JP2015099907A - Insulating resin composition for printed circuit board, and products using the same - Google Patents

Insulating resin composition for printed circuit board, and products using the same Download PDF

Info

Publication number
JP2015099907A
JP2015099907A JP2014076476A JP2014076476A JP2015099907A JP 2015099907 A JP2015099907 A JP 2015099907A JP 2014076476 A JP2014076476 A JP 2014076476A JP 2014076476 A JP2014076476 A JP 2014076476A JP 2015099907 A JP2015099907 A JP 2015099907A
Authority
JP
Japan
Prior art keywords
resin composition
insulating resin
printed circuit
epoxy resin
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014076476A
Other languages
Japanese (ja)
Other versions
JP6422230B2 (en
Inventor
ジュン リ,ヒュン
Hyun Jun Lee
ジュン リ,ヒュン
ショック ムン,ジン
Jin Seok Moon
ショック ムン,ジン
フィ ジョ,デ
Dae Hui Jo
フィ ジョ,デ
ヒュン ユ,ション
Seong Hyun Yoo
ヒュン ユ,ション
ヨン キム,ジン
Jinyoung Kim
ヨン キム,ジン
フィ ユン,グム
Geum Hee Yun
フィ ユン,グム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electro Mechanics Co Ltd
Original Assignee
Samsung Electro Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electro Mechanics Co Ltd filed Critical Samsung Electro Mechanics Co Ltd
Publication of JP2015099907A publication Critical patent/JP2015099907A/en
Application granted granted Critical
Publication of JP6422230B2 publication Critical patent/JP6422230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate

Abstract

PROBLEM TO BE SOLVED: To provide an insulating resin composition for a printed circuit board with improved characteristics of the glass-transition temperature (Tg), the coefficient of thermal expansion (CTE) and the peel strength, and products using the same.SOLUTION: The insulating resin composition for a printed circuit board comprises an epoxy resin and a curing agent having a bipyridine structure.

Description

本発明は、プリント回路基板用絶縁樹脂組成物およびこれを用いた製品に関する。   The present invention relates to an insulating resin composition for a printed circuit board and a product using the same.

電子機器の発展に伴い、プリント回路基板の低重量化、薄板化および小型化が日々、進行中である。このような傾向に応えるために、プリント回路の配線がさらに複雑化および高密度化しつつある。このように基板に対して要求される電気的、熱的および機械的特性は、より重要な要素として作用している。プリント回路基板は、主に、回路配線の機能を果たす銅と、層間絶縁の機能を果たす高分子とからなる。絶縁層を構成する高分子は、銅と比較すると、熱膨張係数、ガラス転移温度および厚さ均一性など、様々な特性が要求され、特に、絶縁層の厚さを薄く作製する必要がある。   With the development of electronic devices, weight reduction, thinning, and miniaturization of printed circuit boards are in progress every day. In order to respond to such a tendency, the wiring of the printed circuit is becoming more complicated and dense. Thus, the electrical, thermal and mechanical properties required for the substrate are acting as more important factors. The printed circuit board is mainly composed of copper that functions as circuit wiring and a polymer that functions as interlayer insulation. The polymer constituting the insulating layer is required to have various characteristics such as a thermal expansion coefficient, a glass transition temperature, and a thickness uniformity as compared with copper. In particular, it is necessary to make the insulating layer thin.

近年、エポキシモールディングコンパウンド(EMC)や基板材料などに用いられる絶縁層の有機材料としてエポキシ樹脂以外の補強材が多く使用されるにつれて、電極として用いられる回路層と絶縁層との界面接着力の低下が問題視されている。   In recent years, as reinforcing materials other than epoxy resins are used as organic materials for insulating layers used in epoxy molding compounds (EMC) and substrate materials, the interfacial adhesion between circuit layers and insulating layers used as electrodes decreases. Is regarded as a problem.

従来、絶縁層を構成する有機物のうちエポキシ樹脂は、主に、回路層との接着剤として機能してきた。しかし、絶縁層内のエポキシ樹脂の割合が次第に減少するにつれて回路層と絶縁層との接着強度が次第に減少した。   Conventionally, the epoxy resin among organic substances constituting the insulating layer has mainly functioned as an adhesive with the circuit layer. However, the adhesive strength between the circuit layer and the insulating layer gradually decreased as the proportion of the epoxy resin in the insulating layer gradually decreased.

エポキシモールディングコンパウンドや基板材料として広く用いられるエポキシ樹脂の機械的安定性および熱安定性を高めるために、ビスマレイミド(bismaleimide)、シアネートエステル(cyanate ester)などの有機補強材が用いられており、また、材料のガラス転移温度(Tg)を高めるために、全芳香族硬化剤や様々な分子量分布を有する硬化剤などが用いられている。   In order to increase the mechanical stability and thermal stability of epoxy resins widely used as epoxy molding compounds and substrate materials, organic reinforcing materials such as bismaleimide and cyanate esters are used. In order to increase the glass transition temperature (Tg) of the material, wholly aromatic curing agents and curing agents having various molecular weight distributions are used.

しかし、従来の方式では、絶縁層にエポキシ樹脂を含むことで、回路層との接着強度を向上させることができたが、他の有機補強材を絶縁層の組成物に含むことで、エポキシ樹脂の添加量が減少して、回路層との接着強度が次第に減少するようになった。   However, in the conventional method, it was possible to improve the adhesive strength with the circuit layer by including an epoxy resin in the insulating layer, but by including another organic reinforcing material in the composition of the insulating layer, the epoxy resin As a result, the adhesive strength with the circuit layer gradually decreased.

一方、特許文献1には、エポキシ基含有不飽和化合物を含む感光性樹脂組成物について開示されているが、これにより、ガラス転移温度、熱膨張係数(CTE)および剥離強度(peel strength)の特性を向上させるには限界があった。   On the other hand, Patent Document 1 discloses a photosensitive resin composition containing an epoxy group-containing unsaturated compound, which makes it possible to obtain characteristics of glass transition temperature, coefficient of thermal expansion (CTE), and peel strength (peel strength). There was a limit to improving

韓国公開特許第2012−0089947号公報Korean Published Patent No. 2012-0089947

本発明は、上述した従来技術の問題点を解決するためのものであって、本発明の一つの目的は、プリント回路基板用絶縁樹脂組成物において、エポキシ樹脂およびビピリジン構造を有する硬化剤により、ガラス転移温度(Tg)、熱膨張係数(CTE)および剥離強度(peel strength)の特性を向上したプリント回路基板用絶縁樹脂組成物を提供することにある。   The present invention is for solving the above-mentioned problems of the prior art, and one object of the present invention is to provide an insulating resin composition for a printed circuit board by using an epoxy resin and a curing agent having a bipyridine structure. An object of the present invention is to provide an insulating resin composition for a printed circuit board having improved properties of glass transition temperature (Tg), coefficient of thermal expansion (CTE) and peel strength (peel strength).

本発明の他の目的は、前記絶縁樹脂組成物を含むプリプレグを提供することにある。   Another object of the present invention is to provide a prepreg containing the insulating resin composition.

本発明のさらに他の目的は、前記プリプレグを適用して製造された銅張積層板上にビルドアップ層を積層して製造されたプリント回路基板を提供することにある。   Still another object of the present invention is to provide a printed circuit board manufactured by stacking a buildup layer on a copper clad laminate manufactured by applying the prepreg.

本発明の一つの目的を達成するためのプリント回路基板用絶縁樹脂組成物は、エポキシ樹脂と、ビピリジン構造を有する硬化剤と、を含むことができる。   An insulating resin composition for a printed circuit board for achieving one object of the present invention can include an epoxy resin and a curing agent having a bipyridine structure.

前記プリント回路基板用絶縁樹脂組成物において、前記絶縁樹脂組成物100重量部に対して、エポキシ樹脂を25〜75重量部含有し、ビピリジン構造を有する硬化剤を10〜55重量部含有することができる。   The insulating resin composition for printed circuit boards may contain 25 to 75 parts by weight of an epoxy resin and 10 to 55 parts by weight of a curing agent having a bipyridine structure with respect to 100 parts by weight of the insulating resin composition. it can.

前記プリント回路基板用絶縁樹脂組成物において、前記エポキシ樹脂は、ナフタレン系エポキシ樹脂、ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ゴム変性エポキシ樹脂、リン系エポキシ樹脂およびビスフェノールF型エポキシ樹脂から選択される一つ以上のものであってもよい。   In the insulating resin composition for a printed circuit board, the epoxy resin is a naphthalene type epoxy resin, a bisphenol A type epoxy resin, a phenol novolac type epoxy resin, a cresol novolak type epoxy resin, a rubber-modified epoxy resin, a phosphorus type epoxy resin, or a bisphenol. One or more selected from F-type epoxy resins may be used.

前記プリント回路基板用絶縁樹脂組成物において、前記ビピリンジン構造が、下記式で表されることができる。   In the insulating resin composition for a printed circuit board, the bipyringin structure may be represented by the following formula.

Figure 2015099907
Figure 2015099907

ここで、aは1〜10の整数、bは1〜13の整数、cは1〜13の整数、dは1〜21の整数、eは1〜21の整数、fは1〜10の整数およびgは1〜10の整数である。   Here, a is an integer of 1 to 10, b is an integer of 1 to 13, c is an integer of 1 to 13, d is an integer of 1 to 21, e is an integer of 1 to 21, and f is an integer of 1 to 10. And g is an integer of 1-10.

前記プリント回路基板用絶縁樹脂組成物において、前記硬化剤が、ビピリジン構造を30〜60重量%含有することができる。   In the insulating resin composition for a printed circuit board, the curing agent may contain 30 to 60% by weight of a bipyridine structure.

前記プリント回路基板用絶縁樹脂組成物において、前記絶縁樹脂組成物は、無機充填剤と、シアネートエステルと、ビスマレイミドと、をさらに含むことができる。   In the insulating resin composition for a printed circuit board, the insulating resin composition may further include an inorganic filler, a cyanate ester, and a bismaleimide.

前記プリント回路基板用絶縁樹脂組成物において、前記絶縁樹脂組成物100重量部に対して前記無機充填剤を82〜488重量部含有することができる。   In the insulating resin composition for a printed circuit board, the inorganic filler may be included in an amount of 82 to 488 parts by weight with respect to 100 parts by weight of the insulating resin composition.

前記プリント回路基板用絶縁樹脂組成物において、前記無機充填剤は、シリカ(SiO)、アルミナ(Al)、硫酸バリウム(BaSO)、水酸化アルミニウム(AlOH)、水酸化マグネシウム(Mg(OH))、炭酸カルシウム(CaCO)、炭酸マグネシウム(MgCO)、酸化マグネシウム(MgO)、窒化ホウ素(BN)、炭化ケイ素(SiC)、ホウ酸アルミニウム(AlBO)、チタン酸バリウム(BaTiO)およびジルコン酸カルシウム(CaZrO)から選択される一つ以上のものであってもよい。 In the insulating resin composition for a printed circuit board, the inorganic filler includes silica (SiO 2 ), alumina (Al 2 O 3 ), barium sulfate (BaSO 4 ), aluminum hydroxide (AlOH 3 ), magnesium hydroxide ( Mg (OH) 2 ), calcium carbonate (CaCO 3 ), magnesium carbonate (MgCO 3 ), magnesium oxide (MgO), boron nitride (BN), silicon carbide (SiC), aluminum borate (AlBO 3 ), barium titanate It may be one or more selected from (BaTiO 3 ) and calcium zirconate (CaZrO 3 ).

前記プリント回路基板用絶縁樹脂組成物において、前記絶縁樹脂組成物100重量部に対して前記シアネートエステルを10〜65重量部含有することができる。   In the insulating resin composition for a printed circuit board, 10 to 65 parts by weight of the cyanate ester may be contained with respect to 100 parts by weight of the insulating resin composition.

前記プリント回路基板用絶縁樹脂組成物において、前記シアネートエステルは、ビスフェノールA型シアネートエステル、クレゾールノボラック型シアネートエステルおよびフェノールノボラック型シアネートエステルから選択される一つ以上のものであってもよい。   In the insulating resin composition for a printed circuit board, the cyanate ester may be one or more selected from bisphenol A type cyanate ester, cresol novolac type cyanate ester and phenol novolak type cyanate ester.

前記プリント回路基板用絶縁樹脂組成物において、前記絶縁樹脂組成物100重量部に対して前記ビスマレイミドを10〜43重量部含有することができる。   In the insulating resin composition for a printed circuit board, 10 to 43 parts by weight of the bismaleimide may be contained with respect to 100 parts by weight of the insulating resin composition.

前記プリント回路基板用絶縁樹脂組成物において、前記ビスマレイミドは、1,1´−(メチレンジ−4,1−フェニレン)ビスマレイミド(1,1´−(methylenedi−4,1−phenylene)bismaleimide)であってもよい。   In the insulating resin composition for a printed circuit board, the bismaleimide is 1,1 ′-(methylenedi-4,1-phenylene) bismaleimide (1,1 ′-(methylenedi-4,1-phenylene) bismaleimide). There may be.

本発明の他の目的を達成するためのプリプレグは、本発明の一つの目的を達成するための絶縁樹脂組成物を含むワニス(varnish)に有機繊維または無機繊維を含浸および乾燥して製造されることができる。   A prepreg for achieving another object of the present invention is manufactured by impregnating organic fiber or inorganic fiber into a varnish containing an insulating resin composition for achieving one object of the present invention and drying the varnish. be able to.

前記プリプレグにおいて、前記無機繊維または有機繊維は、ガラス繊維、炭素繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、サーモトロピック(thermotropic)液晶高分子繊維、リオトロピック液晶高分子繊維、アラミド繊維、ポリピリドビスイミダゾール繊維、ポリベンゾチアゾール繊維、およびポリアリレート繊維から選択される一つ以上のものであってもよい。   In the prepreg, the inorganic fiber or the organic fiber may be glass fiber, carbon fiber, polyparaphenylene benzobisoxazole fiber, thermotropic liquid crystal polymer fiber, lyotropic liquid crystal polymer fiber, aramid fiber, polypyridobisimidazole. It may be one or more selected from fibers, polybenzothiazole fibers, and polyarylate fibers.

本発明のさらに他の目的を達成するためのプリント回路基板は、本発明の他の目的を達成するためのプリプレグの片面または両面に銅箔を貼り付けて得た銅張積層板(CCL)上にビルドアップ層を積層して製造されることができる。   According to another aspect of the present invention, there is provided a printed circuit board on a copper clad laminate (CCL) obtained by attaching a copper foil to one or both sides of a prepreg for achieving another object of the present invention. It can be manufactured by laminating a buildup layer.

本発明に係るプリント回路基板用絶縁樹脂組成物およびこれを用いたプリプレグ、銅張積層板、並びにプリント回路基板によれば、ガラス転移温度および熱膨張係数の耐熱性の特性を向上させることができる。   According to the insulating resin composition for a printed circuit board and the prepreg, copper-clad laminate, and printed circuit board using the same according to the present invention, it is possible to improve the heat resistance characteristics of the glass transition temperature and the thermal expansion coefficient. .

また、前記絶縁樹脂組成物にビピリジン構造を有する硬化剤を含むことで、金属層との配位結合により金属層と絶縁層との剥離強度の機械的物性を向上させることができる。   Moreover, the mechanical property of the peeling strength of a metal layer and an insulating layer can be improved by the coordinate bond with a metal layer by including the hardening | curing agent which has a bipyridine structure in the said insulating resin composition.

本発明の一実施例による絶縁樹脂組成物の構成を説明するために概略的に示した図である。It is the figure shown roughly in order to demonstrate the structure of the insulating resin composition by one Example of this invention.

本発明の目的、特定の長所および新規の特徴は、添付図面に係る以下の詳細な説明および好ましい実施例によってさらに明らかになるであろう。本明細書において、各図面の構成要素に参照番号を付け加えるに際し、同一の構成要素に限っては、たとえ異なる図面に示されても、できるだけ同一の番号を付けるようにしていることに留意しなければならない。また、「一面」、「他面」、「第1」、「第2」などの用語は、一つの構成要素を他の構成要素から区別するために用いられるものであり、構成要素が前記用語によって限定されるものではない。以下、本発明を説明するにあたり、本発明の要旨を不明瞭にする可能性がある係る公知技術についての詳細な説明は省略する。   Objects, specific advantages and novel features of the present invention will become more apparent from the following detailed description and preferred embodiments with reference to the accompanying drawings. In this specification, it should be noted that when adding reference numerals to the components of each drawing, the same components are given the same number as much as possible even if they are shown in different drawings. I must. The terms “one side”, “other side”, “first”, “second” and the like are used to distinguish one component from another component, and the component is the term It is not limited by. Hereinafter, in describing the present invention, detailed descriptions of known techniques that may obscure the subject matter of the present invention are omitted.

以下、添付図面を参照して、本発明の好ましい実施例を詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の一実施例による絶縁樹脂組成物の構成を説明するために概略的に示した図である。   FIG. 1 is a diagram schematically illustrating the structure of an insulating resin composition according to an embodiment of the present invention.

図1を参照すると、本発明では、絶縁樹脂組成物に絶縁層と金属層との配位結合が可能なビピリジン構造を有する硬化剤を含むことで、熱膨張係数、ガラス転移温度および剥離強度の特性を向上させることができる。   Referring to FIG. 1, in the present invention, the insulating resin composition includes a curing agent having a bipyridine structure capable of coordinating bonding between an insulating layer and a metal layer, so that a thermal expansion coefficient, a glass transition temperature, and a peel strength can be obtained. Characteristics can be improved.

(エポキシ樹脂)
本発明の一実施例によるプリント回路基板用絶縁樹脂組成物は、乾燥した後の樹脂組成物の接着フィルムとしての取り扱い性を高めるためにエポキシ樹脂を含むことができる。前記エポキシ樹脂は、分子内に1個以上のエポキシ官能基を含むものを意味し、4個以上のエポキシ官能基を含むものが、結合力向上のために好ましい。
(Epoxy resin)
The insulating resin composition for a printed circuit board according to an embodiment of the present invention may include an epoxy resin in order to enhance the handleability of the resin composition after drying as an adhesive film. The epoxy resin means one containing one or more epoxy functional groups in the molecule, and one containing four or more epoxy functional groups is preferable for improving the binding force.

前記エポキシ樹脂は、ナフタレン系エポキシ樹脂、ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ゴム変性エポキシ樹脂、リン系エポキシ樹脂およびビスフェノールF型エポキシ樹脂から選択される一つ以上のものであってもよく、特にこれに限定されるものではない。   The epoxy resin is one or more selected from naphthalene type epoxy resin, bisphenol A type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, rubber-modified epoxy resin, phosphorus type epoxy resin and bisphenol F type epoxy resin. However, the present invention is not particularly limited thereto.

前記絶縁樹脂組成物においてエポキシ樹脂の使用量は、前記絶縁樹脂組成物100重量部に対して25〜75重量部であることができる。前記エポキシ樹脂の使用量が25重量部未満の場合には、金属層との接着力が低下して基板材料としての使用が困難になる恐れがあり、75重量部を超える場合には、硬化していないエポキシ樹脂が組成物内に残存する恐れがある。これにより前記エポキシ樹脂の硬化密度が減少して基板材料の耐熱性が減少し、熱膨張係数が高くなり、ガラス転移温度が低くなりうる。   The amount of the epoxy resin used in the insulating resin composition may be 25 to 75 parts by weight with respect to 100 parts by weight of the insulating resin composition. If the amount of the epoxy resin used is less than 25 parts by weight, the adhesive strength with the metal layer may be reduced, making it difficult to use as a substrate material. There is a possibility that the remaining epoxy resin may remain in the composition. As a result, the curing density of the epoxy resin is decreased, the heat resistance of the substrate material is decreased, the thermal expansion coefficient is increased, and the glass transition temperature can be decreased.

(ビピリジン構造を有する硬化剤)
本発明の一実施例によるプリント回路基板用絶縁樹脂組成物は、下記式で表されるビピリジン構造を有する硬化剤を含むことができる。
(Curing agent having bipyridine structure)
The insulating resin composition for a printed circuit board according to an embodiment of the present invention may include a curing agent having a bipyridine structure represented by the following formula.

Figure 2015099907
Figure 2015099907

(ここで、aは1〜10の整数、bは1〜13の整数、cは1〜13の整数、dは1〜21の整数、eは1〜21の整数、fは1〜10の整数およびgは1〜10の整数である。)   (Here, a is an integer of 1 to 10, b is an integer of 1 to 13, c is an integer of 1 to 13, d is an integer of 1 to 21, e is an integer of 1 to 21, and f is 1 to 10. Integer and g are integers of 1-10.)

前記硬化剤は、フェノール、アミン、無水酸などの官能基を二つ以上含むことでエポキシ樹脂との架橋反応が可能となる。前記絶縁樹脂組成物において硬化剤の使用量は、絶縁樹脂組成物100重量部に対して10〜55重量部であることができる。前記硬化剤の使用量が10重量部未満の場合には、エポキシ樹脂との硬化度が低下して耐熱性が減少する恐れがあり、55重量部を超える場合には、組成物内のエポキシ樹脂の量が減少して耐化学性が減少する恐れがある。   When the curing agent contains two or more functional groups such as phenol, amine, and acid anhydride, a crosslinking reaction with the epoxy resin is possible. In the insulating resin composition, the curing agent may be used in an amount of 10 to 55 parts by weight with respect to 100 parts by weight of the insulating resin composition. When the amount of the curing agent used is less than 10 parts by weight, the degree of cure with the epoxy resin may be reduced and heat resistance may be reduced. When the amount exceeds 55 parts by weight, the epoxy resin in the composition may be used. There is a risk that the chemical resistance will decrease due to a decrease in the amount of.

また、前記硬化剤は、分子内に金属層との配位結合が可能なビピリジン構造を有することで金属層と絶縁層との剥離強度を向上させることができる。前記ビピリジン構造は、硬化剤内において30〜60重量%含有することができる。前記ビピリジン構造が硬化剤内の30重量%未満の場合には、金属層との剥離強度向上の効果を得ることができず、60重量%を超える場合には、エポキシ樹脂との架橋密度が減少して熱的強度が減少する恐れがある。   Moreover, the said hardening | curing agent can improve the peeling strength of a metal layer and an insulating layer by having the bipyridine structure in which a coordinate bond with a metal layer is possible in a molecule | numerator. The bipyridine structure may be contained in an amount of 30 to 60% by weight in the curing agent. When the bipyridine structure is less than 30% by weight in the curing agent, the effect of improving the peel strength with the metal layer cannot be obtained, and when it exceeds 60% by weight, the crosslinking density with the epoxy resin is reduced. As a result, the thermal strength may decrease.

(無機充填剤)
本発明の一実施例によるプリント回路基板用絶縁樹脂組成物は、熱膨張係数向上のために無機充填剤をさらに含むことができる。
(Inorganic filler)
The insulating resin composition for a printed circuit board according to an embodiment of the present invention may further include an inorganic filler for improving the thermal expansion coefficient.

前記プリント回路基板用絶縁樹脂組成物において、無機充填剤の使用量は、絶縁樹脂組成物100重量部に対して82〜488重量部であることができる。前記無機充填剤の使用量が82重量部未満の場合には、前記樹脂組成物の熱膨張係数が高くなり、耐熱性が低下して基板材料としての使用が困難になる恐れがあり、488重量部を超える場合には、金属層との剥離強度が低下して基板工程への適用が困難になる恐れがある。   In the insulating resin composition for printed circuit boards, the inorganic filler may be used in an amount of 82 to 488 parts by weight with respect to 100 parts by weight of the insulating resin composition. When the amount of the inorganic filler used is less than 82 parts by weight, the thermal expansion coefficient of the resin composition is increased, and the heat resistance may be reduced, making it difficult to use as a substrate material. When it exceeds the portion, the peel strength from the metal layer may be reduced, making it difficult to apply to the substrate process.

前記無機充填剤は、シリカ(SiO)、アルミナ(Al)、硫酸バリウム(BaSO)、水酸化アルミニウム(AlOH)、水酸化マグネシウム(Mg(OH))、炭酸カルシウム(CaCO)、炭酸マグネシウム(MgCO)、酸化マグネシウム(MgO)、窒化ホウ素(BN)、炭化ケイ素(SiC)、ホウ酸アルミニウム(AlBO)、チタン酸バリウム(BaTiO)およびジルコン酸カルシウム(CaZrO)から選択される一つ以上のものであってもよく、特にこれに限定されるものではない。 The inorganic filler includes silica (SiO 2 ), alumina (Al 2 O 3 ), barium sulfate (BaSO 4 ), aluminum hydroxide (AlOH 3 ), magnesium hydroxide (Mg (OH) 2 ), calcium carbonate (CaCO 3 ), magnesium carbonate (MgCO 3 ), magnesium oxide (MgO), boron nitride (BN), silicon carbide (SiC), aluminum borate (AlBO 3 ), barium titanate (BaTiO 3 ) and calcium zirconate (CaZrO 3) 1) or more selected from, and not particularly limited thereto.

(シアネートエステル)
本発明の一実施例によるプリント回路基板用絶縁樹脂組成物は、耐熱性向上のためにシアネートエステルをさらに含むことができる。
(Cyanate ester)
The insulating resin composition for a printed circuit board according to an embodiment of the present invention may further include a cyanate ester for improving heat resistance.

前記プリント回路基板用絶縁樹脂組成物において、シアネートエステルの使用量は、絶縁樹脂組成物100重量部に対して10〜65重量部であることができる。前記シアネートエステルの使用量が10重量部未満の場合には、前記樹脂組成物のガラス転移温度が高くなり、耐熱性が低下して基板材料としての使用が困難になる恐れがあり、65重量部を超える場合には、金属層との剥離強度が低下して樹脂組成物の基板工程への適用が困難になる恐れがある。   In the insulating resin composition for a printed circuit board, the amount of cyanate ester used may be 10 to 65 parts by weight with respect to 100 parts by weight of the insulating resin composition. When the amount of the cyanate ester used is less than 10 parts by weight, the glass transition temperature of the resin composition is increased, heat resistance may be lowered, and it may be difficult to use as a substrate material. If it exceeds 1, the peel strength from the metal layer may be reduced, making it difficult to apply the resin composition to the substrate process.

前記シアネートエステルは、ビスフェノールA型シアネートエステル、クレゾールノボラック型シアネートエステルおよびフェノールノボラック型シアネートエステルから選択される一つ以上のものであってもよく、特にこれに限定されるものではない。   The cyanate ester may be one or more selected from bisphenol A type cyanate ester, cresol novolac type cyanate ester and phenol novolak type cyanate ester, and is not particularly limited thereto.

(ビスマレイミド)
本発明の一実施例によるプリント回路基板用絶縁樹脂組成物は、耐熱性向上のためにビスマレイミドをさらに含むことができる。
(Bismaleimide)
The insulating resin composition for a printed circuit board according to an embodiment of the present invention may further include bismaleimide for improving heat resistance.

前記プリント回路基板用絶縁樹脂組成物において、ビスマレイミドの使用量は、絶縁樹脂組成物100重量部に対して10〜43重量部であることができる。前記ビスマレイミドの使用量が10重量部未満の場合には、前記樹脂組成物のガラス転移温度が高くなり耐熱性が低下して基板材料としての使用が困難になる恐れがあり、43重量部を超える場合には、前記樹脂組成物の吸湿率が増加して材料の信頼性が減少し、樹脂組成物の基板工程への適用が困難になる恐れがある。   In the insulating resin composition for a printed circuit board, the amount of bismaleimide used may be 10 to 43 parts by weight with respect to 100 parts by weight of the insulating resin composition. When the amount of the bismaleimide used is less than 10 parts by weight, the glass transition temperature of the resin composition may be increased and the heat resistance may be reduced, making it difficult to use as a substrate material. In the case of exceeding, the moisture absorption rate of the resin composition is increased, the reliability of the material is decreased, and the application of the resin composition to the substrate process may be difficult.

前記ビスマレイミドは、1,1´−(メチレンジ−4,1−フェニレン)ビスマレイミド(1,1´−(methylenedi−4,1−phenylene)bismaleimide)を使用してもよく、特にこれに限定されるものではない。   The bismaleimide may be 1,1 ′-(methylenedi-4,1-phenylene) bismaleimide (1,1 ′-(methylenedi-4,1-phenylene) bismaleimide), and is not particularly limited thereto. It is not something.

本発明の一実施例による絶縁樹脂組成物は、本技術分野において公知のいかなる一般的な方法で半固状のドライフィルムに製造されることができる。例えば、ロールコータ(roll coater)、カーテンコータ(curtain coater)またはコンマコータ(comma coater)などを用いてフィルム状に製造して乾燥した後、これを基板上に適用してビルドアップ方式による多層プリント回路基板の製造の際に、絶縁層(または絶縁フィルム)またはプリプレグとして用いることができる。かかる絶縁フィルムまたはプリプレグは、熱膨張係数およびガラス転移温度の特性を向上させることができる。   The insulating resin composition according to an embodiment of the present invention can be manufactured into a semi-solid dry film by any general method known in the art. For example, a multi-layer printed circuit using a roll-up coater, a curtain coater, a comma coater, or a comma coater is manufactured and dried, and then applied onto a substrate to build a multilayer printed circuit. In the production of a substrate, it can be used as an insulating layer (or insulating film) or a prepreg. Such an insulating film or prepreg can improve the characteristics of thermal expansion coefficient and glass transition temperature.

このように、本発明の一実施例によるプリント回路基板用絶縁樹脂組成物を含むワニスに無機繊維または有機繊維を含浸および乾燥してプリプレグを製造することができる。   Thus, the varnish containing the insulating resin composition for printed circuit boards according to one embodiment of the present invention can be impregnated with inorganic fibers or organic fibers and dried to produce a prepreg.

前記無機繊維または有機繊維は、ガラス繊維、炭素繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、サーモトロピック(thermotropic)液晶高分子繊維、リオトロピック液晶高分子繊維、アラミド繊維、ポリピリドビスイミダゾール繊維、ポリベンゾチアゾール繊維、およびポリアリレート繊維から選択される一つ以上のものであってもよく、特にこれに限定されるものではない。   The inorganic fiber or organic fiber includes glass fiber, carbon fiber, polyparaphenylenebenzobisoxazole fiber, thermotropic liquid crystal polymer fiber, lyotropic liquid crystal polymer fiber, aramid fiber, polypyridobisimidazole fiber, polybenzo It may be one or more selected from thiazole fiber and polyarylate fiber, and is not particularly limited thereto.

前記プリプレグの片面または両面に銅箔を貼り付けて銅張積層板(CCL)を製造することができる。これにより、エポキシ樹脂と、ビピリジン構造を有する硬化剤と、を含む絶縁層は、金属層との剥離強度を向上させることができる。   A copper clad laminate (CCL) can be produced by attaching a copper foil to one or both sides of the prepreg. Thereby, the insulation layer containing an epoxy resin and the hardening | curing agent which has a bipyridine structure can improve the peeling strength with a metal layer.

また、本発明の一実施例によるプリント回路基板用絶縁樹脂組成物からなる絶縁フィルムまたはプリプレグは、プリント回路基板の製造の際に内層として用いられる銅張積層板上に積層して多層プリント回路基板の製造に用いることができる。例えば、前記絶縁樹脂組成物からなる絶縁フィルムまたはプリプレグをパターン加工した内層回路基板上に積層してから硬化し、デスミア工程を行った後、電気めっき工程により回路層を形成して多層プリント回路基板を製造することができる。   An insulating film or prepreg comprising an insulating resin composition for a printed circuit board according to an embodiment of the present invention is laminated on a copper-clad laminate used as an inner layer in the production of a printed circuit board. Can be used in the manufacture of For example, an insulating film or prepreg made of the insulating resin composition is laminated on a patterned inner layer circuit board, cured, a desmear process is performed, and then a circuit layer is formed by an electroplating process to form a multilayer printed circuit board Can be manufactured.

以下、実施例および比較例により本発明についてより具体的に説明するが、下記の例に本発明の範疇が限定されない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention more concretely, the category of this invention is not limited to the following example.

(ビピリジン構造を有する硬化剤の製造)
(製造例1)
還流装置が取り付けられた100mlの丸底フラスコに、2,2´−ビピリジン−4,4´−ジカルボン酸7.3g、4−アミノフェノール8.7g、イソフタル酸6.6g、4−ヒドロキシ安息香酸6.4g、6−ヒドロキシ−2−ナフトエ酸3.1g、酢酸無水物22.4gを添加した。前記フラスコに密閉された機械的攪拌機、窒素注入チューブ、温度計および還流コンデンサを装着した。前記フラスコの内部を窒素ガスで充分置換した後、フラスコ内部の温度を窒素ガス流動下で約140℃の温度に上昇させ、その温度でフラスコ内部の温度を維持しつつ約1時間還流させた。次に、6−ヒドロキシ−2−ナフトエ酸5.6gをさらに添加した後、反応副生成物である酢酸と未反応の酢酸無水物を除去して約300℃まで温度を上げた後、約30分間反応させてビピリジン構造を有する硬化剤を合成した。
(Production of curing agent having bipyridine structure)
(Production Example 1)
In a 100 ml round bottom flask equipped with a reflux apparatus, 7.3 g of 2,2′-bipyridine-4,4′-dicarboxylic acid, 8.7 g of 4-aminophenol, 6.6 g of isophthalic acid, 4-hydroxybenzoic acid 6.4 g, 6-hydroxy-2-naphthoic acid 3.1 g, and acetic anhydride 22.4 g were added. The flask was equipped with a sealed mechanical stirrer, nitrogen inlet tube, thermometer and reflux condenser. After sufficiently replacing the inside of the flask with nitrogen gas, the temperature inside the flask was raised to a temperature of about 140 ° C. under the flow of nitrogen gas, and refluxed for about 1 hour while maintaining the temperature inside the flask at that temperature. Next, after further adding 5.6 g of 6-hydroxy-2-naphthoic acid, acetic acid as a reaction byproduct and unreacted acetic anhydride were removed and the temperature was raised to about 300 ° C., and then about 30 A curing agent having a bipyridine structure was synthesized by reacting for minutes.

(ビピリジン構造を有しない硬化剤の製造)
(製造例2)
還流装置が取り付けられた100mlの丸底フラスコに4−アミノフェノール8.7g、イソフタル酸10.0g、4−ヒドロキシ安息香酸6.4g、6−ヒドロキシ−2−ナフトエ酸3.1g、酢酸無水物22.4gを添加した。次に、前記製造例1のような条件で反応させてビピリジン構造を有しない硬化剤を合成した。
(Manufacture of curing agent having no bipyridine structure)
(Production Example 2)
In a 100 ml round bottom flask equipped with a reflux apparatus, 8.7 g of 4-aminophenol, 10.0 g of isophthalic acid, 6.4 g of 4-hydroxybenzoic acid, 3.1 g of 6-hydroxy-2-naphthoic acid, acetic anhydride 22.4 g was added. Next, the reaction was carried out under the same conditions as in Production Example 1 to synthesize a curing agent having no bipyridine structure.

(実施例1)
ビピリジン構造を有する製造例1の硬化剤33.0g、エポキシ樹脂(Araldite MY−721、Huntsmann社製)22.0gおよびジシアンジアミド(DICY)0.22gを45.0gのN,N´−ジメチルアセトアミド(DMAc)に添加して混合溶液をワニス状に製造し、ガラス繊維を前記ワニスに含浸した後、約200℃で5分間乾燥してプリプレグを製造した。また、前記プリプレグを約220℃の温度、30kgf/cmの圧力で約60分間硬化させて銅張積層板を作製した。
Example 1
45.0 g of N, N′-dimethylacetamide (33.0 g of the curing agent of Production Example 1 having a bipyridine structure, 22.0 g of an epoxy resin (Araldite MY-721, manufactured by Huntsmann) and 0.22 g of dicyandiamide (DICY) ( The solution was added to DMAc) to produce a mixed solution in a varnish form, impregnated with glass fiber into the varnish, and then dried at about 200 ° C. for 5 minutes to produce a prepreg. The prepreg was cured at a temperature of about 220 ° C. and a pressure of 30 kgf / cm 2 for about 60 minutes to prepare a copper clad laminate.

(実施例2)
前記実施例1で製造された混合溶液に粒径が500μmの球状シリカ(アドマテックス社製)312gを添加してワニスを作製し、前記実施例1と同じ方法で銅張積層板を作製した。
(Example 2)
A varnish was prepared by adding 312 g of spherical silica (manufactured by Admatechs) having a particle size of 500 μm to the mixed solution produced in Example 1, and a copper-clad laminate was produced by the same method as in Example 1.

(比較例1)
ビピリジン構造を有しない製造例2の硬化剤33.0g、エポキシ樹脂(Araldite MY−721、Huntsmann社製)22.0gおよびジシアンジアミド(DICY)0.22gを45.0gのN,N´−ジメチルアセトアミド(DMAc)に添加して混合溶液をワニス状に製造し、ガラス繊維を前記ワニスに含浸した後、約200℃で5分間乾燥してプリプレグを製造した。また、前記プリプレグを約220℃の温度、30kgf/cmの圧力で約60分間硬化させて銅張積層板を作製した。
(Comparative Example 1)
45.0 g of N, N′-dimethylacetamide containing 33.0 g of the curing agent of Production Example 2 having no bipyridine structure, 22.0 g of an epoxy resin (Araldite MY-721, manufactured by Huntsmann) and 0.22 g of dicyandiamide (DICY) (DMAc) was added to produce a mixed solution in a varnish form, and glass fiber was impregnated into the varnish, followed by drying at about 200 ° C. for 5 minutes to produce a prepreg. The prepreg was cured at a temperature of about 220 ° C. and a pressure of 30 kgf / cm 2 for about 60 minutes to prepare a copper clad laminate.

(比較例2)
前記比較例1で製造された混合溶液に粒径が500μmの球状シリカ(アドマテックス社製)312gを添加してワニスを作製し、前記比較例1と同じ方法で銅張積層板を作製した。
(Comparative Example 2)
312 g of spherical silica (manufactured by Admatechs) having a particle size of 500 μm was added to the mixed solution produced in Comparative Example 1 to produce a varnish, and a copper-clad laminate was produced by the same method as in Comparative Example 1.

実施例1および実施例2、比較例1および比較例2で製造された銅張積層板の銅箔を除去したサンプルをもって、熱膨張係数およびガラス転移温度を測定した。   The thermal expansion coefficient and the glass transition temperature were measured with the samples from which the copper foils of the copper-clad laminates produced in Example 1 and Example 2, Comparative Example 1 and Comparative Example 2 were removed.

熱膨張係数を測定するために、TA社製のTMA装備を用いて引張モード(Tensile mode)で測定し、1次に、1分当たり10℃ずつ約300℃まで走査し、冷却後、2次に、1分当たり10℃ずつ約310℃まで走査して、2次に走査した結果値の熱膨張係数を測定した。   In order to measure the coefficient of thermal expansion, it is measured in a tensile mode using a TMA equipment manufactured by TA, first scanned to about 300 ° C. at 10 ° C. per minute, and after cooling, the secondary Then, the coefficient of thermal expansion was measured at 10 ° C. per minute up to about 310 ° C. and the secondary scanning result value was measured.

また、ガラス転移温度は、TA社製のDSC装備を用いて測定し、それぞれ製造されたサンプルの約5mgを前記装備に投入して1分当たり10℃ずつ300℃まで1次測定し、冷却した後、1分当たり10℃ずつ300℃まで2次測定して、2次測定した結果値で、ガラス転移温度を測定した。   Further, the glass transition temperature was measured using a DSC equipment manufactured by TA, and about 5 mg of each produced sample was put into the equipment and subjected to a primary measurement at 300 ° C. at 10 ° C. per minute and cooled. Thereafter, the glass transition temperature was measured by the secondary measurement up to 300 ° C. at a rate of 10 ° C. per minute.

最後に、実施例1および実施例2、比較例1および比較例2で製造された銅張積層板の表面から約1cmの銅箔を剥離して引張強度測定器(universal testing machine、UTM)を用いて銅箔と絶縁層との剥離強度を測定した。   Finally, about 1 cm of copper foil was peeled off from the surfaces of the copper clad laminates produced in Example 1 and Example 2 and Comparative Example 1 and Comparative Example 2, and a tensile strength measuring device (universal testing machine, UTM) was used. The peel strength between the copper foil and the insulating layer was measured.

Figure 2015099907
Figure 2015099907

前記表1から分かるように、本発明により無機充填剤を含まない絶縁樹脂組成物からなる実施例1のプリプレグは、比較例1で製造されたプリプレグと比較すると、ガラス転移温度、熱膨張係数および剥離強度の特性を向上させる効果がある。   As can be seen from Table 1, the prepreg of Example 1 composed of an insulating resin composition not containing an inorganic filler according to the present invention has a glass transition temperature, a thermal expansion coefficient and a prepreg of Comparative Example 1 compared with the prepreg produced in Comparative Example 1. This has the effect of improving the peel strength characteristics.

Figure 2015099907
Figure 2015099907

前記表2から分かるように、本発明により無機充填剤を含む絶縁樹脂組成物からなる実施例2のプリプレグは、比較例2で製造されたプリプレグと比較すると、ガラス転移温度、熱膨張係数および剥離強度の特性を向上させる効果がある。   As can be seen from Table 2, the prepreg of Example 2 made of an insulating resin composition containing an inorganic filler according to the present invention has a glass transition temperature, a coefficient of thermal expansion, and a separation as compared with the prepreg produced in Comparative Example 2. There is an effect of improving strength characteristics.

以上、本発明を具体的な実施例に基づいて詳細に説明したが、これは本発明を具体的に説明するためのものであり、本発明はこれに限定されず、該当分野における通常の知識を有する者であれば、本発明の技術的思想内にての変形や改良が可能であることは明白であろう。   As described above, the present invention has been described in detail based on the specific embodiments. However, the present invention is only for explaining the present invention, and the present invention is not limited thereto. It will be apparent to those skilled in the art that modifications and improvements within the technical idea of the present invention are possible.

本発明の単純な変形乃至変更はいずれも本発明の領域に属するものであり、本発明の具体的な保護範囲は添付の特許請求の範囲により明確になるであろう。   All simple variations and modifications of the present invention belong to the scope of the present invention, and the specific scope of protection of the present invention will be apparent from the appended claims.

本発明は、プリント回路基板用絶縁樹脂組成物およびこれを用いた製品に適用可能である。   The present invention is applicable to an insulating resin composition for printed circuit boards and products using the same.

