化値を算出する電流変化値算出部と、
前記電流変化値算出部により算出された前記電流変化値と、予め整定された電流変化比較値との差である電流変化差分を算出する差分算出部と、
前記差分算出部により算出された電流変化差分に、予め整定された係数を乗じて前記一定時間ごとに積算した電流変化積算値を算出する積算値算出部と、
電流変化積算値が、予め整定された判定値以上か否かを判定し、前記判定値以上と判定された場合に、制御信号を出力する制御信号出力部と、
前記検出信号出力部から前記検出信号を取得し、かつ前記制御信号出力部から前記制御信号を取得した場合に、前記遮断器あるいは前記開閉器を開放するトリップ指令を出力するトリップ指令出力部と
を有する直流き電保護継電装置。
A current detector that is connected to a circuit breaker or a switch and obtains a current value of a DC feeder supplying power to an electric vehicle at regular intervals;
A current positive component calculation unit that calculates a current positive component that is a positive component of the current value acquired by the current detection unit;
Obtained from the first current value obtained by the current detection unit, the first current positive component calculated by the current positive component calculation unit, and the current detection unit by a first predetermined number of times before the first current value. A rush rate calculating unit that calculates a rush rate indicating a change rate of the current positive component based on the second current value calculated and the second current positive component calculated by the current positive component calculating unit;
It is determined whether or not the rush rate is equal to or higher than a preset rush rate comparison value, and when it is determined to be equal to or higher than the rush rate comparison value, a detection signal output unit that outputs a detection signal;
The first current positive component and the third current positive component calculated by the current positive component calculation unit from the third current value acquired by the current detection unit a second predetermined number of times before the first current value; A current change value calculation unit that calculates a current change value that is a difference between
A difference calculation unit that calculates a current change difference that is a difference between the current change value calculated by the current change value calculation unit and a current change comparison value set in advance;
An integrated value calculating unit that calculates a current change integrated value obtained by multiplying the current change difference calculated by the difference calculating unit by a coefficient set in advance and integrated every predetermined time;
It is determined whether or not the current change integrated value is equal to or higher than a preset determination value, and when it is determined to be equal to or higher than the determination value, a control signal output unit that outputs a control signal;
A trip command output unit that outputs a trip command to open the circuit breaker or the switch when the detection signal is acquired from the detection signal output unit and the control signal is acquired from the control signal output unit; Having a DC feeder protection relay device.
JP2013239376A 2013-11-19 2013-11-19 DC feeder protection relay device Expired - Fee Related JP6063852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013239376A JP6063852B2 (en) 2013-11-19 2013-11-19 DC feeder protection relay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013239376A JP6063852B2 (en) 2013-11-19 2013-11-19 DC feeder protection relay device

Publications (2)

Publication Number Publication Date
JP2015100219A true JP2015100219A (en) 2015-05-28
JP6063852B2 JP6063852B2 (en) 2017-01-18

Family

ID=53376521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013239376A Expired - Fee Related JP6063852B2 (en) 2013-11-19 2013-11-19 DC feeder protection relay device

Country Status (1)

Country Link
JP (1) JP6063852B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174836U (en) * 1985-04-19 1986-10-31
JPH01247230A (en) * 1988-03-28 1989-10-03 Kimio Kodama Device for selecting failure of dc feeder circuit
JP2003032875A (en) * 2001-07-10 2003-01-31 Mitsubishi Electric Corp Feeder current relay apparatus
JP2004023884A (en) * 2002-06-17 2004-01-22 Mitsubishi Electric Corp Dc current relay device
JP2013110869A (en) * 2011-11-21 2013-06-06 Toshiba Corp Dc feed protective relay device and failure detection method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174836U (en) * 1985-04-19 1986-10-31
JPH01247230A (en) * 1988-03-28 1989-10-03 Kimio Kodama Device for selecting failure of dc feeder circuit
JP2003032875A (en) * 2001-07-10 2003-01-31 Mitsubishi Electric Corp Feeder current relay apparatus
JP2004023884A (en) * 2002-06-17 2004-01-22 Mitsubishi Electric Corp Dc current relay device
JP2013110869A (en) * 2011-11-21 2013-06-06 Toshiba Corp Dc feed protective relay device and failure detection method

Also Published As

Publication number Publication date
JP6063852B2 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
JP6220209B2 (en) DC feeding protection control system
WO2013069180A1 (en) Protection control system and merging unit
CN105743073A (en) Improved inverse time limit over-current protection method
JP2017122666A (en) Lightning arrester leakage current detection method, lightning arrester leakage current detection device, and lightning arrester leakage current monitor device
KR101135166B1 (en) A diagnostic device and a diagnostic method for circuit breaker
JP2017159720A (en) Method for detecting ground fault in ac-side connection wire of rectifier for dc feeding
CN105765813A (en) Three-phase earth leakage breaker for protecting against electrical shock
RU2550751C2 (en) Method and device for detection of ground short-circuit
JP5951237B2 (en) DC feeder protection relay device
CN204118696U (en) Intelligent selection current transformer winding secondary side open-circuit protector circuit
JP6063852B2 (en) DC feeder protection relay device
JP6163088B2 (en) DC feeder protection relay device
WO2013069181A1 (en) Protection control system, protection control devices, and merging unit
JP5932477B2 (en) Protective relay device and power supply circuit
ITLU20080013A1 (en) SAFETY SYSTEM FOR ELECTRICITY SUPPLY TO SINGLE OR MULTIPLE LIVING UNITS (PARTICULARLY PART OF MULTI-STOREY BUILDINGS), TO AVOID THAT HAZARDOUS CONTACT VOLTAGES CAN BE HAVING ON THE GENERAL NODE
CN106062575B (en) Method for locating a short circuit in an electrical network comprising at least one conductor section
SE1550489A1 (en) Method and arrangement for locating short circuits in energy supply systems
FI3830920T3 (en) A method and a device for supervision of a voltage transformer
US9281677B2 (en) Method for protecting an electrical energy distribution box
KR101372823B1 (en) Over current relay considering application of superconducting fault current limiter, and method for setting the relay
JP6193672B2 (en) Three-phase phase loss protection device and three-phase phase loss protection method
JP4921246B2 (en) Ground fault distance relay
JP5574888B2 (en) AC feeder overload protection device
JP2018012401A (en) Voltage estimating device, voltage estimating method, and program
JP2015116009A (en) Power transmission line protection relay

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161219

R151 Written notification of patent or utility model registration

Ref document number: 6063852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees