JP2015099723A - Flat type secondary battery - Google Patents

Flat type secondary battery Download PDF

Info

Publication number
JP2015099723A
JP2015099723A JP2013239703A JP2013239703A JP2015099723A JP 2015099723 A JP2015099723 A JP 2015099723A JP 2013239703 A JP2013239703 A JP 2013239703A JP 2013239703 A JP2013239703 A JP 2013239703A JP 2015099723 A JP2015099723 A JP 2015099723A
Authority
JP
Japan
Prior art keywords
secondary battery
anisotropic conductive
electrode plate
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013239703A
Other languages
Japanese (ja)
Inventor
沙織 小林
Saori Kobayashi
沙織 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2013239703A priority Critical patent/JP2015099723A/en
Publication of JP2015099723A publication Critical patent/JP2015099723A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a flat type secondary battery capable of electrically connecting connection tabs of respective electrodes to each other even if a metal foil of a current collector constituting the electrode is constituted of metal which is thin and weak against heat when an electrode group of a laminated structure is constituted.SOLUTION: Disclosed is a flat type secondary battery 1 which has an electrode group 5 formed by arranging a positive electrode plate 7 and a negative electrode plate 8 opposed to each other via a separator 9, and an electrolytic solution 6, and in which the electrode group 5 and the electrolytic solution 6 are included in an outer case 2 in which a first plane 2a serves as an electrode terminal having positive polarity and a sealing case 4 in which a second plane 4a opposite to the first plane 2a serves as the electrode terminal having negative polarity. The positive electrode plate 7 and the negative electrode plate 8 have connection tabs whose respective mutual electrode plates are connected to each other, and the mutual connection tabs are connected by anisotropic conductive films 10a, 10b.

Description

本発明は、扁平形二次電池に関するものであり、特に複数の電極を接続する構造に関する。   The present invention relates to a flat secondary battery, and more particularly to a structure for connecting a plurality of electrodes.

扁平型二次電池は、正極板と負極板とがセパレータを介して対向して構成された電極群と、電解液とを、外装ケースと封口ケースと絶縁ガスケットとで形成された空間内に収容した構造を有している。例えば、ボタン形やコイン形などと称する形状を指す。なお、非水電解液を用いるものを特に扁平型非水二次電池と称することもある。   A flat secondary battery accommodates an electrode group in which a positive electrode plate and a negative electrode plate face each other with a separator interposed therebetween, and an electrolyte in a space formed by an outer case, a sealing case, and an insulating gasket. It has the structure. For example, it refers to a shape called a button shape or a coin shape. A battery that uses a non-aqueous electrolyte is sometimes called a flat non-aqueous secondary battery.

扁平形二次電池は、小型薄型であるため、腕時計等の小型機器や、ICカード等の薄型機器の電源として広く用いられている。近年前述の機器等の高機能化に伴い、扁平形二次電池自体の高容量化、高性能化、低コスト化の要求も強まっている。   Since flat secondary batteries are small and thin, they are widely used as power sources for small devices such as wristwatches and thin devices such as IC cards. In recent years, the demand for higher capacity, higher performance, and lower cost of the flat secondary battery itself has increased with the enhancement of the functions of the above-described devices.

一般に、扁平形に限らず二次電池の高容量化のためには、正極板と負極板との対向面積を増加させる必要がある。したがって、電極群において正極板と負極板とが対向する面積を増加させつつ決められた容積のケースに収納するための技術は、多くの提案を見るものである。   In general, in order to increase the capacity of a secondary battery as well as the flat shape, it is necessary to increase the facing area between the positive electrode plate and the negative electrode plate. Therefore, the technique for accommodating in the case of the volume determined while increasing the area which a positive electrode plate and a negative electrode plate oppose in an electrode group sees many proposals.

特に電極群の構造は、いくつかの形状が知られている。
例えば、複数枚の正極板と負極板とをセパレータを介して積層した積層構造である(例えば、特許文献1参照。)。
また、帯状の正極板と負極板との間にセパレータを配して渦巻き状に巻回した巻回構造である(例えば、特許文献2参照。)。
In particular, the electrode group structure is known in several shapes.
For example, it is a laminated structure in which a plurality of positive and negative electrode plates are laminated via a separator (see, for example, Patent Document 1).
Moreover, it is the winding structure which arrange | positioned the separator between the strip | belt-shaped positive electrode plate and the negative electrode plate, and was wound spirally (for example, refer patent document 2).

このような積層構造や巻回構造の他に、帯状の正極板と負極板との間にセパレータを配して、双方を交互に折りたたんだ折りたたみ構造も知られている(例えば、特許文献3参照。)。   In addition to such a laminated structure and a wound structure, a folding structure is also known in which a separator is disposed between a belt-like positive electrode plate and a negative electrode plate, and both are folded alternately (see, for example, Patent Document 3). .)

電極群の各構造には、それぞれ二次電池の性能や製造に関して有利な点があるため、目的とする二次電池の形状や性能を鑑みて電極群の構造を選ぶ場合が多い。
特に扁平型二次電池の場合は、その形状が薄型であるから、複数の電極を重ねやすい積層構造の電極群を用いる場合が多い。
Each structure of the electrode group has advantages with respect to the performance and manufacture of the secondary battery, and therefore the structure of the electrode group is often selected in view of the shape and performance of the target secondary battery.
In particular, in the case of a flat secondary battery, since the shape thereof is thin, an electrode group having a laminated structure in which a plurality of electrodes can be easily stacked is often used.

扁平形二次電池の正極板及び負極板は、集電体と呼ばれる板状の金属の片面又は両面に正極合剤や負極合剤を形成した部分と、その板状の金属の一部を露出させた部分とを有している。この露出部分と、電池のケースとなる外装ケース又は封口ケースとを電気的に接続することで、外部と電気の送受を行う。つまり、外装ケースと封口ケースとが、それぞれ電池の正極側端子と負極側端子となるのである。   The positive electrode plate and the negative electrode plate of the flat secondary battery expose a portion of the plate-like metal called a current collector on which one side or both sides of the positive electrode mixture or negative electrode mixture are formed and a part of the plate-like metal. And have a portion that has been By electrically connecting the exposed portion and an exterior case or a sealing case as a battery case, electricity is transmitted to and received from the outside. That is, the outer case and the sealing case serve as the positive electrode side terminal and the negative electrode side terminal of the battery, respectively.

特許文献1に示したような積層構造の場合、正極板及び負極板を複数枚用意し、これら複数の正極板と負極板とをセパレータを介して積層するが、積層した同一極性の電極板同士は電気的に接続しなければならない。このため、それぞれの電極板には接続タブ部と呼ばれる、合剤を露出させた接続用の部分を設けており、この接続タブ部同士をまとめることで電気的接続をとる。特許文献1に示した従来技術では、接続タブ部同士を溶接でまとめている。   In the case of a laminated structure as shown in Patent Document 1, a plurality of positive plates and negative plates are prepared, and the plurality of positive plates and negative plates are laminated via a separator. Must be electrically connected. For this reason, each electrode plate is provided with a connection portion that exposes the mixture, which is referred to as a connection tab portion, and the connection tab portions are brought together to establish electrical connection. In the prior art shown in Patent Document 1, the connection tab portions are gathered together by welding.

特許第4363558号公報(第3頁、図1)Japanese Patent No. 4363558 (page 3, FIG. 1) 特許第4768912号公報(第5頁−6頁、図1、図4)Japanese Patent No. 4768912 (pages 5-6, FIGS. 1 and 4) 特開2011−138675号公報(第6頁、図1)JP2011-138675A (6th page, FIG. 1)

ところで、電極板を構成する集電体には、一般的にアルミニウムや銅等の金属箔が用いられる。この金属箔の厚みは、例えば10〜100μm程度と極薄い。すでに説明したように、特許文献1に示したような積層構造の場合、複数の接続タブ部同士を溶接して電気的接続をとる必要があるが、金属箔が極薄なために、金属箔同士が接続する前に穴が開いてしまうという問題が発生する。   By the way, generally, metal foil, such as aluminum and copper, is used for the collector which comprises an electrode plate. The thickness of this metal foil is extremely thin, for example, about 10 to 100 μm. As already described, in the case of the laminated structure as shown in Patent Document 1, it is necessary to weld a plurality of connection tab portions to make electrical connection. However, since the metal foil is extremely thin, the metal foil There arises a problem that a hole is opened before connecting each other.

特に、アルミニウムなど融点が低い金属を金属箔に用いると、溶接の際に容易に融けてしまい、金属箔に穴が開きやすいばかりか接続タブ部が離断してしまうこともある。このような問題は、扁平形二次電池の生産時の歩留まり低下につながるため、解決手段の提案が待たれていた。   In particular, when a metal having a low melting point such as aluminum is used for the metal foil, the metal foil is easily melted during welding, and the connection tab portion may be disconnected as well as a hole is easily opened in the metal foil. Such a problem leads to a decrease in yield at the time of production of flat secondary batteries, and a proposal for a solution has been awaited.

本発明の目的は、上記従来技術の問題点に鑑みてなされたものである。積層構造の電極群を構成する場合に、電極を構成する集電体の金属箔を薄く熱に弱い金属で構成しても、各電極の接続タブ部同士を電気的に接続できる扁平型二次電池を提供することにある。   The object of the present invention has been made in view of the above problems of the prior art. A flat secondary that can electrically connect the connection tabs of each electrode even when the metal foil of the current collector that constitutes the electrode is made of a thin metal that is weak to heat when the electrode group has a laminated structure. To provide a battery.

前述した目的を達成するための本発明における扁平型二次電池は、以下の構成を採用する。   The flat secondary battery according to the present invention for achieving the above-described object employs the following configuration.

正極性の複数の第1電極板と、負極性の複数の第2電極板と、がセパレータを介してそれぞれ対向配置してなる電極群と、電解液と、を有し、第1平面が正極性の電極端子を兼ね、第1平面と対向する第2平面が負極性の電極端子を兼ねるケースに、電極群と電解液とを内包した二次電池において、第1電極板及び第2電極板は、それぞれ互いの電極板同士を接続する接続タブ部を有し、接続タブ部同士は、異方性導電フィルムで接続することを特徴とする。   A plurality of positive first electrode plates and a plurality of negative second electrode plates are arranged to face each other with a separator interposed therebetween, and an electrolyte solution, and the first plane is a positive electrode In a secondary battery in which an electrode group and an electrolytic solution are included in a case in which a second plane opposite to the first plane also serves as a negative electrode terminal also serving as a negative electrode terminal, the first electrode plate and the second electrode plate Has connection tab portions for connecting the electrode plates to each other, and the connection tab portions are connected by an anisotropic conductive film.

このような構成とすれば、熱に弱い金属箔や薄い金属箔を集電体に用いても、各接続タブ部同士を破壊することなく電気的接続を取ることができる。   With such a configuration, even when a heat-sensitive metal foil or a thin metal foil is used for the current collector, electrical connection can be established without destroying the connection tab portions.

接続タブ部と電極群との間に、電解液が異方性導電フィルムに接触しないようにする分離手段を設けるようにしてもよい。   You may make it provide the isolation | separation means which prevents electrolyte solution from contacting an anisotropic conductive film between a connection tab part and an electrode group.

このような構成とすれば、仮に異方性導電フィルムと特性上相性の悪い電解液を用いたとしても、互いが触れることはないので、特性が劣化したり異方性導電フィルムが剥がれたりするなどの問題を生じることもない。   With such a configuration, even if an electrolyte solution having a poor compatibility with the anisotropic conductive film is used, the properties do not touch each other, and the characteristics deteriorate or the anisotropic conductive film peels off. It does not cause problems such as.

接続タブ部に、電解液が異方性導電フィルムに接触しないように接続タブ部と異方性導電フィルムとが接する部分を覆う封止手段を設けるようにしてもよい。   You may make it provide the sealing means which covers the part which a connection tab part and an anisotropic conductive film contact in a connection tab part so that electrolyte solution may not contact an anisotropic conductive film.

このような構成とすれば、扁平型二次電池に不測の衝撃が加わったとしても、接続タブ部と異方性導電フィルムとが剥がれにくくなる。
また、仮に異方性導電フィルムと特性上相性の悪い電解液(例えば、異方性導電フィル
ムが溶けてしまうなど)を用いたとしても、互いが触れることはないことに加え、部分的に封止手段を用いることができるから、ケースの構成をシンプルにすることもできる。
With such a configuration, even if an unexpected impact is applied to the flat secondary battery, the connection tab portion and the anisotropic conductive film are not easily peeled off.
In addition, even if an electrolyte solution that is poorly compatible with the anisotropic conductive film (for example, the anisotropic conductive film melts) is used, it does not touch each other and is partially sealed. Since the stopping means can be used, the configuration of the case can be simplified.

本発明における扁平型二次電池は、第1電極板及び第2電極板の接続タブ部での接続に異方性導電フィルムを用いているため、従来の溶接と異なり印加する熱が大幅に低く、扁平型二次電池の製造における不良の発生を格段に減少させることができる。   Since the flat secondary battery according to the present invention uses an anisotropic conductive film for connection at the connection tab portions of the first electrode plate and the second electrode plate, the applied heat is significantly low unlike conventional welding. The occurrence of defects in the production of flat secondary batteries can be significantly reduced.

本発明の実施例1における扁平型二次電池の断面図である。It is sectional drawing of the flat secondary battery in Example 1 of this invention. 本発明の実施例1における扁平型二次電池の正極板の平面図及び断面図である。It is the top view and sectional drawing of the positive electrode plate of the flat secondary battery in Example 1 of this invention. 本発明の実施例1における扁平型二次電池の負極板の平面図及び断面図である。It is the top view and sectional drawing of the negative electrode plate of the flat secondary battery in Example 1 of this invention. 本発明の実施例1における扁平型二次電池の電極群の断面図である。It is sectional drawing of the electrode group of the flat secondary battery in Example 1 of this invention. 本発明の実施例2における扁平型二次電池の断面図である。It is sectional drawing of the flat secondary battery in Example 2 of this invention. 本発明の実施例3における扁平型二次電池の断面図である。It is sectional drawing of the flat secondary battery in Example 3 of this invention.

本発明の扁平型二次電池は、複数の正極板及び複数の負極板の接続タブ部同士を異方性導電フィルムで接続している。
異方性導電フィルムは、熱硬化性樹脂及び導電性を持つ微細な金属粒子の混合物を膜状に成型したフィルムのことである。ACF(Anisotropic Conductive Film)とも呼ばれている。
In the flat secondary battery of the present invention, connection tab portions of a plurality of positive plates and a plurality of negative plates are connected by an anisotropic conductive film.
An anisotropic conductive film is a film obtained by forming a mixture of a thermosetting resin and fine metal particles having conductivity into a film shape. It is also called ACF (Anisotropic Conductive Film).

接続タブ部同士の電気的な接続は、この異方性導電フィルムを接続タブ部の間に挟み、ヒーター等で若干の熱をかけながら加圧する。これにより異方性導電フィルム内に分散している金属粒子同士が押し付けられ、導電経路が形成され、接続タブ部同士は電気的に接続されるのである。   For the electrical connection between the connection tab portions, the anisotropic conductive film is sandwiched between the connection tab portions, and pressure is applied while applying some heat with a heater or the like. Thereby, the metal particles dispersed in the anisotropic conductive film are pressed against each other, a conductive path is formed, and the connection tab portions are electrically connected to each other.

異方性導電フィルムによる接続は、従来の溶接と異なり印加する熱が大幅に低い。このため、接続タブ部は無論のこと外装ケースや封口ケースにも熱によるダメージが生じず、扁平型二次電池の製造における不良の発生を格段に減少させることができる。   In connection with an anisotropic conductive film, unlike conventional welding, the applied heat is significantly low. For this reason, the connection tab portion, of course, does not cause damage to the exterior case and the sealing case due to heat, and can significantly reduce the occurrence of defects in the production of the flat secondary battery.

以下、実施の形態を、図面を用いて詳述する。
まず実施例1として、図1から図4を用いて電極群や扁平型二次電池の構造を説明する。
次に、実施例2として、図5を用いて電解液が異方性導電フィルムに接触しないように分離手段を設ける例を説明する。
さらに、実施例3として、図6を用いて電解液が異方性導電フィルムに接触しないように封止手段を設ける例を説明する。
なお、説明に用いる図面はすべて発明を説明しやすいように模式的に示した模式図であり、扁平型二次電池として、発明に関係のない部分については省略してある。
Hereinafter, embodiments will be described in detail with reference to the drawings.
First, as Example 1, the structure of an electrode group and a flat secondary battery will be described with reference to FIGS.
Next, as Example 2, an example in which separation means is provided so that the electrolytic solution does not contact the anisotropic conductive film will be described with reference to FIG.
Furthermore, as Example 3, an example in which sealing means is provided so that the electrolytic solution does not contact the anisotropic conductive film will be described with reference to FIG.
In addition, all the drawings used for explanation are schematic diagrams schematically showing the invention so that the invention can be easily explained, and portions that are not related to the invention are omitted as flat secondary batteries.

[扁平型二次電池の構造説明:図1〜図4]
まず、実施例1に係る扁平形二次電池の構造を図1〜図4を用いて説明する。
図1は扁平型二次電池の断面を表す断面図である。図2は電極群を構成する正極板の平面図及び断面図であって、図2(a)の平面図の切断線A−A´にて切断した様子が図2(b)の断面図である。図3は電極群を構成する負極板の平面図及び断面図であって、図
3(a)の平面図の切断線B−B´にて切断した様子が図3(b)の断面図である。図4は複数の正極板と負極板とを互いに対向させて積層してなる電極群の断面図である。
[Structural description of flat secondary battery: FIGS. 1 to 4]
First, the structure of the flat secondary battery according to Example 1 will be described with reference to FIGS.
FIG. 1 is a cross-sectional view showing a cross section of a flat secondary battery. FIG. 2 is a plan view and a cross-sectional view of the positive electrode plate constituting the electrode group. FIG. 2B is a cross-sectional view taken along the cutting line AA ′ of the plan view of FIG. is there. FIG. 3 is a plan view and a cross-sectional view of the negative electrode plate constituting the electrode group. FIG. 3B is a cross-sectional view taken along the cutting line BB ′ of the plan view of FIG. is there. FIG. 4 is a cross-sectional view of an electrode group formed by laminating a plurality of positive and negative electrode plates facing each other.

図1に示すように、扁平型二次電池1は、第1平面2aを底面とする浅い有底円筒形の外装ケース2と、この外装ケース2の開口部を、ガスケット3を介して封口する封口ケース4を有している。封口ケース4の上面は、外装ケース2の第1平面2aと対向する平面となり、これを第2平面4aとする。   As shown in FIG. 1, the flat secondary battery 1 seals a shallow bottomed cylindrical outer case 2 having a first plane 2 a as a bottom surface and an opening of the outer case 2 via a gasket 3. A sealing case 4 is provided. The upper surface of the sealing case 4 is a plane facing the first plane 2a of the exterior case 2, and this is defined as a second plane 4a.

外装ケース2と封口ケース4とからなるケースに、第1電極板に相当する正極板7と第2電極板に相当する負極板8とを積層してなる構造の電極群5を収容し、電極群5が浸漬するように外装ケース2及び封口ケース4内部に満たされている電解液6にて構成されている。   An electrode group 5 having a structure in which a positive electrode plate 7 corresponding to a first electrode plate and a negative electrode plate 8 corresponding to a second electrode plate are stacked in a case composed of an outer case 2 and a sealing case 4 is accommodated. It is comprised with the electrolyte solution 6 with which the exterior case 2 and the sealing case 4 were filled so that the group 5 might be immersed.

このようなケースの形状は特に限定するものではないが、図1に示す例では、外装ケース2の底面にあっては一定の厚さを有している。このため、その内面2bは第1平面2aと平行している。封口ケース4も同様であって、封口ケース4の上面にあっては一定の厚さを有しており、その内面4bは第2平面4aと平行している。   The shape of such a case is not particularly limited, but in the example shown in FIG. 1, the bottom surface of the outer case 2 has a certain thickness. For this reason, the inner surface 2b is parallel to the first plane 2a. The sealing case 4 is the same, and the upper surface of the sealing case 4 has a certain thickness, and the inner surface 4b thereof is parallel to the second plane 4a.

外装ケース2及び封口ケース4の材質は、導電性を有する材料であれば特に限定されず、例えばステンレス、アルミニウム、ニッケル等の金属材料、或いはステンレスにニッケルメッキを施した材料等から構成される。   The material of the exterior case 2 and the sealing case 4 is not particularly limited as long as it is a conductive material. For example, the exterior case 2 and the sealing case 4 are made of a metal material such as stainless steel, aluminum, or nickel, or a material obtained by applying nickel plating to stainless steel.

ガスケット3の材質に関しては、絶縁体であれば良く、例えばポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)等の高分子材料から構成される。   The gasket 3 may be made of an insulating material such as polypropylene (PP), polyethylene terephthalate (PET), or polycarbonate (PC).

電解液6の材質については、二次電池の種類に依存し、例えばリチウムイオン二次電池であれば六フッ化リン酸リチウム(LiPF)、過塩素酸リチウム(LiClO)、ホウフッ化リチウム(LiBF)のようなリチウム塩とエチレンカーボネート(EC)、プロピレンカーボネート(PC)のような溶媒から構成される。 The material of the electrolytic solution 6 depends on the type of the secondary battery. For example, in the case of a lithium ion secondary battery, lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiClO 4 ), lithium borofluoride ( Lithium salt such as LiBF 4 ) and a solvent such as ethylene carbonate (EC) and propylene carbonate (PC).

図2に示すように、第1電極板に相当する正極板7は、その外形形状として、正極本体部71と、平面視で正極本体部71から突出した正極用の接続タブ部72とから構成されている。
正極本体部71は、金属箔で構成する正極集電体73の表面に正極合剤74を設けており、図2に示す例では、正極集電体73の両面に正極合剤74を設けている。接続タブ部72の表面には、正極合剤74が形成されておらず、正極集電体73が露出している。これは後述する異方性導電フィルム10aにてそれぞれの正極板7を接続するためである。
As shown in FIG. 2, the positive electrode plate 7 corresponding to the first electrode plate includes, as its outer shape, a positive electrode main body portion 71 and a positive electrode connection tab portion 72 protruding from the positive electrode main body portion 71 in plan view. Has been.
The positive electrode main body 71 is provided with a positive electrode mixture 74 on the surface of a positive electrode current collector 73 formed of a metal foil. In the example shown in FIG. 2, the positive electrode mixture 74 is provided on both surfaces of the positive electrode current collector 73. Yes. The positive electrode mixture 74 is not formed on the surface of the connection tab portion 72, and the positive electrode current collector 73 is exposed. This is for connecting each positive electrode plate 7 with the anisotropic conductive film 10a mentioned later.

リチウムイオン二次電池の場合、正極集電体73はアルミニウム箔で構成され、例えばその厚みは、20μmである。正極合剤74はニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、コバルト酸リチウム(LiCoO)等の正極活物質と、アセチレンブラック等の導電剤及びポリフッ化ビニリデン等のバインダー剤との混合物で構成される。 In the case of a lithium ion secondary battery, the positive electrode current collector 73 is made of an aluminum foil, and has a thickness of 20 μm, for example. The positive electrode mixture 74 includes a positive electrode active material such as lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), lithium cobaltate (LiCoO 2 ), a conductive agent such as acetylene black, and a binder agent such as polyvinylidene fluoride. Composed of a mixture of

図3に示す、第2電極板に相当する負極板8も図2に示す正極板7と同様に、負極本体部81と、平面視で負極本体部81から突出した負極用の接続タブ部82とから構成されている。同じく、金属箔で構成する負極集電体83の両面に負極合剤84を設けている。接続タブ部82の表面には、負極合剤84が形成されておらず、負極集電体83が露出している。これも後述する異方性導電フィルム10bにてそれぞれの負極板8を接続するた
めである。
The negative electrode plate 8 corresponding to the second electrode plate shown in FIG. 3 is also similar to the positive electrode plate 7 shown in FIG. 2, and the negative electrode main body 81 and the negative electrode connection tab 82 protruding from the negative electrode main body 81 in plan view. It consists of and. Similarly, a negative electrode mixture 84 is provided on both surfaces of a negative electrode current collector 83 formed of a metal foil. The negative electrode mixture 84 is not formed on the surface of the connection tab portion 82, and the negative electrode current collector 83 is exposed. This is also for connecting each negative electrode plate 8 with an anisotropic conductive film 10b described later.

リチウムイオン二次電池の場合、負極集電体83は銅箔で構成され、例えばその厚みは、20μmである。負極合剤84はグラファイト等の負極活物質とポリフッ化ビニリデン等のバインダー剤との混合物で構成される。   In the case of a lithium ion secondary battery, the negative electrode current collector 83 is made of a copper foil, and has a thickness of 20 μm, for example. The negative electrode mixture 84 is composed of a mixture of a negative electrode active material such as graphite and a binder agent such as polyvinylidene fluoride.

なお、図2及び図3に示す正極板7及び負極板8の例では、正極板7の正極本体部71及び負極板8の負極本体部81の形状を円形として示したが、これらの形状は円形に限らない。外装ケース2及び封口ケース4の形状に合わせたり、二次電池として蓄電量などの電池としての性能を鑑みて、四角形や六角形等の多角形、楕円形等を自由に設定できる。   In the example of the positive electrode plate 7 and the negative electrode plate 8 shown in FIGS. 2 and 3, the shapes of the positive electrode main body 71 of the positive electrode plate 7 and the negative electrode main body 81 of the negative electrode plate 8 are shown as circular. It is not limited to a circle. In accordance with the shape of the outer case 2 and the sealing case 4, or in view of battery performance such as the amount of storage as a secondary battery, a polygon such as a rectangle or a hexagon, an ellipse, or the like can be freely set.

図2及び図3に示す正極板7及び負極板8を複数設け、それぞれを積層して電極群5とした構成を図4に示す。
電極群5は、セパレータ9を介して正極板7及び負極板8を積層して構成される。正極板7と負極板8とは、正極本体部71と負極本体部81とが対向するように重ねて積層する。このとき、セパレータ9は正極本体部71と負極本体部81とが接触しないように設ける。
FIG. 4 shows a configuration in which a plurality of positive plates 7 and negative plates 8 shown in FIGS. 2 and 3 are provided and stacked to form an electrode group 5.
The electrode group 5 is configured by laminating a positive electrode plate 7 and a negative electrode plate 8 with a separator 9 interposed therebetween. The positive electrode plate 7 and the negative electrode plate 8 are stacked so that the positive electrode main body 71 and the negative electrode main body 81 face each other. At this time, the separator 9 is provided so that the positive electrode main body 71 and the negative electrode main body 81 do not contact each other.

セパレータ9の材質としては、微多孔性ポリエチレンフィルムを用いることができる。正極板7と負極板8とを電気的に隔離し、且つ微細孔を通ってイオンが移動する材質から構成される。   As a material of the separator 9, a microporous polyethylene film can be used. The positive electrode plate 7 and the negative electrode plate 8 are electrically isolated from each other and are made of a material that allows ions to move through the fine holes.

正極用の接続タブ部72及び負極用の接続タブ部82は、セパレータ9の外周よりも外側、つまり正極本体部71と負極本体部81とが積層している部分ではない部分に、平面視で重なるように配置されている。   The connection tab portion 72 for positive electrode and the connection tab portion 82 for negative electrode are outside the outer periphery of the separator 9, that is, in a portion that is not a portion where the positive electrode main body portion 71 and the negative electrode main body portion 81 are laminated in a plan view. They are arranged so as to overlap.

図4に示すように、それぞれ重なった正極用の接続タブ部72と負極用の接続タブ部82とは、正極本体部71と負極本体部81とが積層している部分を挟んで離間するようにすると共に対向するように設けている。図4の図面視で左右に設けている。そして、それぞれ同一極性の接続タブ部同士は異方性導電フィルムにて接続されている。   As shown in FIG. 4, the overlapping positive electrode connection tab portion 72 and negative electrode connection tab portion 82 are spaced apart from each other with a portion where the positive electrode main body portion 71 and the negative electrode main body portion 81 are stacked. And provided so as to face each other. They are provided on the left and right in the view of FIG. And each connection tab part of the same polarity is connected by the anisotropic conductive film.

すなわち、複数の正極用の接続タブ部72は、異方性導電フィルム10aを挟むように重ねてあり、この異方性導電フィルム10aによりそれぞれの接続タブ部72は電気的に接続されている。同様に、複数の負極用の接続タブ部82も同様に、異方性導電フィルム10bを挟むように重ねてあり、それぞれの接続タブ部82は電気的に接続されている。   That is, the plurality of positive electrode connection tab portions 72 are stacked so as to sandwich the anisotropic conductive film 10a, and the connection tab portions 72 are electrically connected by the anisotropic conductive film 10a. Similarly, a plurality of negative electrode connection tab portions 82 are also stacked so as to sandwich the anisotropic conductive film 10b, and each connection tab portion 82 is electrically connected.

複数の接続タブ部72及び接続タブ部82をそれぞれ異方性導電フィルム10a、10bにて接続する方法は、公知の技術を用いることができるが、一例をあげると以下のようになる。   A known technique can be used as a method of connecting the plurality of connection tab portions 72 and the connection tab portions 82 with the anisotropic conductive films 10a and 10b, respectively, but an example is as follows.

すなわち、接続タブ部と異方性導電フィルムとを交互に積層し、積層した部分を圧縮する方向、即ち扁平形二次電池の厚み方向に加圧及び加熱する。そのときの温度は、例えば150〜200℃程度である。加圧及び加熱することで異方性導電フィルム内に分散している金属粒子同士が押し付けられ導電経路を形成し、複数の接続タブ部同士が電気的に接続されるのである。   That is, the connection tab portions and the anisotropic conductive film are alternately stacked, and the stacked portions are pressed and heated in the direction in which the stacked portions are compressed, that is, in the thickness direction of the flat secondary battery. The temperature at that time is, for example, about 150 to 200 ° C. By applying pressure and heating, metal particles dispersed in the anisotropic conductive film are pressed together to form a conductive path, and a plurality of connection tab portions are electrically connected.

このように、異方性導電フィルムにより同一極性の複数の接続タブ部同士を接続する際に印加する温度は、金属箔の融点よりも低い温度であるため、接続タブ部が損傷を受けることがない。   Thus, since the temperature applied when connecting a plurality of connection tab portions having the same polarity by the anisotropic conductive film is lower than the melting point of the metal foil, the connection tab portion may be damaged. Absent.

なお、異方性導電フィルム10a、10bは、同一の特性を有するものを用いてもよいし、それぞれ異なる特性のフィルムを用いてもよい。異方性導電フィルムは、熱硬化性樹脂及び導電性を持つ微細な金属粒子の混合物を膜状に成型してなるため、用いられる熱硬化性樹脂の種類や金属粒子の種類は多い。これらの組み合わせにより、硬化した際の硬さや電気的な抵抗に違いがある。正極板7と負極板8とは材質がそれぞれ異なるので、ぞれぞれの電気的特性に合った異方性導電フィルムを用いることで、二次電池の性能を向上させることができる場合がある。   The anisotropic conductive films 10a and 10b may have the same characteristics, or may have different characteristics. Since the anisotropic conductive film is formed by molding a mixture of a thermosetting resin and fine metal particles having conductivity into a film shape, there are many types of thermosetting resins and metal particles used. Depending on the combination of these, there is a difference in hardness and electrical resistance when cured. Since the materials of the positive electrode plate 7 and the negative electrode plate 8 are different from each other, the performance of the secondary battery may be improved by using an anisotropic conductive film suitable for each electrical characteristic. .

図4及び図1に示すように、複数の正極板7及び負極板8を積層してなる電極群5は、ケースに収納された状態では、その正極板7及び負極板8は、それぞれ外装ケース2の第1平面2aと封口ケース4の第2平面4aと並行するように配置されている。   As shown in FIGS. 4 and 1, the electrode group 5 formed by laminating a plurality of positive plates 7 and negative plates 8, when housed in a case, has a positive plate 7 and a negative plate 8, respectively. It arrange | positions so that the 2nd 1st plane 2a and the 2nd plane 4a of the sealing case 4 may be parallel.

電極群5を構成する各正極板7や負極板8が傾斜して積層されていると、限られたケースのスペースを無駄にしてしまうばかりか、次に述べる電極群5とケースとの接続にも不利になる。   If each positive electrode plate 7 or negative electrode plate 8 constituting the electrode group 5 is inclined and laminated, not only a limited case space is wasted but also the connection between the electrode group 5 and the case described below. Will also be disadvantaged.

電極群5は、その端部に位置する正極板7aの正極集電体73a及び負極板8aの負極集電体83aは、正極合剤74及び負極合剤84を片面にしか設けていない。このような構成することで、図1に示すように、外装ケース2の内面2b及び封口ケース4の内面4bと正極集電体73a及び負極集電体83aとが面接触することができる。   In the electrode group 5, the positive electrode current collector 73a of the positive electrode plate 7a and the negative electrode current collector 83a of the negative electrode plate 8a located at the end portions thereof are provided with the positive electrode mixture 74 and the negative electrode mixture 84 only on one side. With such a configuration, as shown in FIG. 1, the inner surface 2b of the outer case 2 and the inner surface 4b of the sealing case 4 can be brought into surface contact with the positive electrode current collector 73a and the negative electrode current collector 83a.

すなわち、電極群5の端部は、金属箔で構成する正極集電体73aと金属箔で構成する負極集電体83aとを露出するようにすれば、この電極群5をケースに納めたとき、外装ケース2と正極集電体73aとが電気的に導通状態に、封口ケース4と負極集電体83aとが電気的に導通状態にすることができるのである。   That is, when the positive electrode current collector 73a made of metal foil and the negative electrode current collector 83a made of metal foil are exposed at the end of the electrode group 5, the electrode group 5 is placed in the case. Thus, the outer case 2 and the positive electrode current collector 73a can be electrically connected, and the sealing case 4 and the negative electrode current collector 83a can be electrically connected.

その後、電極群5が浸漬するように電解液6を入れ、外装ケース2と封口ケース4との間にガスケット3を設けて押圧することで、それぞれの集電体はケースとより密着できるのである。   Thereafter, the electrolytic solution 6 is put so that the electrode group 5 is immersed, and the gasket 3 is provided between the outer case 2 and the sealing case 4 and pressed, so that each current collector can be more closely attached to the case. .

以上のような構成をとれば、正極板7及び負極板8と外装ケース2と封口ケース4とは別途溶接などの接続工程が不要となり、正極集電体73や負極集電体83の溶接時に生じる熱による破壊も防止でき、歩留まりが良好な扁平型二次電池を得ることができる。   With the above configuration, the positive electrode plate 7, the negative electrode plate 8, the outer case 2, and the sealing case 4 need not be connected separately such as welding, and the positive electrode current collector 73 and the negative electrode current collector 83 are welded. A flat secondary battery with good yield can be obtained, which can prevent destruction due to the generated heat.

もちろん、図示はしないが、外装ケース2と正極集電体73aとの間と、封口ケース4と負極集電体83aとの間と、にそれぞれ異方性導電性フィルムをさらに設けて接続するようにしてもよい。このようにすれば、より強固に集電体とケースとを接続することができる。上述の通り、異方性導電フィルムは、使われる熱硬化性樹脂と内包する金属粒子との組み合わせが多いため、それぞれの集電体とケースとの接続に適したものを選択するとよい。   Of course, although not shown, an anisotropic conductive film is further provided and connected between the outer case 2 and the positive electrode current collector 73a and between the sealing case 4 and the negative electrode current collector 83a. It may be. In this way, the current collector and the case can be connected more firmly. As described above, since there are many combinations of the thermosetting resin used and the encapsulated metal particles, it is preferable to select an anisotropic conductive film that is suitable for connection between each current collector and the case.

[扁平型二次電池の構造説明:図5]
次に、実施例2に係る扁平形二次電池の構造を図5を用いて説明する。
図5は扁平型二次電池100の断面を表す断面図である。先の実施例と同じ構成のものには同じ符号を用いている。
[Description of structure of flat secondary battery: FIG. 5]
Next, the structure of the flat secondary battery according to Example 2 will be described with reference to FIG.
FIG. 5 is a cross-sectional view showing a cross section of the flat secondary battery 100. The same reference numerals are used for the same components as in the previous embodiment.

本実施例が先の実施例1と異なるのは、正極本体部71と正極集電タブ72、及び負極本体部81と負極集電タブ82の間に分離手段11を設けたことである。つまり、ケースの内部において、分離手段により異方性導電フィルムを電解液から隔離するのである。
この構成により、異方性導電フィルム10a、10bで接続した箇所に電解液6が接触することを防ぐことができる。
This embodiment differs from the first embodiment in that the separating means 11 is provided between the positive electrode main body 71 and the positive electrode current collecting tab 72 and between the negative electrode main body 81 and the negative electrode current collecting tab 82. That is, the anisotropic conductive film is isolated from the electrolytic solution by the separating means inside the case.
By this structure, it can prevent that the electrolyte solution 6 contacts the location connected by anisotropic conductive film 10a, 10b.

扁平型二次電池100に用いる電解液6が異方性導電フィルム10a、10bに影響を及ぼすような材料で構成している場合がある。例えば、電解液6により異方性導電フィルム10a、10bが剥離してしまたり、溶けてしまったりする場合である。そのようなときであっても、この分離手段11により電解液6のエリアを異方性導電フィルム10a、10bと分離することで、剥離や溶けを防止することが可能となる。   The electrolyte 6 used for the flat secondary battery 100 may be made of a material that affects the anisotropic conductive films 10a and 10b. For example, the anisotropic conductive films 10a and 10b are peeled off or melted by the electrolytic solution 6. Even in such a case, separation and melting can be prevented by separating the area of the electrolytic solution 6 from the anisotropic conductive films 10a and 10b by the separating means 11.

分離手段11にはスリット11aが設けてあり、このスリット11aを通して正極集電タブ72及び負極集電タブ82を、電解液6を設けるエリアの外側に導く。そしてこのスリット11aを封口剤12で塞ぐ。このようにするため、分離手段11により電解液6が異方性導電フィルム10a、10bに到達することはない。封口剤12は、特に限定しないがフッ素系樹脂を用いることができる。   The separating means 11 is provided with a slit 11a, and the positive electrode current collecting tab 72 and the negative electrode current collecting tab 82 are guided to the outside of the area where the electrolytic solution 6 is provided through the slit 11a. Then, the slit 11 a is closed with the sealing agent 12. Therefore, the electrolytic solution 6 does not reach the anisotropic conductive films 10a and 10b by the separating unit 11. Although the sealing agent 12 is not specifically limited, a fluororesin can be used.

分離手段11の構成としてはポリプロピレン、フッ素系樹脂、ポリエチレンテレフタレート等のパッキン、セラミック等が考えられるが、電気伝導性の無い材料であれば材質は限定されない。   The structure of the separating means 11 may be polypropylene, fluorine-based resin, packing such as polyethylene terephthalate, ceramic, or the like, but the material is not limited as long as the material has no electrical conductivity.

このような分離手段11は、外装ケース2や封口ケース4と接着しその接続点から電解液6が漏れないようになっているのは言うまでもないが、それらケースと一体になっていてもよい。例えば、外装ケース2と一体に形成しておけば、製造時に図5の上部から電解液を注入しやすく便利である。また、外装ケース2や封口ケース4と分離手段11とが固定されていれば、ケースに電極群5を入れ込み、その後に電解液6を注入するときに分離手段11が誤って動いてしまうこともなく、製造がしやすくなる。   It goes without saying that such a separating means 11 is bonded to the outer case 2 and the sealing case 4 so that the electrolyte 6 does not leak from the connection point, but may be integrated with these cases. For example, if it is formed integrally with the outer case 2, it is easy to inject the electrolytic solution from the upper part of FIG. Further, if the outer case 2 or the sealing case 4 and the separating means 11 are fixed, the separating means 11 may move erroneously when the electrode group 5 is inserted into the case and the electrolytic solution 6 is injected thereafter. And easy to manufacture.

以上のような構成をとることで、実施例1に示した効果に加え、電解液と異方性導電フィルムとの相性を考慮に入れずに材料選定できるというメリットが生まれる。例えば、蓄電量などの電気的な特性を優先して電解液6の材料選定ができたり、各電極板の接続のしやすさで異方性導電フィルム10a、10bの材料選定ができるのである。   By taking the configuration as described above, in addition to the effects shown in Example 1, there is an advantage that the material can be selected without considering the compatibility between the electrolytic solution and the anisotropic conductive film. For example, the material of the electrolyte solution 6 can be selected with priority given to electrical characteristics such as the amount of electricity stored, and the material of the anisotropic conductive films 10a and 10b can be selected according to the ease of connection of the electrode plates.

[扁平型二次電池の構造説明:図6]
次に、実施例3に係る扁平形二次電池の構造を図6を用いて説明する。
図6は扁平型二次電池101の断面を表す断面図である。先の実施例と同じ構成のものには同じ符号を用いている。
[Description of the structure of the flat secondary battery: FIG. 6]
Next, the structure of the flat secondary battery according to Example 3 will be described with reference to FIG.
FIG. 6 is a cross-sectional view showing a cross section of the flat secondary battery 101. The same reference numerals are used for the same components as in the previous embodiment.

本実施例が先の実施例1及び実施例2と異なるのは、各正極集電タブ72とこの集電タブ同士を接続する異方性導電フィルム10aとの周囲に封止手段である封止材13aを設け、各負極集電タブ82とこの集電タブ同士を接続する異方性導電フィルム10bとの周囲に封止材13bを設けたことである。つまり、ケースの内部において、封止手段により異方性導電フィルムを設けた部分を覆ってしまうのである。
この構成により、異方性導電フィルム10a、10bで接続した箇所に電解液6が接触することを防ぐことができる。
This embodiment is different from the previous embodiment 1 and embodiment 2 in that sealing is a sealing means around each positive electrode current collecting tab 72 and the anisotropic conductive film 10a connecting the current collecting tabs. The material 13a is provided, and the sealing material 13b is provided around each negative electrode current collecting tab 82 and the anisotropic conductive film 10b connecting the current collecting tabs. That is, the portion where the anisotropic conductive film is provided is covered by the sealing means inside the case.
By this structure, it can prevent that the electrolyte solution 6 contacts the location connected by anisotropic conductive film 10a, 10b.

このような構成にすれば、すでに説明した実施例2と同様に、仮に電解液6が異方性導電フィルム10a、10bを剥離してしまったり溶かしてしまうような材料で構成している場合であっても、この封止材13a、13bにより電解液6と異方性導電フィルム10a、10bとの接触を防止することが可能となる。   With such a configuration, as in Example 2 already described, the electrolytic solution 6 is made of a material that peels off or melts the anisotropic conductive films 10a and 10b. Even if it exists, it becomes possible to prevent contact with the electrolyte solution 6 and the anisotropic conductive films 10a and 10b by these sealing materials 13a and 13b.

封止材13a、13bとしては、例えばシリコンゴム、エポキシ樹脂等が考えられるが、電気伝導性の無い材料であれば材質は限定されない。
特に、エポキシ樹脂を用いれば、異方性導電フィルム10aを用いて複数の正極用の接続タブ部72を接続した箇所及び、異方性導電フィルム10bを用いて複数の負極用の接続タブ部82を接続した箇所のみを公知の樹脂ポッティング技術を応用して封止することができるので、便利である。
As the sealing materials 13a and 13b, for example, silicon rubber, epoxy resin, and the like are conceivable. However, the material is not limited as long as the material does not have electrical conductivity.
In particular, if an epoxy resin is used, a plurality of positive electrode connection tab portions 72 are connected using the anisotropic conductive film 10a, and a plurality of negative electrode connection tab portions 82 are used using the anisotropic conductive film 10b. This is convenient because only a portion where the stubs are connected can be sealed by applying a known resin potting technique.

以上のような構成をとることで、実施例1及びに示した効果に加え、電解液と異方性導電フィルムとの相性を考慮に入れずに材料選定できるというメリットが生まれると共に、所定の部分のみ封止できるので、ケースを小型化することができる。
また、扁平型二次電池に不測の衝撃が加わったとしても、接続用タブ部が固定されているために、異方性導電フィルムが剥がれてしまうこともない。
By taking the above configuration, in addition to the effects shown in Example 1 and the advantage that the material can be selected without considering the compatibility between the electrolytic solution and the anisotropic conductive film, a predetermined portion Since only sealing is possible, the case can be reduced in size.
Even if an unexpected impact is applied to the flat secondary battery, the anisotropic conductive film is not peeled off because the connecting tab portion is fixed.

この発明によれば、熱による破壊の影響なしに各電極板同士を接続できるので、電極板をより薄くすることもできる。したがって、高容量化、高性能化、低コスト化の要求を満たす扁平形二次電池に好適である。   According to this invention, since each electrode plate can be connected without the influence of destruction by heat, an electrode plate can also be made thinner. Therefore, it is suitable for a flat secondary battery that satisfies the demands for higher capacity, higher performance, and lower cost.

1、100、101 扁平形二次電池
2 外装ケース
3 ガスケット
4 封口ケース
5 電極群
6 電解液
7 正極板
7a 端部に位置する正極板
8 負極版
8a 端部に位置する負極版
9 セパレータ
10a、10b 異方性導電フィルム
11 分離手段
12 封口材
13a、13b 封止材
71 正極本体部
72 正極用の接続タブ部
73 正極集電体
73a 端部に位置する正極集電体
74 正極合剤
81 負極本体部
82 負極用の接続タブ部
83 負極集電体
83a 端部に位置する負極集電体
84 負極合剤
DESCRIPTION OF SYMBOLS 1,100,101 Flat secondary battery 2 Exterior case 3 Gasket 4 Sealing case 5 Electrode group 6 Electrolyte solution 7 Positive electrode plate 7a Positive electrode plate located at end 8 Negative electrode plate 8a Negative electrode plate located at end 9 Separator 10a, DESCRIPTION OF SYMBOLS 10b Anisotropic conductive film 11 Separation means 12 Sealing material 13a, 13b Sealing material 71 Positive electrode main body part 72 Connection tab part for positive electrodes 73 Positive electrode current collector 73a Positive electrode current collector located at an end 74 Positive electrode mixture 81 Negative electrode Main body part 82 Connection tab part for negative electrode 83 Negative electrode current collector 83a Negative electrode current collector located at the end 84 Negative electrode mixture

Claims (3)

正極性の複数の第1電極板と、負極性の複数の第2電極板と、がセパレータを介してそれぞれ対向配置してなる電極群と、電解液と、を有し、
第1平面が前記正極性の電極端子を兼ね、前記第1平面と対向する第2平面が前記負極性の電極端子を兼ねるケースに、前記電極群と前記電解液とを内包した扁平型二次電池において、
前記第1電極板及び前記第2電極板は、それぞれ互いの電極板同士を接続する接続タブ部を有し、
前記接続タブ部同士は、異方性導電フィルムで接続する
ことを特徴とする扁平型二次電池。
An electrode group in which a plurality of positive first electrode plates and a plurality of negative second electrode plates are arranged to face each other via a separator, and an electrolyte solution,
A flat secondary in which the first plane also serves as the positive electrode terminal and the second plane opposite to the first plane also serves as the negative electrode terminal includes the electrode group and the electrolyte. In batteries,
The first electrode plate and the second electrode plate each have a connection tab portion for connecting the electrode plates to each other.
The connection tab portions are connected by an anisotropic conductive film. A flat secondary battery, wherein:
前記接続タブ部と前記電極群との間に、前記電解液が前記異方性導電フィルムに接触しないようにする分離手段を設けた
ことを特徴とする請求項1に記載の扁平型二次電池。
2. The flat secondary battery according to claim 1, wherein separation means is provided between the connection tab portion and the electrode group so that the electrolyte does not contact the anisotropic conductive film. .
前記接続タブ部に、前記電解液が前記異方性導電フィルムに接触しないように前記接続タブ部と前記異方性導電フィルムとが接する部分を覆う封止手段を設けた
ことを特徴とする請求項1に記載の扁平型二次電池。
The connecting tab portion is provided with sealing means for covering a portion where the connecting tab portion and the anisotropic conductive film are in contact with each other so that the electrolytic solution does not contact the anisotropic conductive film. Item 2. The flat secondary battery according to Item 1.
JP2013239703A 2013-11-20 2013-11-20 Flat type secondary battery Pending JP2015099723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013239703A JP2015099723A (en) 2013-11-20 2013-11-20 Flat type secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013239703A JP2015099723A (en) 2013-11-20 2013-11-20 Flat type secondary battery

Publications (1)

Publication Number Publication Date
JP2015099723A true JP2015099723A (en) 2015-05-28

Family

ID=53376211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013239703A Pending JP2015099723A (en) 2013-11-20 2013-11-20 Flat type secondary battery

Country Status (1)

Country Link
JP (1) JP2015099723A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3376552A1 (en) * 2017-03-13 2018-09-19 Robert Bosch GmbH Battery cell, battery module containing the same, and their use
EP4044354A4 (en) * 2019-10-10 2024-02-28 Murata Manufacturing Co Secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3376552A1 (en) * 2017-03-13 2018-09-19 Robert Bosch GmbH Battery cell, battery module containing the same, and their use
WO2018166692A1 (en) * 2017-03-13 2018-09-20 Robert Bosch Gmbh Battery cell, battery module containing said battery cell, and use thereof
CN110612615A (en) * 2017-03-13 2019-12-24 罗伯特·博世有限公司 Battery unit, battery module containing same and application thereof
CN110612615B (en) * 2017-03-13 2022-07-05 罗伯特·博世有限公司 Battery unit, battery module containing same and application thereof
EP4044354A4 (en) * 2019-10-10 2024-02-28 Murata Manufacturing Co Secondary battery

Similar Documents

Publication Publication Date Title
JP4720384B2 (en) Bipolar battery
US20130196210A1 (en) Lithium Secondary Battery Having Multi-Directional Lead-Tab Structure
JP5505218B2 (en) Sealed storage battery
JP6414898B2 (en) Non-aqueous electrolyte secondary battery electrode, method for producing the same, and non-aqueous electrolyte secondary battery
EP3316349B1 (en) Method for manufacturing electrochemical device
US10622615B2 (en) Electrochemical device
KR101629499B1 (en) Electrode assembly and secondary battery comprising the same
JP6270613B2 (en) Prismatic secondary battery
JP5953549B2 (en) Lithium ion battery
US10734626B2 (en) Electrochemical device
KR102238367B1 (en) electrode assembly and secondary battery having electrode assembly
JP2017016787A (en) Current collector for secondary battery
JP2005251617A (en) Secondary battery and battery pack
KR102217190B1 (en) Stacked battery
WO2017098995A1 (en) Electrochemical device and method for manufacturing same
KR102611304B1 (en) Electrochemical device
EP3029756B1 (en) Rechargeable battery
CN105359322A (en) Fuel cell system configured to capture chromium
US20200220134A1 (en) Secondary battery
JP2009181899A (en) Laminated battery
JP2013152880A (en) Laminate cell and module using the same
JP2015099723A (en) Flat type secondary battery
KR101629498B1 (en) Electrode assembly and secondary battery comprising the same
JP2006244911A (en) Secondary battery and manufacturing method of the secondary battery
JP2017139085A (en) Sealed battery