Claims (15)

エポキシ樹脂と、
ビピリジン構造を有する硬化剤と、を含む、プリント回路基板用絶縁樹脂組成物。
Epoxy resin,
An insulating resin composition for printed circuit boards, comprising a curing agent having a bipyridine structure.
前記絶縁樹脂組成物100重量部に対して、エポキシ樹脂を25〜75重量部含有し、ビピリジン構造を有する硬化剤を10〜55重量部含有する、請求項1に記載のプリント回路基板用絶縁樹脂組成物。   2. The insulating resin for a printed circuit board according to claim 1, comprising 25 to 75 parts by weight of an epoxy resin and 10 to 55 parts by weight of a curing agent having a bipyridine structure with respect to 100 parts by weight of the insulating resin composition. Composition. 前記エポキシ樹脂は、ナフタレン系エポキシ樹脂、ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ゴム変性エポキシ樹脂、リン系エポキシ樹脂およびビスフェノールF型エポキシ樹脂から選択される一つ以上のものである、請求項1に記載のプリント回路基板用絶縁樹脂組成物。   The epoxy resin is one or more selected from naphthalene type epoxy resin, bisphenol A type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, rubber-modified epoxy resin, phosphorus type epoxy resin and bisphenol F type epoxy resin. The insulating resin composition for printed circuit boards according to claim 1, wherein 前記ビピリンジン構造が、下記式で表される、請求項1に記載のプリント回路基板用絶縁樹脂組成物。
Figure 2015099907
(ここで、aは1〜10の整数、bは1〜13の整数、cは1〜13の整数、dは1〜21の整数、eは1〜21の整数、fは1〜10の整数およびgは1〜10の整数である。)
The insulating resin composition for printed circuit boards according to claim 1, wherein the bipyringin structure is represented by the following formula.
Figure 2015099907
(Here, a is an integer of 1 to 10, b is an integer of 1 to 13, c is an integer of 1 to 13, d is an integer of 1 to 21, e is an integer of 1 to 21, and f is 1 to 10. Integer and g are integers of 1-10.)
前記硬化剤が、ビピリジン構造を30〜60重量%含有する、請求項1に記載のプリント回路基板用絶縁樹脂組成物。   The insulating resin composition for printed circuit boards according to claim 1, wherein the curing agent contains 30 to 60% by weight of a bipyridine structure. 無機充填剤と、
シアネートエステルと、
ビスマレイミドと、をさらに含む、請求項1に記載のプリント回路基板用絶縁樹脂組成物。
An inorganic filler;
Cyanate esters,
The insulating resin composition for printed circuit boards according to claim 1, further comprising bismaleimide.
前記絶縁樹脂組成物100重量部に対して前記無機充填剤を82〜488重量部含有する、請求項6に記載のプリント回路基板用絶縁樹脂組成物。   The insulating resin composition for printed circuit boards of Claim 6 which contains 82-488 weight part of said inorganic fillers with respect to 100 weight part of said insulating resin compositions. 前記無機充填剤は、シリカ(SiO)、アルミナ(Al)、硫酸バリウム(BaSO)、水酸化アルミニウム(AlOH)、水酸化マグネシウム(Mg(OH))、炭酸カルシウム(CaCO)、炭酸マグネシウム(MgCO)、酸化マグネシウム(MgO)、窒化ホウ素(BN)、炭化ケイ素(SiC)、ホウ酸アルミニウム(AlBO)、チタン酸バリウム(BaTiO)およびジルコン酸カルシウム(CaZrO)から選択される一つ以上のものである、請求項7に記載のプリント回路基板用絶縁樹脂組成物。 The inorganic filler includes silica (SiO 2 ), alumina (Al 2 O 3 ), barium sulfate (BaSO 4 ), aluminum hydroxide (AlOH 3 ), magnesium hydroxide (Mg (OH) 2 ), calcium carbonate (CaCO 3 ), magnesium carbonate (MgCO 3 ), magnesium oxide (MgO), boron nitride (BN), silicon carbide (SiC), aluminum borate (AlBO 3 ), barium titanate (BaTiO 3 ) and calcium zirconate (CaZrO 3) The insulating resin composition for printed circuit boards according to claim 7, which is one or more selected from 前記絶縁樹脂組成物100重量部に対して前記シアネートエステルを10〜65重量部含有する、請求項6に記載のプリント回路基板用絶縁樹脂組成物。   The insulating resin composition for printed circuit boards of Claim 6 which contains 10-65 weight part of said cyanate ester with respect to 100 weight part of said insulating resin compositions. 前記シアネートエステルは、ビスフェノールA型シアネートエステル、クレゾールノボラック型シアネートエステルおよびフェノールノボラック型シアネートエステルから選択される一つ以上のものである、請求項9に記載のプリント回路基板用絶縁樹脂組成物。   The insulating resin composition for a printed circuit board according to claim 9, wherein the cyanate ester is one or more selected from bisphenol A type cyanate ester, cresol novolac type cyanate ester and phenol novolak type cyanate ester. 前記絶縁樹脂組成物100重量部に対して前記ビスマレイミドを10〜43重量部含有する、請求項6に記載のプリント回路基板用絶縁樹脂組成物。   The insulating resin composition for printed circuit boards according to claim 6, comprising 10 to 43 parts by weight of the bismaleimide with respect to 100 parts by weight of the insulating resin composition. 前記ビスマレイミドは、1,1´−(メチレンジ−4,1−フェニレン)ビスマレイミド(1,1´−(methylenedi−4,1−phenylene)bismaleimide)である、請求項11に記載のプリント回路基板用絶縁樹脂組成物。   The printed circuit board according to claim 11, wherein the bismaleimide is 1,1 ′-(methylenedi-4,1-phenylene) bismaleimide (1,1 ′-(methylenedi-4,1-phenylene) bisaleimide). Insulating resin composition. 請求項1に記載の絶縁樹脂組成物を含むワニス(varnish)に有機繊維または無機繊維を含浸および乾燥して製造される、プリプレグ。   A prepreg produced by impregnating and drying organic fibers or inorganic fibers in a varnish containing the insulating resin composition according to claim 1. 前記無機繊維または有機繊維は、ガラス繊維、炭素繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、サーモトロピック(thermotropic)液晶高分子繊維、リオトロピック液晶高分子繊維、アラミド繊維、ポリピリドビスイミダゾール繊維、ポリベンゾチアゾール繊維、およびポリアリレート繊維から選択される一つ以上のものである、請求項13に記載のプリプレグ。   The inorganic fiber or organic fiber includes glass fiber, carbon fiber, polyparaphenylenebenzobisoxazole fiber, thermotropic liquid crystal polymer fiber, lyotropic liquid crystal polymer fiber, aramid fiber, polypyridobisimidazole fiber, polybenzo The prepreg according to claim 13, wherein the prepreg is one or more selected from thiazole fibers and polyarylate fibers. 請求項13に記載のプリプレグの片面または両面に銅箔を貼り付けて得た銅張積層板(CCL)上にビルドアップ層を積層して製造される、プリント回路基板。   A printed circuit board produced by laminating a build-up layer on a copper clad laminate (CCL) obtained by attaching a copper foil to one or both sides of the prepreg according to claim 13.
JP2014076476A 2013-11-19 2014-04-02 Insulating resin composition for printed circuit board and product using the same Active JP6422230B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130140850A KR101987305B1 (en) 2013-11-19 2013-11-19 Insulating resin composition for printed circuit board and products having the same
KR10-2013-0140850 2013-11-19

Publications (2)

Publication Number Publication Date
JP2015099907A true JP2015099907A (en) 2015-05-28
JP6422230B2 JP6422230B2 (en) 2018-11-14

Family

ID=53376323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014076476A Active JP6422230B2 (en) 2013-11-19 2014-04-02 Insulating resin composition for printed circuit board and product using the same

Country Status (3)

Country Link
JP (1) JP6422230B2 (en)
KR (1) KR101987305B1 (en)
TW (1) TWI620783B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108384234A (en) * 2018-03-29 2018-08-10 西北工业大学 A kind of wave-penetrating composite material and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6788808B2 (en) * 2015-07-06 2020-11-25 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate, and printed wiring board
CN109757023B (en) * 2017-11-08 2022-04-26 广东生益科技股份有限公司 Printed circuit board and manufacturing method thereof
KR102243041B1 (en) 2018-05-30 2021-04-22 삼성디스플레이 주식회사 High heat resistant composition and method for preparing three-dimensional substrate using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174241A (en) * 1981-04-21 1982-10-26 Hitachi Chemical Co Ltd Manufacture of fire retardant heatproof copper plated laminated board
JPH0196173A (en) * 1987-10-07 1989-04-14 Hitachi Ltd Bipyridine-based compound, production and composition thereof
JPH06228283A (en) * 1991-04-08 1994-08-16 Ciba Geigy Ag Epoxy resin mixture especially for producing prepreg with long storage life
JPH06329757A (en) * 1993-03-24 1994-11-29 Shin Kobe Electric Mach Co Ltd Epoxy resin composition for laminate and production of laminate
JP2003261650A (en) * 2002-03-07 2003-09-19 Dainippon Ink & Chem Inc Epoxy resin composition, its pre-cured product and cured product

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4861823A (en) * 1986-11-20 1989-08-29 Amoco Corporation Thermoset composition comprising aromatic cyanate ester of allyl ether of bisphenol
DE19748764A1 (en) * 1997-11-05 1999-05-06 Henkel Kgaa Conductive, organic coatings
US7540978B2 (en) * 2004-08-05 2009-06-02 Novaled Ag Use of an organic matrix material for producing an organic semiconductor material, organic semiconductor material and electronic component
JP2009155354A (en) * 2006-03-30 2009-07-16 Ajinomoto Co Inc Resin composition for insulating layer
KR100840924B1 (en) * 2007-03-30 2008-06-24 삼성전기주식회사 Eucryptite ceramic filler and insulating composite material containing the same
KR100835784B1 (en) * 2007-06-26 2008-06-09 주식회사 두산 Resine composition for printed circuit board and composite substrate and copper laminates using the same
JP5024205B2 (en) * 2007-07-12 2012-09-12 三菱瓦斯化学株式会社 Prepreg and laminate
EP2367794B1 (en) * 2008-11-24 2013-01-09 Basf Se Curable composition comprising a thermolatent base
JP5569270B2 (en) * 2010-09-06 2014-08-13 住友ベークライト株式会社 Prepreg, metal-clad laminate, printed wiring board, and semiconductor device
CA2828083C (en) * 2011-03-24 2019-04-30 Akzo Nobel Chemicals International B.V. Accelerator for curing resins
CN103562309B (en) * 2011-05-31 2016-05-18 三菱瓦斯化学株式会社 Resin combination, prepreg and laminate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174241A (en) * 1981-04-21 1982-10-26 Hitachi Chemical Co Ltd Manufacture of fire retardant heatproof copper plated laminated board
JPH0196173A (en) * 1987-10-07 1989-04-14 Hitachi Ltd Bipyridine-based compound, production and composition thereof
JPH06228283A (en) * 1991-04-08 1994-08-16 Ciba Geigy Ag Epoxy resin mixture especially for producing prepreg with long storage life
JPH06329757A (en) * 1993-03-24 1994-11-29 Shin Kobe Electric Mach Co Ltd Epoxy resin composition for laminate and production of laminate
JP2003261650A (en) * 2002-03-07 2003-09-19 Dainippon Ink & Chem Inc Epoxy resin composition, its pre-cured product and cured product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108384234A (en) * 2018-03-29 2018-08-10 西北工业大学 A kind of wave-penetrating composite material and preparation method thereof

Also Published As

Publication number Publication date
TW201520263A (en) 2015-06-01
TWI620783B (en) 2018-04-11
KR101987305B1 (en) 2019-06-10
JP6422230B2 (en) 2018-11-14
KR20150057460A (en) 2015-05-28

Similar Documents

Publication Publication Date Title
JP7201029B2 (en) Epoxy resin composition, resin sheet, prepreg, metal foil with resin, metal substrate, and power semiconductor device
JP5573842B2 (en) MULTILAYER RESIN SHEET AND ITS MANUFACTURING METHOD, MULTILAYER RESIN SHEET CURED MANUFACTURING METHOD, AND HIGHLY HEAT CONDUCTIVE RESIN SHEET LAMINATE
TWI417337B (en) Pre-stains, laminates and circuit boards
US20140076198A1 (en) Epoxy resin composition for insulation, insulating film, prepreg, and printed circuit board
TW201425455A (en) Resin composition for printed circuit board, insulating film, prepreg and printed circuit board
JP6399337B2 (en) Insulating resin composition for printed circuit board and product using the same
JP2014109029A (en) Resin composition for printed circuit board, insulating film, prepreg, and printed board
WO2007063947A1 (en) Phenol resin composition, cured product thereof, resin composition for copper clad laminate, copper clad laminate and novel phenol resin
JP6422230B2 (en) Insulating resin composition for printed circuit board and product using the same
JP2014101491A (en) Resin composition for insulation, insulation film, prepreg and printed circuit board
JP2012251130A (en) Insulating resin composition for printed circuit board and printed circuit board including the same
JP2014105332A (en) Resin composition for printed circuit board, insulating film, prepreg, and printed circuit board
KR101474648B1 (en) Insulating resin composition for printed circuit board, insulating film, prepreg and printed circuit board
JP2014214307A (en) Insulating resin composition for printed wiring board with low thermal expansion and high thermostability, and prepreg, copper-clad laminate and printed wiring board that use the same
JP2017036423A (en) Thermosetting resin composition
TWI496824B (en) Epoxy resin composition, and prepreg and printed wiring board using the same
JP6984579B2 (en) Epoxy resin compositions, and adhesive films, prepregs, multilayer printed wiring boards, and semiconductor devices manufactured using the resin compositions.
JP2003147171A (en) Method for producing insulating resin composition, insulating resin composition, and copper-foil laminated insulating material and copper-clad laminate
JP5309788B2 (en) Epoxy resin composition, cured product thereof, prepreg, copper-clad laminate, and resin composition for build-up adhesive film
JP7087963B2 (en) Epoxy resin compositions, multilayer printed wiring boards, and semiconductor devices
JP2005163014A (en) Resin composition, and prepreg and laminate using the same
JP2009298981A (en) Resin composition, prepreg and printed wiring board using the same
JP2014062249A (en) Epoxy resin composition for insulation, insulating film, prepreg and printed circuit board
KR101513350B1 (en) Insulating film for printed circuit board and products having the same
TWI837297B (en) Ester compounds, resin compositions, hardeners, and build-up films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180523

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181016

R150 Certificate of patent or registration of utility model

Ref document number: 6422230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250